NASA/IPAC EXTRAGALACTIC DATABASE
Date and Time of the Query: 2019-08-22 T12:08:49 PDT
Help | Comment | NED Home

For refcode 2001ApJ...553...47F:
Retrieve 144 NED objects in this reference.
Please click here for ADS abstract

NED Abstract

Copyright by American Astronomical Society. Reproduced by permission
2001ApJ...553...47F Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant Wendy L. Freedman, Barry F. Madore, Brad K. Gibson, Laura Ferrarese, Daniel D. Kelson, Shoko Sakai, Jeremy R. Mould, Robert C. Kennicutt, Jr., Holland C. Ford, John A. Graham, John P. Huchra, Shaun M. G. Hughes, Garth D. Illingworth, Lucas M. Macri, and Peter B. Stetson Received 2000 July 30; accepted 2000 December 19 ABSTRACT We present here the final results of the Hubble Space Telescope (HST) Key Project to measure the Hubble constant. We summarize our method, the results, and the uncertainties, tabulate our revised distances, and give the implications of these results for cosmology. Our results are based on a Cepheid calibration of several secondary distance methods applied over the range of about 60-400 Mpc. The analysis presented here benefits from a number of recent improvements and refinements, including (1) a larger LMC Cepheid sample to define the fiducial period-luminosity (PL) relations, (2) a more recent HST Wide Field and Planetary Camera 2 (WFPC2) photometric calibration, (3) a correction for Cepheid metallicity, and (4) a correction for incompleteness bias in the observed Cepheid PL samples. We adopt a distance modulus to the LMC (relative to which the more distant galaxies are measured) of {mu}_0_ (LMC) = 18.50 +/- 0.10 mag, or 50 kpc. New, revised distances are given for the 18 spiral galaxies for which Cepheids have been discovered as part of the Key Project, as well as for 13 additional galaxies with published Cepheid data. The new calibration results in a Cepheid distance to NGC 4258 in better agreement with the maser distance to this galaxy. Based on these revised Cepheid distances, we find values (in km s^-1^ Mpc^-1^) of H_0_ = 71 +/- 2 (random)+/- 6 (systematic) (Type Ia supernovae), H_0_ = 71 +/- 3 +/- 7 (Tully-Fisher relation), H_0_ = 70 +/- 5 +/- 6 (surface brightness fluctuations), H_0_ = 72 +/- 9 +/- 7 (Type II supernovae), and H_0_ = 82 +/- 6 +/- 9 (fundamental plane). We combine these results for the different methods with three different weighting schemes, and find good agreement and consistency with H_0_ = 72 +/- 8 km s^-1^ Mpc^-1^. Finally, we compare these results with other, global methods for measuring H_0_. Subject headings: Cepheids-cosmology: observations-distance scale-galaxies: distances and redshifts
Retrieve 144 NED objects in this reference.
Please click here for ADS abstract

Back to NED Home