NASA/IPAC EXTRAGALACTIC DATABASE
Date and Time of the Query: 2019-06-18 T17:10:50 PDT
Help | Comment | NED Home

For refcode 2005A&A...434..909P:
Retrieve 73 NED objects in this reference.
Please click here for ADS abstract

NED Abstract

Copyright by European Southern Observatory (ESO). Reproduced by permission
2005A&A...434..909P New light on the formation and evolution of M 31 and its globular cluster system T. H. Puzia, K. M. Perrett and T. J. Bridges Received 6 August 2004 / Accepted 13 January 2005 We present spectroscopic ages, metallicities, and [{alpha}/Fe] ratios for70 globular clusters in M 31 that were derived from Lick line-index measurements. A new interpolation technique of age-metallicity and{alpha}/Fe-diagnostic grids is used to account for changes in index strength as a response to abundance-ratio variations, in particular for all of the Balmer-line Lick indices. In addition to a population of old(>10 Gyr) globular clusters with a wide range of metallicities, from about -2.0 dex to solar values, we find evidence for a population of intermediate-age globular clusters with ages between ~5 and 8 Gyr and a mean metallicity [Z/H] ~ -0.6. We also confirm the presence of young M 31 globular clusters that were recently identified by Beasley et al. (2004, AJ, 128, 1623), which have ages ~< 1 Gyr and relatively high metallicities around -0.4 dex. The M 31 globular cluster system has a clearly super-solar mean [{alpha}/Fe] = 0.14 +/- 0.04 dex.Intermediate-age and young objects show roughly solar abundance ratios. We find evidence for an age-[{alpha}/Fe] relation in the sense that youngerclusters have smaller mean [ {alpha}/Fe] ratios. From a comparison of indices, mostly sensitive to carbon and/or nitrogen abundance, with SSP model predictions for nitrogen-enhanced stellar populations, we find a dichotomy in nitrogen enhancement between young and old M 31 globular clusters. The indices of objects older than 5 Gyr are consistent with a factor of three or higher in nitrogen enhancement compared to their younger counterparts. Using kinematical data from Morrison et al. (2004, ApJ, 603, 87) we find that the globular cluster sub-population with halo kinematics is old( >~ 9 Gyr), has a bimodal metallicity distribution, and super-solar[{alpha}/Fe] . Disk globular clusters have a wider range of ages, are on average more metal-rich, and have a slightly smaller mean [{alpha}/Fe] ratio. A cross-correlation of structural parameters for M 31 globular clusters with spectroscopically derived ages, metallicities, and[{alpha}/Fe] ratios shows a correlation between half-light/tidal radius and metallicity, which is most likely due to the correlation of half-light/tidal radius and galactocentric distance. We compare our results for M 31 globular clusters with those obtained with the same technique for globular clusters in the Milky Way, Large Magellanic Cloud,M 81, and other spiral galaxies in the Sculptor group. Finally, we compare the globular cluster systems of the two Local Group spirals, M 31 and Milky Way, with their integrated bulge light. Keywords: galaxies: star clusters, galaxies: formation, galaxies: evolution, galaxies: Local Group, Galaxy: globular clusters: general, galaxies: general
Retrieve 73 NED objects in this reference.
Please click here for ADS abstract

Back to NED Home