NASA/IPAC EXTRAGALACTIC DATABASE
Date and Time of the Query: 2019-06-20 T10:09:37 PDT
Help | Comment | NED Home

For refcode 2006ApJ...642....1C:
Retrieve 16 NED objects in this reference.
Please click here for ADS abstract

NED Abstract

Copyright by American Astronomical Society. Reproduced by permission
2006ApJ...642....1C Hubble Space Telescope and Ground-based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications Alejandro Clocchiatti, Brian P. Schmidt, Alexei V. Filippenko, Peter Challis, Alison L. Coil, R. Covarrubias, Alan Diercks, Peter Garnavich, Lisa Germany, Ron Gilliland, Craig Hogan, Saurabh Jha, Robert P. Kirshner, Bruno Leibundgut, Doug Leonard, Weidong Li, Thomas Matheson, Mark M. Phillips, Jose Luis Prieto, David Reiss, Adam G. Riess, Robert Schommer, R. Chris Smith, Alicia Soderberg, Jason Spyromilio, Christopher Stubbs, Nicholas B. Suntzeff, John L. Tonry, and Patrick Woudt Abstract. We present observations of the Type Ia supernovae (SNe) 1999M, 1999N, 1999Q, 1999S, and 1999U, at redshift z~0.5. They were discovered in early 1999 with the 4.0 m Blanco telescope at Cerro Tololo Inter-American Observatory by the High-z Supernova Search Team (HZT) and subsequently followed with many ground-based telescopes. SNe 1999Q and 1999U were also observed with the Hubble Space Telescope. We computed luminosity distances to the new SNe using two methods and added them to the high-z Hubble diagram that the HZT has been constructing since 1995. The new distance moduli confirm the results of previous work. At z~0.5, luminosity distances are larger than those expected for an empty universe, implying that a "cosmological constant," or another form of "dark energy," has been increasing the expansion rate of the universe during the last few billion years. Combining these new HZT SNe Ia with our previous results and assuming a {LAMBDA}CDM cosmology, we estimate the cosmological parameters that best fit our measurements. For a sample of 75 low-redshift and 47 high-redshift SNe Ia with MLCS2k2 (Jha and coworkers) luminosity calibration we obtain {OMEGA}_M_=0.79^+0.15^_-0.18_ and {OMEGA}_{LAMBDA}_=1.57^+0.24^_-0.32_ (1 {sigma} uncertainties) if no constraints are imposed, or {OMEGA}_M_=0.29^+0.06^_-0.05_ if {OMEGA}_M_+{OMEGA}_{LAMBDA}_=1 is assumed. For a different sample of 58 low-redshift and 48 high-redshift SNe Ia with luminosity calibrations done using the PRES method (a generalization of the {DELTA}m_15_ method), the results are {OMEGA}_M_=0.43^+0.17^_-0.19_ and {OMEGA}_{LAMBDA}_=1.18^+0.27^_-0.28_ (1 {sigma} uncertainties) if no constraints are imposed, or {OMEGA}_M_=0.18^+0.05^_-0.04_ if {OMEGA}_M_+{OMEGA}_{LAMBDA}_=1 is assumed. Key words: Cosmology: Observations, Cosmology: Distance Scale, Galaxies: Distances and Redshifts, Stars: Supernovae: General
Retrieve 16 NED objects in this reference.
Please click here for ADS abstract

Back to NED Home