NASA/IPAC EXTRAGALACTIC DATABASE
Date and Time of the Query: 2019-06-19 T07:52:14 PDT
Help | Comment | NED Home

For refcode 2014ApJ...787..163G:
Retrieve 11 NED objects in this reference.
Please click here for ADS abstract

NED Abstract

Copyright by American Astronomical Society. Reproduced by permission
2014ApJ...787..163G Clues to the Nature of SN 2009ip from Photometric and Spectroscopic Evolution to Late Times Graham, M. L.; Sand, D. J.; Valenti, S.; Howell, D. A.; Parrent, J.; Halford, M.; Zaritsky, D.; Bianco, F.; Rest, A.; Dilday, B. Abstract. We present time series photometric and spectroscopic data for the transient SN 2009ip from the start of its outburst in 2012 September until 2013 November. These data were collected primarily with the new robotic capabilities of the Las Cumbres Observatory Global Telescope Network, a specialized facility for time domain astrophysics, and includes supporting high-resolution spectroscopy from the Southern Astrophysical Research Telescope, Kitt Peak National Observatory, and Gemini Observatory. Based on our nightly photometric monitoring, we interpret the strength and timing of fluctuations in the light curve as interactions between fast-moving ejecta and an inhomogeneous circumstellar material (CSM) produced by past eruptions of this massive luminous blue variable (LBV) star. Our time series of spectroscopy in 2012 reveals that, as the continuum and narrow Halpha flux from CSM interactions declines, the broad component of Halpha persists with supernova (SN)-like velocities that are not typically seen in LBVs or SN impostor events. At late times, we find that SN 2009ip continues to decline slowly, at <~ 0.01 mag day^-1^, with small fluctuations in slope similar to Type IIn supernovae (SNe IIn) or SN impostors but no further LBV-like activity. The late-time spectrum features broad calcium lines similar to both late-time SNe and SN impostors. In general, we find that the photometric and spectroscopic evolution of SN 2009ip is more similar to SNe IIn than either continued eruptions of an LBV star or SN impostors but we cannot rule out a nonterminal explosion. In this context, we discuss the implications for episodic mass loss during the late stages of massive star evolution. Key words: circumstellar matter, stars: mass-loss, stars: variables: general, supernovae: individual: 2009ip
Retrieve 11 NED objects in this reference.
Please click here for ADS abstract

Back to NED Home