Next Contents Previous

On this page there might have been put a drawing 27 to continue the series, representing what would be seen if we could take up a point of observation 10 times farther away and thus reduce the lengths of #26 to one tenth. But we have not attempted it for more reasons than one. To begin with, it would be quite impossible to draw the galaxies and clusters of galaxies small enough and near enough to each other. But also, the limits of what is supposed to be the curved space of our universe would be within that 27th square, and there would be no possibility at all of portraying or even visualizing the "curvature of space," which would be the determining factor there.

How far the countless millions of universes would continue in this picture 27, if we attempted to draw it, is not known. All these worlds seem to be rushing away from a center somewhere, and therefore from each other, and their speeds seem to increase the farther they have proceeded on their ways.

As all this is still so vague and uncertain, we end our imaginary journey into these infinite expanses of space and turn back, to go through all the stages we passed on our flight upward. We would advise you, reader, to concentrate your thought on this return journey. Try to picture how what you see in front of you would extend and extend as you came down ... , how the small central square would grow, until it was the size of the large square on the previous page; how the small square on that page would in its turn extend as you dropped down and down ... . It is clear that on this return journey the height from which we view the panorama each time decreases tenfold from station to station. When we have returned to the original picture of the little girl in her chair, which we reproduce again on the right, the height of our point of observation has once more become only 5 meters, and when we go on in the same way to the next picture, it will be one tenth of this, that is, only 50 centimeters.

We shall find, when we continue our exploration in the same way, that on this leg of our journey we can go through only half the number of stages that we passed on the first: we shall reach the unknown already after 13 of them, whereas in the journey up we counted just twice that number, 26. But who will say what wonders are hidden beyond the limits of man's investigations of today?