ARlogo Annu. Rev. Astron. Astrophys. 1984. 22: 319-58
Copyright © 1984 by Annual Reviews. All rights reserved

Next Contents Previous

2. THE INCIDENCE OF EXTRAGALACTIC RADIO JETS

2.1. A List of Known Jets

Table 1 lists data on 125 radio sources known to us (in mid-August 1983) to have jets by our criteria. (We use H0 = 100 km s-1 Mpc-1 and q0 = 0.5.) Column 2 gives the identification - galaxy (G) or quasar (Q) - and its redshift. Columns 3 and 4 measure the observer's frame core and total monochromatic powers - log10Pcore5 at 5 GHz and log10Ptot1.4 at 1.4 GHz. (The flux densities Score5 and Stot1.4 are those most often available.) We use "typical" values for variable cores. Some Score5 and Stot1.4 values are estimated from neighboring frequencies, assuming nu0 spectra for the cores and nu-0.7 for the total emission. Column 5 gives the projected length dj of the brighter jet in kiloparsecs. Column 6 categorizes the jet sidedness (see Section 3.1). Columns 7 and 8 codify the origin of the data (see the footnotes below the table). We refer to VLBI data on jetlike extensions of the cores in sources with larger-scale jets whether or not the extensions separately meet criterion (1.) of Section 1.2. Table 2 lists 73 sources with features meeting only some of our criteria; modest increases in data quality could promote them to Table 1.

Table 1. 125 extragalactic radio jets

Source name ID, z Pcore5 Ptot1.4 dj SI Data a References b

0017+15 = 3C 9 Q, 2.012 25.45 28.16 30. 1 A 248, K1
0033+18 = 3C 14 Q,         A L4
0055+30= NGC 315 G, 0.0167 23.24 24.08 240. B ABW 27, 29, 30, 99, 142, 278
0055+26 = NGC 326 G, 0.0472 22.29 24.61 25. 2 AW 97
0104+32 = 3C 31 (NGC 383) G, 0.0169 22.45 24.21 14. 2 ACOW 32, 42, 52, 99, 245
0106+72 = 3C 33.1 G, 0.181 23.76 26.11 140. 1 AW 258, R1
0123-01 = 3C 40 G, 0.018 22.35 24.38 38. 2 A O1
0130+24 = 4C 24.02 Q, 0.457 25.11 26.21 92. ? A W1
0149+35 = NGC 708 G, 0.0160 21.31 22.62 4.5 2 A D1, L3
0206+35 = UGC 1651 G, 0.0373 23.15 24.52 18. 2 A D1, L3
0220+42 = 3C 66B G, 0.0215 22.59 24.69 45. 2 ACOW 52, 168, 258
0238+08 = NGC 1044 G, 0.0214 22.54 23.80 43. 2 AN 100, C1
0240-00 = 3C 71 (NGC 1068) G, 0.004 20.99 22.94 0.3 2 ABM 62, 180, 264, 282, 283
0255+05 = 3C 75 A,B G, 0.0241 22.40 24.61 30. 2 A O2
0256+13 =4C 13.17B G, 0.0748 22.30 24.07 15. 2 A O1
0305+03 3C 78(NGC 1218) G, 0.0289 23.77 24.83 0.6 1 ABM 126, P2, U1
0314+41 = 3C 83.1B(NGC 1265) G, 0.0255 22.15 24.76 18. 2 ACW 161, 171, 272
0316+41 = 3C 84(NGC 1275) G, 0.0177 24.87 24.66 5.0 1 BM 176, 179, 200
0320-37 = For A(NGC 1316) G, 0.0063 21.23 24.69 2.7 B A 96
0326+39 = VV 7.08.14 G, 0.0243 22.70 24.06 41. 2 AW 27, 174
0336-35 = PK (NGC 1399) G, 0.0049 20.41 22.71 8.1 2 A E1
0415+37 = 3C 111 G, 0.0485 24.47 25.59 78. 1 AB 97, 142, 145
0430+05 = 3C 120 G, 0.0334 24.93 24.76 83. 1 ABMW 2, 5, 6, 38, 126, 224, 268, 269
0445+44 = 3C 129 G, 0.0208 22.19 24.58 8.8 B ACW 44, 214, 258, 262
0449-17= PK G, 0.0313 22.03 23.93 10. 2 A E1
0459+25 = 3C 133 G, 0.2775 25.33 26.72 14. 1 AM 138, 212, L1
0514-16 = PK Q, 1.278 27.32 27.25 33. 1 A P2
0538+49 = 3C 147 Q, 0.545 26.78 27.95 0.8 1 BM 193, 194, 201, 203, 233, 234, 275
0546-32 = PK G, 0.147 23.90 25.47 200. ? A E1
0658+33 = B2 G, 0.127 23.98 24.82 55. 2 A O1
0704+35A=4C 35.16A G, 0.078 21.83 24.28 17. 2 A O1
0712+53 = 4C 53.16 G, 0.064 22.96 24.83 13. ? A 49
0723+67 = 3C 179 Q, 0.846 26.62 27.39 18. 1 ABM 38, 173
0742+31=4C 31.30 Q, 0.462 26.24 26.55 210. 1 A 163
0812+36 = B2 Q, 1.025 27.10 27.23 30. 1 A 185, P2
0812+02 = 4C 02.23 Q, 0.402 25.60 26.68 32. ? A 102, 285, H1
0824+29 = 3C 200 G, 0.458 24.98 26.73 41. 1 A B2
0833+65=3C 204 Q, 1.112 25.71 27.39 52. 1 A L1
0833+58 Q, 2.101 27.64 27.52 45. ? A P2
0838+13 = 3C 207 Q, 0.684 26.45 27.23 25. 1 A W1
0844+31 = 4C 31.32 G, 0.0675 23.35 24.88 61. ? AW 258, 262
0850+14=3C 208 Q, 1.11 26.44 27.64 22. ? A L1
0855+14 = 3C 212 Q, 1.049 25.38 27.61 22. 1 A L1
0908+37 = B2 G, 0.1047 23.50 24.89 23. 2 A 153, D1
0917+45 = 3C 219 G, 0.1744 24.18 26.45 36. 1 ACNW 184, 253
0938+39 = 4C 39.27 Q, 0.618 25.00 26.99 96. 1 A 190, W1
0957+00 = 4C 00.34 Q, 0.907 26.02 27.03 76. ? A H1
0957+56 = Double QSO Q, 1.405 26.28 27.15 22. 1 AB 108, 109, 189
1001+22 = 4C 22.26 Q, 0.974 25.73 26.94 31. ? A W1
1003+35 = 3C 236 G, 0.0989 24.64 25.78 0.4 1 A(?)B 98, 225
1004+14 = NGC 3121 G, 0.031 22.97 24.07 77. 2 AC 125, C1
1004+13 = 4C 13.41 Q, 0.240 23.87 25.92 60. 1 A 96
1007+41 = 4C 41.21 Q, 0.613 25.86 26.91 77. 1 A 173
1029+57 = HB 13 G, 0.034 22.50 23.70 280. 2 CW 156, S2
1033+00 = PK G,         A 216
1100+77 = 3C 249.1 Q, 0.311 25.00 26.41 21. 1 A 149, B2, L1
1122+39 = NGC 3665 G, 0.0067 20.46 21.76 3.9 2 A D1, H2
1131+49 = IC 708 G, 0.0321 22.74 24.13 35. 2 A 257
1137+18 = NGC 3801 G, 0.0105 20.59 23.06 2.1 2 AC 125, L1
1150+49 = 4C 49.22 Q, 0.334 25.88 26.43 23. 1 A 173, 181
1209+74 = 4C T.74.17.1 G, 0.107 23.26 24.99 120. 1 AW 263, P2
1216+06 = 3C 270(NGC4261) G, 0.0073 22.25 24.01 31. 2 A 126, K1
1217+02 = PK Q, 0.240 25.33 25.68 120. ? A 163
1222+13 = 3C 272.1 (M84) G, 0.0031 21.72 23.24 3.3 2 ABCW 126, 127, L2
1226+02 = 3C 273 Q, 0.158 26.92 27.12 39. 1 ABMOX 2, 38, 58, 64, 175, 178, 181, 199, 226, P2
1228+12 = Vir A(M87) G, 0.0043 22.92 24.78 1.8 1 ABCMOX 1, 2, 18, 54, 67, 71, 135, 141, 150, 164, 165,
              172, 209, 226, 230, 237, 244, 247, 249
1241+16 = 3C 275.1 Q, 0.557 25.74 27.08 36. ? A 243
1250-10 = NGC 4760 G, 0.0138 22.14 23.27 2.9 2 A L1
1251+273= NGC 4789 G, 0.027 21.16 23.55 6.7 2 A L3
1251+278 = 3C 277.3 (Com A) G, 0.0857 22.98 25.37 11. 1 AO 31, 158, 159, V3
1251-12 = 3C 278 (NGC 4783) G, 0.0138 22.13 24.23 14. 2 A C1
1253-05 = 3C 279 Q, 0.536 27.56 27.53 9.9 1 AB 38, 70, 175
1256+28 = NGC 4869 G, 0.0235 21.08 22.89 2.6 ? A O1
1258+40 = 3C 280.1 Q, 1.659 26.21 27.84 42. 1 A 248
1258-32 = PK G,         A P2
1315+34 = B2 Q, 1.050 26.76 26.98 13. 1 A 181
1316+29 = 4C 29.47 G, 0.728 23.25 24.85 110. 2 A 63
1317+52 = 4C 52.27 Q, 1.060 26.79 27.37 60. ? A 173, H1
1321+31 = NGC 5127 G, 0.0161 21.77 23.85 55. 2 ACW 83, 88, 125
1322-42 = Cen A (NGC 5128) G, 0.0012 22.20 24.62 5.2 1 ABOX 20, 34, 48, 77, 91, 106, 107, 170, 187, 188,
              192, 228, 229, 235
1328+30 = 3C 286 Q, 0.849 27.88 28.18 0.2 ? AB 177, 234, P1
1333-33 = IC 4296 G, 0.0129 22.46 24.05 128. 2 A 103, E1
1407+17 = NGC 5490 G, 0.0163 22.00 23.68 5.5 2 C 125
1414+11 = 3C 296 (NGC 5532) G, 0.0237 22.67 24.43 50. 2 AC 19, L1
1441+52 = 3C 303 G, 0.141 24.53 25.75 26. ? A 148, K1
1448+63 = 3C 305 G, 0.041 22.57 24.73 0.9 2 A 116
1450+28 = B2 G, 0.1265 22.56 24.56 37. 2 A D1
1451-37 = PK Q, 0.314 26.24 26.36 17. 1 A 181
1458+71 = 3C 309.1 Q, 0.904 27.62 28.01 3.8 ? BM 274, S1
1615+42 = G, 0.131 23.20 24.20 14. 2 A O1
1618+17 = 3C 334 Q, 0.555 25.78 26.97 63. ? A 271, H1
1626+27 = 3C 341 G, 0.448 23.49 26.80 112. B A This paper, Figure 6  
1637+82 = NGC 6251 G, 0.0230 23.66 24.14 161. 1 ABCW 33, 56, 183, 198, 220, 267, 280
1638+53 = 4C 53.37 G, 0.1098 23.21 24.93 40. 2 A 45, 50
1641+39 = 3C 345 Q, 0.594 27.62 27.52 9.5 1 AB 38, 58-60, 177, 199, 200, 224, 241, 255, P2
1642+69 = 4C 69.21 Q,         M 39  
1648+05 =3C 348 (Her A) G, 0.154 23.61 27.10 118. 1 A D2
1752+32 = B2 1752+32B G, 0.0449 22.67 23.46 30. 2 A D1
1759+21 = PK G,         A 216
1807+27 = 4C 27.41 Q, 1.76 27.29 27.66 13. ? A P2
1807+69 = 3C 371 G, 0.050 24.60 24.84 2.0 1 AB 39, 176, P1
1842+45 = 3C 388 G, 0.0908 23.76 25.73 18. 1 A 46, 47
1857+56 = 4C 56.28 Q, 1.595 26.34 27.57 62. 1 A 173, 216, 217
1919+47 = 4C 47.51 G, 0.103 23.19 24.86 265. 1 A 43, 211
1924+50 = 4C 50.47 Q,         A 173
1939+60 = 3C 401 G, 0.201 24.14 26.37 24. 1 A B2, L1
1940+50 = 3C 402N G, 0.0247 22.08 24.31 6.2 2 AC 210
1957+40 = 3C 405 (Cyg A) G, 0.057 24.12 27.73 47. ? AB 132, 142, P2
2037+51 = 3C 418 Q, 1.686 28.24 28.41 9.3 1 ABM 274, M1
2116+26 = NGC 7052 G, 0.0164 22.12 22.72 26. 2 A 125, D1, L3
2121+24 = 3C 433 G, 0.1016 22.76 26.15 30. ? A 259
2153+37 = 3C 438 G, 0.292 23.99 26.86 27. 2 A L1
2221-02 = 3C 445 G, 0.057 23.51 25.30 210. 1 A V1
2229+39 = 3C 449 G, 0.0171 22.07 24.03 19. 2 ACW 19, 65, 186, P2
2236+35 = B2 G, 0.0277 21.88 23.40 7.7 2 A D1
2251+15 = 3C 454.3 Q, 0.859 28.02 28.10 21. 1 AM 38, 177, 181, 274
2300-18 = PK Q, 0.129 24.90 25.45 68. 2 A O1
2316+18 = OZ 127 G, 0.0395 22.41 23.70 16. 2 A O1
2318+07 = NGC 7626 G, 0.0112 21.31 23.17 6.4 2 A L1
2325+29 = 4C 29.68 Q, 1.015 26.37 27.34 85. ? A W1
2335+26 = 3C 465 (NGC 7720) G, 0.0293 23.37 24.85 24. 1 ACW 44, 81, 258
2337+26 = NGC 7728 G, 0.0314 23.15 23.49 39. 2 ACW 125, 126, 127, L1, V2
2338+04=4C 04.81 Q, 2.594 27.15 27.98 4.6 ? M B1
2349+32=4C 32.69 Q, 0.671 25.15 26.57 99. 1 A 75, 190, 191, 271
2354+47=4C 47.63 G, 0.046 22.49 24.63 37. 1 A 49

a Data codes: A-VLA; B-VLB; C-Cambridge; M-MERLIN; N-NRAO; O-optical; X-X-ray; W-WSRT.
b Unpublished references:
B1: Barthel, P.D., Lonsdale, C.J. 1983. Preprint
B2: Burns, J.O., Basart, J.P., De Young, D.S., unpublished data
C1: Cornwell, T.J., unpublished data
D1: de Ruiter, H., Parma, P., Fanti, C., Fanti, R., unpublished data
D2: Dreher, J.W., Feigelson, E.D. 1983. Preprint
E1: Ekers, R.D., unpublished data
H1: Hintzen, P., Ulvestad, J., Owen, F.N. 1983. Preprint
H2: Hummel, E., Kotanyi, C., unpublished data
K1: Kronberg, P.P., unpublished data
L1: Laing, R.A., unpublished data
L2: Laing, R.A., Bridle, A.H., unpublished data
L3: Laing, R.A., Kotanyi, C., Hummel, E., unpublished data
L4: Laing, R.A., Owen, F.N., Puschell, J., unpublished data
M1: Muxlow, T.W.B., Jullian, M., Linfield, R., unpublished data
O1: O'Dea, C.P., unpublished data
O2: Owen, F.N., unpublished data
P1: Pearson, T.J., Perley, R.A., Readhead, A.C.S., unpublished data
P2: Perley, R.A., unpublished data
R1: Rudnick, L., Edgar, B.K., unpublished data
S1: Simon, R.S., unpublished data
S2: Strom, R.G., unpublished data
U1: Unger, S.V., Booler, R.V., Pedlar, A. 1983. Preprint
V1: van Breugel, W.J.M., unpublished data
V2: van Breugel, W.J.M., Fomalont, E.B., Bridle, A.H., unpublished data
V3: van Breugel, W.J.M., Miley, G.K., Heckman, T., Butcher, H.R., Bridle A.H., unpublished data
W1: Wardle, J.F.C., Potash, R.I., Roberts, D.H., unpublished data.

Jets occur in extragalactic sources of all luminosities, sizes, and structure types, always accompanied by detectable emission in the inner kiloparsec of the parent object. It is therefore reasonable to associate jets (a) with a process common to all extragalactic radio sources and (b) with continuing activity in their nuclei. This supports the view that jets result from inefficiencies in the energy transport from the cores to the lobes of extragalactic sources, whether their emission originates in the primary flow itself or in a dissipative sheath around it.

2.2. Occurrence Rates of Jets

The rates of occurrence of detectable radio jets (by our criteria) can be determined in several samples representing different extragalactic source types.

Twelve (55%) of the 22 radio galaxies in the re-revised 3C sample (140) - henceforth 3CR2 - with delta geq 10°, b geq 10° and z leq 0.05 have definite jets, and two more (9%) have possible jets. We exclude from the sample the weak source 3C 231 = M82, whose emission comes mainly from a galactic disk. A fifteenth galaxy (3C 338) has structure resembling a jet except that it does not align with the radio core (51). Jets are thus detected in at least 55%, and perhaps 65%, of this sample, whose median Ptot1.4 is 1024.43 W Hz-1. Jets were also found in 82% (9 of 11) of well-resolved sources in a complete sample of B2 radio galaxies with mpg < 15.7 (83). R.A. Laing (private communication) finds definite jets in 13 sources (55%), and possible jets in 5 more (20%), in an unbiased sample of 24 E and SO galaxies with 0° < delta < 37°, mpg leq 14.0, and Stot2.3 > 0.035 Jy.

Forty-two extended 3CR2 galaxies or probable galaxies with z > 0.4 or V > 20 have been mapped at the VLA with good dynamic range (Table 1, ref. L4). Only two (5%) of these powerful radio galaxies (median Ptot1.4 = 1027.36 W Hz-1) have continuous jets; one other has an elongated knot between its core and one lobe.

Table 2. 73 possible extragalactic radio jets

0120+33 = NGC 507 0913+38 = 82 1508-05 = 4C - 05.64
0131-36 = NGC 612 0915-11 = 3C 218(Hyd A) 1510-08 = PK
0134+32 = 3C 48 0926+79 = 3C 220.1 1529+24 = 3C 321
0137+01 = 4C 01.04 0947+14 = 3C 228 1548+114= 4C 11.50
0212+17 = MC 3 0956-26 = NGC 3078 1615+35 = NGC 6109
0300+16 = 3C 76.1 1015+49 1626+39 = 3C 338(NGC 6166)
0327+24 = B2 1103-00 = 4C -00.43 1636+47
0333+32 = NRAO 140 1104+16 = 4C 16.30 1704+60 = 3C 351
0448+51 = 3C 130 1108+27 = B2 1712+63
0457+05 1113+29 = 4C 29.41 1850+70
0518+16 = 3C 138 1144+35 = B2 1828+48 = 3C 380
0531-36 1208+39 = NGC 4151 1830+28 = 4C 28.45
0549-07 = NGC 2110 1218+33 = 3C 270.1 1833+32 = 3C 382
0609+71=Markarian 3 1222+21 = 4C 21.35 1845+79 = 3C 390.3
0634-20=MSH 06-210 1254+27 = NGC 4839 1928+73
0703+42 = 4C 42.23 1317+25 = 4C 25.42 2019+09 = 3C 411
0716+71 1319+64 = 4C 64.18 2040-26 = PK
0722+30 = B2 1336+39 = 3C 288 2201+31 = 4C 31.63
0754+12 1346+26 = 4C 26.42 2203+29 = 3C 441
0755+37 = NGC 2484 1347+60 = NGC 5322 2216-03 = 4C 03.79
0802+10 = 3C 191 1350+31 = 3C 293 2223-05 = 3C 446
0814+54 = 4C 54.16 1351+36 = NGC 5352 2247+11 = NGC 7385
0837+29 = 4C 29.30 1404+34 = 3C 294 2305+18 = 4C 18.08
0903+16 = 3C 215 1415+25 = NGC 5548  
0905-09 = 26W20 1419+41 = 3C 299  

Twenty-two extended 3CR2 QSRs have been mapped at the VLA with good dynamic range (Table 1, refs. L4 and W1). Ten (45%) of this group (whose median Ptot1.4 is 1027.43 W Hz-1, similar to that of the distant 3CR2 galaxies) have definite jets, and five more (23%) have structure resembling the brighter parts of jets. Ten (40%) of 24 extended QSRs in a 966-MHz survey have jets or structure resembling them (173), while five of the eight most extended sources in a complete sample of 4C QSRs have jets (271).

Jets are thus detected in 65 to 80% of weak radio galaxies, and in 40 to 70% of extended QSRs; but (with similar instrumental parameters) in only < 10% of distant galaxies similar to the QSRs in radio power (49, 139, 173). Among the extended 3CR2 QSRs, the jet detection rate increases with the relative prominence fC = Score5 / Stot1.4 of the radio core, apparently regardless of redshift: all six QSRs with fC > 0.03 (but only two of the six with fC < 0.005) have jets or features resembling the brightest parts of jets. The lack of detectable jets in distant 3CR2 galaxies may be related to their lower values of fc - the median fC in the distant 3CR2 galaxy sample is only 0.0005. The two with detected jets are 3C 200, with fC = 0.018 and weak emission lines, and 3C 341 (Figure 6), with fC = 0.0005 and strong emission lines. The relations between jet, core, and emission-line fluxes of 3CR2 galaxies need clarifying, but the multivariate (Ptot, Pcore, Poptical) luminosity function for radio jets may contain clues to the physics of energy transport in these sources. We urge observers to publish integrated flux densities of jets and lobes separately, to allow study of this function.

Figure 6

Figure 6. VLA map of the jets and cocoon in the distant radio galaxy 3C 341 at 4.9 GHz. Note the narrowing of the cocoon to the right of the figure, and the irregular brightness distribution of the jets (data of A.H. Bridle and E.B. Fomalont, in preparation).

2.3. Jets in Weak Sources?

2.3.1   SPIRAL GALAXIES   Several Seyfert galaxies (for a review and references, see 282) with 1021.5 < Ptot1.4 < 1023 W Hz-1 have S-shaped kiloparsec-scale radio structures that may be low-thrust jets being bent and disrupted by the ram pressure of a rotating gas disk. If this is correct, the radio sources in Seyfert spirals may differ from those in ellipticals and QSRs mainly by (a) the smaller power output of the central "engine" and (b) the inability of their jets to escape from the dense, rotating interstellar medium (ISM) of a spiral disk. Interpreting the Seyfert sources as continuous jets (282) is not yet obligatory, however (264). Several edge-on spirals with unusually bright compact cores (121, and references therein) also have radio features extending from their nuclei apparently near the galactic minor axes. The features are as yet too poorly resolved to meet our criteria for jethood (Section 1.2), but if they do result from nuclear activity, they could be weak analogs of jets in elliptical galaxies.

2.3.2   GALACTIC JETS   The S-shaped structure of Sgr A West (36, 84) and its relation to the velocities of the [Ne II] lines in the region can be interpreted as the result of collimated outflow from the galactic center at ~ 300 km s-1 (35, 84). The extent to which Sgr A West is a weak parsec-scale analog of more active galactic nuclei is unclear, however; the S-structure has a thermal spectrum (unlike extragalactic jets; Section 4.2), and models involving tidal distortion of infalling clouds also fit the data (84). The binary star SS 433 has the only astrophysical jet whose velocity (0.26c) and precessional geometry relative to us are unambiguous (for reviews and references, see 120, 154). Both the ~ 100 light-day scale of the known radio structure and its typical radio luminosity (Ptot1.4 = 1015.8 W Hz-1) are much less than those of extragalactic jets, but SS 433 allows us to observe the evolution of synchrotron-emitting plasma in precessing supersonic jets directly. There is also evidence for bipolar, and perhaps well-collimated, outflows from star-forming regions in dense molecular clouds - see (55) and (232) for reviews and references. The ability to measure velocities, densities, and temperatures in and around these nearby flows may help to test models of extragalactic jet production and propagation (133, 207).

Next Contents Previous