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0. Preface

The theory of large-scale structure is presently one of the most active re-
search areas in cosmology. The important questions being studied include:
Did structure form by gravitational instability? What are the nature and
amount of dark matter? What is the background cosmological model?
What were the initial conditions for structure formation? It is exciting
that we can ask these questions seriously, knowing that observational tests
are rapidly improving.

Numerous papers and reviews discuss specific theoretical models of large-
scale structure, or specific theoretical techniques for constructing and ana-
lyzing models. However, there are few coherent presentations of the basic
physical theory of the dynamics of matter and spacetime in cosmology. Al-
though there are now several textbooks in this area, I think there is still
room for further pedagogical development. My aim in these lecture notes is
to provide a detailed yet readable introduction to cosmological dynamics.

Although I gave an evening seminar on N-body techniques for simulating
large-scale structure, for reasons of length I have excluded that subject
from these notes. The subject is presented elsewhere (e.g., Hockney &
Eastwood 1981, Efstathiou et al. 1985, Bertschinger & Gelb 1991, and S.
White’s notes in this volume). Otherwise, these notes generally follow the
lectures I gave in Les Houches, except that my lecture on Lagrangian fluid
dynamics has been subsumed into the section on relativistic perturbation
theory. The former subject is still evolving, and does not seem to be as
fundamental as the subjects of my other lectures.

I would like to thank Andrew Hamilton, Lam Hui, Bhuvnesh Jain,
Chung-Pei Ma, Dominik Schwarz, Uros Seljak, and Simon White for use-
ful comments and discussion, and Rennan Bar-Kana, Chung-Pei Ma, Nick
Gnedin, and Marie Machacek for correcting several errors in early drafts.
I am grateful to the organizers and students of the Les Houches Summer
School for providing the opportunity to present this material. I appreci-
ate the hospitality of John Bahcall and the Institute for Advanced Study,
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6 E. Bertschinger

where much of the writing was done. This work was supported by NASA
grants NAGW-2807 and NAG5-2816.
1. Elementary mechanics

This lecture applies elementary mechanics to an expanding universe. At-
tention is given to puzzles such as the role of boundary conditions and
conservation laws.

1.1. Newtonian dynamics in cosmology
For a finite, self-gravitating set of mass points with positions 7;(¢) in an

otherwise empty universe, Newton’s laws (assuming nonrelativistic motions
and no non-gravitational forces) are

d*r; i — T
=9 gi:—ZGm-i( _J) . (1.1)
j

dt?

In the limit of infinitely many particles each with infinitesimal mass pd®r,
we can also obtain g; = g(r;,t) as the irrotational solution to the Poisson
equation,

V.g= —47er(’r"t) , Vxg=0, (12)

which may be written
/Gp (r',t) /|l d>r' (1.3)

The Newtonian potential ¢, defined so that g = —0¢/0r (using partial
derivatives to indicate the gradient with respect to r), obeys VZ¢ = 4wGp.

If the mass density p is finite and nonzero only in a finite volume, then
g (and also ¢) generally converges to a finite value everywhere, with ¢ — 0
as r — oo. If, however, p remains finite as r — oo, then ¢ diverges and g
depends on boundary conditions at infinity.

Consider the dilemma faced by Newton in his correspondence with Bent-
ley concerning the gravitational field in cosmology (Munitz 1957). What
is g in an infinite homogeneous medium? If we consider first a bounded
sphere of radius R, Gauss’ theorem quickly gives us g = —(4w/3)Gpr for
r < R. This result is unchanged as R — o0, so we might conclude that g is
well-defined at any finite r. Suppose, however, that the surface bounding
the mass is a spheroid (a flattened or elongated sphere, whose cross-section
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is an ellipse) of eccentricity e > 0. In this case the gravity field is nonradial
(see Binney & Tremaine 1987, §2.3, for expressions). The only difference in
the mass distribution is in the shell between the spheroid and its circum-
scribed sphere, yet the gravity field is changed everywhere except at » = 0.
An inhomogeneous density field further changes g. Thus, the gravity field
in cosmology depends on boundary conditions at infinity.

There is an additional paradox of Newtonian gravity in an infinite homo-
geneous medium: g = 0 at one point but is nonzero elsewhere (at least in
the spherical and spheroidal examples given above), in apparent violation
of the Newtonian relativity of absolute space. Newton avoided this prob-
lem (incorrectly, in hindsight) by assuming that gravitational forces due to
mass at infinity cancel everywhere so that a static solution exists.

These problems are resolved in general relativity (GR), which forces us to
complicate the treatment of Newtonian gravity in absolute space. First, in
GR distant matter curves spacetime so that (r,¢) do not provide good co-
ordinates in cosmology. Second, in GR we must specify a global spacetime
geometry explicitly taking into account distant boundary conditions.

What coordinates shall we take in cosmology? First note that a ho-
mogeneous self-gravitating mass distribution cannot remain static (unless
non-Newtonian physics such as a fine-tuned cosmological constant is added
to the model, as was proposed by Einstein in 1917). The observed mass
distribution is (on average) expanding on large scales. For a uniform ex-
pansion, all separations scale in proportion with a cosmic scale factor a(t).
Even though the expansion is not perfectly uniform, it is perfectly reason-
able to factor out the mean expansion to account for the dominant motions
at large distances as in Figure 1. We do this by defining comoving coordi-
nates  and conformal time 7 as follows:

z=rjat), dr=dtja(t) or T :/ dv (1.4)

o a(t’)

The starting time for the expansion is 7 = 0 and ¢ = 0 when a = 0; if this
time was nonexistent (or ill-defined in classical terms) then we can set the
lower limit of integration for 7(¢) to any convenient value. Although the
units of a are arbitrary, I follow the standard convention of Peebles (1980)
in setting a = 1 today when ¢t = tp and 7 = 79. A radiation source emitting
radiation at 7 < 79 has redshift AXN/Ag = 2 = —1 +a~! where )\ is the
rest wavelength.

For a perfectly uniform expansion, the comoving position vectors x re-
main fixed for all particles. For a perturbed expansion, each particle follows
a trajectory (1) [or « (t)]. The comoving coordinate velocity, known also
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a(ts)

a(t,)

3
tl ':Q
t, > t,
Fig. 1. Perturbed Hubble expansion.
as the peculiar velocity, is
d dr
=—=——H(t 1.5
V=ar T &), (1.5)

where H(t) = dlna/dt = a=2da/dr is the Hubble parameter. Note that
v is the proper velocity measured by a comoving observer at x, i.e., one
whose comoving position is fixed.

[The distinction between “proper” and “comoving” quantities is impor-
tant. Proper quantities are physical observables, and they do not change
if the expansion factor is multiplied by a constant. Thus, v = da/d7 =
(adx)/(adt) is a proper quantity, while da/dt is not. This is why I prefer
7 rather than ¢ as the independent variable.]

We shall assume that peculiar velocities are of the same order at all dis-
tances and in all directions, consistent with the choice of a homogeneous
and isotropic mean expansion scale factor. These assumptions are consis-
tent with the Cosmological Principle, which states that the universe is
approximately homogeneous and isotropic when averaged over large vol-
umes. In general relativity theory, the Cosmological Principle is applied
by assuming that we live in a perturbed Robertson-Walker spacetime. Lo-
cally, the GR description is equivalent to Newtonian cosmology plus the
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boundary conditions that the mass distribution is (to sufficient accuracy)
homogeneous and isotropic at infinity.

Unless otherwise stated, in this and the following lectures (until section
4) T shall use 3-vectors for spatial vectors assuming an orthonormal basis.
Thus, A- B = A;B; = A'B; = A'B* with summation implied from i = 1
to 3. Note that A; = A’ are Cartesian components, whether comoving
or proper, and they are to be regarded (in this Newtonian treatment) as
3-vectors, not the spatial parts of 4-vectors. (If we were to use 4-vectors,
then A; = g;;A7 = a®>A" in a Robertson-Walker spacetime. Because we are
not using 4-vectors, there is no factor of a? distinguishing covariant and
contravariant components.) This treatment requires space to be Euclidean,
which is believed to be an excellent approximation everywhere except very
near relativistic compact objects such as black holes and, possibly, on scales
comparable to or larger than the Hubble distance ¢/H. (In section 4 the
restrictions to Cartesian components and Euclidean space will be dropped.)
Also, gradients and time derivatives will be taken with respect to the co-
moving coordinates: V = 0/0x, = 0/07.

Before proceeding further we must derive the laws governing the mean ex-
pansion. Consider a spherical uniform mass distribution with mass density
p and radius r = za(t) with = constant. Newtonian energy conservation
states

2
1(dr> —GM:E,

2 \at r
implying
dlna\?
( d“) :(aH)Z’:%”Ga?p—K, K=-2Ex"2. (1.6)
-

This result, known as the Friedmann equation, is valid (from GR) even if
p includes relativistic particles or vacuum energy density pyac = A/(87QG)
(where A is the cosmological constant). The cosmic density parameter is
Q) = 87Gp/(3H?), so the Friedmann equation may also be written K =
(2 — 1)(aH)?. Homogeneous expansion, with a = a(7) independent of
x, requires K = constant in addition to Vp = 0. In GR one finds that
K is related to the curvature of space (i.e., of hypersurfaces of constant
7). The solutions of eq. (L) for zero-pressure (Friedmann) models, two-
component models with nonrelativistic matter and radiation, and other
simple equations of state may be found in textbooks (e.g., Padmanabhan
1993, Peebles 1993) or derived as good practice for the student.

At last we are ready to describe the motion of a nonuniform medium
in Newtonian cosmology with mass density p(x,7) = p(7) + dp(z, 7). We
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start from Newton’s law in proper coordinates, d*r/dt? = g, and transform
to comoving coordinates and conformal time:

2 . . _
d—m‘i‘gd—x‘i-ﬂ?i(E)——Ga2/(ﬁ+5p)Hd3 ’

dr?  a dr dr \a T

We eliminate the homogeneous terms (those present in a homogeneous
universe) as follows. First, assuming that the universe is, on average,
spherically symmetric at large distance, the first term on the right-hand
side becomes (from Gauss’ theorem) —(47/3)Ga?px. (This is where the
boundary conditions at infinity explicitly are used.) To get the term pro-
portional to & on the left-hand side, differentiate the Friedmann equation:
(a@/a)d(a/a)/dT = (4G /3)d(pa?)/dr. For nonrelativistic matter, p oc a3,
implying d(pa?)/dr = —apa, so d(a/a)/dT = —(47/3)Ga?p. (If p includes
relativistic matter, not only is dp/dr changed, so is the gravitational field.
Our derivation gives essentially the correct final result in this case, but
its justification requires GR.) We conclude that the homogeneous terms
cancel, so that the equation of motion becomes

2
dz  adz o /5/)337’ @=2) s vy

d7'2 a dr x'|3
where
Sp(x', ) d3x’'
_ 2 )
¢/(CE,T) = —Ga /W .

Note that ¢’ is a proper quantity: a?d3z'/|x — a'| ~ d3r/|r — 7'|.

If [6pd3x — 0 when the integral is taken over all space — as happens if
the density field approaches homogeneity and isotropy on large scales, with
p being the volume-averaged density — then ¢’ is finite and well-defined
(except, of course, on top of point masses, which we ignore by treating the
density field as being continuous). Newton’s dilemma is then resolved: we
have no ambiguity in the equation of motion for x(7). We conclude that
@', sometimes called the “peculiar” gravitational potential, is the correct
Newtonian potential in cosmology provided we work in comoving coordi-
nates. Therefore we shall drop the prime and the quaint historical adjective
“peculiar.” In summary, the equations of motion become

d’x dx
dr?  a dr
As we shall see in section 4, the same equations follow in the weak-field

(|| < ¢2), slow-motion (v? < ¢?) limit of GR for a perturbed Robertson-
Walker spacetime. If Newton had pondered more carefully the role of

=-_Voé, V?¢=4nGa®5p(x,T) . (1.7)
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boundary conditions at infinity, he might have invented modern theoretical
cosmology!

1.2. Lagrangian and Hamiltonian formulations

The equations of Newtonian cosmology may be derived from Lagrangian
and Hamiltonian formulations. The latter is particularly useful for treat-
ments of phase space.

In the Lagrangian approach, one considers the trajectories @(7) and the
action S[x(7)]. From elementary mechanics (with proper coordinates and
no cosmology, yet), S = [ Ldt with Lagrangian L =T —W = —mv2 —me
for a particle moving in a potential ¢ (T is the kinetic energy and W is
the gravitational energy). We now write a similar expression in comoving
coordinates, bearing in mind that the action must be a proper quantity:

S:/L(:c,:b,T)dT, L=a (%va—m(b) , (1.8)

where @ = v is the peculiar velocity. We will show that eq. ([.§) is the
correct Lagrangian by showing that it leads to the correct equations of
motion.

Equations of motion for the trajectories follow from Hamilton’s principle:
the action must be stationary under small variations of the trajectories
with fixed endpoints. Thus, we write x(r) — =(r) + dx(7), dz/dr —
dx/dT + (d/d7)éx(7). The change in the action is

58 = / [aL gi’ d(&c)]

4 ) e

where we have integrated by parts assuming (0L/0%)-0x = 0 at 7 = 7y and
To. Applying Hamilton’s principle, S = 0, we obtain the Euler-Lagrange
equation (it works in cosmology, too!):

d (dL\ 0L
_9%E . 1.
dr (am> oz " (1.9)

The reader may verify that substituting L from eq. ([L.§) yields the correct
equation of motion ([L.7).

It is straightforward to extend this derivation to a system of self-
gravitating particles filling the universe. The Lagrangian is

L_a<z %mw?—W) , (1.10)
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where the total gravitational energy excludes the part arising from the
mean density:

W:% (Zmi(bi—a?’ﬁ/(bd?’x) ,

pi=— Y _GMi g p/| L (1.11)

o alz; — x;| — '

where the factor % is introduced to avoid double-counting pairs of particles.
For a continuous mass distribution we obtain

W:%/Qﬁ(Spagd?’x:——Ga /del/dB :131, 5/)(:1:25 ) (112)

|z1 — @2

In the Hamiltonian approach one considers the trajectories in the single-
particle (6-dimensional) phase space, {z(7),p(7)}. The aim is to obtain
coupled first-order equations of motion for (7) and p(7), known as Hamil-
ton’s equations, instead of a single second-order equation for (7).

The derivation of Hamilton’s equations has several steps. First we need
the canonical momentum conjugate to x:

oL dx (1.13)
p—am_amv_ade .

Note that p is not the proper momentum measured by a comoving observer:
mu is. In Hamiltonian mechanics, one must use the conjugate momentum
and not the proper momentum.

The next step is to eliminate dx/dr from the Lagrangian in favor of
p. We then transform from the Lagrangian to a new quantity called the
Hamiltonian, using a Legendre transformation:

L(xz,&,7) > H(x,p,T)=p-&— L. (1.14)

Notice that we transform L to H and & to p (the latter through eq. [L.13).
Why do we perform these transformations? The answer is that now Hamil-
ton’s principle gives the desired equations of motion for the phase-space
trajectory {x(7), p(7)}. In phase space, Hamilton’s principle says that the
action S = [Ldr = [(p-& — H)dr must be stationary under indepen-
dent variations of all phase space coordinates: x(7) — x(7) + dx(7) and
p(7) — p(7) 4+ dp(7). As an exercise, the reader can show, using a method
similar to the derivation of the Euler-Lagrange equation above,

der O0H dp  OH

e = 1.1
dr  9p dr ox ’ (1.15)
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provided that p - d = 0 at the endpoints of 7.
In our case, H = p?/(2am) + am¢ (getting the a’s right requires using
the Legendre transformation), yielding

dx p dp

-~ _ = = _amVo. 1.16

dr  am ' dr amV ¢ (1.16)
These equations could be combined to yield eq. ([L.7), but in the Hamilto-
nian approach we prefer to think of two coupled evolution equations. This
is particularly useful when studying the evolution of a system in phase
space, as we shall do in section 3 with hot dark matter.

1.8. Conservation of momentum and energy?

Are total momentum and energy conserved in cosmology? This is a non-
trivial question because the canonical momentum and Hamiltonian differ
from the proper momentum and energy.

Consider first the momentum of a particle in an unperturbed Robertson-
Walker universe. With no perturbations, ¢ = 0 so that Hamilton’s equation
for p becomes dp/dT = —amV ¢ = 0, implying that the canonical momen-
tum p is conserved. But, the proper momentum mwv = a~'p measured by a
comoving observer decreases as a increases. What happened to momentum
conservation?

The key point is that v = da/dr is measured using a non-inertial (ex-
panding) coordinate system. Suppose, instead, that we choose v to be a
proper velocity measured relative to some fixed origin. Momentum conser-
vation then implies v = constant (if V¢ = 0, as we assumed above). At 7 =
71 and 7o, the particle is at @1 and @9, respectively. Because da/dr gives the
proper velocity relative to a comoving observer at the particle’s position, at
71 we have de/dT = v—(a/a)121, while at 72, de/dT = v—(a/a)2x2. (The
proper velocity relative to the fixed origin is v in both cases, but the Hubble
velocity at the particle’s position — the velocity of a comoving observer —
changes because the particle’s position has changed.) Combining these, we
find [@(r2) —&(m1)]/ (2 —71) = —(a/a)[x(r2) —x(71)] /(72 = 71) + O(72 —71)
or, in the limit 72 — 73 — 0, d?x/dt? = —(a/a)dz/dr. This is precisely
our comoving equation of motion in the case V¢ = 0. Thus, the “Hubble
drag” term (a/a)dx/dr is merely a “fictitious force” arising from the use
of non-inertial coordinates. Stated more physically, the particle appears to
slow down because it is continually overtaking faster moving observers.

Energy conservation is more interesting. Let us check whether the Hamil-
tonian H(x,p,7) is conserved. Using Hamilton’s equations for a single
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particle, we get

dH OH dx O0H dp O0H ©0H

- om dr Top dr Tar  ar
Using H = p?/(2am) + amg, we obtain dH/dr = —(a/a)(p?/2am) +
md(a¢)/dr which is nonzero even if d¢/dr = 0. Is this lack of energy
conservation due to the use of non-inertial coordinates? While the appear-
ance of a Hubble-drag term may suggest this is the case, if we wish to
obtain the total Hamiltonian (or energy) for a system of particles filling all
of space, we have no choice but to use comoving coordinates.

Perhaps the Hamiltonian is not conserved because it is not the proper
energy. To examine this possibility, we use the Hamiltonian for a system of
particles in comoving coordinates, with H = a(T +W). The proper kinetic
energy (with momenta measured relative to comoving observers) is

(1.17)

1 2 1 p7
T:;§mivi :¥§a2mi , (1.18)
while the gravitational energy W is given in eq. (1.11). Holding fixed
the momenta, we see that a?T is a constant, implying 9(aT)/0T = —aT.

Similarly, holding fixed the particle positions, we find that a¢ is a con-
stant, implying 0(aW)/07 = 0. We thus obtain the Layzer-Irvine equation
(Layzer 1963, Irvine 1965)

d a
dT(T+W) __a(2T+W) . (1.19)

Total energy (expressed in comoving coordinates) is not conserved in
Newtonian cosmology. (This is also the case in GR — indeed, there is
generally no unique scalar for the total energy in GR.) However, if almost
all of the mass is in virialized systems obeying the classical virial theorem
2T + W = 0, we recover approximate total energy conservation.

2. Eulerian fluid dynamics
2.1. Cosmological fluid equations

A fluid is a dense set of particles treated as a continuum. If particle
collisions are rapid enough to establish a local thermal equilibrium (e.g.,
Maxwell-Boltzmann velocity distribution), the fluid is an ideal collisional
gas. If collisions do not occur (e.g., a gas of dark matter particles), the gas
is called collisionless. (I exclude incompressible fluids, i.e., liquids, from
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consideration because the gases considered in cosmology are generally very
dilute and compressible.) The fluid equations discussed in this lecture ap-
ply only for a collisional gas (or a pressureless collisionless gas). They
apply, for example, to baryons (hydrogen and helium gas) after recombi-
nation, to cold dark matter before trajectories intersect (“cold dust”), and
(with relativistic corrections) to the coupled photon-baryon fluid before
recombination.

I shall assume a nonrelativistic gas and ignore bulk electric and mag-
netic forces. These are not difficult to add, but the essential physics of
cosmological fluid dynamics does not require them.

The fluid equations consist of mass and momentum conservation laws and
an equation of state. Mass conservation is represented by the continuity
equation. In proper coordinates (r,¢) this is

op 0 dr

a—l-a%pv)—(), v=—
We convert to comoving coordinates 7 = [ dt/a(t), x = r/a(t), being care-
ful to transform the partial derivatives as follows: 0/t = (07/0t)0/0T +
(dx/0t)-0/0x, 3/0r = a=1d/dx = a~'V. We also rewrite the density and
velocity by factoring out the mean behavior:

(2.1)

dr
dt
where v = dx/d7 is now the peculiar velocity. The reader may easily show
that eq. (R.1)) becomes

06
—+ V- [(14+dv]=0. (2.3)

oT
Momentum conservation for an ideal fluid is represented by the Euler
equation (Landau & Lifshitz 1959). It is most simply obtained by adding
the pressure-gradient force to the equation of motion for a freely-falling

mass element, eq. (B) In comoving coordinates, we find

p=p1+4), Hr+v (2.2)

dv = a 1

—+Ev:—V¢——Vp. (2.4)

dr a p
The time derivative is taken along the fluid streamline and is known as the
convective or Lagrangian time derivative:

d 0

— = — V. 2.5

dr 0t v (2:5)

Closing the fluid equations requires an evolution equation for the pressure

or some other thermodynamic variable. Perhaps the most natural is the
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entropy. For a collisional gas, thermodynamics implies an equation of
state p = p(p, S) where S is the specific entropy. For example, for an ideal
nonrelativistic monatomic gas, for reversible changes we have

TdS = d (g%) +pd (%) , (2.6)

which says that the heat input to a fluid element equals the change in
thermal energy plus the pressure work done by the element, i.e., energy is
conserved. Combining this with the ideal gas law p = pkpT/u where pu is
the mean molecular mass and kg is the Boltzmann constant, we obtain

2

p(p.8) = p*Pexp (215 ) . (2.7)
3kp

The equation of state must be supplemented by an evolution equation for

the specific entropy. Outside of shock waves, the entropy evolution equation

is

T% —a(f - A), (2.8)

where I" and A are, respectively, the proper specific heating and cooling
rates (in erg g~ s71). They are determined by microphysical processes
such as radiative emission and absorption, cosmic ray heating, Compton
processes, etc. For the simplest case, adiabatic evolution, I' = A = 0. For
a realistic non-ideal gas, it may be necessary to evolve the radiation field,
the ionization fraction, and other variables specifying the equation of state.

The fluid equations are much harder to solve than Newton’s laws for
particles falling under gravity, for several reasons. First, they are non-
linear partial differential equations rather than a set of coupled ordinary
differential equations. Second, shock waves (discontinuities in p, p, S, and
v) prevent intersection of fluid elements. These discontinuities must be
resolved (on a computational mesh or otherwise) and followed stably and
accurately. Finally, heating and cooling for realistic gases are complicated
and can lead to large temperature or entropy gradients that are difficult to
resolve. An example of the latter is the sun, whose temperature changes
by about 15 million K in a distance that is minuscule compared with cos-
mological distance scales.

Computational fluid dynamics is a difficult art but is important for
galaxy formation. I shall not summarize the numerical methods here but
refer the reader instead to the literature (e.g., Sod 1985, Leveque 1992,
Monaghan 1992, Bryan et al. 1994, Kang et al. 1994).

Some of the most important effects of gas pressure can be gleaned
from linear perturbation theory, in which we linearize the fluid equations
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about the uniform solution for an unperturbed Robertson-Walker space-
time. This technique is useful for checking for gravitational and other
linear instabilities. Moreover, the linearized fluid equations may provide
a reasonable description of large-scale, small-amplitude fluctuations in the
(dark-+luminous) matter, even if structure is nonlinear on small scales.
This is a common assumption in large-scale structure theory. It is sup-
ported reasonably well by numerical simulations.
Linearizing the continuity and Euler equations gives

. ; 1
§+V w0, 1}+gv%—V¢—5Vp, (2.9)

where an overdot denotes 0/07. The pressure gradient may be obtained
from the equation of state p = p(p,S). For an ideal nonrelativistic
monatomic gas,
Yop=aveslrvs, 2-2P (2.10)
ﬁ S 3 Y S 3 ﬁ * *
Finally, we must linearize the entropy evolution equation. If the time scale
for entropy changes is long compared with the acoustic or gravitational
time scales, eq. (2.8) becomes dS/dr ~ 0. For the small peculiar velocities
of linear perturbation theory this reduces to S ~ 0.
There are five fluid variables (p, S, and three components of v), hence
five linearly independent modes. The general linear perturbation is a linear
combination of these, which we now proceed to examine.

2.2. Linear instability 1: isentropic fluctuations and Jeans criterion

We begin with some nomenclature from thermodynamics. Isentropic
means VS = 0: the same entropy everywhere. Adiabatic means
dS/drt = 0: the entropy of a given fluid element does not change. The
two concepts are distinct. It is common in cosmology to say “adiabatic”
when one means “isentropic.” This usage is confusing and I shall adopt
instead the standard terminology from thermodynamics.

Isentropic fluctuations are the natural outcome of quantum fluctuations
during inflation followed by reheating: rapid particle interactions in ther-
mal equilibrium eliminate entropy gradients. If V.S = 0, the linearized
fluid and gravitational field equations are

§+V-v=0, b+ -v=-Vé—2Vs, V2¢=4rGpas .(2.11)
a
Combining these gives a damped, driven acoustic wave equation for ¢:

§+ %5 = 4nGpa®s + 2V . (2.12)
a
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Aside from the Hubble damping and gravitational source terms, this equa-
tion is identical to what one would get for linear acoustic waves in a static
medium.

To eliminate the spatial Laplacian we Fourier transform the wave equa-
tion. For one plane wave, é(x, 7) — d(k, 7) exp(ik - €). The wave equation
becomes

§+25= (4rGpa® — k*c3) 6 = (k] — k*) 24, (2.13)
a
where we have defined the comoving Jeans wavenumber,
4G pa’ 1/2

Neglecting Hubble damping (by setting a = 1), the time dependence of
the solution to eq. (P.13) would be § oc exp(—iwr), yielding a dispersion
relation very similar to that for high-frequency waves in a plasma, but with
an important sign difference because gravity is attractive:

w? = wg +Ekc - Wwr=—wl kS (2.15)

The plasma frequency is w, = (47n.e?/m,)'/? while the Jeans frequency is
wy = kyes = (47Gp)'/2. Whereas electromagnetic waves with w? < w? do
not propagate (k? < 0 implies they are evanescent, e.g., they reflect off the
Earth’s ionosphere), gravitational modes with k < kj are unstable (w? <
0), as was first noted by Jeans (1902). In physical terms, pressure forces
cannot prevent gravitational collapse when the sound-crossing time \/cg is
longer than the gravitational dynamical time (Gp)~'/? for a perturbation
of proper wavelength A = 2wa/k.

Including the Hubble damping term slows the growth of the Jeans insta-
bility from exponential to a power of time for k¥ < kj. In general there is one
growing and one decaying solution for §(k, 7); these are denoted o4 (k, 7).
For ¢2 = 0 and an Einstein-de Sitter (flat, matter-dominated) background
with a(7) o< 72, ;4 o 72 and 6_ o< 773. For k > kj, we obtain acoustic
oscillations. In a static universe the acoustic amplitude for an adiabatic
plane wave remains constant; in the expanding case it damps in general.
An important exception is oscillations in the photon-baryon fluid in the
radiation-dominated era; the amplitude of these oscillations is constant.
(Showing this requires generalizing the fluid equations to a relativistic gas,
a good exercise for the student.) In any case, acoustic oscillations suppress
the growth relative to the long-wavelength limit.

It is interesting to write the linear wave equation in terms of ¢ rather
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than § using VZ¢ = 47rGa?pd x a0 for nonrelativistic matter (with
2 <)

b+3Lh 4 (g_lj___zc)¢+k%z¢_o, (2.16)

where we used the Friedmann equation ([L); recall that K = (Q —1)(aH)?
is the spatial curvature constant. In a matter-dominated universe, differen-
tiating the Friedmann equation gives d/a—(1/2)a%/a® = —(1/2)K, yielding

&5+3%q’5+ (k22 —2K)¢=0. (2.17)

When written in terms of the gravitational potential rather than the den-
sity, the wave equation loses its gravitational source term.

The solutions to eq. () depend on the time-dependence of the sound
speed as well as on the background cosmology. To get a rough idea of the
behavior, consider the evolution of the potential in an Einstein-de Sitter
universe filled with an ideal gas. For a constant sound speed, the solutions
are

¢+ (k,7) = Tﬁ2j2(kcs7-) . ¢—(k,7)= Tﬁ2y2(kcs7-) , Cs = const. , (2.18)

where jo and yo are the spherical Bessel functions of the first and second
kinds of order 2. Although simple, this is not a realistic solution even
before recombination (in that case, the photons and baryons behave as
a single tightly-coupled relativistic gas, and relativistic corrections to the
fluid equations must be added), except insofar as it illustrates the generic
behavior of the two solutions: (damped) oscillations for kegm > 1 and
power-law behavior for kcgm < 1.

An alternative approximation, valid after recombination, is to assume
that the baryon temperature roughly equals the photon temperature (this
is a reasonable approximation because the small residual ionization ther-
mally couples the two fluids for a long time even though there is negligible
momentum transfer), ¢z = cZ.a~! where cos is a constant. In this case the
solutions are powers of 7:

5+ /25 — d(kcosTo )2
pi(k,7) =77, n= . (heos0)® et (2.19)

The solutions oscillate for kesmp > 5/2 and they damp for kego > 0.

In both of our solutions, and indeed for any reasonable equation of state
in an Einstein-de Sitter universe, long-wavelength (kcs7 < 1) growing den-
sity modes have corresponding potential ¢ = constant, while the decay-
ing density modes have ¢_ o [a 3dr. The density perturbation and
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potential differ by a factor of pa? o a~! from the Poisson equation. If
K < 0 or k%2 > 0, then ¢ decays with time, although &, still grows.
Note that the important physical length scale where the transfer func-
tion ¢ (k, 7)/¢(k, 0) falls significantly below unity is the acoustic comoving
horizon distance cs7, not the causal horizon distance ¢ or the Hubble dis-
tance ¢/H. Setting ¢y to the acoustic speed of the coupled photon-baryon
fluid at matter-radiation equality gives the physical scale at which the bend
0CCUTS, CsTeq, iN the power spectrum of the standard cold dark matter and
other models.

2.3. Linear instability 2: entropy fluctuations and isocurvature mode

Entropy gradients act as a source term for density perturbation growth.
Using eq. () and repeating the derivation of the linear acoustic equa-
tion, we obtain (for ¢? < ¢?)

Q- 2
5+ 25— 4nGpa®s — 2V25 = STVS. (2.20)
a

For adiabatic evolution, S = 0, so what counts is the initial entropy gradi-
ent. Entropy gradients may be produced in the early universe by first-order
phase transitions resulting in spatial variations in the photon/baryon ratio
or other abundance ratios. If there were no entropy gradients present be-
fore such a phase transition, then the entropy variations can only have been
produced by nonadiabatic processes. (This may explain the “adiabatic vs.
isocurvature” nomenclature used by some cosmologists.) In practice, these
entropy fluctuations are taken as initial conditions for subsequent adiabatic
evolution.

Equation (R.2() is not applicable to the early universe because it assumes
the matter is a one-component nonrelativistic gas. However, the behavior
of its solutions are qualitatively similar to those for a relativistic multi-
component gas and so its analysis is instructive.

The isocurvature mode is given by the particular solution of density
perturbation growth having § = § = 0 but V25 # 0 at some early ini-
tial time 7;. The initial conditions may be regarded as a perturbation in
the equation of state in an otherwise unperturbed Robertson-Walker (con-
stant spatial curvature) spacetime, accounting for the name “isocurvature.”
Variations in entropy at constant density correspond to variations in pres-
sure, which lead through adiabatic expansion to changes in the density.
Therefore, initial entropy fluctuations seed density fluctuations.
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The solution to eq. (R.2() is obtained easily in Fourier space using the
source-free (isentropic) solutions 04 (k, 7):

3

ds(k,7) = —§k25(/€) [ 5+(k,7')/ a'T’s" dr’

-
— 0_(k, 7')/ aT'6!, dT/] ; (2.21)
Ti
where primes are used to indicate that the variables are evaluated at 7 = 7/.
We see that both growing and decaying density perturbations are induced.
After the source (aT0_) becomes small, the density fluctuations evolve the
same way as isentropic fluctuations — e.g., they oscillate as acoustic waves
if kest > 1. To reinforce the point about nomenclature made earlier,
I note that in our approximation, both isocurvature and “adiabatic” (i.e.,
isentropic) modes are adiabatic in the sense of thermodynamics: S = 0 after
the initial moment. For a realistic multi-component gas the evolution is not
truly adiabatic, but that is a complication we shall not consider further.
In the literature, modes are described as being adiabatic or isocurvature
depending only on whether the initial density is perturbed with negligible
initial entropy perturbation, or vice versa.

2.4. Vorticity — or potential flow?

With the growing and decaying isentropic perturbations, and the isocurva-
ture mode, we have accounted for three of the expected five linear modes.
The remaining two degrees of freedom were lost when we took the di-
vergence of the Euler equation, thereby annihilating any transverse (rota-
tional) contribution to v. We consider them now.

Theorem: Any differentiable vector field v(x) may be written as a sum
of longitudinal (curl-free) and transverse (divergence-free) parts, v and
v, respectively:

v(z)=v|(z)+vi(x), Vxv=V-v, =0. (2.22)
The proof follows by construction, by solving V -v =60 and V x v =w

where 6 = V - v and w = V x v. In a flat Euclidean space, solutions are
given by

v (z) = i/@(m’)M &Br |, Hx) =V v, (2.23)

|z —a'|3

vl (@) = - /w(:c’) x % Br', w@) =V xwv. (2.24)
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Note that this decomposition is not unique; we may always add to v a
curl-free solution of V - v = 0 and to v, a divergence-free solution of
V x v) = 0 (e.g., constant vectors). With suitable boundary conditions
(e.g., [vyd®z = 0 when integrated over all space) this freedom can be
eliminated. The variables # and w are called the (comoving) expansion
scalar and vorticity vector, respectively.

In our preceding discussion of perturbation evolution we have implicitly
considered only v||. The remaining two degrees of freedom correspond to
the components of v, (the transversality condition V - v; = 0 removes
one degree of freedom from this 3-vector field). Fortunately, we can get a
simple nonlinear equation for v; — actually, for its curl, w — by taking
the curl of the Euler equation:

o+ gw =V x (v xw)+p~2(Vp) x (Vp)

=V x (vxw)+ 3T (Vinp) x (VS) (2.25)

where we have assumed an ideal monatomic gas in writing the second form.
The term arising from entropy gradients is called the baroclinic term. It
is very important for the dynamics of the Earth’s atmosphere and oceans
(Pedolsky 1987).

An important general result follows from eq. (2.25), the Kelvin Circu-
lation Theorem: If w = 0 everywhere initially, then w remains zero (even
in the nonlinear regime) if the baroclinic term vanishes. (We are assuming
that other torques such as magnetic ones vanish too.) The reason for the
importance of this result in cosmology is that many models assume irro-
tational, isentropic initial conditions. With adiabatic evolution, it follows
that w = 0. Such a flow is also called potential flow because the velocity
field may then be obtained from a velocity potential: v = v = =V ®,.

Nonadiabatic processes (heating and cooling) and oblique shock waves
can generate vorticity. In a collisionless fluid, if the fluid velocity is defined
as the mass-weighted average of all the mass elements at a point, this
averaging behaves like entropy production in regions where trajectories
intersect, and so vorticity can be generated in the mean (fluid) velocity
field. Vorticity also arises from isocurvature initial conditions. Equation
(2.21) implies §s o< V2S for long wavelengths in the linear regime, giving
a baroclinic torque proportional to Vg x VS o« V(V2S) x VS, which
is nonzero in general (though it appears only in second-order perturbation
theory).

For most structure formation models, vorticity generation is quite small
until shocks form (or trajectories intersect, for collisionless dark matter).
In this case, one may obtain the velocity potential from the line integral of
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the velocity field:

B, () = B,(0) — /Om v-dl. (2.26)

Taking the path to be radial with the observer in the middle allows one
to reconstruct the velocity potential, and therefore the transverse velocity
components, from the radial component. This idea underlies the potential
flow reconstruction method, POTENT (Bertschinger & Dekel 1989). If the
(smoothed) density fluctuations are sufficiently small for linear theory to
be valid, we can estimate the density fluctuation field from an additional
divergence. If pressure is unimportant, so k¥ < kj and 6 « d;(7), the
linearized continuity equation gives

Vov=0=-4=—aH (d1n5+> 5. (2.27)
dlna

For a wide range of cosmological models, dInd, /dIna = f(Q2) ~ Q°6
depends primarily on the mass density parameter and weakly on other
cosmological parameters (Peebles 1980, Lahav et al. 1991). Thus, com-
bining measurements of v (radial components from galaxy redshifts and
distances) and independent measurements of § (from the galaxy density
field plus an assumption about how dark matter is distributed relative to
galaxies) allows estimation of Q (Dekel et al. 1993). A review of the PO-
TENT techniques and results is given by Dekel (1994).

3. Hot dark matter

The previous lecture studied the evolution of an ideal collisional gas in-
cluding gravity and pressure. A gas of neutrinos, or of collisionless dark
matter particles, behaves differently. In this lecture we investigate the evo-
lution of a nonrelativistic collisionless gas whose particles have significant
thermal speeds. (Relativistic kinetic theory is discussed by Stewart 1971,
Bond & Szalay 1983, and Ma & Bertschinger 1994b.) An example is the
gas of relic thermal neutrinos that decoupled at a temperature kT ~ 1
MeV in the early universe. The present number density of these neutrinos
(about 113 cm ™3 for each of the three flavors) is such that a single massive
type contributes m,c?/(93 h?eV) to Q, where h = Hy/(100kms ™ Mpc ™).
Massive neutrinos are called hot dark matter because their thermal speeds
significantly affect the gravitational growth of perturbations.

Before working out the detailed equations of motion for hot dark matter,
it is useful to consider in general terms the effect of a thermal distribution.
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Suppose we have a cold gas with no thermal motions. In this case it doesn’t
matter whether the gas is collisional or collisionless: gravitational instabil-
ity amplifies the growing mode of irrotational density perturbations. What
happens when we add thermal motions? We know the answer for a colli-
sional gas: pressure stabilizes collapse for wavelengths less than the Jeans
length, the distance sound waves travel in one gravitational dynamical time.
For collisionless particles we also expect suppression. However, a collision-
less gas cannot support sound waves, because no restoring force is provided
by particle collisions.

A perfect collisional gas is fully described by its mass (or energy) density,
fluid velocity, and temperature as functions of position. All other properties
follow from the fact that the phase space density distribution is (locally)
the thermal equilibrium distribution, e.g. Maxwell-Boltzmann. This is not
true for a collisionless gas, whose complete description requires specifying
the full phase space density.

For a collisionless gas, the velocity distribution function may be far from
Maxwellian, so that the spatial stress tensor is not the simple diagonal form
appropriate for an ideal gas. Instead there may be significant off-diagonal
terms contributing shear stress that acts like viscosity in a weakly col-
lisional fluid: it damps relative motions. We expect perturbations in a
collisionless gas to be damped for wavelengths shorter than the distance
traveled by particles with the characteristic thermal speed during one gravi-
tational collapse time, the collisionless analogue of the Jeans length. Stated
simply, overdense or underdense perturbations decay because the particles
fly away from them at thermal speeds. This collisionless damping process
is called free-streaming damping.

The characteristic thermal speed of massive neutrinos after they become
nonrelativistic is

kBTu

myc

Ve = =50.4(1+ 2) (myc?/eV) L kms™! (3.1)
where we have used the standard big bang prediction 7, = (4/11)}/3 T,
(e.g., Kolb & Turner 1990) with 7., ~ 2.735 K today. Multiplying v
by the gravitational time (47Gpa?)~'/2 gives the comoving free-streaming
distance,

Ais = 0.41 (QR2) Y2 (1 + 2)Y/2 (my,¢?JeV) ™ Mpe . (3.2)

At any time, fluctuations with wavelength less than about Ag are damped;

much longer wavelength fluctuations grow with negligible suppression.
The free-streaming distance does not really grow without bound as z —

00 because the neutrino thermal speed cannot exceed ¢. Applying this limit
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gives a maximum comoving free-streaming distance of
Afs.max = 31.8 (Qh2) ™2 (m,,? /eV) ™Y/ 2 Mpc . (3.3)

Thus, unless they are regenerated by perturbations in other components
(as happens, for example, in a model with hot and cold dark matter),
primeval density fluctuations in massive neutrinos with wavelength smaller
than this rather large scale will be erased by free-streaming damping. A
more quantitative treatment is presented below using the actual evolution
equations for the neutrino phase space density distribution.

3.1. Tremaine-Gunn bound

Before treating the phase space evolution, we discuss another important
consequence of finite neutrino thermal speed: high-speed neutrinos cannot
be tightly packed into galaxy halos. This fact can be used to place a lower
bound on the neutrino mass if neutrinos make up the dark matter in galaxy
halos (Tremaine & Gunn 1979).

The initial phase space density for massive neutrinos is a relativistic
Fermi-Dirac distribution (preserved from the time when the neutrinos de-
coupled in the early universe):

= 2h;3 = 3.4
T e (3.4
where p is the comoving canonical momentum of eq. (), hp is Planck’s
constant (with a subscript to distinguish it from the scaled Hubble con-
stant), and Ty = a7, is the present neutrino “temperature.” The decrease
of T, with time is compensated for by the factor a relating proper mo-
mentum to comoving momentum. Ignoring perturbations, the present-day
distribution for massive neutrinos is the relativistic Fermi-Dirac — not the
equilibrium nonrelativistic distribution — because the phase space distri-
bution was preserved after neutrino decoupling.

Tremaine & Gunn (1979) noted that because of phase mixing (discussed
further below), the maximum coarse-grained phase space density of mas-
sive neutrinos today is less than the maximum of fo(p), hp®. If massive
neutrinos dominate the mass in galactic halos, this must be no less than
the phase space density needed for self-gravitating equilibrium. This bound
can be used to set a lower limit on the neutrino mass if one assumes that
the neutrinos constitute the halo dark matter.

Although the neutrino mass bound is somewhat model-dependent be-
cause the actual coarse-grained distribution in galactic halos is unknown,
we can get a reasonable estimate by assuming an isothermal sphere: a
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Maxwell-Boltzmann distribution with constant velocity dispersion o2 (at
a =1 so that there is no distinction between proper and comoving):

2
f(r,p) = 2rm20%) ™3 ?n(r) exp (ﬁ) . (3.5)
In a self-gravitating system there are a family of spherical density profiles
p(r) = myn(r) obeying hydrostatic equilibrium:
1dP  GM(<r) G [T,

= = dr . .
p dr 72 2, rep(r) dr (3.6)

The simplest case is the singular isothermal sphere with p oc 7 ~2; the reader
can easily check that p = 02/(2rGr?). Imposing the phase space bound at
radius r then gives

~1/4

my, > (2m)7%/8 (Ghior?) (3.7)

Up to overall numerical factors, this is the Tremaine-Gunn bound.

The singular isothermal sphere is probably a good model where the ro-
tation curve produced by the dark matter halo is flat, but certainly breaks
down at small radius. Because the neutrino mass bound is stronger for
smaller or?, the uncertainty in the halo core radius (interior to which the
mass density saturates) limits the reliability of the neutrino mass bound.

For the Local Group dwarf galaxies in Draco and Ursa Minor, measure-
ments of stellar velocity dispersions suggest o is a few to about 10 km s—!
(Pryor & Kormendy 1990). If these galaxies have isothermal halos at » = 1
kpc, the crude bound of eq. (@) implies m,, is greater than a few eV.

3.2. Vlasov equation

We now present a rigorous treatment of the evolution of perturbations in a
nonrelativistic collisionless gas, based on the evolution of the phase space
distribution. The single-particle phase space density f(x,p, ) is defined
so that fd3zd3p is the number of particles in an infinitesimal phase space
volume element. We shall use comoving spatial coordinates = and the
associated conjugate momentum p = am (eq. [L.13). Note that d>zd®p =
m3d3rd3v is a proper quantity so that f is the proper (physical) phase
space density.

If the gas is perfectly collisionless, f obeys the Vlasov (or collisionless
Boltzmann) equation of kinetic theory,

Df of dx 9of dp of

Dr=or T dw ar op (38)
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This equation expresses conservation of particles along the phase space tra-

jectory {z(7), p(7)}. Using Hamilton’s equations ([[.16) for nonrelativistic

particles, we obtain
0 0

af L P o v s af

87' am dx op =0 (3.9)

The Vlasov equation is supposed to apply for the coarse-grained phase
space density for a collisionless gas in the absence of two-body correlations
(Ichimaru 1992). Often, however, the statistical assumptions underlying
the use of the Vlasov equation are vague. To clarify its application we
digress to present a derivation using the Klimontovich (1967) approach to
kinetic theory.

Consider one realization of a universe filled with particles following phase
space trajectories {x;(7), p:(7)} (¢ labels the particles). The eract single-
particle phase space density (called the Klimontovich density) is written
by summing over Dirac delta functions:

f(@,p, 7 25 [x — (1) 6[p — pi(7)] - (3.10)

No statistical averaging or coarse-graining has been applied; f is the fine-
grained density for one universe. This phase space density obeys the
Klimontovich (1967) equation, which is of exactly the same form as eq.
(B.8). The proof follows straightforwardly from substituting eq. (B.10}) into
eq. (B9).

The Klimontovich density retains all information about the microstate
of a system because it specifies the trajectories of all particles. This is far
too much information to be practical. We must reduce the information
content by performing some averaging or coarse-graining. This averaging
is taken over a statistical ensemble of microstates corresponding to a given
macrostate — for example, microstates with the same phase space density
averaged over small phase space volumes containing many particles on av-
erage. We denote the averages using angle brackets (), without being very
precise about the ensemble adopted for the coarse-graining.

The discreteness effects of individual particles are accounted for by the
s-particle distribution functions (s =1, 2, ...) fs, which are defined using
a standard cluster expansion:

(f(x,p, 7 <Z5 T —x;) p—pi)> = filz,p,7) (3.11)
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<f(331,p1,7') f($132,p2,7')> =

<Z §(x1 — ;) d(p1 — pi) §(x2 — x;) (P2 — Pi) > +

<Z §(@y — x:) 6(p1 — pi) (w2 — ;) 6(P2 — ;) > (3.12)
i#j
=0(x1 — x2)0(p1 — P2) fi(x1,p1,7) + fa(®1,P1, T2, P2, T) ,

and so on. We further write fo as a sum of uncorrelated and correlated
parts,

fQ(mlapla T2, P2, T) = fl(mlapla T)fl(m25p2; T)+f2€(mlapla T2, P2, T) (313)

This equation defines fa., known in kinetic theory as the irreducible two-
particle correlation function. If there are no pair correlations in phase
space, fo. = 0.

We now ensemble-average the Klimontovich equation, recalling that it
is identical to eq. (@) provided we use the Klimontovich density. If ¢ is
a specified external potential, neglecting self-gravity, we see that fi; obeys
the Vlasov equation. However, if ¢ is computed self-consistently from the
particles, the mV ¢-(0f/0p) term is quadratic in the Klimontovich density,
yielding an additional correlation term from eqs. (3.12) and (B.13) after
coarse-graining. This term is not present in the Vlasov equation.

The contribution to the gravity field from the particles is (cf. eq. 1.11)

_ Gm 3.7 33,/ o (:B—:]I/)
V¢(va)_ a dxdpf(wap57)|m_w/|3
B xr—x
+Gpa2/d3$/ ﬁ y (314)

where the second term, required in comoving coordinates, removes the
contribution from the mean uniform background.

Combining our results now yields the exact kinetic equation for the one-
particle phase space density fi:

0f1 p Ofi 0f1 .

or + am Oz amV¢ op

G 2 d3 /d3 ! (CE—QI/) . i I 3.15
m rap |CE— $/|3 aprC(mapaw P 57-) ( . )
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where —V ¢ is given by eq. (3.14) using f1 for f, and adding any other
contribution from other sources. Equation (3.15) is called the first BBGKY
hierarchy equation (Peebles 1980, Ichimaru 1992). It differs from the Vlasov
equation by a correlation integral term.

If there are no phase space correlations, as would occur if we had a
smooth collisionless fluid, then the one-particle or coarse-grained distri-
bution obeys the Vlasov equation of kinetic theory. Correlations may be
introduced by gravitational clustering, which couples fs. to fi. One may
derive an evolution equation for fa. — the second BBGKY hierarchy equa-
tion — by averaging f0f/07, but it involves fs., and so on. The result is
an infinite hierarchy of coupled kinetic equations, the BBGKY hierarchy.

For some cases, Boltzmann’s hypothesis of molecular chaos may hold,
implying fo. = 0 except at binary collisions, with the right-hand side
of eq. (3.15) becoming a Boltzmann collision operator. Fortunately, for
the particles of interest here — neutrinos — the gravitational (and non-
gravitational, after neutrino decoupling) collision time is so long that the
correlation integral is completely negligible. Thus, hot dark matter com-
posed of massive neutrinos obeys the Vlasov equation after decoupling.
From now on we shall drop the subscript 1 from f.

We now return to our main line of development to discuss phase mixing.
The Vlasov equation implies conservation of phase space density, but a
given initial volume d3zd3p evolves in a complicated way (i.e., the trajec-
tories of particles initially inside this volume may be highly complicated).
Consider the initial phase space element shown in Figure 2a, extracted from
a one-dimensional N-body simulation. Figures 2b and 2c show the phase
space distribution at a later time, with each particle’s trajectory evolved
according to Hamilton’s equations without (Fig. 2b) and with (Fig. 2c)
gravity, respectively. In both cases the area dxdp of the phase space element
is identical to the initial area as a consequence of the Vlasov equation.

Figure 2c illustrates the process known as phase mixing: the phase space
structure becomes highly convoluted as particles make multiple orbits. Re-
gions of initially high phase space density can end up entwined with regions
of initially low phase space density. Although the density is conserved along
each phase space trajectory, if the distribution is coarse-grained (averaged
over finite phase space volume), the resulting coarse-grained density is not
conserved. The maximum coarse-grained density can only decrease, as we
noted previously in the discussion of the Tremaine-Gunn bound.

The process of phase-mixing is complicated, and the only practical means
of integrating the Vlasov equation for such an evolved collisionless system
is by N-body simulation: the phase space is sampled with discrete particles
at some initial time and the particle trajectories are computed, providing
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Fig. 2. Phase space evolution. (a) Initial conditions. (b) Evolved state without gravity.
(c) Evolved state with gravity.

a sample of the evolved phase space. However, analytical methods can be
used while the phase space distribution is only slightly perturbed from the
homogeneous equilibrium distribution. These methods, presented in the
next two subsections, will help us to understand free-streaming damping
in detail.

3.3. Nonrelativistic evolution in an external gravitational field

In this section we consider hot dark matter made of nonrelativistic massive
neutrinos with Q, < Q so that their self-gravity is unimportant. The
gravitational potential ¢(x, 7) (using comoving coordinates) is assumed to
be given from other sources such as cold dark matter in a mixed hot and
cold dark matter model.

We can solve the Vlasov equation (@) approximately by replacing
0f/0p with the unperturbed term 0fy/dp. This approximation is valid
for | f — fo| < fo, and should suffice to demonstrate the collisionless damp-
ing of small-amplitude fluctuations.

A quadrature solution of the Vlasov equation can be obtained provided
that we change the time variable from 7 to s = [ dr/a = [ dt/a? and then
Fourier transform the spatial variable:

f(x,p,7(s)) = / &Pke™® f(k,p,s) . (3.16)

The gravitational potential ¢ is transformed similarly. Integrating eq. (B.9)
over s, we obtain the solution
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fk,p,s) = f(k,p,s;) e *muls=s)
d s A . :
+im (ka—’;f> / ds' a®(s)p(k, s') e~ ouls=s) (3.17)

Si
where u = p/m and s; is an initial time. If the initial phase space distribu-
tion is unperturbed, then f(k,p, s;) = fo(p) (k). Note that the complex
exponentials in eq. (3.17) correspond to the propagation of the phase space
density along the characteristics de/ds = w. This motion is called free-
streaming.

To understand the behavior of the free-streaming solution, let us examine

the integral term of eq. (3.17), which is proportional to

[ v s) bty + sy (3.18)
0

where 8 = k-p/m and y = s’ —s;. For sufficiently slowly moving neutrinos,
[ is small enough so that Sy < 1. This condition corresponds to a free-
streaming distance along k that is much less than k~!. These neutrinos do
not move far from the crests and troughs of the plane wave perturbation.
Neglecting the exponential, the time dependence of the solution is the same
as for cold dark matter.

If, however, By > 1, corresponding to neutrinos traveling across many
wavelengths of a perturbation, the rapid oscillations of the exponential
lead to cancellation in the integrand of eq. (B.1§) and suppression of the
neutrino phase space density perturbation. This effect, known as free-
streaming damping, occurs because neutrinos that are initially at the crests
or troughs of density waves move so far that they distribute themselves
almost uniformly. The small gravitational acceleration induced by the ex-
ternal potential is inadequate to collect the fast-moving neutrinos in dense
regions.

Thus, perturbations can grow only for the neutrinos that move less than
about one wavelength per Hubble time. Our analysis confirms the rough
picture we sketched in the beginning of this lecture.

We can obtain the net density perturbation (in Fourier space) by inte-
grating eq. (3.17) over momenta:

et - L iy fep.s)

no no

= §(k) — k? / ds' a®(s') p(k,s') (s — s') F [

i

k(s—¢)

m

] . (3.19)
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where ng = [ d®p fo(p) is the mean comoving number density and F is the

Fourier transform — with respect to the momentum! — of the unperturbed
distribution function:
1 .
Fo) = o [ e fufp) (3.20)
0

For the relativistic Fermi-Dirac distribution appropriate to hot dark matter,
F has the series representation (Bertschinger & Watts 1988)

> n k
F(q) = %(3) Z(‘U"H m » Do = BCTO ) (3.21)
n=1

where ((3) = 1.202... is the Riemann zeta function and F(0) = 1.

Equation (3.19) does not give much insight into free-streaming damping.
To get a better feel for the physics, as well as a simpler approximation
for treating hot dark matter, we now show how to convert eq. (3.19) into
a differential equation for the evolution of the hot dark matter density
perturbation similar to eq. ( for a perfect collisional fluid. This may
seem impossible a priori — how can the dispersive behavior of a collisionless
gas be represented by fluid-like differential equations? — but we shall see
that it is possible if we approximate fo(p) by a form differing slightly from
the Fermi-Dirac distribution. The results, although not exact, will give us
additional insight into the behavior of collisionless damping.

The first step is to rewrite eq. (3.19) for the Fourier transform of the

density fluctuation by

Iy ° 20N A ’ — k(s_s/)
ol 5) = —km [ ds' a() bk, aF(@)] , a= ") (3.22)
Next, we differentiate twice with respect to the time coordinate s:
651, _ 2 * r 20\ 2 / d
%——ALﬁa@wwwwmwm (3.23)
9%, .
o = Ra(5)d(k o
B[ a5 a6 bk ) L laF (o) (3.24)
m ). s a“(s , S e qF(q)] . .

Note the appearance of a non-integrated source term in the second deriva-
tive, arising because d(¢F')/dq does not vanish at s = s’ (¢ = 0) while ¢F
does.
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Next, we note that if d?(¢F)/dg* were to equal a linear combination of
d(gF)/dq and (qf), then we could write the integral in equation (3.24) as a
linear combination of 651, /9s and 51,. Unfortunately, this is not the case for
F(q) given by eq. (B.21)). However, it is true for the family of distribution
functions whose Fourier transforms are

F,(q) = exp(—vgpo) , (3.25)

for any dimensionless constant . This defines the family of phase space
density distributions

—2
r=m [ e = i (1) e
For this form of unperturbed distribution we have

d? d 9
d—q2(qu) = —27pod—q(qu) = (ypo)aFy - (3.27)
Combining eqs. (B.24)(3.24) and (B.27), we get

%0, | ypok 98,  ?pRk?
9 it 0
052 + m  0s + m?2

b, = —k2a?(s)o(k, s) . (3.28)

To put this result into a form similar to the acoustic wave equation we
derived for a collisional fluid, we define the characteristic proper thermal
speed

kT,  ~po
Cy =7 = —

mc ma

(3.29)

Next, we change the time variable from s back to 7 with dr/ds = a.
Finally, we assume that the source term gravitational potential (;3 is given
by the Poisson equation for a perturbation d. in a component with mean
mass density p. (e.g., cold dark matter — recall that we are neglecting the
self-gravity of the neutrinos). Dropping the hat on 51,, the result is

5, + (9 + 2ko> 8, + k2c25, = 4rGa2ped. . (3.30)
a

This equation was first derived by Setayeshgar (1990). It is approximate
(not exact) for the linear evolution of massive neutrinos because we replaced
the Fermi-Dirac distribution by eq. (B.26)). It is not difficult to show
that eq. (B.2) is the only form of the distribution function for which
eq. (3.17) can be reduced to a differential equation for §,(k, 7). (Even
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the Maxwell-Boltzmann distribution fails — a collisionless gas with this
distribution initially does not evolve the same way as a collisional gas with
the Maxwell-Boltzmann distribution function for all times.) One should
also bear in mind that ¢, does not contain all the information needed to
characterize perturbations in a collisionless gas (Ma & Bertschinger 1994a).
Complete information resides in f (k,p,s).

Even if eq. (B.3(]) is not exact for massive neutrinos and does not fully
specify the perturbations, it provides an extremely helpful pedagogic guide
to the physics of collisionless damping. We see at once that a gravitational
source can induce density perturbations in a collisionless component, but
the source competes agains acoustic (k%c2) and damping (a/a+2kc,) terms.
Roughly speaking, hot dark matter behaves like a collisional gas with an
extra free-streaming damping term.

Does the k?c2 term imply that a collisionless gas can support acoustic
oscillations? To check this we consider the limit kc,7 > 1 so that the
Hubble damping and gravitational source terms are negligible. We then
have

S, + 2w,6, + w2, ~0, w,=kec, . (3.31)

Because w, changes very slowly with time compared with the oscillation
timescale w™!, eq. (B.31)) is a linear differential equation with constant
coefficients and is easily solved to give the two modes

Wy T

0, x TE or e " w,Tr>1. (3.32)

Neither solution oscillates! The first one begins to grow but is rapidly
damped on a timescale w; !, after the typical neutrino has had time to
cross one wavelength.

Because the damping time (kc,)~! is proportional to the wavelength,
short-wavelength perturbations are damped most strongly. At any given
time 7, perturbations of comoving wavelength less than about ¢, 7 are at-
tenuated. This is precisely the free-streaming distance we introduced in
the beginning of this lecture, equation (B.J).

Our results enable us to understand why the hot dark matter trans-
fer function is similar to that of cold dark matter for long wavelengths
but cuts off sharply for short wavelengths (Bond & Szalay 1983). During
the radiation-dominated era, a(7) o 7. While the massive neutrinos were
relativistic, ¢, ~ ¢ was constant. The comoving free-streaming distance
increased, ¢, 7 x a, with hot dark matter perturbations being erased on
scales up to the Hubble distance. After the neutrinos became nonrelativis-
tic, however, ¢, is given by eq. (), ¢, < a~!. Thus, the free-streaming
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distance saturates at the Hubble distance when the neutrinos become non-
relativistic. During the matter-dominated era, a(r) oc 72 (while Q ~ 1)
so that the free-streaming distance decreases: ¢, 7 o< a~'/2. However, free-
streaming has already erased the hot dark matter perturbations on scales
up to the maximum free-streaming distance, eq. (@) Only if the pertur-
bations are re-seeded, e.g. by cold dark matter or topological defects, will
small-scale power be restored to the hot dark matter.

3.4. Nonrelativistic evolution including self-gravity

Now that we have developed the basic techniques for solving the linearized
nonrelativistic Vlasov equation, adding self-gravity of the collisionless par-
ticles is easy. We simply add a contribution to ¢ arising from J,. In eq.
(3.17), if we have a mixture of hot and cold dark matter, ¢ — (<ch + (;31,);
additional contributions may be added as appropriate. Equation (j8.22)
becomes

3, (K, s) = % / ds’ a*(s') [qF (q)] 47 Ga(s))

x [pc(s/)sc(k, ') + pu(s)o, (k, )] . (3.33)

This equation was first derived (in a slightly different form) by Gilbert
(1966) and is known as the Gilbert equation. Note that in the self-
gravitating case ¢, appears both inside and outside an integral. Equation
(3.33) is a Volterra integral equation of the second kind. Bertschinger &
Watts (1988) present a numerical quadrature solution method.

Using the same trick as in the previous subsection, we can convert the
Gilbert equation to a differential equation for §,, if the unperturbed phase
space density distribution is approximated by the form f,(p) of eq. ()
The result is

b, + (9 + 2ko> b, + k226, = 4rGa? [pede + pudy] (3.34)
a

With a suitable choice for the parameter v, the solution of eq. (j3.34)
provides a good match (to within a few percent, in general) to the solu-
tion of the Gilbert equation using the correct Fermi-Dirac distribution for
massive neutrinos (Setayeshgar 1990). Therefore, it may be used for ob-
taining quick estimates of the density perturbations of nonrelativistic hot
dark matter.
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4. Relativistic cosmological perturbation theory
4.1. Introduction

This section is an expanded version of my fifth lecture at Les Houches.
One lecture gave barely enough time to introduce the essential ideas of
relativistic perturbation theory: classification of metric perturbations, the
linearized Einstein equations, and gauge modes. Understanding the physics
of these topics, as well as the relativistic generalizations of my previous
lectures, requires a much deeper immersion. Unable to find a pedagogical
treatment in the existing literature that matches these needs to my sat-
isfaction, I have developed the subject more fully in these written lecture
notes. They are not a complete guide to relativistic perturbation theory but
rather a starting point from which the reader may delve into the increas-
ingly rich literature of applications. This section is self-contained and may
be read independently of the previous sections, although the reader may
find it interesting to contrast the nonrelativistic presentations of sections 1
and 2 with the relativistic treatment given below.

4.1.1. Synopsis

According to the Newtonian perspective of gravity and cosmology, space-
time is flat and absolute, gravity is action at a distance, and particle
dynamics is given by Newton’s second law F' = ma or, equivalently, by
Hamilton’s principle of least action. The Einsteinian perspective is quite
different: spacetime is a curved manifold which evolves causally through
the Einstein field equations in response to sources, and particle dynamics
is given in absence of nongravitational forces by geodesic motion. In this
section I attempt not only to present the essentials of relativistic gravita-
tional dynamics, but also to show how it reduces to and extends Newtonian
cosmology in the appropriate limit.

One of the main purposes of these notes is to provide a clear explanation
of the scalar, vector, and tensor modes of gravitational perturbations. (We
shall follow the customary usage in this subject by referring to different spa-
tial symmetry components as “modes” even when they are not expanded
in any basis eigenfunctions. Thus, the “scalar mode” is described, in part,
by a field ¢(x*) that is a scalar under spatial coordinate transformations
but is not restricted to being a single Fourier component or other harmonic
basis function.) Newtonian gravity corresponds to the former (the scalar
mode), while the latter (vector and tensor modes) represent the relativis-
tic effects of gravitomagnetism and gravitational radiation, which have no
counterpart in Newtonian gravity although they are similar to electromag-



Cosmological Dynamics 37

netic phenomena. If the motion of sources is expanded in powers of v/c,
the vector and tensor gravitational fields are O(v/c) and O(v/c)? times the
Newtonian field, respectively. On terrestrial scales the vector and tensor
modes are extremely weak — they have not been detected in the laboratory,
although satellite experiments are planned to search for the former through
the Lense-Thirring “gravitomagnetic moment” precession, and large inter-
ferometric detectors are being built to measure gravitational radiation —
but they could have important consequences for the evolution of large-scale
matter and radiation fluctuations, including the production of anisotropy
in the microwave background radiation.

The Newtonian limit corresponds to weak gravitational fields (black holes
are to be avoided) and slow motions (v? < c¢?, for both sources and test
particles). For nearly all cosmological applications it is sufficient to consider
only weak fields — small perturbations of the spacetime metric around a
homogeneous and isotropic background spacetime. At the same time it is
usually safe to assume that the gravitational sources are nonrelativistic,
although the test particles (e.g., photons) need not be. Because the weak-
field, slow source motion limit does not necessarily imply small density
fluctuations, we can (and will) investigate nonlinear particle and fluid dy-
namics even while treating the metric perturbations and source velocities
as being small.

In sections @—@ we shall develop the machinery for cosmological
perturbation theory using the methods developed by Lifshitz, Peebles,
Bardeen, Kodama & Sasaki, and others. We discuss the consequences of
gauge invariance — the invariance of physical quantities to small changes
in the spacetime coordinates — and symmarize the standard results in the
synchronous gauge of Lifshitz (1946).8 In section [..f we introduce a new
gauge that clarifies how general relativity extends Newtonian gravity in
the weak-field limit and in section Q we attempt to clarify the physical
content of general relativity theory in this limit. In section @ we shall see
how simply and clearly the Hamiltonian formulation of particle dynamics
follows from general relativity. Finally, in section @ we introduce an alter-
native fully nonlinear formulation of general relativity due to Ehlers, Ellis
and others, and we demonstrate its connection with the Lagrangian fluid
dynamics that was discussed in my fourth lecture.

* Apparently it is not widely known that Lifshitz’ paper is published in English and is
available in many libraries. This classic paper was remarkably complete, including a full
treatment of the scalar, vector, and tensor decomposition in open and closed universes
and a concise solution to the gauge mode problem; it presented solutions for perfect fluids
in matter- and radiation-dominated universes; and it contrasted isentropic (adiabatic)
and entropy fluctuations.
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We shall not discuss the relativistic Boltzmann equation nor the classifi-
cation of isentropic and isocurvature initial conditions. In the nonrelativis-
tic limit, these topics have already been covered in my preceding lectures.
Neither shall we discuss the physics of microwave background anisotropy
or the evolution of perturbations in specific models. Our aim here is to de-
rive and comprehend the gravitational field equations, not their solution.
Although this goal is restricted, we shall see that the physical content is
sufficiently rich. After working through these notes the reader may wish to
consult one of the many books or articles discussing the detailed evolution
for a variety of models (e.g., Lifshitz & Khalatnikov 1963; Peebles & Yu
1970; Weinberg 1972; Peebles 1980; Press & Vishniac 1980; Wilson & Silk
1981; Wilson 1983; Bond & Szalay 1983; Zel’dovich & Novikov 1983; Ko-
dama & Sasaki 1984, 1986; Efstathiou & Bond 1986; Bond & Efstathiou
1987; Ratra 1988; Holtzman 1989; Efstathiou 1990; Mukhanov, Feldman &
Brandenberger 1992; Liddle & Lyth 1993; Peebles 1993; Ma & Bertschinger
1994b).

Understanding these notes will not require much experience with general
relativity, although some background is helpful. The reader can test the
waters by examining the following summary of essential general relativity
and differential geometry. While some mathematical formalism is needed to
get started, the focus thereafter will remain as much as possible on physics.

4.1.2. Summary of essential relativity

We adopt the following conventions and notations, similar to those of Mis-
ner, Thorne & Wheeler (1973). Units are chosen so that ¢ = 1. The
metric signature is (—, 4+, +,+). The unperturbed background spacetime
is Robertson-Walker with scale factor a(7) expressed in terms of conformal
time. A dot (or 0,) indicates a conformal time derivative. The comoving
expansion rate is written n(7) = a/a = aH. The scale factor obeys the
Friedmann equation,

8
= %GQQﬁ—K. (4.1)
The Robertson-Walker line element is written in the general form using
conformal time 7 and comoving coordinates x*:
ds* = gudatda” = a®(7) [—dr* + ”yij(:ck)dxid:cj] . (4.2)

Latin indices (i, j, k, etc.) indicate spatial components while Greek in-
dices (u, v, A, etc.) indicate all four spacetime components; we assume a
coordinate basis for tensors. Summation is implied by repeated upper and
lower indices. The inverse 4-metric g"¥ (such that g"”g,, = 0*,) is used
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to raise spacetime indices while the inverse 3-metric v (v, = §%) is
used to raise indices of 3-vectors and tensors. Three-tensors are defined in
the spatial hypersurfaces of constant 7 with metric v;; and they shall be
clearly distinguished from the spatial components of 4-tensors. We shall
see as we go along how this “3+1 splitting” of spacetime works when there
are metric perturbations.

Many different spatial coordinate systems may be used to cover a
uniform-curvature 3-space. For example, there exist quasi-Cartesian co-
ordinates (x,y, z) in terms of which the 3-metric components are

—2

We shall use 3-tensor notation to avoid restricting ourselves to any partic-
ular spatial coordinate system. Three-scalars, vectors, and tensors are in-
variant under transformations of the spatial coordinate system in the back-
ground spacetime (e.g., rotations). A 3-vector may be written A = A'e;
where e; is a basis 3-vector obeying the dot product rule e; - e; = v;;. A
second-rank 3-tensor may be written (using dyadic notation and the tensor
product) h = h/e; ® e;. We write the spatial gradient 3-vector operator
V =€'d; (0; = 9/0x") where e’ - e; = §';. The experts will recognize e’ as
a basis one-form but we can treat it as a 3-vector e’ = "/ e; because of the
isomorphism between vectors and one-forms. Because the basis 3-vectors
in general have nonvanishing gradients, we define the covariant derivative
(3-gradient) operator V; with V;v;, = 0. If the space is flat (K = 0) and
we use Cartesian coordinates, then ~;; = d;;, V; = 9;, and the 3-tensor
index notation reduces to elementary Cartesian notation. If K # 0, the
3-tensor equations will continue to look like those in flat space (that is
why we use a 3+1 splitting of spacetime!) except that occasionally terms
proportional to K will appear in our equations.

Our application is not restricted to a flat Robertson-Walker background
but allows for nonzero spatial curvature. This complicates matters for two
reasons. First, we cannot assume Cartesian coordinates. As a result, for
example, the Laplacian of a scalar and the divergence and curl of a 3-vector
involve the determinant of the spatial metric, v = det{~;; }:

V2¢E,Yfl/2ai (71/27ijaj¢) , Vv 5’771/261' (71/2,01') ,
V x v =k v))er (4.4)
where €% = 4~1/2[jjk] is the three-dimensional Levi-Civita tensor, with

[ijk] = +1 if {ijk} is an even permutation of {123}, [ijk] = —1 for an
odd permutation, and 0 if any two indices are equal. The factor /2
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ensures that €% transforms like a tensor; as an exercise one can show that
€ijk = ")/1/2 [’L]k]

The second complication for K # 0 is that gradients do not commute
when applied to 3-vectors and 3-tensors (though they do commute for 3-
scalars). The basic results are

[Vja Vk] A = (B)RinjkAn )

(Vi Vil b0 = OR' o ORI bt (4.5)
where [V, Vi] = (V;Vi — Vi V;). The commutator involves the spatial
Riemann tensor, which for a uniform-curvature space with 3-metric ;; is
simply

(B)Rijkl =K (5ik7jl - 5iz”¥jk) . (4.6)

Finally, we shall need the evolution equations for the full spacetime met-
ric g, These are given by the Einstein equations,

Gt,=8rGT*H, (4.7)
where T#, is the stress-energy tensor and G*,, is the Einstein tensor, related
to the spacetime Ricci tensor R, by

R "
Guw =Ry — 2 u R=R',, Ru,=R",, . (4.8)

The spacetime Riemann tensor is defined according to the convention
R#un)\ = a’””r#u)\ - OAF“W + F#anrau)\ - F#a)\raun ) (49)
where the affine connection coefficients are
1
F#u)\ = 5 e (al’gli)\ + a)\gm/ - angu)\) . (410)

We see that the Einstein tensor involves second derivatives of the metric
tensor components, so that eq. (@) provides second-order partial differ-
ential equations for g,

The reader who is not completely comfortable with the material sum-

marized above may wish to consult an introductory general relativity text-
book, e.g. Schutz (1985).

4.2. Classification of metric perturbations

Now we consider small perturbations of the spacetime metric away from
the Robertson-Walker form:

ds* = a® (1) {—(1 + 24)d7> + 2widrda’ + [(1 — 2¢)7i; + 2hy;] da*da’ }
Y7 hi; =0. (4.11)



Cosmological Dynamics 41

We have introduced two 3-scalar fields ¢(x, ) and ¢(x,7), one 3-vector
field w(x,7) = w;e’, and one symmetric, traceless second-rank 3-tensor
field h(z,7) = h;je’ ® e/. No generality is lost by making h;; traceless
since any trace part can be put into ¢. The factors of 2 and signs have
been chosen to simplify later expressions.

Equation (4.11) is completely general: g,, has 10 independent compo-
nents and we have introduced 10 independent fields (1 +1 + 3 + 5 for
Y+ ¢+ w+h). In fact, only 6 of these fields can represent physical de-
grees of freedom because we are free to transform our 4 coordinates (7, x*)
without changing any physical quantities. Infinitesimal coordinate trans-
formations, called gauge transformations, result in changes of the fields
(¢, ¢, w, h) because the spacetime scalar ds®> = g, dr*dz” must be in-
variant under general coordinate transformations. We shall explore the
consequences of this invariance later. Coordinate invariance complicates
general relativity compared with other gauge theories (e.g., electromag-
netism) in which the spacetime coordinates are fixed while other variables
change under the appropriate gauge transformations.

Unless stated explicitly to the contrary, in the following we shall treat
the perturbation variables (1, ¢, w;, hi;) exclusively as 3-tensors (of rank
0, 1, or 2 according to the number of indices) with components raised and
lowered using 7"/ and 7;;. In doing this we choose to use v;; as the 3-
metric in the perturbed hypersurface of constant 7 despite the fact that
the spatial part of the 4-metric (divided by a?) is given by (1 — 2¢)7;; +
2h;;. This treatment is satisfactory because we will assume that the metric
perturbations are small and we will neglect all terms quadratic in them.
However, we will use g"” to raise 4-vector components: G*, = g**G,.,,. Do
take care to distinguish Latin from Greek!

We have introduced 3-scalar, 3-vector, and 3-tensor perturbations.
(From now on we will drop the prefix 3- since it should be clear from
the context whether 3- or 4- is implied.) Are these the famous scalar, vec-
tor, and tensor metric perturbations? Not quite! Recall the decomposition
of a vector into longitudinal and transverse parts:

w=w|+twy, waH:V~wL:O. (4.12)

Since w = —Vw for some scalar w, how can it be called a vector per-
turbation? By definition, only the transverse component w represents a
vector perturbation.

There is a similar decomposition theorem for tensor fields: Any differen-
tiable traceless symmetric 3-tensor field h;;(x) may be decomposed into a
sum of parts, called longitudinal, solenoidal, and transverse:

h(x) :hH +h; +hp. (4.13)
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The various parts are defined in terms of a scalar field h(x) and transverse
(or solenoidal) vector field h(x) such that

hij, | = Dijh , hij L =V hy, V', =0, (4.14)

where we have denoted symmetrization with parentheses and have em-
ployed the traceless symmetric double gradient operator:

1 1
Viihj) =5 (Vihj +Vjhi) . Dij = ViV — 3 vi; V2 . (4.15)

Note that the divergences of h; and hy are longitudinal and transverse
vectors, respectively (it doesn’t matter which index is contracted on the
divergence since h is symmetric):

V-h”:§V(V2+3K)h, V~hl:%(V2+2K)h, (4.16)
where V2h = (V?h')e;. (We do not call hy the transverse part, as we
would by extension from w, , because “transverse” is conventionally used
to refer to the tensor part.) The longitudinal tensor h|| is also called the
scalar part of h, the solenoidal part h is also called the vector part, and
the transverse-traceless part hr is also called the tensor part. This clas-
sification of the spatial metric perturbations h;; was first performed by
Lifshitz (1946).

The purpose of this decomposition is to separate h;; into parts that
can be obtained from scalars, vectors, and tensors. Is the decomposition
unique? Not quite. It is clear, first of all, that h and h; are defined only
up to a constant. But there may be additional freedom (Stewart 1990).

First, the vector h is defined only up to solutions of Killing’s equation
Vih; + Vjh; =0, called Killing vectors (Misner et al. 1973). The reader
can easily verify that one such solution (using the quasi-Cartesian coordi-
nates of eq. is (ha, hy, h:) = (y,—2,0). In an open space (K < 0)
this solution would be excluded because it is unbounded — our perturba-
tions should not diverge! — but in a closed space (K > 0) the coordinates
have a bounded range. This Killing vector, and its obvious cousins, cor-
respond to global rotations of the spatial coordinates and not to physical
perturbations.

Next, there may also be non-uniqueness associated with the tensor (and
scalar) component:

hijr = higr+ Gy s G =[ViVi— i (V2 +2K)] ¢, (4.17)

where ¢ is some scalar field. From eqs. (4.5) and ([.6) one can show
V3(Vi¢) = Vi(V? 4+ 2K)( so that Vi¢'; = 0 as required for the tensor
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component. However, we also require h;; T to be traceless, implying (V2 +
3K)( = 0. Thus, the tensor mode is defined only up to eq. () with
bounded solutions of (V? + 3K)¢ = 0. In fact, this condition also implies
Gij = Dy;¢, so we may equally well attribute ¢;; to the scalar mode h;j |
Thus, we are free to add any multiple of ¢ to h (the scalar mode) provided
we subtract D;;¢ from the tensor mode. In an open space (K < 0) there are
no nontrivial bounded solutions to (V2 + 3K)¢ = 0 but in a closed space
(K > 0) there are four linearly independent solutions (Stewart 1990). Once
again, these solutions correspond to redefinitions of the coordinates with no
physical significance. Kodama & Sasaki (1984, Appendix B) gave a proof
of the tensor decomposition theorem, but they missed the additional vector
and scalar/tensor mode solutions present in a closed space. In practice, it
is easy to exclude these modes, and so we shall ignore them hereafter.

Thus, we conclude that the most general perturbations of the Robertson-
Walker metric may be decomposed at each point in space into four scalar
parts each having 1 degree of freedom (¢, ¢, w, h)), two vector parts each
having 2 degrees of freedom (w,,h;), and one tensor part having 2 de-
grees of freedom (hr, which lost 3 degrees of freedom to the transversality
condition). The total number of degrees of freedom is 10.

Why do we bother with this mathematical classification? First and fore-
most, the different metric components represent distinct physical phenom-
ena. (By way of comparison, in previous lectures we have already seen
that v and v play very different roles in fluid motion.) Ordinary New-
tonian gravity obviously is a scalar phenomenon (the Newtonian potential
is a 3-scalar), while gravitomagnetism and gravitational radiation — both
of which are absent from Newton’s laws, and will be discussed below —
are vector and tensor phenomena, respectively. Moreover, this spatial de-
composition can also be applied to the Einstein and stress-energy tensors,
allowing us to see clearly (at least in some coordinate systems) the physical
sources for each type of gravity. Finally, the classification will help us to
eliminate unphysical gauge degrees of freedom. There are at least four of
them, corresponding to two of the scalar fields and one transverse vector
field.

We will not write the weak-field Einstein equations for the general metric
of eq. (4.11). Instead, we will consider only two particular gauge choices,
each of which allows for all physical degrees of freedom (and more, in the
case of synchronous gauge). First, however, we must examine the stress-
energy tensor.
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4.3. Stress-enerqgy tensor

The Einstein field egs. ([L7) show that the stress-energy tensor provides
the source for the metric variables. For a perfect fluid the stress-energy
tensor takes the well-known form

T = (p + p)uru” + pg"” (4.18)

where p and p are the proper energy density and pressure in the fluid rest
frame and u = dzt/d)\ (where d\?> = —ds?) is the fluid 4-velocity. In
any locally flat coordinate system, 790 represents the energy density, T
the energy flux density (which equals the momentum density T%), and T%
represents the spatial stress tensor. In locally flat coordinates in the fluid
frame, T = p, T% = 0, and T¥ = pd¥ for a perfect fluid.

For an imperfect fluid such as a sum of several uncoupled components
(e.g., photons, neutrinos, baryons, and cold dark matter), the stress-energy
tensor must include extra terms corresponding in a weakly collisional gas to
shear and bulk viscosity, thermal conduction, and other physical processes.
We may write the general form as

™ = (p + p)uru” 4+ pg"” + X . (4.19)

Without loss of generality we can require 3" to be traceless and flow-
orthogonal: ¥, =0, ¥# u” = 0. In locally flat coordinates in the fluid
rest frame only the spatial components X% are nonzero (but their trace
vanishes) and the spatial stress is T% = pd* + ¥, With these restrictions
on ¥ (in particular, the absence of a ¥ term in the fluid rest frame)
we implicitly define u# so that pu* is the energy current 4-vector (as op-
posed, for example, to the particle mass times the number current 4-vector
for the baryons or other conserved particles). As a result of these condi-
tions, pu* includes any heat conduction, p includes any bulk viscosity (the
isotropic stress generated when an imperfect fluid is rapidly compressed or
expanded), and ¥ (called the shear stress) includes shear viscosity. Some
workers add to eq. () terms proportional to the 4-velocity, ¢"u” +u*q",
where ¢* is the energy current in the particle frame (taking u* to be pro-
portional to the particle number current). Either choice is fully general,
although our choice is the simplest.

We shall need to evaluate the stress-energy components in the comoving
coordinate frame implied by eq. (4.11). This requires specifying the form
of the 4-velocity u*. Therefore we must digress to discuss the 4-velocity
components in a perturbed spacetime.

Consider first the case where the fluid is at rest in the comoving frame,
i.e., u® = 0. (This condition defines the comoving frame.) Normalization
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(guuru” = —1) then requires u’ = a='(1—1) to first order in ¢). Lowering
the components using the full 4-metric gives ug = —a(1 + ) and u; = aw;
in the weak-field approximation.

The appearance of ¢ and w; in the components u,, for a fluid at rest in the
comoving frame may appear odd. They arise because, in our coordinates,
clocks run at different rates in different places if V40 # 0 (the coordi-
nate time interval dr corresponds to a proper time interval a(7)(1 +1)dr)
and they also have a position-dependent offset if w; # 0 (an observer at
2" = constant sees the clocks at x? +dz® running fast by an amount w;dz?).
At first these may seem like strange coordinate artifacts one should avoid
(this may be a motivation for the synchronous gauge in which ¢ = w; = 0!)
but they have straightforward physical interpretations: 1 represents the
gravitational redshift and w; represents the dragging of inertial frames. We
shall see later that they also can be interpreted as giving rise to “forces,”
allowing us to apply Newtonian intuition in general relativity. Do not for-
get that in general relativity we are forced to accept coordinates whose
relation to proper times and distances is complicated by spacetime curva-
ture. Therefore, it is advantageous when we can reinterpret these effects in
Newtonian terms.

We define the coordinate 3-velocity

de  dz’ u?

== —e, (4.20)

v = e, =
T dx0 o

whose components are to be raised and lowered using 7" and v;;: v; =
Y07 = yiud Jul, v? = 07, w v = wivt, v-h v = hyjvted, ete. The
4-vector component u? follows from applying the normalization condition
uy ut = —1:

0_ 1 1_1/)—w~v—|—q$v2—v~h~v
av1 —v? 1—?

In the absence of metric perturbations this looks like the standard result
in special relativity aside from the factor a~! that appears because we
use comoving coordinates. With metric perturbations we can no longer
interpret v exactly as the proper 3-velocity because adz® is not proper
distance and adrt is not proper time. However, the corrections are only
first order in the metric perturbations.

We will assume that the mean fluid velocity is nonrelativistic so that
we can neglect all terms that are quadratic in v. (This does not exclude
the radiation era, since we allow individual particles to be relativistic and
require only the bulk velocity to be nonrelativistic.) We will also neglect

(4.21)
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terms involving products of v and the metric perturbations. With these
approximations, the 4-velocity components become

u =a 1), v =a"t", ug = —a(l4+y), u; = a(vitw;) .(4.22)

The apparent lack of symmetry in the spatial components arises because
u; = giou® + gi;u? and gio = a?w; # 0 in general.

From eq. (@) we can see how w; is interpreted as a frame-dragging
effect. For w; # 0 the worldline of a comoving observer (defined by the
condition v; = 0) is not normal to the hypersurfaces 7 = constant: u,&* =
aw;&" # 0 for a 3-vector £'. In a locally inertial frame, on the other hand,
the worldline of a freely-falling observer obviously would be normal to the
spatial directions. (This is true in special relativity and also in general
relativity as a consequence of the equivalence principle.) By making a
local Galilean transformation, dz* — dz' + w'dr, we can remove w; from
the metric at a point. This transformation corresponds to choosing a locally
inertial frame, called the normal frame, moving with 3-velocity —w relative
to the comoving frame. In the normal frame the fluid 3-velocity is v + w.

If w; = w;(7) is independent of x, one can remove w; everywhere from
the metric by a global Galilean transformation. (Try it and see!) However,
we may be interested in situations where w; = w;(x,7) so that different
transformations are required in different places. In this case there is no
global inertial frame. Spatially varying w; corresponds to shearing and/or
rotation of the comoving frame relative to the normal frame. This is called
the “dragging of inertial frames.” Although we can choose coordinates in
which w; = 0 everywhere, we shall see that there are advantages in not
hiding the dragging of inertial frames. In general, the comoving frame
is noninertial: an observer can remain at fixed x* only if accelerated by
nongravitational forces. The synchronous gauge is an exception in that
w; = 0 everywhere and the comoving frame is locally inertial. We shall see
later that these features of synchronous gauge obscure rather than eliminate
the physical dragging of inertial frames.

Now that we have all the ingredients we can finally write the stress-
energy tensor components in our perturbed comoving coordinate system in
terms of physical quantities:

T% =—-p, Ty =—(p+p0',
T = (p+p)oitwi) , Ty =pd'y +3 (4.23)

We use mixed components in order to avoid extraneous factors of a(1 + 1)
and a(1 — ¢). Note that the traceless shear stress % ; may be decomposed
as in egs. (f.13) and ( into scalar, vector, and tensor parts. Similarly,
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the energy flux density (p+p)v® may be decomposed into scalar and vector
parts. (The pressure appears here, just as in special relativity, to account
for the pdV work done in compressing a fluid. For a nonrelativistic fluid p <
p, but we shall not make this restriction.) We may already anticipate that
these sources are responsible in the Einstein equations for scalar, vector,
and tensor metric perturbations.

In writing the components of the stress-energy tensor we have not as-
sumed [dp| < p. The only approximations we make in the stress-energy
tensor are to neglect (relative to unity) v? and all terms involving products
of the metric perturbations with v and X? ;- Of course, owing to the weak-
field approximation, we are also neglecting any terms that are quadratic in
the metric perturbations themselves.

Before moving on to discuss the Einstein equations we should rewrite
the conservation of energy-momentum, V,T#, = 0, in terms of our metric
perturbation and fluid variables. (We use V, to denote the full spacetime
covariant derivative relative to the 4-metric g,,,. It should not be confused
with the spatial gradient V; defined relative to the 3-metric ;;.) Using
the approximations mentioned in the preceding paragraph, one finds

-p+3n—0)p+p)+V-[(p+pv]=0 (4.24)

and

- [(p+ p)(v+ w)] +4n(p + p)(v + w)
+Vp+V -Z+(p+p)Vyy=0. (4.25)

(Deriving these gives useful practice in tensor algebra.) It is easy to in-
terpret the various terms in these equations. The terms proportional to
the expansion rate n arise because we are using comoving coordinates and
conformal time and have not factored out a2 from p or p. The pressure
p is present with p because we let p be the energy density (not the rest-
mass density), which is affected by the work pressure does in compressing
the fluid. Excluding these terms, the energy-conservation eq. ( looks
exactly like the Newtonian continuity equation aside from the change in
the expansion rate from 7 to n — ¢. This modification is easily understood
by noting from eq. (4.11) that the effective isotropic expansion factor
is modified by spatial curvature perturbations to become a(l — ¢). The
momentum-conservation eq. (4.25) similarly looks like the Newtonian ver-
sion with a gravitational potential v, aside from the special-relativistic
effects of pressure and the addition of w to all the velocities to place them
in the normal (inertial) frame.
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4.4. Synchronous gauge

Synchronous gauge, introduced by Lifshitz (1946) in his pioneering calcu-
lations of cosmological perturbation theory, is defined by the conditions
1 = w; = 0, which eliminate two scalar fields (¢ and the longitudinal part
of w) and one transverse vector field (w_ ). It is not difficult to show that
synchronous coordinates can be found for any weakly-perturbed spacetime.
However, the synchronous gauge conditions do not eliminate all gauge free-
dom. This has in the past led to considerable confusion (for discussion see
Press & Vishniac 1980 and Bardeen 1980).

Synchronous gauge has the property that there exists a set of comoving
observers who fall freely without changing their spatial coordinates. (This
is nontrivial when one notes that in order to remain at a fixed terrestrial
latitude, longitude, and altitude above the surface of the earth it is nec-
essary to accelerate everywhere except in geosynchronous orbits.) These
observers are called “fundamental” comoving observers. The existence of
fundamental observers follows from the geodesic equation

—— + TV gutu” =0 (4.26)

for the trajectory z*()\), where dA = (—ds?)/? for a timelike geodesic and
ut = dzt/dX\. With ¢ = w; = 0, eq. (ft.10]) gives I'j, = 0, implying that
u® = 0 is a geodesic.

Each fundamental observer carries a clock reading conformal time 7 =
[ dt/a(t) and a fixed spatial coordinate label z*. The clocks and labels of
the fundamental observers are taken to define the coordinate values at all
spacetime points (assuming that these hypothetical observers densely fill
space). The residual gauge freedom in synchronous gauge arises from the
freedom to adjust the initial settings of the clocks and the initial coordinate
labels of the fundamental observers.

Because the spatial coordinates z° of each fundamental observer are held
fixed with time, the z* in synchronous gauge are Lagrangian coordinates.
This implies that the coordinate lines become highly deformed when the
density perturbations become large. When the trajectories of two funda-
mental observers intersect the coordinates become singular: two different
sets of x# label the same spacetime event. This flaw of synchronous gauge
is not apparent if [0p/p| < 1 and the initial coordinate labels are nearly
unperturbed, so this gauge may be used successfully (with some care re-
quired to avoid contamination of physical variables by the residual gauge
freedom) in linear perturbation theory.

To be consistent with the conventional notation used for synchronous
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gauge (Lifshitz 1946; Lifshitz & Khalatnikov 1963; Weinberg 1972; Peebles
1993), in this section only we shall absorb ¢ into h;; and double h;;:

ds* = a*(1) [—dr® + (vij + hyj)da'da’] , h=h'; #0. (4.27)

Using this line element and the definitions of the Ricci and Einstein tensors,
it is straightforward (if rather tedious) to derive the components of the
perturbed Einstein tensor:

.1 1 g
—a*G% = 3(n* + K) +nh — 5 (V2 +2K) h+ SViVihT o (428)

@260 = 5 (Vih = Vi) . Gy = =796, (4.29)

N~

i . i 1 1 i i
—a*G' = 20+ 1>+ K) &+ (§ai+naf— §V2> (hd'; — h'})
4 1 i
—Kh 4 50" (ViVih = ViVikl; = V5Vl )

+- (ViViRH) 6 (4.30)

N~

One can easily verify that the unperturbed parts of the Einstein equations
G = 87GTY) = —8rGp and G*; = 87GT"; = 8nGpd’; give the Fried-
mann and energy-conservation equations for the background Robertson-
Walker spacetime.

Our next goal is to separate the perturbed Einstein equations into scalar,
vector, and tensor parts. First we must decompose the metric perturbation
field h;; as in eqs. ([13)-(J.15), with a term added (and the notation
changed slightly) to account for the trace of h;;:

1
3

where D;; was defined in eq. ([£15). We require V;h¢ = Vi’ jr=0to
ensure that the last two parts of h;; are purely solenoidal (vector mode)
and transverse-traceless (tensor mode) contributions. The scalar mode
variables are h and V ~2¢, whose Laplacian is £&. We shall not worry about
how to invert the Laplacian on a curved space but simply assume that it
can be done if necessary.

The perturbed Einstein equations now separate into 7 different parts
according to the spatial symmetry:

hij = = hyi; + Dy (V72§) + Vihyy + hij, T, (4.31)
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1 .
G 5 (V2 +3K) (€~ h) +nh =8xGa*(p —p) . (4.32)
1 . :
Gy 5 Vilh—8 = KV (V%) = 8nGa® [(p+ p)ui] . (4:33)
1 .
GO r: =7 (V24 2K) hi = 87Ga®[(p + p)ui], (4.34)
. 1
G'is (07 +200,)h + 5 (V2 +3K) (h =€)
= 24rGd(p — p) | (4.35)
1 1 - 1
G i (563 + 775%) Dy (V%) + EDz‘j(f —h)
= 87TGa2Eij7 I (4.36)
. 1
Gy (563 + nar> V(ihj) = 87Ga’Tij 1, (4.37)

, 1 1
Glj,T : (5672- +n0; — §V2 + K) hij, T = 87TGa2Eiij . (4.38)

The derivation of these equations is straightforward but tedious. They have
decomposed naturally into separate equations for the scalar, vector, and
tensor parts of the metric perturbation, with the sources for each given by
the appropriate part of the energy-momentum tensor. However, there are
more equations than unknowns! There are four scalar equations for £ and
h, two vector equations for h;, and one tensor equation for h;; v. How can
this be?

Before answering this question, let us note another interesting feature
of the equations above, which will provide a clue. The equations arising
from G° ., involve only a single time derivative of the scalar and vector
mode variables, while those arising from G* , have two time derivatives,
as we might have expected for equations of motion for the gravitational
fields. This means that we could discard eqs. (4.32)—(4.34) and be left
with exactly as many second-order in time equations as unknown fields.
Alternatively, we could discard eqs. (4.35)—(4.37) and be left with exactly
enough first-order in time equations for the scalar and vector modes. Only
the tensor mode evolution is uniquely specified by a second-order wave
equation.

The reason for this redundancy is that the twice-contracted Bianchi iden-
tities of differential geometry, V,G*, = 0, force the Einstein eqs. ([£7)
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to imply V,T#, = 0. The Einstein equations themselves contain redun-
dancy, as we can check explicitly here. By combining the time derivative
of eq. (4.32) and the divergence of eqs. (4.33) and (4.34) one obtains
the perturbed part of eq. (f.24) (note, however, that ¢ — —h/6). Simi-
larly, eq. (4.25) follows from the time derivative of eqs. (4.33) and (4.34)
combined with the gradient of eqs. (4.35)—(4.37). Because we require the
equations of motion for the matter and radiation to locally conserve the net
energy-momentum, three of the perturbed Einstein egs. (4.32)—(4.38) are
redundant.

In the literature, G, = 8rGTY, is often called the “ADM energy con-
straint” and G°; = 87GTY, is called the “ADM momentum constraint”
equation. The 341 space-time decomposition of the Einstein equations into
constraint and evolution equations was developed in detail by Arnowitt,
Deser & Misner (1962, ADM) and applied to cosmology by Durrer &
Straumann (1988) and Bardeen (1989). The ADM constraint equations
may be regarded as providing initial-value constraints on (h, &, h, €, h;) and
the matter variables. If these constraints are satisfied initially (this is re-
quired for a consistent metric), and if eqs. (4.35)—(4.37) are used to evolve
(h,&, h, €, hl) while the matter variables are evolved so as to locally con-
serve the net energy-momentum, then the ADM constraints will be fulfilled
at all later times. (This follows from the results stated in the preceding
paragraph.) In effect, the Einstein equations have built into themselves the
requirement of energy-momentum conservation for the matter. If one were
to integrate eqs. (4.35)—(4.37) correctly but to violate energy-momentum
conservation, then eqs. (4.32)—(4.34) would be violated.

In practice, we may find it preferable to regard the ADM constraints
alone — and not eqgs. (4.35)—(4.37) — as giving the actual field equa-
tions for the scalar and vector metric perturbations. They have fewer time
derivatives and hence are easier to integrate. Equations (4.35)—(4.37) are
not necessary at all (although they may be useful for numerical checks)
because they can always be obtained by differentiating eqs. (4.32)—(4.34)
and using energy-momentum conservation.

This situation becomes clearer if we compare it with Newtonian gravity.
The field equation V¢ = 47Ga?dp is analogous to eq. (4.32). (We shall
see this equivalence much more clearly in the Poisson gauge below.) Let us
take the time derivative: V2¢ = 471G, (a25p). If we now replace 0, (9p)
using the continuity equation, we obtain a time evolution equation for
V24 analogous to the divergence of eq. (4.33). The solutions to this
evolution equation obey the Poisson equation if and only if the initial ¢
obeys the Poisson equation. Why should one bother to integrate VQ(ﬁ in
time when the solution can always be obtained instantaneously from the
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Poisson equation? Viewed in this way, we would say that the extra time
derivatives in the G® ., €quations have nothing to do with gravity per se.
The real field equations for the scalar and vector modes come from the
ADM constraint equations.

If the scalar and vector metric perturbations evolve according to first-
order in time equations, their solutions are not manifestly causal (e.g.,
retarded solutions of the wave equation). We shall discuss this point in
detail in section @ However, for now we may note that the tensor mode
obeys the wave eq. (4.38). The solutions are the well-known gravity waves
which, as we shall see, play a key role in enforcing causality. The source
for these waves is given by the transverse-traceless stress (generated, for
example, by two masses orbiting around each other). The 70, term arises
because we use comoving coordinates and the K term arises as a correction
to the Laplacian in a curved space; otherwise the vacuum solutions are
clearly waves propagating at the speed of light. Abbott & Harari (1986)
show that eq. (4.38) is the Klein-Gordon equation for a massless spin-two
particle.

4.5. Gauge modes

As we noted above, the synchronous gauge conditions do not completely
fix the spacetime coordinates because of the freedom to redefine the per-
turbed constant-time hypersurfaces and to reassign the spatial coordinates
within these hypersurfaces. This freedom is not obvious in the linearized
Einstein equations for the scalar and vector modes, but it is present in the
form of additional solutions that must be fixed by appropriate choice of
initial conditions and that represent nothing more than relabeling of the
coordinates in an unperturbed Robertson-Walker spacetime.

To see this effect more clearly, we consider a general infinitesimal coor-
dinate transformation from (7, z¢) to (7, 2'), known as a gauge transfor-
mation:

F=1+a(®,T), @'=2"+99V;0(z 1)+ (w,T),
with V.e=0. (4.39)

For convenience we have split the spatial transformation into longitudinal
and transverse parts. Note that the transformed time and space coordinates
depend in general on all four of the old coordinates.

Coordinate freedom leads to ambiguity in the meaning of density per-
turbations. Consider, for example, the simple case of an unperturbed
Robertson-Walker universe in which the density depends only on 7 (if one
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uses the “correct” 7 coordinate). In the transformed system it depends also
on & p(7) = p(1) + (3-p)a(x, 7). In other words, even in an unperturbed
universe we can be fooled into thinking there are spatially-varying density
perturbations.

This example may seem contrived, but the ambiguity is not trivial to
avoid: When spacetime itself is perturbed, and time is not absolute, what
is the best choice of time? The same question arises for the spatial coordi-
nates.

To clarify this situation we must examine gauge transformations further.
First note that when we transform the coordinates we must also transform
the metric perturbation variables so that the line element ds? (a spacetime
scalar) is invariant. It is straightforward to do this using eqs. (4.11) and
(4.39). The result is

b=w-d-na, d=p+ V¥t

wW; = w; + Vl(Oé — 5) — €, iLij = hij — Dijﬂ — V(iej) , (440)
where D;; is the traceless double gradient operator defined in eq. (4.15).
The transformed fields (with carets) are to be evaluated at the same coor-
dinate values (7, z") as the original fields.

Suppose now that our original coordinates satisfy the synchronous gauge
conditions ¢ = w; = 0. [To recover the notation of eq. ([.27) used specially
for synchronous gauge we now double h;; and put the trace of h;; into
h = —6¢.] From eqs. (4.40) and ([£.27) it follows that there is a whole
family of synchronous gauges with metric variables related to the original
ones by

h=h—-2V?3—6n8, £E=¢6—-2V>8, hi=h; — 2 , (4.41)
where
d
8= 50(50)/?:_) , € =¢€i(x) . (4.42)

Thus, the synchronous gauge has residual freedom in the form of one scalar
(Bo) and one transverse vector (e;) function of the spatial coordinates.
The presence of these extraneous solutions (called gauge modes) has
created a great deal of confusion in the past, which might have been avoided
had more cosmologists read the paper of Lifshitz (1946). In 1980, Bardeen
wrote an influential paper showing how one may take linear combinations of
the metric and matter perturbation variables that are free of gauge modes.
For example, Bardeen defined two scalar perturbations ® 4 and @ related
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to our synchronous gauge variables h and £ (Bardeen actually used the
variables Hy, = h/6 and Hy = —£/2) as follows:

1
6
It is easy to check that these variables are invariant under the synchronous
gauge transformation given by eqgs. (jt.41)—({.42).

Bardeen’s work led to a flurry of papers concerning gauge-invariant vari-
ables in cosmology. A standard reference is the classic paper by Kodama
& Sasaki (1984). Elegant treatments based on general 3+1 splitting of
spacetime were given later by Durrer & Straumann (1988) and Bardeen
(1989). The simpler form of the gauge-invariant variables often makes it
easier to find analytical solutions (e.g., Rebhan 1992). However, it is not
necessary to use gauge-invariant variables during a calculation, and many
cosmologists have continued successfully to use synchronous gauge. In the
end, when the results are converted to measurable quantities — spacetime
scalars — the gauge modes automatically get canceled. In a numerical solu-
tion, however, one must be careful that the gauge modes do not swamp the
physical ones, otherwise roundoff can produce significant numerical errors.

Gauge invariant variables actually appear somewhat strange if we con-
sider the analogous situation in electromagnetism. The electric and mag-
netic fields in flat spacetime may be obtained from potentials ¢ and A
(note we are implicitly using a 3+1 split of spacetime),

E=-V¢—09,A, B=VxA. (4.44)

Ga= g VIEtnE), bu=l(h-O-LuVE.  (443)

With this choice, the source-free Maxwell equations are automatically sat-
isfied; the other two (the Coulomb and Ampere laws) become

V2 +03,(V-A)=—4np, (32-V?)A+Vp=4nT, (4.45)

where p is the charge density and J is the current density. These equations
are invariant under the gauge transformation (;3 =¢—0,q, /L =A;+V,;a.

If we didn’t know about electric and magnetic fields, but were alarmed
by the gauge-dependence of the potentials, we could try to find linear com-
binations of ¢ and A that are gauge-invariant. However, there are two
well-known and more direct ways to eliminate gauge modes. The first is
“gauge fixing” — i.e., placing constraints on the potentials so as to elim-
inate gauge degrees of freedom. One popular choice, for example, is the
Coulomb gauge V- A = 0, so that A = A is transverse. The transversality
condition means that the gauge transformation variable o cannot depend
on position (though it can depend on time); thus, most of the gauge free-
dom is eliminated. The second possibility is to work with the physical fields
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themselves instead of the potentials: E and B are automatically gauge-
invariant. This procedure requires that we analyze the equation of motion
for charges to determine which combinations of ¢ and A are physically
most significant.

In the next section we shall adopt the first procedure (gauge-fixing) using
the gravitational analogue of the Coulomb gauge. Later we shall introduce
Ellis’ covariant approach based on gravitational fields themselves.

4.6. Poisson gauge

Recall that our general perturbed Robertson-Walker metric (4.11) contains
four extraneous degrees of freedom associated with coordinate invariance.
In the synchronous gauge these degrees of freedom are eliminated from ggo
(one scalar) and go; (one scalar and one transverse vector) by requiring
1 = w; = 0. There are other ways to eliminate the same number of fields.
As we shall see, a good choice is to constrain gg; (eliminating one scalar)
and g;; (eliminating one scalar and one transverse vector) by imposing the
following gauge conditions on eq. (4.11):

Vw=0, V-h=0. (4.46)

I call this choice the Poisson gauge by analogy with the Coulomb gauge
of electromagnetism (V - A = 0).l More conditions are required here than
in electromagnetism because gravity is a tensor rather than a vector gauge
theory. Note that in the Poisson gauge there are two scalar potentials (¢
and ¢), one transverse vector potential (w ), and one transverse-traceless
tensor potential h.

A restricted version of the Poisson gauge, with w; = h;; = 0, is
known in the literature as the longitudinal or conformal Newtonian gauge
(Mukhanov, Feldman & Brandenberger 1992). These conditions can be
applied only if the stress-energy tensor contains no vector or tensor parts
and there are no free gravitational waves, so that only the scalar metric
perturbations are present. While this condition may apply, in principle,
in the linear regime (|dp/p| < 1), nonlinear density fluctuations generally
induce vector and tensor modes even if none were present initially. Setting
w = h = 0 is analogous to zeroing the electromagnetic vector potential,

T The same gauge has been proposed recently by Bombelli, Couch & Torrence (1994),
who call it “cosmological gauge.” However, I prefer the name Poisson gauge because
cosmology — i.e., nonzero @ — is irrelevant for the definition and physical interpreta-
tion of this gauge. Although I have seen no earlier discussion of Poisson gauge in the
literature, its time slicing corresponds with the minimal shear hypersurface condition of
Bardeen (1980).
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implying B = 0. In general, this is not a valid gauge condition — it is
rather the elimination of physical phenomena. The longitudinal /conformal
Newtonian gauge really should be called a “restricted gauge.” The Poisson
gauge, by contrast, allows all physical degrees of freedom present in the
metric.

To prove the last statement, and to find out how much residual gauge
freedom is allowed, we must find a coordinate transformation from an ar-
bitrary gauge to the Poisson gauge. Using eq. (4.40) with hats indicating
Poisson gauge variables, we see that a suitable transformation exists with

a=w+h, B=h, e=h, (4.47)

where w comes from the longitudinal part of w (w; = —Vw), while h
and h; come from the longitudinal and solenoidal parts of h in eq. ({.14).
Because these conditions are algebraic in «, §, and € (they are not differ-
entiated, in contrast with the transformation to synchronous gauge of eq.
4.41)), we have found an almost unique transformation from an arbitrary
gauge to the Poisson gauge. One can still add arbitrary functions of time
alone (with no dependence on %) to a and ¢;. (Adding a function of time
alone to § has no effect at all because the transformation, eq. 4.39, involves
only the gradient of 3.)

Spatially homogeneous changes in « represent changes in the units of
time and length, while spatially homogeneous changes in € represent shifts
in the origin of the spatial coordinate system. These trivial residual gauge
freedoms — akin to electromagnetic gauge transformations generated by
a function of time, the only gauge freedom remaining in Coulomb gauge
— are physically transparent and should cause no conceptual or practical
difficulty.

It is interesting to see the coordinate transformation from a synchronous
gauge to the Poisson gauge. As an exercise the reader can show that this
is given by

1 o 1 1 i 1
V=5 VEHnE), o= c (E=h)+5 0V, wi= =5 0:h; (4.48)

Comparing with eq. (), we see that the two Poisson-gauge scalar po-
tentials are ¢ = ®4 and ¢ = —Ppy. (Kodama & Sasaki 1984 call these
variables ¥ = ¢ and ® = —¢.) The vector potential w; in Poisson gauge is
related simply to the solenoidal potential h; of the synchronous gauge (eq.
31).

Thus, the metric perturbations in the Poisson gauge correspond exactly
with several of the gauge-invariant variables introduced by Bardeen. By
imposing the explicit gauge conditions ()7 we have simplified the math-
ematical analysis of these variables.
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Now that we have seen that the Poisson gauge solves the gauge-fixing
problem, let us give the components of the perturbed Einstein equations.
They are no more complicated than those of the synchronous gauge:

GO : (V2+3K)¢—3n ((;5 n mp) —4rGa(p—p),  (4.49)
Gy =Vi@+ ) = 4xGa® [(p+p) (v +wy)]; (4.50)
GOLL : (V2 + 2K) w; = 167Ga’® [(p+p)(vi +ws)], (4.51)

G B Ko+l +20)+ @i+ P - 5 V36— 1)

= 4nGa*(p - p) , (4.52)

G'isiy Dij(o—) =81Ga®Sy; (4.53)
G'yit =0 +2n) Vi) = 81Ga®Sy; 1, (4.54)
G'ip: (924209, — V2 +2K) hij = 8nGa’Sij 1 . (4.55)

As in the synchronous gauge, the scalar and vector modes satisfy initial-
value (ADM) constraints (eqs. 4.49-4.51) in addition to evolution equa-
tions. However, it is remarkable that in the Poisson gauge we can obtain the
scalar and vector potentials directly from the instantaneous stress-energy
distribution with no time integration required. This is clear for ¢ — v and
w, both of which obey elliptic equations with no time derivatives (egs. 4.53
and 4.51, respectively). By combining the ADM energy and longitudinal
momentum constraint equations we can also get an instantaneous equation

for ¢:
(V2 +3K) ¢ = 4nGa® [5p+ 3n®f] , —V®; =[(p+p)(v+w)], .
(4.56)

Bardeen (1980) defined the matter perturbation variable e, = (dp +
3n®ys)/p and noted that it is the natural measure of the energy density
fluctuation in the normal (inertial) frame at rest with the matter such that
v +w = 0 (recall the discussion in section [t.J). However, for our analysis
we will remain in the comoving frame of the Poisson gauge, in which case
dp/p and not €, is the density fluctuation.

We can show that for nonrelativistic matter the field equations we have
obtained reduce to the Newtonian forms. First, it is clear that in the non-
cosmological limit (n = K = 0), eq. (4.56) reduces to the Poisson equation.
For n # 0 the longitudinal momentum density @ is also a source for ¢, but
it is unimportant for perturbations with [6p/p| > vgv/c* where vy is the
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Hubble velocity across the perturbation. Next, consider the implications
of the fact that the shear stress for any physical system is at most O(pc?)
where ¢ is the characteristic thermal speed of the gas particles. (For a
collisional gas the shear stress is much less than this.) Equation (4.53)
then implies that the relative difference between ¢ and ¢ is no more than
O(cs/c)?. Third, eq. (4.51) implies that the vector potential w ~ (vy/c)?v.
Thus, the deviations from the Newtonian results are all O(v/c)?. Poisson
gauge gives the relativistic cosmological generalization of Newtonian gravity.

There are still more remarkable features of the Poisson gauge. First,
the Poisson gauge metric perturbation variables are almost always small
in the nonrelativistic limit (|¢| < ¢2, v? < ¢?), in contrast with the syn-
chronous gauge variables h;;, which become large when |0p/p| > 1. (How-
ever, Bardeen 1980 shows that the relative numerical merits of these two
gauges can reverse for isocurvature perturbations of size larger than the
Hubble distance.) Second, if (¢, ¢, w, h) are very small, they — but not
necessarily their derivatives! — may be neglected to a good approximation,
in which case the Poisson gauge coordinates reduce precisely to the Eule-
rian coordinates used in Newtonian cosmology. Finally, it is amazing that
the scalar and vector potentials depend solely on the instantaneous distri-
bution of stress-energy — in fact, only the energy and momentum densities
and the shear stress are required. Only the tensor mode — gravitational ra-
diation — follows unambiguously from a time evolution equation. In fact,
it obeys precisely the same equation as in the synchronous gauge (with
a factor of 2 difference owing to our different definitions) because tensor
perturbations are gauge-invariant — coordinate transformations involving
3-scalars and a 3-vector cannot change a 3-tensor (leaving aside the special

case of eq. for a closed space).

4.7. Physical content of the Einstein equations

In the last section we showed that the Poisson gauge variables (¢, ¢, w)
are given by the instantaneous distributions of energy density, momentum
density, and shear stress (longitudinal momentum flux density). Is this
action at a distance in general relativity?

We showed in eq. ([J.47) that the Poisson gauge can be transformed to
any other gauge. In the cosmological Lorentz gauge (see Misner et al. 1973
for the noncosmological version) all metric perturbation components obey
wave equations. Therefore, the solutions in Poisson gauge must be causal
despite appearances to the contrary.

There is a precedent for this type of behavior: the Coulomb gauge of
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electromagnetism. With V- A = 0, eqs. (§.45) become
Vi =—dnp, Vo=drJ, (32-V’)A=4rJ, . (4.57)

We have separated the current density into longitudinal and transverse
parts. The similarity of the first two (scalar) equations to eqs. (4.49)
and (4.50) is striking. The similarity would be even more striking if we
were to use comoving coordinates rather than treating = and 7 here as flat
spacetime coordinates. As an exercise one can show that with comoving
coordinates, p and J will be multiplied by a? and that (;5 becomes (;3—|— no.
The last step follows when one distinguishes time derivatives at fixed x
from those at fixed ax.

Are we to conclude that electromagnetism also violates causality, because
the electric potential ¢ depends only on the instantaneous distribution of
charge? No! To understand this let us examine the Coulomb and Ampere
laws in flat spacetime for the fields rather than the potentials:

V-E = V~EH = 47Tp, —aA,-EH = 47TJ” y VXB—aTEL = 47TJL .(4.58)

The Ampere law has been split into longitudinal and transverse parts. We
see that the longitudinal electric field indeed is given instantaneously by
the charge density. Because the photon is a massless vector particle, only
the transverse part of the electric and magnetic fields is radiative, and its
source is given by the transverse current density:

(2-V)B=4rV x J,, (32-V?)E| =—-473.J, . (4.59)

But how does this restore causality? To see how, let us consider the
following example. Suppose that there is only one electric charge in the
universe and initially it is at rest in the lab frame. If the charge moves —
even much more slowly than the speed of light — E} — the solution to the
Coulomb equation — is changed everywhere instantaneously. It must be
therefore that F| also changes instantaneously in such a way as to exactly
cancel the acausal behavior of Ej.

This indeed happens, as follows. First, note that the motion of the charge
generates a current density J = J| + J1. The longitudinal and transverse
parts separately extend over all space (and are in this sense acausal) while
their sum vanishes away from the charge (as do V - Jj and V x J). The
magnetic and transverse electric fields obey egs. (@) Because J | is
distributed over all space but V x J is not, retarded-wave solutions for
B are localized and causal while those for £ are not. However, when
E| is added to E |, one finds that the net electric field is causal (Brill &
Goodman 1967). It is a useful exercise to show this in detail.
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Now that we understand how causality is maintained, what is the use
of the longitudinal part of the Ampere law, —0,E| = 47J)? The answer
is, to ensure charge conservation, which is implied by combining the time
derivative of the Coulomb law with the divergence of the Ampere law:

an—FV'J:an—FV'JH:O. (4.60)

Charge conservation is built into the Coulomb and Ampére laws. This
remarkable behavior occurs because electromagnetism is a gauge theory.
Gauge invariance effectively provides a redundant scalar field equation
whose physical role is to enforce charge conservation. From Noether’s the-
orem (e.g., Goldstein 1980), a continuous symmetry (in this case, electro-
magnetic gauge invariance) leads to a conserved current.

General relativity is also a gauge theory. Coordinate invariance — a
continuous symmetry — leads to conservation of energy and momentum.
As a result there are redundant scalar and vector equations [eqs. (4.50),
(4.52), and (4.54)] whose role is to enforce the conservation laws [eqs. ({.24))
and (4.25)]. We are free to use the action-at-a-distance field equations for
the scalar and vector potentials in Poisson gauge because, when they are
converted to fields and combined with the gravitational radiation field, the
resulting behavior is entirely causal.

The analogy with electromagnetism becomes clearer if we replace the
gravitational potentials by fields. We define the “gravitoelectric” and
“oravitomagnetic” fields (Thorne, Price & Macdonald 1986; Jantzen,
Carini & Bini 1992)

g=-VY—-0,w, H=Vxw, (4.61)

using the Poisson gauge variables ¢» and w. In section @ we shall see
how these fields lead to “forces” on particles similar to the Lorentz forces
of electromagnetism. For now, however, we are interested in the fields
themselves.

Note that g and H are invariant under the transformation ¢ — ¥ — &,
w — w + Va. In the noncosmological limit (n = 0) this is a gauge
transformation corresponding to transformation of the time coordinate (cf.
egs. 4.39 and 4.40). However, gauge transformations in general relativity
are complicated by the fact that they change the coordinates and fields
as well as the potentials. For example, the na terms in eq. (4.40) arise
because the transformed metric is evaluated at the old coordinates. Thus, g
should acquire a term nV « under a true gauge (coordinate) transformation,
which is incompatible with eq. (.61). The actual transformation (¢ —
Y—c&, w — w+Va) is not a coordinate transformation. General relativity
differs from electromagnetism in that gauge transformations change not
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just the potentials but also the coordinates used to evaluate the potentials;
remember that the potentials define the perturbed coordinates! Only in
a simple coordinate system, such as Poisson gauge — the gravitational
analogue of Coulomb gauge — is it possible to see a simple relation between
fields and potentials similar to that of electromagnetism.

In the limit of comoving distance scales small compared with the cur-
vature distance |K|~!/2 and the Hubble distance !, and nonrelativistic
shear stresses, the gravitoelectric and gravitomagnetic fields obey a gravi-
tational analogue of the Maxwell equations:

V.g=—-41Ga*5p, Vxg+30,H=0,
V-H=0, VxH=-16rGa*f, , (4.62)

where f = (p+p)(v+w) is the momentum density in the normal (inertial)
frame. (You may derive these equations using eqs. 4.49, 4.50, 4.53, and
E61.) These equations differ from their electromagnetic counterparts in
three essential ways: (1) the sources have opposite sign (gravity is attrac-
tive), (2) the transverse momentum density has a coefficient 4 times larger
than the transverse electric current (gravity is a tensor and not a vector
theory), and (3) there is no “displacement current” —0,g in the trans-
verse Ampere law for V x H. Recalling that Maxwell added the electric
displacement current precisely to conserve charge and thereby obtained
radiative (electromagnetic wave) solutions, we understand the difference
here: the vector component of gravity is nonradiative. Unlike the photon,
the graviton is a spin-2 particle (or would be if we could quantize general
relativity!), so radiative solutions appear only for the (transverse-traceless)
tensor potential h;;. In fact, the vector potential is nonradiative precisely
because it is needed to ensure momentum conservation; mass conservation
is already taken care of by the scalar potential. Recall the role of the ADM
constraint equations discussed in section @ Gravity has more conserva-
tion laws to maintain than electromagnetism and consequently needs more
fields to constrain.

Obtaining this physical insight into general relativity is much easier in
the Poisson gauge than in the synchronous gauge. This fact alone is a
good reason for preferring the former. When combined with the other
advantages (simpler equations, no time evolution required for the scalar
and vector potentials, reduction to the Newtonian limit, no nontrivial gauge
modes, and lack of unphysical coordinate singularities), the superiority of
the Poisson gauge should be clear.

Although the physical picture we have developed for gravity in anal-
ogy with electromagnetism is beautiful, it is inexact. Not only have we
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linearized the metric, we have also neglected cosmological effects in egs.
(4.62). We shall see in section [L.9 how to obtain exact nonlinear equations
for (the gradients of) the gravitational fields.

4.8. Hamiltonian dynamics of particles

In this section we extend to general relativity the Hamiltonian formula-
tion of particle dynamics that is familiar in Newtonian mechanics. In the
process we shall obtain further insight into the physical meaning of the
gravitational fields discussed in the previous section. A preliminary ver-
sion of this material appears in (Bertschinger 1993). A related presentation
in the context of gravitational fields near black holes is given by Thorne et
al. (1986).

As in the nonrelativistic case, we choose a Hamiltonian that is related
to the energy of a particle. Consequently, our approach is not manifestly
covariant; the energy depends on how spacetime is sliced into hypersurfaces
of constant conformal time 7 because the energy is the time component of
a 4-vector. Nevertheless, our approach is fully compatible with general
relativity; we must only select a specific gauge. For simplicity we shall
adopt the Poisson gauge, eq. (4.11) with gauge conditions eq. (4.44).
We assume that the metric perturbations are given by a solution of the
field eqs. (4.49)—(4.55). Our Hamiltonian will include only the degrees of
freedom associated with one particle; one can generalize this to include
many particles (even treated as a continuum) and the metric variables
(Arnowitt et al. 1962; Misner et al. 1973; Salopek & Stewart 1992) but
this involves more machinery than necessary for our purposes.

The goal of the Hamiltonian approach is to obtain equations of motion
for trajectories in the single-particle phase space consisting of the spatial
coordinates z° and their conjugate momenta. The first question is, what
are the appropriate conjugate momenta? This question practically answers
itself when we express the action scalar in terms of our coordinates:

S = /P“d:c“ :/ (PT +Pf§” ) dr = /(—H+P1-j:i)d7-. (4.63)
T

Note that we have automatically expressed the action in terms of the co-
variant (lower-index) components of the 4-momentum (also known as the
components of the momentum one-form). We can read off the Hamiltonian
and conjugate momenta using the fact that S = [ Ldr where L(z%, 17, 7)
is the Lagrangian, which is related to the Hamiltonian H (z%, Pj, 7) by the
Legendre transformation I = P;i* — H. The Hamiltonian therefore is
H = — P, — despite appearances, we shall see that this is not in general
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the proper energy — and the conjugate momenta equal the covariant spa-
tial components of the 4-momentum. Indeed, we may simply define the
conjugate momenta and Hamiltonian in this way. (Care should be taken
not to confuse the Hamiltonian H with the Hubble parameter H and the
gravitomagnetic field H!)

With these definitions, H and P; correspond to the usual quantities en-
countered in elementary nonrelativistic mechanics, but we need not rely on
this fact. For any choice of spacetime geometry and coordinates we may de-
termine the corresponding Hamiltonian and conjugate momenta from the
4-momentum components: for a particle of mass m, H = —mgo,dz* /dA,
P, = mg;,dz*/dX\ where d\ measures proper time along the particle
trajectory. As an exercise, one may show that with cylindrical coordi-
nates (r, 0, z) for a nonrelativistic particle of mass m in Minkowski space-
time, P, = ms is the radial momentum, Py = mr26 is the angular
momentum about e, P, = mzZ is the linear momentum along e,, and
H =FE ~m+ (P?+ P}/r* + P?)/2m is the proper energy (including the
rest mass energy). We shall determine the functional form H(z?, Pj, 7) for
our perturbed Robertson-Walker spacetime below.

First, however, let us show that our approach leads to the usual canonical
Hamilton’s equations of motion, rigorously justifying our choices H = —P;
and P; being the momentum conjugate to x*. To do this we simply vary
the phase space trajectory {z*(7), Pj(7)} to {z' + dz’, P; + §P;}, treating
dz*(7) and 0P;(7) as independent variations and computing the variation

of the action of eq. (f£6J):
0H _ | d .
o2’ 0P+ —0P; + P,—dx" | dr
oz* dr

55_/(_ T _aPl- dr

(2 sy - (Y s

where we have assumed P;dz? = 0 at the endpoints of integration. Requir-
ing the action to be stationary under all variations, 45 = 0, we obtain the
standard form of Hamilton’s equations:

dz* 0H dP; 0H

dr 9P, dr dx (4.65)

0H dz’

Thus, Hamilton’s equations give phase space trajectories in general rela-
tivity just as they do in nonrelativistic mechanics.

Our next step is to determine the Hamiltonian for the problem at hand.
We shall assume that the particle falls freely in the perturbed Robertson-
Walker spacetime described in the Poisson gauge. For comparison with the
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nonrelativistic results, it is useful to relate the 4-momentum components
to the proper energy and 3-momentum measured by a comoving observer
(i.e., one at fixed z%), F and p;:

Pr=—a(l+¥)E, P;=al(l-¢)(p;+ Ew)+ hijp’] . (4.66)

The first equation follows from E = —u* P,, where u" is the 4-velocity of a
comoving observer from eq. (}.21]) with v = 0, while the second equation
follows from projecting P, into the hypersurface normal to u* and normal-
izing to give the proper 3-momentum. The weak-field approximation has
been made (i.e., terms quadratic in the metric perturbations are neglected),
but the particle motion is allowed to be relativistic. The factors a(1 + )
and a(1 — ¢) are obviously needed from eq. (4.11) to convert proper quan-
tities into coordinate momenta, the Fw; term arises because our space and
time coordinates are not orthogonal if there is a vector mode, and the h;;p?
term arises because our spatial coordinates are not orthogonal if there is
a tensor mode. The reader may verify that the 4-momentum satisfies the
normalization condition g"* P, P, = —FE? 4+ p*> = —m?, and that this con-
dition would be violated in general without the vector and tensor terms in
P;.

Using these results it is easy to show that, to first order in the metric
perturbations, the Hamiltonian is

. 1/2
H@zaﬂq:[muhmp_ew_h.Pﬁ+ﬁm? tey, (4.67)
where
e=e(P,7)= (P*+ad*m? )1/2 (4.68)

and the squares and dot products of 3-vectors such as p;, P;, and h' P; are
computed using the 3-metric, e.g., P? = v P; P;. Using the Hamiltonian of
eq. (JL67), eqs. ([.65) may be shown to be fully equivalent to the geodesic
equations for a freely falling particle moving in the metric of eq. (4.11),
and they could also be obtained starting from a Lagrangian approach.
The advantage of the Hamiltonian approach is that it treats positions and
conjugate momenta equally as is needed for a phase space description.

Equation () appears strange at first glance. To understand it better,
let us recall the standard form for the Hamiltonian of a particle with charge
e in electromagnetic fields (with ¢ being the electrostatic potential):

_ ) ,71/2
H&ﬂﬂﬁ:ﬂP—M}+m} ted. (4.69)

Note that the proper momentum is p = P — eA where P is the conjugate
momentum. Comparing eqs. (f.67) and ([.69), we see that they are very
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similar aside from the tensor term h - P present in the gravitational case.
The few remaining differences are easily understood. To compensate for
spatial curvature — effectively a local change of the units of length — in
the gravitational case P is multiplied by (1 + ¢). The electric charge e
is replaced by the gravitational charge e (energy!); to zeroth order in the
perturbations € = H = aF. The use of comoving coordinates is respon-
sible for the factors of a(r). The gravitational (gravitomagnetic) vector
potential is w — as we anticipated in eq. ([.61)). Finally, the electrostatic
potential energy e¢ is replaced in the gravitational case by €. The strong
analogy between the vector mode and magnetism accounts for the adjective
“gravitomagnetic.”

A different interpretation of the gravitomagnetic contribution to the
Hamiltonian will clarify the relation of gravitomagnetism and the drag-
ging of inertial frames. In section we noted that w is the velocity of
the comoving frame relative to a locally inertial frame (the normal frame).
For w? < 1, p’ = p 4+ Ew is therefore the proper momentum in the nor-
mal frame. According to eq. ([.6§), then, neglecting the scalar and tensor
modes, P is the comoving momentum (i.e., multiplied by a) in the normal
frame, P = ap’, while P — ew (the combination present in the Hamilto-
nian) is the comoving momentum in the comoving frame. It is logical that
the Hamiltonian should depend on the latter quantity; after all, we are us-
ing non-orthogonal comoving spacetime coordinates. However, it is equally
reasonable that the conjugate momentum should be measured in the frame
normal to the hypersurface 7 = constant. Thus, it is simply the offset
between these two frames — if one likes, the dragging of inertial frames —
that is responsible for the —ew term in eq. (fL67). Gravitomagnetism —
and similarly magnetism, if one interprets (e/m)A as a velocity — can be
viewed as a kinematical effect!

The tensor mode, corresponding to gravitational radiation, gives an extra
term in the Hamiltonian — really in the relation between the proper and
conjugate momenta — that is not present in the case of electromagnetism.
Geometrically, h corresponds simply to a local volume-preserving defor-
mation of the spatial coordinate lines, and in this way it simply extends
the effect of the spatial curvature term ¢P in eq. () (¢ represents an
orientation-preserving dilatation of the coordinate lines). However, what
is more important is the dynamical effect of these terms, neither of which
is familiar in either Newtonian gravity or electromagnetism.

To study the dynamics of particle motion we use Hamilton’s eqs. ({.65)
with the Hamiltonian of eq. () In terms of the proper momentum
p measured by a comoving observer, Hamilton’s equations in the Poisson
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gauge become

dmi p ;. 2 2 1/2
Z=(+v+o-t) L. E=[p+Bufrm]

d o
E[a(l—qﬁ—kh-)p}:e[g+va—v2V¢—|—vleVhij)]—éw,

(4.70)

where we have defined E’ to be the proper energy in the normal frame, v
is the peculiar velocity (in the weak-field limit it doesn’t matter whether it
is the coordinate or proper peculiar velocity nor whether it is measured in
the comoving or normal frame) and g and H are the gravitoelectric and
gravitomagnetic fields given by eqs. ([.61)). The dot following h indicates
the three-dimensional dot product, with h - p being a 3-vector.

Equations (4.70) appear rather complicated at first but each term can
be understood without much difficulty. First, note that the factor (1 +
¥ + ¢ — h-) in the first equation is present solely to convert from a proper
velocity to a coordinate velocity da/dr according to the metric eq. (4.11).
Using the transformation from the normal (primed) to comoving frame,
p=p — Ew =~ p’' — EF'w, the equation for de/dr implies that the proper
velocity in the comoving frame must equal p/E’ = p’/E’ — w. This is
identically true because p’/E’ is the proper velocity in the normal frame,
whose velocity relative to the comoving frame is —w.

Similarly, the factor a(1 —¢+h-) in the momentum equation simply con-
verts the proper momentum p to the comoving momentum in the comoving
frame, P — ew (cf. eq. [1.6d). The first two terms on the right-hand side
have exactly the same form as the Lorentz force law of electrodynamics,
with the electric charge e replaced by the comoving energy e and the electric
and magnetic fields E and B replaced by their gravitational counterparts
g and H. Thus, general relativity in the weak-field limit gives “forces” on
freely-falling bodies (when expressed in the Poisson gauge) that are very
similar to those of electromagnetism!

The remaining terms in the momentum equation have no counterpart in
electrodynamics or Newtonian gravity. There are two gravitational force
terms quadratic in the velocity arising from spatial curvature. The first one
is present for a scalar mode and is responsible for the fact that photons are
deflected twice as much as nonrelativistic particles in a gravitostatic field
(¢ = ¢ in the Newtonian limit). The second term represents, in effect,
scattering of moving particles by gravitational radiation. A gravity wave
traveling in the z-direction will accelerate a particle in this direction if the
particle has nonzero velocity in the z-y plane (the direction of polarization
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of the transverse gravity wave). If the particle is at rest in our coordinate
system, it remains at rest when a gravity wave passes by. However, because
the gravity wave corresponds to a deformation of the spatial coordinate
lines, the proper distance between two particles at rest in the coordinate
system does change (Misner et al. 1973).

Finally, the last term in the momentum equation, —¢€ w, represents a sort
of cosmic drag that causes velocities of massive particles to tend toward zero
in the normal (inertial) frame (by driving p toward —Fw). The timescale
for this term (the time over which e changes appreciably) is the Hubble
time, so it should not be regarded as the frame dragging normally spoken
of when loosely describing the vector mode. In fact, in the normal frame
this term is absent, but then the gravitomagnetic term changes from ev x H
to eV(w - v). The relative velocity of the comoving and normal (inertial)
frames w is responsible for the frame-dragging and other effects; let us
consider a particularly interesting one.

In general, w varies with position so that at different places the iner-
tial frames rotate relative to the comoving frame with angular velocity
—%V X w = —%H ; this is easily shown from a first-order Taylor series
expansion of w with the constraint V - w = 0. As a result, a spin S will
precess relative to the comoving frame at a rate dS/dr = —2H x S (the
Lense-Thirring effect). Using the magnetic analogy, one would predict a
gravitomagnetic precession rate 7S x H in the comoving frame, where v is
the gyrogravitomagnetic ratio. (The analogous magnetic precession rate is
X B, where ;. = S.) Note that this result leads to the conclusion that
there is a universal gyrogravitomagnetic ratio v = %!

Thus, one may interpret the vector mode perturbation variable w either
as a source for (rather mysterious) frame-dragging effects, or as a vector
potential for the gravitomagnetic field H. In the former case one can elim-
inate w altogether by choosing orthogonal space and time coordinates such
as given by the synchronous gauge. However, I prefer the latter interpre-
tation because of the close analogy it brings to electrodynamics, allowing
us to transfer our flat spacetime intuition to general relativity. The price
to pay is that one must be careful to distinguish the comoving and normal
frames.

We have discussed the gravitomagnetic and gravitational wave contribu-
tions to the equations of motion in order to illustrate the similarities and
differences between gravity and electrodynamics. (They are clearest in the
Poisson gauge; the interested reader may wish to rederive the results of this
section in synchronous or some other gauge.) Why aren’t we familiar with
these forces in the Newtonian limit? The answer is because the sources
of H and h are smaller than the source of the “gravitostatic” field —V
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by O(v/c) and O(v/c)?, respectively (cf. eqs. 4.62 and 4.55). From egs.
(4.70), the forces they induce are smaller by additional factors of O(v/c)
and O(v/c)?. Thus, for nonrelativistic sources and particles, the dynami-
cal effects of gravitomagnetism and gravitational radiation are negligible.
While ordinary magnetic effects are suppressed by the same powers of v/c,
the existence of opposite electric charges leads in most cases to a nearly
complete cancellation of the electric charge density but not the current
density. No such cancellation occurs with gravity because energy density
is always positive.

Since typical gravitational fields in the universe have ¥ ~ ¢ ~ 107°
and h;; is much smaller than this, the curvature factors (1 + ¢ + ¢ — h)
and (1 — ¢ 4+ h) may be replaced by unity to high precision in egs. (4.70)
(and they are absent anyway in locally flat comoving coordinates). In the
weak-field and slow-motion limit, then, egs. (4.70) reduce to the standard
Newtonian equations of motion in comoving coordinates.

4.9. Lagrangian field equations

General relativity makes no fundamental distinction between time and
space, although we do. To obtain field equations that are similar to those
of Newtonian gravity and electrodynamics, we have until now employed a
“341 split” of the Einstein and energy conservation equations. Ellis (1971,
1973), following earlier work of Ehlers (1961, 1971), Kundt & Triimper
(1961), and Hawking (1966), has developed an alternative approach based
on a “1+43 split” of the Bianchi and Ricci identities. The cosmological
applications have been developed extensively by Ellis and others in recent
years (Ellis & Bruni 1989; Hwang & Vishniac 1990; Lyth & Stewart 1990;
Bruni, Dunsby & Ellis 1992; and references therein). Ellis’ approach has
some important advantages, as we shall see.

The 341 split corresponds to the “slicing” of spacetime into a series of
spatial hypersurfaces, each labeled by a coordinate time 7. (The different
splitting procedures are most easily visualized with one spatial dimension
suppressed using a 2+1 spacetime diagram, with time corresponding to the
vertical axis. The spatial hypersurfaces are then horizontal slices through
spacetime.) Spacetime is described by Eulerian observers sitting in these
hypersurfaces with constant spatial coordinates.

The 143 split, called “threading,” is complementary to slicing (Jantzen
et al. 1992). In this case the fundamental geometrical objects used for
charting spacetime are a series of timelike worldlines z#(); q), where A is
an affine parameter measuring proper time along the worldline and q gives
a unique label (e.g., a spatial Lagrangian position vector) to each different
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worldline (or “thread”). In this case spacetime is described by Lagrangian
observers moving along these worldlines.

The threading description is more general than the slicing one. If we
take the threads to correspond to the worldlines of comoving observers in
the slicing framework (lines of fixed ), then the two descriptions are the
same. In the 143 description, however, different threads may cross with no
harmful consequences while in the 341 description a spatial hypersurface
must not be allowed to cross itself or other slices. Thus, the threading
description may be used to follow the evolution of cold dust beyond the time
when matter trajectories intersect, when the perfect-fluid Euler equations
break down. The advantage of a Lagrangian description is well known
for collisionless matter — the Lagrangian approach exclusively is used for
nonlinear gravitational simulations — and the same advantages accrue even
when describing the spacetime geometry itself.

In the 143 approach each worldline threading spacetime has a time-
like unit tangent vector (4-velocity) u# = daz#/dA = u*(X;q) such that
utu, = —1. Spacetime tensors are then decomposed into parts parallel
and normal to the worldline passing through a given point. This decompo-
sition is accomplished in a covariant form using the tangent vector u* and
the orthogonal projection tensor

P#V(u) = Guv +upuy , (471)

such that P, u” = 0 and P**P,, = P#,. P, is effectively the spatial
metric for observers moving with 4-velocity u# (Ellis 1973). We may use it
and u* to split any 4-vector A* into timelike and spacelike parts, labeled
by the tangent vector of the appropriate thread:

A(u) = —u, A" | AP(u) = P*AY (4.72)

Even though A*(u) looks like (and is, in fact) a 4-vector, we can regard it
as a 3-vector in the rest frame of an observer moving along the worldline
x*(X; q) because u,A*(u) = 0. [Note that A" denotes the original 4-
vector while A*(u) denotes its projection normal to u*. We shall include
the argument (u) for the projection whenever needed to remove ambiguity.|
We require that at each point in spacetime there is at least one thread with
corresponding tangent u#(\; g). If there are several threads then there are
several different decompositions of A(u) and A*(u) at z*, each labeled by
g (implicitly, if not explicitly) through w*(\; g). This causes no problems
as long as we refer to a single distinct thread, which we do by retaining u
in the argument list.
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The decomposition of a second-rank tensor T+ is similar:
T(U) = u#ul,T”” , T#(u) = g#UTU(u) = — #UUQTQU ,
T" (u) = P* P,gT*" . (4.73)

As an exercise one may apply this decomposition to the stress-energy tensor
of eq. (f.19) using the comoving observers to define the threading. For
v? < 1, one obtains nonzero elements T' = p, T; = a(p + p)v; (with no w;),
and T"; = pd'; +%*;. Be careful to distinguish the 4-velocity of the threads
(with v" = 0) from those of the matter (eq. [£2).

Now that we have described the 143 spacetime splitting procedure, we
are ready to apply it to gravity following Hawking (1966) and Ellis (1971,
1973). What equations should we use? One might think to split the Ein-
stein equations using 143 threading, but this does not add anything funda-
mentally new to what we have already done. The correct approach suggests
itself when we think in Lagrangian terms following a freely-falling observer,
whose worldline defines one of the threads. Such an observer feels no grav-
itational force at all but does notice that adjacent freely-falling observers
do not necessarily move in straight lines with constant speed. In Newto-
nian terms this is explained by “tidal forces” while in general relativity it
is called geodesic deviation. We shall not present a derivation of geodesic
deviation here (one may find it in any general relativity textbook) but sim-
ply note that it follows from the non-commutativity of covariant spacetime
derivatives of the 4-velocity. The relevant equation is the 4-dimensional
version of the first of egs. (4.5), called the Ricci identity:

V., Va]u = R", _u” . (4.74)

This identity holds for any differentiable vector field u*. In the Lagrangian
field approach we seek evolution equations for the Riemann tensor itself
rather than the metric tensor components.

One advantage of working with the Riemann tensor is the fact that part
of it — the Ricci tensor — is given algebraically by the local stress-energy
through egs. (f£.7) and ([1.§). However, one cannot (in 4 dimensions) recon-
struct the entire Riemann tensor from the Ricci tensor alone. One could
obtain it by differentiating the metric found by solving the Einstein equa-
tions (cf. egs. [L9, [.1d). As we shall see, there is another method that
does not require integrating the Einstein equations.

This alternative method is based on an evolution equation for that part
of the Riemann tensor that cannot be obtained from the Ricci tensor, the
Weyl tensor Cp i
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1
C,uun)\ = R,uun)\ _i(gynRu)\ + gu)\R,un - g,u)\Run - gunR,u)\)

R

+€ (g;mgu)\ - g,u)\gwe) . (475)

This tensor obeys all the symmetries of the Riemann tensor — C e =
Clunika] = Crapr and Cypen) = 0 (where square brackets denote antisym-
metrization) — and in addition is traceless: C*,,, = 0. Thus, the trace
part of the Riemann tensor is given by the Ricci tensor R, (through the
Ricci terms on the right-hand side of eq. 4.75) while the traceless part is
given by the Weyl tensor. Physically, the Ricci tensor gives the contribu-
tion to the spacetime curvature from local sources (through the Einstein
eqs. @ combined with while the Weyl tensor gives the contribution
due to nonlocal sources. It is clear that Newtonian tidal forces will be
represented in the Weyl tensor. It may be shown that in 4 dimensions the
Ricci and Weyl tensors each have 10 independent components.

How do we get an evolution equation for the Weyl tensor? The Einstein
equations will not do because the Weyl tensor makes no appearance at
all in the Einstein tensor. The correct method, due to Kundt & Triimper
(1961), makes use of the Bianchi identities,

VO'R,LLUI{)\ + V,uRucni)\ + VURU;LnA =0. (476)

These identities follow directly from the definition of the Riemann ten-
sor (see any general relativity or differential geometry textbook). For our
purposes the key point is that they provide differential equations for the
Riemann tensor. Contracting eq. (J.76) on x and o and using eqs. (4.75)

and (L.g), we get
1

V*Cpvrx = VG + 3 A VG-, - (4.77)
Note that if we contract now on A and u, using the symmetry of G, and
guv we get V,G#, = 0, as noted before. However, here we regard eq.
(.77) as an equation of motion for the Weyl tensor. Using the Einstein
eqs. @), we see that the source is given in terms of the energy-momentum
tensor, so

1
VKC#U,{)\ =8rG (V[#TU])\ + g gA[#VU]T“,{> . (4.78)

The next step is to split the Weyl tensor into two second-rank tensors
using a 143 threading of spacetime (Hawking 1966, Ellis 1971),

1
Eu(u) = uurChppy ,  Huw(u) = 3 Capn(u u“u)‘Caﬁy))\ . (4.79)
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We have used the fully antisymmetric tensor €,,,,x = (—g)'/? [urx ], where
g is the determinant of g,, and [prk]] is the completely antisymmetric
Levi-Civita symbol defined by three conditions: (1) [0123] = +1, (2) [uvkA]
changes sign if any two indices are exchanged, and (3) [uvkA] = 0 if any
two indices are equal. (Note that Ellis uses the tensor n,,cx = —€uvr. We
have compensated for the sign change in defining H,,,. Beware that e/*** =
—(—g)~Y/2 [uvk].) The two new tensors E,,, and H,,, are both symmetric
(H,,, must be explicitly symmetrized), traceless, and flow-orthogonal, i.e.,
B’ = Hyu =0 and PY.E,, = E,., P’ H,, = H,,. Therefore E,,
and H,, each has 5 independent components, half as many as the Weyl
tensor. Indeed, the Weyl tensor is fully determined by them for non-null
threads:

Cuvir = (GuvaB Grxrys — uvas €xrys) U B (u)

+ (eyuaﬁ 9rAvs + Guvap 61{)\75) uau’yHﬁg (u) ’ (480)

where guvas = Guagvs — JusIva = ~ 36" €xr08 = Gyuliag) = Jopuv, With
Gujvap) = 0. Eq. (4.80) is the inverse of eqs. (@) provided g, utu” = £1.
Ellis (1971) has a sign error in the first term of his version of eq. (4.80) at
the end of his section 4.2.3.

The tensors E,,,, (v) and H,,, (u) are called the electric and magnetic parts
of the Weyl tensor, respectively. Together with the Ricci tensor they fully
determine the spacetime curvature for a given threading (i.e., a system of
threads with tangent vectors) u*(A;q). It is worth noting that, if there
are several threads at a given spacetime point, E,, (u) and H,, (u) have
different values for each thread, and so they may be considered Lagrangian
functions: E,,(A\;q) and H,,();q). The Weyl tensor components are,
however, unique, with the same value for all threads passing through the
same spacetime point. This condition is satisfied automatically if the same
4-velocity u” is used in both eqs. (1.79) and (4.80).

Our goal is to rewrite eq. ({.7§) in terms of E,, and H,,. Because the
results involve the covariant derivative of the 4-velocity field V ,u,,, we first
decompose this quantity into acceleration, expansion, shear, and vorticity:

Du,, 1
N “+ Pa#PﬁUVa’UJﬁ = —Uuay + g @Pyy + Ouv +wp,l/ )

©O=V,u", o =00, W =W = euyaﬁuo‘wﬁ . (4.81)

V,u, = —uy,

We have introduced the covariant derivative in the direction u”, D/dX =
u”V,. Since this is just the proper time derivative along the worldline,
a, = Du, /d\ is the 4-acceleration. The flow-orthogonal part of the velocity
gradient, PO‘#PﬁUVauﬁ, has been decomposed into the expansion scalar
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O, the traceless shear tensor o,,, and the vorticity tensor w,, or its flow-
orthogonal dual, w*. Note that the expansion scalar includes a contribution
due to cosmic expansion in addition to the peculiar velocity: neglecting
metric perturbations, © = a~!(n + V - v). Note also that in the fluid rest
frame, wie; = %V x v is half the usual three-dimensional vorticity. (Ellis
defines w,,,, and w* with the opposite sign to us.)

We shall apply this gradient expansion to the tangent field of the 143
spacetime threading. This requires that u* be differentiable, which will be
true (almost everywhere) if it corresponds to the 4-velocity field of a flow.
In a frame comoving with the fluid, ©, 0;; and w;; are then the usual fluid
expansion, shear, and vorticity, respectively.

By projecting V"C,,.» with various combinations of u® and P®"(u)
(these are dependent on the spacetime threading), one can derive the fol-
lowing identities:

A VECY, = PR PV B e P w00, HY g — 3HY W, (4.82)

1
§P”auﬁu)‘eo‘m5V“C,ygm = —P”QP”ﬁVVHo‘ﬁ +etved ul,aa,yE’Yﬁ

—3E* W (4.83)

DE®P

PPN Coger = PP + PPy 5N H s

+2uqagH, ") 4 OEM 4 P (0P Eq )
—2E%" (0", — W) — B (0", + W), (4.84)

DH*B
dX

+2uqagE, M) — @HM — P (0% Hop)

+2H (0¥, — w”,) + H* (c", + w",) . (4.85)

1 K 1%
_p#aPuAuﬁeaﬁ'ﬂYV C»yénA _ _P#ap s

5 + Po‘”e”ﬁ'y‘suﬁVants

These identities follow from eqgs. (4.80) and (4.81). All quantities on the
right-hand sides are to be evaluated for a given thread u*(\; q).

Finally we are ready to obtain equations of motion for the electric and
magnetic parts of the Weyl tensor from eq. ({.7§). In fact, infinitely
many sets of equations are possible because are free to use any spacetime
threading! For example, we may choose Fulerian threading with ¢ = «,
in which case in the Poisson gauge we have u® = a71(1 —¢) and u’ = 0,
so that D/d\ = a='(1 — )9, is the Eulerian proper time derivative. In
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this case the 14-3 split coincides with our previous 341 split. The Eulerian
description is not covariant, for it depends on our choice of gauge. Because
the Weyl tensor formalism is more complicated than our previous treatment
based on the Einstein equations, there is no clear advantage to its use with
Eulerian threading.

If, however, we use the fluid velocity itself — the u* appearing in eq.
(1.19), which is well-defined even for an imperfect or collisionless fluid —
to define the threading, then the Weyl tensor approach becomes more at-
tractive. This choice corresponds to Lagrangian threading: the threads are
the worldlines of fluid elements, so that D/d\ now is the proper time deriva-
tive measured in the fluid rest frame. There are two important advantages
to this choice. First, it is covariant: the fluid worldlines define a unique
spacetime threading with no gauge ambiguities (Ellis & Bruni 1989), while
any coordinates may be used to express the tensor components £, and
H,,. Second, the right-hand side of eq. ([L78) — the source for the Weyl
tensor — is expressed in terms of the same 4-velocity used in the threading,
greatly simplifying the projections appearing in eqs. (4.89)—(4.85).

Ellis (1971) and Hwang & Vishniac (1990) give the Lagrangian gravita-
tional field equations for a general stress-energy tensor. For a perfect fluid
(with £ = 0 in eq. [19) the results are

(div-E) :  P*, P"3V,E* + " Pu o0, H"y — 3H" "
8
= ?” GP"'V,p , (4.86)

DH*?

(H): P“P% — PPy 7 B

—2uaaﬁE,y(“e”)am + ©OH" 4 P (0P H,p5) — 3H1g"),

+H B =0 | (4.87)
(div-H) : P“QP”ﬁVl,HO‘ﬁ - e‘“”o‘ﬁul,aa,yE’yﬁ + 3B W
= —87G(p + p)w* , (4.88)
. DE*8
(E): P“PY + Pote)BY0y 0 H,s

+2uqagH, #e) 4 @EM + P (0P Eop) — 3E°Wg"),
+EByY) = —4nG(p + p)o” . (4.89)

These have been obtained by substituting eqs. (f.19) and ([.82)(4.85)
into eq. ({.7§), and using V, 7" = 0 to simplify the right-hand sides
of the div-F and F equations. The results agree with eqs. (4.21) of Ellis
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(1971). For an imperfect fluid it is necessary to add terms to the right-hand
sides involving the shear stress 3#”. For a pressureless fluid (e.g., cold dust
before the intersection of trajectories) the 4-acceleration ap vanishes.

In his beautifully lucid pedagogical articles presenting the Lagrangian
fluid approach, Ellis (1971, 1973) has noted the similarity of eqs. (4.86)—
(4.89) to the Maxwell equations, particularly if the covariant form of the
latter are split using 143 threading. Compare them with eqs. (4.62) for
the vector (not tensor) gravitational fields in the Poisson gauge. Although
the latter equations are more reminiscent of the Maxwell equations in flat
spacetime, they are only approximate (they are based on a linearized met-
ric and neglect several generally small terms), they are tied to a particular
coordinate system (Poisson gauge), and they do not incorporate gravita-
tional radiation. By contrast, eqs. (4.86)—(4.89) are exact, they are valid
in any coordinate system (all quantities appearing in them are spacetime
tensors), and they include all gravitational effects. The exact equations in-
volve second-rank tensors rather than vectors because, in the terminology
of particle physics, gravity is a spin-2 rather than a spin-1 gauge theory.

The quasi-Maxwellian equations (4.86)—(4.89) show that the evolution
of the Weyl tensor depends on the fluid velocity gradient. This quantity
could be computed by evolving the equations of motion for the matter
(e.g., eqgs. and 4.25) to get the velocity field u*(x) and then taking
its derivatives. However, there is a more natural way in the context of
the Lagrangian approach: integrate evolution equations for the velocity
gradient itself. In fact, such equations follow simply from projecting the
Ricci identity ([.74) for the fluid velocity u* with u® P®* Pg,, and separating
the result as in eqs. (4.81). It is straightforward to derive the following
equations (Ellis 1971, 1973):

DO 1
Vi V,a* + 3 0% + o0, — 2w* = —47G(p + 3p) , (4.90)
Dw’ 1 2
P, d‘; + 5P, Vaas + 5 00 — ¥, =0, (4.91)
Pt pY Do? — kg 4 g@a‘“’ + o*%o¥ 4+ wtw?
S 3 o
1
-3 P (0*F0as +w® — Vaa®) = —EM | (4.92)

where w? = whw,,. Equation ({.90) is known as the Raychaudhuri equation.
It shows that the expansion is decelerated by the shear and by the local
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density and pressure (if p + 3p > 0), but is accelerated by the vorticity.
Vorticity, on the other hand, is unaffected by gravity; eq. (£.91]) implies that
vorticity can be described by field lines that (if a* vanishes or if the fluid has
vanishing shear stress) are frozen into the fluid (Ellis 1973). Finally, shear,
being the traceless symmetric part of the velocity gradient tensor, has as its
source the electric part of the Weyl tensor. These equations are essentially
identical to their Newtonian counterparts (Ellis 1971; Bertschinger & Jain
1994). Note that the magnetic part of the Weyl tensor does not directly
influence the matter evolution.

Closing the Lagrangian field equations also requires specifying the evolu-
tion of density and pressure (and shear stress, if present). These follow from
energy conservation, V,T"” = 0, combined with an equation of state. For
a perfect fluid, using eq. (J.19) with £/ = 0 and projecting the divergence
of the stress-energy tensor with u, gives

Do +(p+p)©O=0. (4.93)

dX
Equations (4.86)—([.93)) now provide a set of Lagrangian equations of mo-
tion for the matter and spacetime curvature variables following a mass
element. These Lagrangian equations of motion offer a powerful approach
to general relativity — and to relativistic cosmology and perturbation the-
ory — that is quite different from the usual methods based on integration
of the Einstein equations in a particular gauge (or with gauge-invariant
variables).

To relate the relativistic Lagrangian approach to dynamics to the stan-
dard Newtonian one, we now evaluate the electric and magnetic parts of
the Weyl tensor in the weak-field, slow-motion limit. They involve second
derivatives of the metric and not simply the first derivatives present in egs.
(.6T)). In the Poisson gauge, to lowest order in the metric perturbations
and the velocity, from egs. ({.79) one obtains (Bertschinger & Hamilton
1994)

1

1 . 1 .
Eij = 5 Dij( + ¢) + 5 Vs — 5 (hij + V2hij — 2Khij)

1 .
Hij = 3 ViH; + €kz(inhj)l ; (4.94)

where H; is the gravitomagnetic field defined in eq. (f.61). The time-
time and space-time components of F,, and H,, vanish in the fluid frame
because these tensors are flow-orthogonal.

Do these results imply that in the Newtonian limit H;; = 0 and E;; =
D;;¢ is simply the gravitational tidal field? If we say that the Newtonian
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limit implies ¢ = ¢ and w; = h;; = 0 (no relativistic shear stress, no
gravitomagnetism, and no gravitational radiation), then the answer would
appear to be yes. This possibility, considered by Matarrese, Pantano, &
Saez (1993) and Bertschinger & Jain (1994), has an important implication:
for cold dust, the Lagrangian evolution of the tidal tensor obtained from
eq. (4.89) would then be purely local (Barnes & Rowlingson 1989). That
is, the evolution of the tide (the electric part of the Weyl tensor) along
the thread u*(\;q) would depend only on the density, velocity gradient,
and tide defined at each point along the trajectory with no further spatial
gradients (since they arise only from the magnetic terms in eq. 4.89). The
evolution of the density and of the velocity gradient tensor are clearly local
(egs. [L90[£.93, with a* = 0) aside from the tidal tensor, but we have just
seen that its evolution depends only on other local quantities. In other
words, if H;; = 0, the matter and spacetime curvature variables would
evolve independently along different fluid worldlines. Bruni, Matarrese,
and Pantano (1994) call this a “silent universe.”

Local evolution does occur if the metric perturbations are one-dimensional
(e.g., the Bondi-Tolman solution in spherical symmetry, or the Zel’dovich
solution in plane symmetry; see Matarrese et al. 1993 and Croudace et al.
1994), but it would be surprising were this to happen for arbitrary matter
distributions in the Newtonian limit.

Bertschinger & Hamilton (1994) and Kofman & Pogosyan (1995) have
shown that, in fact, the general evolution of the tidal tensor in the New-
tonian limit is nonlocal. The reason is that, while one may neglect the
metric perturbation w; in the Newtonian limit, its gradient should not be
neglected. Doing so violates the transverse momentum constraint equation
(4.51), unless the transverse momentum density (the source term for w
in the Poisson gauge) vanishes. This condition does not hold for general
motion in the Newtonian limit.

A convincing proof of nonlocality is given by the derivation of eq. (4.89)
in locally flat coordinates in the fluid frame by Bertschinger & Hamilton
(1994) using only the Newtonian continuity and Poisson equations plus the
second pair of egs. (4.62) and a modified form of eq. (4.94):

1
Hij= =5 ViHj - 2ure Ejy + O(v/c)? . (4.95)

This is taken as the definition of H;; in the Newtonian limit (where we
also have F;; = D;;¢). Note that in the Newtonian limit we neglect grav-
itational radiation, but we must include terms that are first-order in the
velocity. Even though we define the magnetic part of the Weyl tensor us-
ing the fluid 4-velocity, we are evaluating its components in a particular
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gauge — Poisson gauge — in which the 3-velocity does not necessarily

vanish. The extra term in eq. ([L95) arises from evaluating eqs. (JL79) to
first order in v/c (Bertschinger & Hamilton 1994) and it is analogous to

the Lorentz transformation of electric fields into magnetic fields in a mov-
ing frame. Both terms in eq. ({.95) are of order Gpv. They can not be
neglected in the Newtonian limit.

The implication of this result is that Lagrangian evolution of matter
and gravity is not purely local except under severe restrictions such as
spherical or plane symmetry. There exist, of course, local approximations to
evolution such as the Zel’dovich (1970) approximation. Finding improved
local approximations is one of the active areas of research in large-scale
structure theory. Formulating the problem in terms of the Lagrangian fluid
and field equations not only may suggest new approaches, it is also likely
to clarify the relation between general relativity and Newtonian dynamics.
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