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Abstract: Recent observations of Type la supernovae indicating an accelerat-
ing universe have once more drawn attention to the possible existence, at the
present epoch, of a small positive A-term (cosmological constant). In this paper
we review both observational and theoretical aspects of a small cosmological
A-term. We discuss the current observational situation focusing on cosmolog-
ical tests of A including the age of the universe, high redshift supernovae,
gravitational lensing, galaxy clustering and the cosmic microwave background.
We also review the theoretical debate surrounding A: the generation of A in
models with spontaneous symmetry breaking and through quantum vacuum
polarization effects — mechanisms which are known to give rise to a large value
of A hence leading to the ‘cosmological constant problem’. More recent at-
tempts to generate a small cosmological constant at the present epoch using
either field theoretic techniques, or by modeling a dynamical A-term by scalar
fields are also extensively discussed. Anthropic arguments favouring a small
A-term are briefly reviewed. A comprehensive bibliography of recent work on
A is provided.



1. Introduction

Recent years have witnessed a resurgence of interest in the possibility that a
positive A-term (a cosmological constant) may dominate the total energy den-
sity in the universe. Interest in the cosmological constant stems from several
directions:

(i) Observations of high redshift Type la supernovae appear to suggest that
our universe may be accelerating with a large fraction of the cosmological
density in the form of a cosmological A-term. When combined with obser-
vations of the cosmic microwave background (CMB), an approximately flat
Friedmann-Robertson-Walker (FRW) cosmological model with total energy
density (2, + Q4 ~ 1) is suggested, in agreement with predictions of the sim-

plest versions of the inflationary scenario of the early universe (sections 4.3,
4.4).

(ii) Most dynamical estimates of the amount of clustered matter yield a con-
servative upper limit €2,, < 0.3. In addition, theoretical modelling of structure
formation based on the cold dark matter model (CDM) with 2,,, = 1 has failed
to match up with observations at a quantitative level. By contrast, a flat low
density CDM+A universe with €, ~ 0.3 and €, ~ 0.7, and with an ap-
proximately flat (or, Harrison-Zeldovich-like, ng & 1) initial Fourier spectrum
of scalar (adiabatic) inhomogeneous metric and density perturbations agrees
remarkably well with a wide range of observational data ranging from large
and intermediate angle CMB anisotropies to observations of galaxy clustering
on large scales. Since an approximately flat initial spectrum of adiabatic per-
turbations is also precisely what simplest variants of the inflationary scenario
predict, the positive A-term removes a necessity in any complications of the
inflationary scenario (which might be required if the universe was found to be
open).

(iii) At a theoretical level, a cosmological constant A = 87Gpya./c? is pre-
dicted to arise out of zero-point quantum vacuum fluctuations of fundamental
scalar, spinor, vector and tensor fields (see section 5). Although a theoreti-
cally predicted value of p,,. usually appears to be much larger than current
observational limits, there is no generic known mechanism which will set the
value of A to precisely zero either on the basis of symmetry arguments or by
dynamical means. ! Some recent attempts to generate a small A at the present
epoch either through vacuum polarization and particle creation effects or by
means of dynamically evolving scalar fields are discussed in section 7.

! The value of A can, of course, be set to zero by hand by adding suitable counterterms to
the bare (infinite) value of A in the Lagrangian. This method, however, amounts to a rather
ad-hoc adjustment of parameters and cannot be regarded as being ‘generic’ (see section 5).



Although none of the above arguments can by themselves be regarded as con-
clusive evidence for a cosmological constant, the growing body of work on the
subject, combined with a possible deep relationship between a small cosmolog-
ical constant today and a large cosmological term driving inflation at an early
epoch, suggests that the case for a positive cosmological constant be taken
seriously. In this paper we attempt to review some aspects of the cosmological
constant issue emphasizing both theoretical as well as observational aspects.
For earlier reviews on the subject the reader is referred to Zeldovich (1968),

Weinberg (1989) and Caroll, Press and Turner (1992).

From the physical point of view, a A-term represents a new type of dark non-
baryonic matter, completely unknown from laboratory experiments. Its dif-
ference from another type of dark non-baryonic matter that has been already
introduced in cosmology for almost two decades from observations of gravi-
tational clustering is essentially that matter described by the A-term is, (a)
not gravitationally clustered at all scales at which we see clustering of baryons
and dustlike dark matter, and (b) has a strongly negative effective pressure
(P <0, |P| ~ pc?). Thus, remarkably, by investigating the behaviour of the
present universe we are studying novel fundamental physics. Extragalactic as-
tronomy and cosmology once more become a driving force for new insights in
physics !

2. The Cosmological Constant revisited

In 1917, only a few years after introducing the field equations of the General
theory of relativity (GR), Einstein proposed adding a ‘cosmological constant’
to these equations which were modified to

Ry, — % git R — Agip, = 8:—4GTik- (1)
The main motivation behind introducing the cosmological constant appears to
have been Einstein’s belief that the equations of General Relativity should be
compatible with Mach’s principle. Einstein was fascinated by the arguments
of philosopher /scientist Ernst Mach. Mach was concerned about the notion of
absolute motion which prevailed in Newtonian mechanics. He postulated that
all the matter in the universe including the distant stars provided a ‘back-
ground’ against which motion could be measured and that unless there was a
material background which served as a reference frame, it was meaningless to
talk of rest or motion in any absolute sense (Mach 1893). Einstein proposed
incorporating Mach’s principle into the general theory of relativity by suggest-
ing a solution of the equations (1) in which the universe was static and closed
on itself, much like the closed two dimensional surface of a balloon. A static
solution of (1) is possible to construct since, as shown in section 3, a positive



cosmological constant introduces a repulsive force which can counterbalance
the attractive force of gravity leading to the ‘static Einstein universe’. This
universe has a finite spatial volume with no boundaries, furthermore the total
mass in such a universe is related directly to its (finite) volume (section 3.1).
A low mass universe has a small volume, and an empty universe has no vol-
ume at all | The static Einstein universe thus incorporates Mach’s principle
since it demonstrates that without matter there can be no space against which
background inertial effects can be measured.

It should be borne in mind that in 1917 the idea of the Milky Way being
an island universe was widely believed in, and the notion of the existence
of other galaxies had not yet been firmly established. All this was about to
change however, when in the early 1920s Slipher’s work showed that light
from several spiral nebulae (later re-christened galaxies) was redshifted, a fact
that could be explained by the Doppler effect if these nebulae/galaxies were
moving away from us.? In 1922, about five years after Einstein had proposed
his static solution, Aleksander Friedmann constructed a matter dominated
expanding universe without a cosmological constant. The possibility that the
universe may be expanding led Einstein to abandon the idea of a static uni-
verse and, along with it, the cosmological constant. In a 1923 letter to Weyl,
Einstein is quoted as saying [150] “ If there is no quasi-static world, then away
with the cosmological term !” The conclusive discovery by Hubble (1929) of
a linear expansion law relating redshift to distance made Friedmann models
the standard geometrical framework within which Hubble’s discoveries were
subsequently interpreted [205,213,142,154].

Introduced, then discarded, the cosmological constant staged several come-
backs, the first having to do with the realization that the static Einstein
universe was unstable and, if perturbed, could either expand or contract. In
1927 Lemaitre constructed an expanding model which originated from such
an asymptotically static state in the distant past. The Lemaitre model had
a long age and has frequently been reinvoked whenever the age constraints
(associated with high values of Hy) get too tight for standard FRW models
(section 4.1). The Lemaitre model was also discussed in the early 1960s when
observations appeared to show an excess of quasi-stellar objects (QSO’s) near
the redshift z ~ 2. It was felt that a universe which ‘hesitated’ or ‘loitered’
near the quasi-static state at z ~ 2 for a sufficient amount of time would

2 Tt is interesting that the same year that Einstein introduced the cosmological term A, de
Sitter presented solutions of (1) with Tj = 0, A > 0, which had both static and dynamic
features. Intriguingly, although the space-time coordinatization originally introduced by de
Sitter was static [43], namely ds? = cosh > Hr[dt? — dr? — H=2 tanh? Hr(d#? + sin® 0d¢?], it
allowed for a linear redshift-distance relation, since I'}, # 0 in the above metric resulting in
the motion of test bodies by virtue of the geodesic equation % +F}'El%‘fd—”§l = 0 (T, is the
affine connection). This effect was pointed out by Weyl (1923) and later used by Eddington
to interpret Slipher’s observations in the context of de Sitter’s static universe [205].



naturally explain an abundance of objects at that redshift. Present arguments
for a positive cosmological constant are associated with observations of high
redshift supernovae which indicate Q5 = A/3H? ~ 0.7, and from cosmological
simulations of structure formation which also appear to favour a positive cos-
mological constant [114,144]. In the next section we shall qualitatively analyze
solutions of the Einstein equations with a non-zero cosmological constant in
a Friedmann-Robertson-Walker (FRW) universe following the original path
taken by Eddington and Lemaitre.

3. FRW Cosmological models with A # 0.

A homogeneous and isotropic universe is characterized by the Friedmann-
Robertson-Walker line element

dr?

ds® = c*dt* — a*(t) ( + r2d#® + r” sin’ 0d¢2> k=0, £1 (2)

1 — kr?

In this metric the Einstein equations (1) with matter in the form of a perfect
fluid acquire the following simple form

2

3(3)2 = 87Gp+ Ac? — 3’%, (3)
a AnG o AC?
a——T(p—F:}P/C)—FT. (4)

Equation (4) can be recast to look like the equation of motion of a point
particle on the surface of a sphere of radius R = a and mass M, setting ¢ = 1
we obtain

R = 2 + 3 R. (5)
The total ‘gravitating mass’ M = 4?”1??’(/)—}-3P) reflects the fact that ‘pressure
carries weight’ in Einstein’s theory of gravity. From (5) we find that a particle
on the sphere feels both attractive and repulsive forces. The force of repulsion
Frep = % R is caused by the cosmological constant and increases with distance
if A > 0. (For negative A this becomes a force of ‘attraction’, formally resem-
bling the force of confinement between quarks which binds them within the
nucleus.)

The opposite signs of the forces of attraction and repulsion in (5) allow for a
large number of new solutions to the Einstein equations. As pointed out in the
previous section, Einstein himself used the repulsive effect of the cosmological
constant to balance the attraction of matter resulting in a static closed universe
which Einstein felt was in agreement with Mach’s principle. A quantitative
analysis of solutions to (3) & (4) can be gained by eliminating p in these



equations and combining them into a single equation for the evolution of the
scale factor in the presence of a A-term

-2 2

a a®  Kc
2+ (1+3u)[5+ 5] - (1+w)Ac? =0 (6)
which is also valid if A is a function of time (i.e. if T = A(t)gir). (We have
assumed that matter has an equation of state P = wpc?®.) A comprehensive
quantitative analysis of (6) has been carried out in [62] for a cosmological con-
stant, and in [147] for a time varying cosmological term A(t). For our purpose
it will be sufficient to note that the qualitative behaviour of the universe in
the presence of a cosmological term which is either constant or time varying,
can be understood very simply by rewriting (3) in the suggestive form (we
assume ¢ = 1 for simplicity)

1

§a2 +V(a)=F (7)
where Ag?
A a K
Via) = —(—pa*+—), E=—-.
Since p = po(ag/a)**™), we find, substituting w = 0 for dust
A Ad?
Via) = —(—+ — 9
(@) =-C+°5) )
where A = % poai. (We assume for simplicity that matter is pressureless so

that w = 0, however the qualitative analysis given below remains valid for
matter possessing more general equations of state.) Equation (7) reminds one
of classical motion with conserved energy E in a one dimensional potential
V(a) whose generic form is shown in Figure 2 for w = P/p > 0. ;From the
form of V(a) several things can be said about the behaviour of the expansion
factor a(t). We shall first examine the case K = 1 (E < 0) since it provides
us with the largest variety of qualitatively different solutions to the Einstein
equations.

3.1. Closed universe models (k =1).

Consider a particle moving with negative total energy under the influence of
the potential V(@) shown in fig. (2), then the following situations arise (the
one dimensional particle coordinate is equivalent to the value of ‘a’ — the
expansion factor.)

(1) Oscillating models: The particle moves from left to right (starting from a =
0) but with insufficient energy to surmount the potential barrier. Consequently



the expansion factor a(t) first increases then decreases describing a universe
which, after expanding, contracts into a singularity. Such models are called
oscillating models of the first kind [142].

(ii) Bouncing models: The particle moves from right to left (starting from
a = 00) again with insufficient energy to surmount the potential, in this case
a(t) first decreases then increases and the universe rebounds after collapsing
without ever reaching a singular state. Such models are called bouncing models
or oscillating models of the second kind, an example of such a model is provided
by the complete de Sitter space-time

ds® = c*dt* — H ? cosh® (Ht)[dx? + sin x(d#? + sin® 0d¢?)] (10)
where —00 <t < 00,0 < x <71, 0<0<7,0<¢<27.

(iii) Static Einstein Universe (SE): The particle is placed at the top of the
potential with exactly zero kinetic energy: ¢ = @ = 0. This situation, describes
the static Einstein universe. Setting ¢ = @ = 0,k =1 in (3) and assuming for
simplicity that matter is pressureless (w = 0) we obtain

4G 1

Acrit = 2 Pm =

11
2 (1)
which relates the value of the cosmological constant to the density of matter
and the curvature of space. The volume and mass of a SE universe are respec-

. 2
tively V = 27%a3, M = Vp,, = 21%a3py. As a result M = (55 )ao, and one
finds lim,,—,o M ~ 0, i.e. the mass of the static Einstein universe decreases as
its radius shrinks to zero, consequently a static empty universe simply cannot
exist ! This feature of SE found favour with the proponents of Mach’s principle
as discussed in section 2.

(iv) Loitering Universe: The static Einstein universe is clearly unstable: small
fluctuations can make it either contract or expand (these correspond to tiny
perturbations of a particle located at the hump of V'(a) in fig. (2) which cause
it to roll either towards the left (¢ — 0) or towards the right (¢ — c0). Based
on this observation, an interesting new model of the universe was proposed
by Eddington and Lemaitre in which the value of A was kept slightly larger
than Ag.. In this case the universe begins from the Big Bang, approaches
the static Einstein universe and remains close to it for a substantial period
of time before re-expanding [53,122]. (If A < A the universe will contract
instead of expanding.) The quasi-static or loitering phase, during which the
universe remains close to a ~ ag, has several appealing features not present
in models which expand monotonically [169]: (i) density perturbations grow
at the exponential (Jeans) rate § o< exp /47Gp t and not at the weaker rate
§ ox t?/3 characteristic of an Einstein-de Sitter universe; (ii) a prolonged quasi-
static phase results in an older universe, ameliorating the ‘age’ problem which



can arise in matter dominated flat cosmologies if the value of the Hubble
parameter turns out to be large (see section 4.1).

Interest in loitering models rose dramatically in the late 1960’s when observa-
tions suggested the existence of an excess of quasars near redshift z; ~ 2. To
explain these observations the Lemaitre model with a quasi-static (loitering)
phase at z; ~ 2 was invoked [160,175,166]. (Loitering at z; arises if the cosmo-
logical constant exactly balances p,, leading to the relation: (1+2;)® = Qa/Qum,
where Q) = A/3H?. A decaying cosmological constant will lead to loitering
at higher values of z; which has certain advantages from the standpoint of
current observations [169].)

(v) Monotonic Universe: The particle approaches the potential from the left
(a = 0) with sufficient energy to surmount it and travel on towards a — oo. In
such a situation the scale factor will have an inflection point at @ ~ 0, a > 0.
By adjusting initial conditions so that the particle remains close to the hump
of the potential for a sufficiently long duration, one recovers the ‘loitering’
models discussed in (iv).

(vi) Nonsingular Oscillating model: Another cosmological model deserving
mention consists of a form of matter which behaves as a A-term when the uni-
verse is small, as the universe expands the A-term decays into either radiation
or matter. The energy density in such a model can be phenomenologically de-
scribed by 87Gp = A/(14+Aa? /), so that lim, o 87Gp ~ A, lim,_,o, 87Gp ~
ajaP, p = 3,4 for matter and radiation respectively. The potential V(a) =
—% pa? associated with this model has a broad minimum which leads to a
non-singular oscillatory motion of the expansion factor a(t). This toy model
is interesting since it exhibits an infinite number of expansion and contraction

cycles without ever becoming singular.

(vii) Other possibilities not shown in Figure (1) include ‘asymptotic models’ in
which the universe asymptotically approaches or moves away from the static
Einstein universe. The reader is referred to [62,142] for a more quantitative
discussion of these issues.

Although the above discussion referred to cosmological models filled with mat-
ter having non-negative pressure and a cosmological constant, it is easy to
show that the qualitative behaviour of the universe described in (i) — (vii) re-
mains valid, if we generalize the definition of the A-term to include any form
of matter which violates the strong energy condition so that py + 3Py, < 0
[169].
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Fig. 1. Four distinct possible solutions of the Einstein equations with a cosmological con-
stant are schematically shown for a closed universe (k = +1). (Incidentally none of these
solutions arise if kK =0, —1.)
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Fig. 2. The ‘effective potential’ V' (a) describing the expansion of the universe in the presence
of matter and a cosmological constant (see equation (7)). The large variety of solutions to
the Einstein equations can be analyzed by studying the kindered problem of the motion of
a particle moving under the influence of the potential V.




3.2. Spatially open and flat cosmological models.

The preceding discussion referred to closed universe models for which k = 1
and E < 0. For flat and open models (x = 0,—1) the total energy is non-
negative £ > 0 and motion in the potential V' (a) becomes unbounded, since
a particle always has sufficient energy to surmount the potential barrier in
figure (2). As a result the expansion factor a(t) shows monotonic behaviour,
starting from the singular point at ¢ = 0,7 = 0 and increasing without bound
as t — oo. For A > 0 the universe passes through an inflection point at which
the expansion of the universe changes from deceleration (& < 0) to acceleration
(@ > 0) (from (3) & (4) it can be shown that this usually occurs at a redshift
when A is still not dominating the expansion dynamics of the universe; see
section 4.3).

In the important case when the universe is spatially flat and contains pressure-
less matter (dust) and a positive cosmological constant, the expansion factor
has the exact analytical form:

2/3
a(t) o (sinh g\/gct) (12)

which interpolates smoothly between the matter dominated epoch in the past

(a o t2/3) and an inflationary epoch in the future (a ox eV2/3). Equation (12)
will be used later, when we examine some observational aspects of a universe
with a cosmological constant in Section 4

Finally, oscillating, bouncing and loitering models, as well as the static Ein-
stein universe, are clearly absent in flat and open FRW models.

4. Observational consequences of a cosmological A-term

Arguments favouring A > 0 at the present epoch essentially stem from four
sets of observations:

(i) The age issue: A high value of the Hubble constant Hy ~ 80km/sec/Mpc
predicts a short age of the universe which is incompatible with the ages of
the oldest stars (12 - 16 Gyr) unless the universe is open (£, < 0.1) or flat
and A dominated §2,, + 25 = 1. The appeal of this argument has somewhat
decreased following recent Hipparcos parallax measurements indicating a lower
value Hy < 67 km/sec/Mpc and also a lower age for globular clusters: 11.5+1.5
Gyr. Still, recent observations of old galaxies at high redshifts are extremely
difficult to accommodate within the framework of a flat matter dominated
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cosmology unless the Hubble parameter is very small (Hy < 45 km/sec/Mpc;
section 4.1).

(ii) Structure formation: The standard COBE normalized cold dark matter
model of structure formation with €2, = 1 appears to be in serious conflict
with observations. The situation may be remedied if the universe is flat, with
most of matter smoothly distributed in the form of a cosmological constant
and only a small fraction 2,,h ~ 0.2 in clustered matter. (Here h is the Hubble
constant in units of 100 km/s/Mpc). Studies of the abundance and evolution
of clusters of galaxies and of lensing by clusters also appear to favour a low
density universe (section 4.6).

(iii) Baryon excess in clusters: In a spatially flat universe with Q,, = 1 the
mass fraction in baryons in the Coma cluster is expected to greatly exceed nu-
cleosynthesis bounds leading to what has been called the ‘baryon catastrophe’.
The mass fraction in baryons can be kept in agreement with nucleosynthesis
constraints only if ,,h ~ 0.16 [210] (€2, includes contribution from baryons
and clustered dark matter). Agreement with the Inflationary scenario which
strongly favours a spatially flat universe then suggests that the remaining mass
might be in the form of a cosmological constant.

(iv) High redshift supernovae and the cosmic microwave background: Prelim-
inary results from this rapidly advancing field of cosmology suggest that the
universe may be accelerating universe with a dominant contribution to its en-
ergy density coming in the form of cosmological A-term. These results, when
combined with CMB anisotropy observations on intermediate angular scales,
strongly support a flat universe Q,,, + Q4 = 1 with Q4 ~ 0.6 — 0.7 (sections
4.3 & 4.4).

In the first half of this paper we shall briefly review the present observational
status of the cosmological constant referring the reader to the original papers
and earlier reviews [26,37] for more details.

4.1. Hy,qo and the Age of the Universe

The quest for understanding the geometry of our universe has been one of
the central aims of cosmology since the 1960s and Alan Sandage in 1970 even
described the whole of observational cosmology as being a “search for two
numbers”. The first of these numbers — the Hubble parameter Hy = (a/a)o,
provides us with measure of the observable size of the universe and its age.
The second gy = —Hj %(i/a)o is called the deceleration parameter and probes
the equation of state of matter and the cosmological density parameter. In the

11



presence of a cosmological constant,

O

In a critical density universe with €2,, + €25 = 1, the deceleration parameter

0= 20 1, (14)
consequently a critical density universe will accelerate if 2, < 2/3. The obser-
vational quest for gy showed that evolutionary effects play a dominant role in
this important quantity and for a while it was felt that it may be virtually im-
possible to disentangle the true cosmological ‘signal’ for gy from evolutionary
‘noise’. Recent years however have witnessed an important turnaround with
the development of new and more powerful techniques which are either less
sensitive to evolutionary effects or for which evolutionary effects are better
understood.

In the next section, we shall consider several promising cosmological tests
which could shed light on the composition of the universe and its geometrical
properties. These tests include gravitational lensing, the use of high redshift su-
pernovae as calibrated standard candles, and the angular size-redshift relation.
Before we do that however, we shall turn our attention to another fundamen-
tal quantity which has traditionally played an important role in constraining
cosmological models — the age-redshift relation.

The presence of a A-term leads to an increase in the age of the universe with
far-reaching observational consequences. To appreciate this let us first consider
the critical density Einstein-de Sitter universe with a o< t2/3, so that

2

fo=3 oL (15)
The value of Hy therefore serves to determine the age uniquely in a spatially
flat matter dominated universe. Moderately high values Hy, > 75 km s !
Mpc~! result in an age for the universe which is smaller than the ages of the
oldest globular clusters making an Einstein-de Sitter universe with a high value
of H, difficult to reconcile with observations. The situation can be remedied
if we live in an open universe. Assuming for simplicity that the universe is
empty (a good approximation if Q,, < 0.2) we get a o< ¢ so that

Combining (15) and (16) we get 2H, ' <t, < H, ' for matter dominated cos-
mological models with €,,, < 1. (A longer age t, > Hy ! can be achieved in the
presence of a cosmological constant.) An open universe though older, never-
theless has two difficulties associated with it: the first is related to the growth

12



of density perturbations which slow down considerably in an open universe
leading to large primordial fluctuations in the Cosmic Microwave Background
which may be difficult to reconcile with observations (assuming standard adi-
abatic fluctuations with scale-invariant initial spectra). The second is related
to the Omega problem: a low Omega universe requires extreme fine tuning of
initial conditions, which some find to be an unattractive feature of open/closed
models.

Let us now consider a more general situation in which the universe has a A-
term in addition to normal matter. A closed form expression for the age of
the universe in spatially flat models is given by [117]

2 1 1 1+Qy”

= 1
3H, l2 017 P 1—ql

to (17)

where Qy = A/3HZ =1 — Q.

o ‘ ‘ ‘

0, +Q, =1

. 9,<1,0,=0

Age of the universe

-0,
Fig. 3. The age of the universe (in units of H; ') is shown as a function of 1 — Q,, for
(i) flat models with a cosmological constant Q,, + Q5 = 1 (solid line), and (ii) for open
cosmological models Q,, < 1 (dashed line).

In Figure 3 we show the present age of a universe consisting of matter and a
cosmological constant and parametrized in terms of the variables €2, and €,,.
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We find that the age of a flat universe with 2, = 1 — €, is always greater
than that of an open universe for identical values of 1 — €2,,,. Additionally ¢y
can exceed Hy' if Q) > 0.74.

No exact forms for ¢(H) are available for a time dependent A-term. To study
this and other cases, it is useful to express the Hubble parameter as a function
of the cosmological redshift z. This can easily be done for a general multicom-
ponent universe consisting of several non-interacting matter species charac-
terized by equations of state P, = wypq, for which the Hubble parameter can
be written as

2

H(z) = Hoh(z) = Hy(1 + 2) |1 — Qptar + >_ Qua(1 + 2)7| . (18)

where Qotar = 30 Qo Yo = 1+ 3w, and 1+ z = ag/a(t) is the cosmological
redshift parameter.

Let us assume that the universe, in addition to matter and radiation, consists
of a decaying A-term modelled by a fluid with equation of state Px = (m/3 —
1)px so that A = Ag(ag/a)™, m < 2. The dimensionless Hubble parameter
h(z) then becomes

B(2) = [(1 = Q) (1 + 2 + Q1+ 2 + (1 + 27 (19)

where m = 0 corresponds to a cosmological constant, and we neglect the
presence of radiation. In a spatially flat universe Qo1 = Qa + Q= 1 (the
present value of A is therefore given by Ay = 3HZ[1 — Q,,]). A useful relation-
ship between the cosmological time parameter ¢ and the cosmological redshift
z can be obtained by differentiating 1 + z = ag/a(t) with respect to time, so
that dz/dt = —H(z)(1 + z). This leads to the following completely general
expression for the age of the universe at a redshift z

o0

t(z) = Hy' / M% (20)

with h(z) supplied by either (18) or (19).

A running debate over the previous decade or so has centered around whether
or not the universe has an ‘age problem’; i.e. on whether matter dominated
cosmological models are substantially younger than their oldest constituents
(which happen to be metal poor old globular cluster stars). A key role in this
controversy is played by the Hubble parameter, whose present value is known
to within an uncertainty of about two. Higher values of Hj clearly give rise to
a younger universe whereas lower values lead to an older one.

1

At the time of writing lower values Hy < 65 km s~ 'Mpc~! are strongly sup-
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ported by observations, especially in the light of new parallax measurements
made by the Hipparcos satellite for Cepheid stars, which has led to a reanalysis
of distances to globular clusters and consequently of their age estimates ® which
have dropped to 11.5 + 1.5 Gyr [30,120]. (Low values of Hj are also suggested
from an analysis of the Sunyaev-Zeldovich effect from X-ray emitting clusters
[99], from Type la supernovae[165,158] and from Cepheids observed by the
HST.) Lower values of H, reconcile matter dominated flat models with the
revised ages of globular clusters [120] and with limits from nucleochronology
which indicate ¢y > 7.8 Gyr [30]. Low values of Hy combined with an absence
of stellar systems with ages greatly exceeding 20 Gyr also argue against large
values of A, since from Fig 3 we see that {24 > 0.85 suggests an age ¢y > 24 Gyr
(if Hy = 50km/sec/Mpc). Finally the recent supernovae based measurements
of Perlmutter et al. (1998b) suggest a best-fit age of the universe ¢y ~ 14.9 (g—?(’))
Gyr for a spatially flat universe with €2, >~ 0.28 and 2, ~ 0.72.

The above arguments were largely limited to the present age of the universe.
Ages of high redshift objects at z > 1 provide crucial information about the
age of the universe at that redshift [110]. The existence of at least two high
redshift galaxies having an evolved stellar population and hence an old age sets
very severe constraints on a flat matter dominated universe [49,119,50,152].
For instance the radio galaxy 53W091 at z = 1.55 discovered by Dunlop et
al. (1996) is reported to be at least 3.5 Gyrs old. The age of a spatially flat
matter dominated universe at a redshift z is easily obtained from (20) to be

(1[5

He) = ——(142)%.

~ 3H, 21)

Consequently the discovery of 53W091 can be accommodated within an €2,,, =
1, CDM model only if the Hubble parameter is uncomfortably small [119]
Hy < 45 km s *Mpc~t. However both open and flat A-dominated models al-
leviate the age problem for 53W091.

At even higher redshifts, recent work [212] aimed at age-dating a high redshift
QSO at z = 3.62 using delayed iron enrichment by Type la supernovae as
a cosmic clock, sets a lower bound of 1.3 Gyr on the age of the universe
at that redshift. This discovery can be accommodated within a spatially flat
cosmology only if Q,, + Q4 = 1 (low density open models with Q,, < 0.2
are also permitted). However, the age dating of stellar populations requires
complex modelling and although both open and flat A-dominated models are
clearly favoured by current observations, more work needs to be done before
matter dominated flat models are excluded on the basis of age arguments
alone. *

3 An important indicator of the absolute age of a globular cluster star is its luminosity
when it leaves the main sequence. Since luminosity is related to distance (to the star) ages
of globular clusters are very sensitive to distance callibrators.

4 Tt may be appropriate to mention that models with a cosmological constant may never
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4.2. The luminosity distance and gravitational lensing

Before proceeding to discuss possible constraints on €2, from gravitational
lensing in this section and high redshift supernovae in the next, let us intro-
duce a quantity which plays a crucial role in these discussions, namely the
luminosity distance dr,(z) upto a given redshift z. Consider an object of ab-
solute luminosity £ located at a coordinate distance r from an observer at
r = 0. Light emitted by the object at a time ¢ is received by the observer at
t = ty, t and ty being related by the cosmological redshift 1 + z = a(ty)/a(?).
The luminosity flux reaching the observer is

L
== 22
7 4rds’ (22)
where dy, is the luminosity distance to the object [142]
dr, = a(ty)r(1+ 2). (23)

The luminosity distance d; depends sensitively upon both the spatial cur-
vature and the expansion dynamics of the universe. To demonstrate this we
determine dj, using the expression for the coordinate distance r obtained by
setting ds? = 0 in (2), resulting in

r to
dr' dt
= =1y — 24
0/ V1 —kr? t/a(t) o 2
which gives
r =sin (ny —n) (k =+1)
= o —"n (k=0)
=sinh (o —17n) (k=-1)
(25)
where n = [J cdt/a(t).
Furthermore, since dz/dt = —(1 + z)H(z), we get
to z
cdt c dz
—n= = 26
o= / a(t) ~ aoHy | h(2) (26)

be singular and therefore could possess an infinite age as demonstrated by the ‘bouncing
models’ in Fig. 1. However the value of the cosmological constant in such models is several
orders of magnitude larger than permitted by current observations. The relevance of such
models is therefore likely to be limited to the very early universe and will not affect the age
problem discussed here.
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Fig. 4. The luminosity distance dz, (in units of H; ") is shown as a function of cosmological
redshift z for flat cosmological models with a cosmological constant €2, + 2y = 1. Heavier
lines correspond to larger values of ,,. For comparison we also show (dashed line) the
angular size in a flat de Sitter universe (Qx = 1).

where h(z) = H(z)/H, is defined in (18), and, in a universe with several

components
K

2172

agHg
Substituting (27) and (26) in (23) we get the following expression for the
luminosity distance in a multicomponent universe with a cosmological term
[26]

== Qtotal - 1 (27)

1+ 2)cH;!
i) = | S ) 25)
total — 2
where
rody
T — 1N = |Qtotal - 1|% (29)

/ h(z")’
and S(z) is defined as follows: S(z) = sin(z) if kK = 1 (ot > 1), S(x) =
sinh (z) if K = =1 (Qotar < 1), S(z) =2 if 6 =0 (Qotar = 1)-

Before we turn to applications, let us consider a simple example which provides
us with an insight into the role played by the luminosity distance dy, in cosmol-
ogy. In a spatially flat universe the expression for dj simplifies considerably,
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so that we get for the matter dominated model (a o t%/3)
dMP =2¢ Hy'Y{(1+2) — (1+2)7}, (30)
on the other hand in de Sitter space (a o exp (Hyt))
dP% =c Hy'2(1 + 2). (31)

Comparing (30) and (31) we find dP?%(z) > d¥P(z), which means that an
object located at a fixed redshift will appear brighter in an Einstein-de Sit-
ter universe than it will in de Sitter space (equivalently in the steady state
model).?® This is also true for a two component universe consisting of mat-
ter and a cosmological constant as demonstrated in Fig 4. In a spatially flat
universe the presence of a A-term increases the luminosity distance to a given
redshift, leading to interesting astrophysical consequences. Since the physical
volume associated with a unit redshift interval increases in models with A > 0,
the likelihood that light from a quasar will encounter a lensing galaxy is larger
in such models. Consequently the probability that a quasar is lensed by inter-
vening galaxies increases appreciably in a A dominated universe, and can be
used as a test to constrain the value of Q, [72,71,192]. Following [73,26,37] we
give below the probability of a quasar at redshift z; being lensed relative to
the fiducial Einstein-de Sitter model (€2, = 1)

Zs

(32)

P(lens) = 14_5[1 _ (1+ 2)2dz [d(o, 2)d(z, zs)]z

1 -3
v I T e ey

where d(z1,2;) is a generalization of the angular distance dy = dr(1 + z)™2

discussed in Section 4.5:

1
d(zla 22) = 5(7712) (33)
(1+ 22) |Dpotar — 1|2
where
= (O — 1} [ 2 34
T2 =T — N2 = |3iotal . h(z)

and S(72) is defined as follows, S(n12) = sin(m2) if £ = 1 (Qotar > 1),
5(7712) = sinh (7’]12) ifk=-1 (Qtotal < 1), 5(7712) = M2 ifk=0 (Qtotal = 1)
In Fig 5 we show the lensing probability P(lens) for the spatially flat universe
Qm + Qx4 = 1. A large increase in the lensing probability over the fiducial
Q,, = 1 value is clearly seen in models with low €2, (high ). (For a broader
analysis of parameter space see [26].)

5 For instance a galaxy at redshift z = 3 will appear 9 times brighter in a flat matter
dominated universe than it will in de Sitter space (see Fig 4).
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Turning now to the observational situation, at the time of writing the best
observational estimates give a 20 upper bound €2, < 0.66 obtained from multi-
ple images of lensed quasars [111,112,136]. Since radio sources are not plagued
by some of the systematic errors arising in an optical search (notably extinc-
tion in the lens galaxy and the quasar discovery process) a search involving
radio selected lenses can yield useful complementary information to optical
searches [60]. Recent work by Falco et al (1998) gives 24 < 0.73 which is only
marginally consistent with optical estimates, a combined analysis of optical
and radio data yields a slightly more conservative upper bound 2, < 0.62 at
the 20 level (for flat universes) [60]. (Constraints on €2, from both lensing and
Type la Supernovae are discussed in [201]; also see next section. An interesting
new method of constraining 2, from weak lensing in clusters is discussed in
[67], also see [12] and section 4.6.) Improved understanding of statistical and
systematic uncertainties combined with new surveys and better quality data
promise to make gravitational lensing a powerful technique for constraining
cosmological parameters and cosmological world models.

Relative Lensing Probability P(lens)

0 | 0.2 | 0.4 | 0.6 | 0.8 | 1
QA

Fig. 5. The lensing probability P(lens) evaluated relative to the fiducial case Q,, = 1 is

shown as a function of Q4 for flat cosmological models 2, + Q24 = 1. The source redshift

is taken at z; = 1,2, 3 respectively.
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4.3. Type 1a Supernovae and the value of A.

The luminosity distance also plays a crucial role in determining cosmological
parameters once the absolute brightness of a class of objects is known. Of con-
siderable importance in this context is the magnitude-redshift relation which
relates the apparent magnitude m of an object to its absolute magnitude M

d
,uzm—M:5log10M—zL?c+25 (35)

where p is known as the distance modulus. Since d;, depends upon the geome-
try of space and its material content, the magnitude-redshift relation (35) can,
in principle be used to determine 25 and €, if both m and M are known
within reasonable limits. ©

The recent discovery that type la supernovae may be used as calibrated stan-
dard candles for obtaining estimates of the luminosity distance dj through
(35) has aroused great interest. Type Ia supernovae are explosions which arise
as a white dwarf star crosses the Chandrasekhar stability limit while accreting
matter from a companion star [94,4,40]. The high absolute luminosity of SNe
Ia (Mp ~ —19.5 mag) suggests that they can be seen out to large distances
making them ideal candidates for measuring and constraining cosmological pa-
rameters [39,21]. Of crucial import to using type Ia supernovae for estimating
the luminosity distance d; has been the observation that: (i) the dispersion
in their luminosity at maximum light is extremely small ( < 0.3 mag); (ii)
the width of the supernova light curve is strongly correlated with its intrinsic
luminosity: a brighter supernova will have a broader light curve indicative of
a more gradual decline in its brightness [161]. Both (i) and (ii) reduce the
scatter in the absolute luminosity of type la supernovae to ~ 10% making
them excellent standard candles [21].

Nearby type la supernovae have been used to determine the value of H
whereas those further away are used to obtain reasonable estimates of cosmo-
logical parameters by minimizing the x? statistic

i(2i; Ho, Qny Q) = p0,i}°
X (Ho, 0, 0) = 3 Ui o B ) = o} (36)

040,i

where p, are model dependent ‘predicted’ values of the distance modulus ob-
tained from (28) and (35), and pg(z;) are the observed values. At least two

6 In practice (35) must be corrected for effects associated with the redshifting of light as
it travels to us, commonly called the K-correction. For instance photons being detected
using a red filter would originally have had a ‘blue spectrum’ if the source was located at
z ~ 1. Other possible sources of systematic errors include luminosity evolution, intergalactic
extinction, Malmquist bias, the aperture correction, weak lensing etc. A more complete
discussion of these issues can be found in [142,154].
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groups — the Supernova Cosmology Project [157] and the High-Z Supernova
Search Team [165] have been engaged in both finding and calibrating super-
novae at low and high redshifts. At the time of writing, both groups have
analyzed data for several dozen type Ia supernovae and a consensus seems to
be emerging that a positive value of €25 is strongly preferred. For instance,
treating type la supernovae as standard candles and then using distance es-
timates to 42 moderately high redshift supernovae with z < 0.83, Perlmutter
et al. (1998b) find that the joint probability distribution of the parameters Q25
& Q,, is well approximated by the relationship (valid for Q,, < 1.5)

0.8€2, — 0.62y ~ —0.2 £0.1.

The best-fit confidence region in the Q,, — Q4 plane shown in (6) appears to
favour a closed universe. However, as we shall see in the next section, when
combined with the results of cosmic microwave experiments, the combined
likelihood of €2,,,, €25 peaks near €2, + Q25 ~ 1.

These results provide an interesting insight into the expansion dynamics of
the universe during its recent past. For instance, a cosmological model which
passed through an epoch of matter domination before the present A dominated
epoch, also passed through an inflexion point at which the expansion of the
universe changed from deceleration (d < 0) to acceleration (¢ > 0). From (3)
& (4) it can be shown that this occurred at a redshift when A was still not
dominating the expansion dynamics of the universe. For instance from (4) we
find that deceleration is succeeded by acceleration at the epoch

Q
(142z) =22 (37)
O
On the other hand the epoch of equality between p,, and A occurred at the

redshift Q
3 A
(1+2z)° = Q. (38)
where Q) = Ac?/3HZ. Substituting the ‘best-fit’ values obtained by Perlmut-
ter et al. (1998b) for a flat universe 2, ~ 0.28, Qs ~ 0.72 we get z, ~ 0.726
and z, ~ 0.37 so that z, < z.. From (14) we also get ¢go = —0.58 for the deceler-
ation parameter, indicating an accelerating universe (the combined Sn+CMB

data give a slightly larger value gy ~ —0.5).

Supernovae data can also be used to constrain time dependent A models of the
kind discussed in section 8. In the case of scalar field models with potentials
V(p) ~ ¢7P and V(¢) ~ (e'/? — 1) the scalar field density in a spatially flat
universe is constrained to lie in the range [159,203] Q4 € (0.6,0.7) and the
effective equation of state is w, < —0.6 (at the 95% confidence level).

A combined analysis of gravitational lensing and Type la supernovae gives
the best-fit value 2, ~ 0.33 for a spatially flat universe [201]. Attempts to
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Fig. 6. Best-fit confidence regions in the Q,, — Q4 plane obtained from the analysis of Type
la high redshift supernovae of Perlmutter et al. (1998b). The upper-left shaded region
corresponds to the singularity free ‘bouncing universe’ models discussed in section 3.1.

constrain the decay rate of a time-dependent, cosmological term A = Ay(1+42)™
result in 0.24 < Q,, < 0.38 and m < 0.85 (at the 68% confidence level) which
in turn places constrains on the cosmic equation of state w =m/3 —1 5 —
0.72. The combined supernovae & lensing data therefore convincingly rule
out a network of tangled cosmic strings (w ~ —1/3) and strongly favour a
cosmological constant (w = —1).

The results obtained by both the Supernova Cosmology Project and the High-
7 Supernova Search Team team present the strongest ‘direct’ evidence for a
non-zero cosmological constant. However much work needs to be done both
in understanding systematic uncertainties as well as Sn Ia properties before
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the case for a positive A is firmly established.” As we shall show in the next
section, much stronger constraints on €2, and {2, emerge if we combine the
supernovae results with observations of the cosmic microwave background.

4.4. Constraints on A from the cosmic microwave background.

On large angular scales § > 1° photons of the cosmic microwave background
traveling to us from the last scattering surface probe scales that were causally
unconnected at the time of recombination. ® As a result observations of the
CMB anisotropy on large scales provide us with a very clean probe of the
primordial matter fluctuation spectrum before its distortion by astrophysical
processes. On such large scales the main contribution to the CMB anisotropy
comes from the Sachs-Wolfe effect

1o
5?T = —% / ag—;ﬁe“eﬁdn, (39)

Tree
which relates temperature fluctuations to the integral of the variation of the
metric evaluated along the line of sight [167]. The evaluation of (39) in a
flat matter dominated universe is simplified by the fact that linearized the
gravitational potential does not evolve with time, with the result that the

above expression reduces to
T 186 w0
T 3¢
which relates fluctuations in the CMB to those in the gravitational potential
at the surface of last scattering. Equation (40) can therefore be successfully
used to determine the amplitude of primordial metric fluctuations with the
help of COBE data. The presence of a cosmological constant however causes
the linearized gravitational potential to evolve with time, the full Sachs-Wolfe
integral (39) must therefore be used both to determine and normalize the
primordial fluctuation spectrum [113].

The CMB temperature distribution can be written as
oT
70.0)= 0|1+ 50, ()

where Tj is the blackbody temperature Ty = 2.728 + 0.004° K [65]. 07'/T can

7 An accelerating universe can also be accommodated within the framework of the Quasi-
Steady State Cosmology of Hoyle, Burbidge and Narlikar (1993).

8 In matter dominated models the horizon at last scattering subtends an angle § ~
1.8°Q},{2(1000/zwc)1/2 ~ 1.8° for ©,,, ~ 1 and 2zpe ~ 1000. In flat A dominated mod-
els the dependence of # on (2, is much weaker, consequently 8 ~ 1.8° provides a good
approximation for most values of .

23



be written in terms of a multipole expansion on the celestial sphere:

5T o) l o
?(0, QS) = Z Z aleE (05 (b)a (42)
=2 m=-1

Information pertaining to a particular theoretical model is contained in the
coefficients a;,, which are usually assumed to be statistically independent and
distributed in the manner of a Gaussian random field with zero mean and
variance

Ci = (Jaim|*) (43)

where the angle brackets indicate an ensemble average over possible universes.
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Fig. 7. The angular power spectrum of the cosmic microwave background is plotted
against the angular wavenumber [ (in radians—!). The predictions of the following the-
oretical models are tested against observations: (i) The flat ACDM model with param-
eters (Qa, Qm, W, h) = (0.7,0.3,0.05,0.65) (dotted line); (ii) Flat CDM models with
(U, Qp, h) = (1,0.1,0.5) and (24, U, h) = (1,0.05,0.5) (solid lines), the larger Q, model
shows a higher Doppler peak; (iii) Open CDM model with (Q,,,Q,h) = (0.3,0.05,0.65)
(broken line). Here Q,,, = Qcpy + Qp, where Q,,, is the cold (non-baryonic) matter compo-
nent. For more details, see Peacock (1999) and Bond et al. (1997).
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The quantity that is directly measured by observations is the angular corre-
lation of the temperature anisotropy

0(0) = (i ) = 3= s |anesow

where cos = 1 - 15, P, are Legendre polynomials and Wj is the filter function
of the experiment used to measure the CMB; () denote an ensemble average
in the case of theoretical predictions and angular average in the context of
observations. (The relationship between C'(¢) and the angular power spectrum
C; is analogous to that between the two point correlation function & and the
matter power spectrum P(k).)

At low multipoles | < 60 the contribution to Cj is mainly from the Sachs-
Wolfe effect due to scalar density perturbations and (in some models) tensorial
gravity waves. (The value of the tenth multipole provides a convenient choice
for normalization of the perturbation spectrum [22].) At large [ > 60 however,
the main contribution to Cj is due to oscillations in the photon-baryon plasma
before decoupling, which leave their imprint in the CMB at the time of last
scattering. These oscillations give rise to Doppler peaks in C; the location of
the peak being determined by the angle subtended by the sound horizon at
the time of recombination (see figure 7). The sound horizon depends upon
Qvaryon & €, whereas the angular diameter distance to the last scattering
surface depends upon €24, €, and the spatial curvature of the universe. (Both
5 and the spatial curvature are extremely small at the time of last scatter
and therefore do not contribute to the sound horizon. On the other hand, the
location of the doppler peak is not very sensitive to {2ygryon Provided Qpgryon K
Q4+ QL)

Since the angular scale corresponding to the first Doppler peak is sensitive
to both the curvature of the universe and its matter content, its location can
be used to place strong constraints on cosmological models. There are some
indications that the first Doppler peak has been measured near [ ~ 260 [86].
(The height of the peak is related to the baryon fraction in the universe and
also to the scalar/tensor ratio S/T, the larger the baryon density the higher
the peak, a small value of S/T reduces the peak height. The peak height also
depends on the rate of expansion of the universe and hence on Hy [97]; for low
values Qparyon < 0.05 the peak height decreases if Hy increases, whereas the
reverse is true for a larger baryon fraction.) In figure 7 we show the angular
power spectrum of the cosmic microwave background for the flat ACDM model
with Q5 = 0.7 (dotted line), for comparison we also show spatially flat (solid
line) and open (dashed line) matter dominated models with ©,, = 1 and
Q,, = 0.3 respectively.

It should however be pointed out that the CMB alone cannot uniquely dif-
ferentiate between two models having identical matter content, perturbation
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Fig. 8. The ‘cosmic complementarity’ principle is beautifully illustrated by these best-fit
contours obtained using expected data from future supernovae and CMB experiments. The
68% confidence regions are shown for three sets of hypothetical supernovae data likely to be
recorded in five years time. The CMB analysis refers to the upcoming MAP and PLANCK
satellite missions. The assumed fiducial model is ACDM with Q,, = 0.35, Qx = 0.65
and Hy = 65 km. sec™! Mpc~!. One clearly sees that the degeneracy in parameter space
from supernovae observations is almost orthogonal to the degeneracy arising from CMB
measurements. For more details see Tegmark et al. (1998).

spectra and with the same angular diameter distance to the last scattering
surface. Such models will be degenerate in the sense that they will produce
very similar CMB anisotropies [56,57]. A degeneracy in parameter space hap-
pens to be a common feature of most cosmological tests. Fortunately different
tests often have complementary degeneracies. (A degeneracy arises when a
result remains unaffected by a specific combination of parameter changes.)
For instance the degeneracy in the €2, — {24 plane from high redshift super-
novae tests is almost orthogonal to that in a CMB analysis. Thus combining
Type la supernovae measurements with the results from CMB experiments
can serve to substantially decrease the errors on expected values of €2, and 5
as illustrated in figure 8 and figure 9 [209,190,56,57]. Since the location of the
Doppler peak near [ ~ 260 supports a spatially flat universe [86], a combined
likelihood analysis of CMB anisotropy and Type 1a Supernovae data gives the
best fit values [57]

Q= 0257018 Q) =0.6370:17. (45)

which strongly favour a flat universe with Q,, + Q, ~ 1 (also see [130,191]).
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Fig. 9. Likelihood contours in the €, — Qa plane (left) are derived using a combined
likelihood analysis of CMB and supernovae data. These contours show that the combined
CMB+5n likelihood function is strongly peaked at @, = 0.25 and Q5 = 0.63 thereby
favouring a flat universe (shown by the dotted-dashed straight line). The marginalized
likelihood functions on the right are shown for SN data alone (dotted lines), CMB data alone
(dashed lines) and the combined SN and CMB data (solid lines). The CMB+SN likelihood
function sharply peaks near €, + Qx = 1. More details may be found in Efstathiou et al.
(1998).

4.5. The Angular size - redshift relation.

Another potentially sensitive test of models is related to the fact that the
angular size Af of an extended object D located at a redshift z, depends
rather sensitively on the properties of the cosmological model in which it
is being measured. Knowing the absolute size of an object (e.g. galaxy or
radio source) and the angle subtended by a distribution of such objects in
the universe, it may be possible (after correcting for projection and evolution
effects) to say something about the geometry of space and the matter content
of the universe.

It is easy to derive a relationship between D and Af. Consider an object of
proper length D at a coordinate distance r, and assume for simplicity that
the object is aligned along the # axis so that coordinates marking its ‘top’ and
‘bottom’ are respectively (r,6; + Aby,¢1) and (r, 0, d1). The observer is at
r = 0. The proper length of the object can be obtained by setting ¢ = constant
in the FRW line-element (2) giving [142]

2 2 201\ 2 A 92
— — 2
ds D a”(t)r°Af (46)

As a result we get the following expression for the angle subtended by the
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Fig. 10. The angular size is shown as a function of cosmological redshift z for flat cosmolog-
ical models with a cosmological constant €2,,, + Q5 = 1. Heavier lines correspond to larger
values of €,,. For comparison we also show (dashed line) the angular size in a de Sitter
universe (24 = 1).

object at the location of the observer

D
A= (47)
da
where d4 = a(t)r is the ‘angular-size distance’. Since 1 + z = ag/a(t) one
gets dq = dr(1 + 2)72, where dr(2) = aor(1l + 2) is the luminosity distance
discussed in the previous section. Accordingly (47) may be rewritten as

D(1+ z)*
dL(Z)

In Fig 10 we have plotted the angular size - redshift relation for flat cosmolog-
ical models with a cosmological constant. (We have used expressions (28) for
the luminosity distance d;, and (19) for the dimensionless Hubble parameter
h(z), assuming a flat universe Qo0 = QU + Qp = 1.)

A§ = (48)

We find that as the object is moved to higher redshifts its angular size first de-
creases (as naively expected) but soon begins to increase after passing through
a minimum value. The appearance of a minimum angular size at a given red-
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shift z,;, is a generic feature of cosmological models with €2, > 0. Differen-
tiating (48) with respect to the redshift after substituting for dr from (30),
and then setting JA#/0z = 0 gives zpyin = 1.25 for the flat matter dominated
Einstein-de Sitter universe. ;From figure 10 we find that the location of the
minimum angular size moves to higher redshifts as €25 is increased, until in
the limiting case 24 = 1 there is no minimum at all. (Formally zp;, — oo in
de Sitter space, indicating that the angular size of an object decreases mono-
tonically with redshift without ever reaching a minimum value.)

The suggestion that angular sizes of galaxies could be used to discriminate
between cosmological models was first made in [95]. Curiously the angular
size of a typical galaxy at a redshift z ~ 1 is roughly one arc second which
is close to the limiting value of the angular resolution (‘seeing’) allowed by
the Earth’s atmosphere [154]. Beyond z ~ 1 the angular size of an object in-
creases, and if one is confident that galaxies of a given class at higher redshifts
are similar in form to their lower redshift counterparts, then this test can in
principle provide a powerful means of discriminating between world models
especially with the use of satellite data which can get around the ‘seeing’ limit.
Other (larger) objects which can be used to probe the angular size-redshift re-
lation include clusters of galaxies [142] and both extended and compact radio
galaxies [105,31]. Extended radio sources which include the twin radio lobes
surrounding a radio galaxy can have sizes ranging from a few kpc to ~ 1000
kpc, consequently the typical angular size of such objects is ~ 20 arc seconds
which can easily be measured using ground based techniques.

However, a word of caution must now be added, both clusters and radio galax-
ies are prone to strong evolutionary effects which could lead to a change in
size over cosmological epoch. Thus a comprehensive understanding of physi-
cal effects associated with both clusters (subclustering, virialization etc.) and
radio galaxies (evolution of radio lobes and the central engine etc.) is neces-
sary before the angular size-redshift relation can be used to unambiguously
determine cosmological parameters including €2, .

Recently Kellerman (1993) and Gurvits et al. (1998) have studied the angular
sizes of compact radio sources (QSO’s and AGN’s) arguing that the central
‘engine’ powering these objects is likely to be controlled by a limited number of
physical parameters (mass of central black hole, accretion rate etc.) and may
therefore be subject to less evolutionary effects than extended radio sources.
On the basis of an analysis of a large number of sources spanning a wide
redshift range 0.01 < z < 4.73 these authors claim that an increase in the
angular size has been detected which is consistent with Q,, ~ 1. (However
working with the same data set as Kellerman (1993), Kayser (1995) has shown
that a significant A cannot be ruled out.)

An interesting feature of closed universes not present in the flat models con-
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sidered in figure 10, or in open models, is the presence of antipodal points. The
presence of antipodes can contribute to changing the angular size as well as to
the lensing of a source galaxy or quasar [80] and therefore provide us with a
good means to constrain closed cosmological models. A metric describing the
closed FRW universe is

ds* = Adt* — a®(t)[dx?* + sin? x(d#? + sin® 0d¢?)] (49)

where 0 < x,0 < 7,0 < ¢ < 27. If we assume that the observer is located
at x = 0 then the associated antipodal point is at x, = m. Substituting
ds? = 0 we obtain x = n = [ dt/a, where 7 is the conformal time coordinate.
In a matter dominated universe the form for the expansion factor is a(n) =
A(1 = cosn), ct = A(n — sinn), and the Hubble parameter is given by H o
sinn/(1 — cosn) where 0 < 7 < 27. Thus a light ray from the antipodal point
Xa = 7 reaches x = 0 at the time of maximum expansion 7 = 7 (corresponding
to H = 0). Consequently in a matter dominated closed universe, light from an
antipodal point can never reach an observer during the expanding phase (when
H > 0). This situation changes when one considers a closed universe with a
cosmological term. In this case the universe is not obliged to recollapse and
one can observe an antipodal point during the expansion epoch. The location
of antipodal points can be derived from the following considerations: from (28)
we find for a closed universe

(14 2)Hy 'Sin(ny —n)

dr(z) = (50)
|Qtotal - 1|%
where
1 7 dZ’

= Qg — 1] 51
Mo — N = |Qotal |20h(z’) (51)

since dq = dr(1 + z) 2 it follows that for
mo—n=nm, dg=0 (52)

and, from (47), Af — oo, i.e. the angular size of an object located close to
one of the antipodal points (52) can become very large. Consequently such an
object will appear to us to be extremely bright even if located at a high redshift
! The presence of ‘normal’ galaxies and quasars, as well as gravitationally
lensed objects out to redshifts ~ 4.92 set a lower limit on the antipodal redshift
20, ) > 4.92 which can be used to constrain the cosmological parameter
pair (4, ,) in a closed universe [51,124,147]. (Multiple images of a source
object located further away than the antipodal redshift z, are very difficult
to form [80].) Since the supernovae analysis prima-facie appears to favour a
closed universe, antipodal constraints may be used to further narrow down
the allowed range in parameter space.
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4.6. Clusters of galazies and the Large Scale Structure of the Universe

Observations of large scale structure indicate that the model which comes clos-
est to explaining most observational features of galaxy clustering is ACDM, a
model containing a cosmological constant in addition to baryons and cold dark
matter [114,144]. Parameters of this model which agree well with observations
are Qxh? ~ 0.33, Q, ~ 0.02, Q,, ~ 0.3, where h = H,/100 is the Hubble
parameter in units of 100 km/sec/Mpc. (Setting h = 0.7 gives Q4 = 0.68.)

There are several reasons as to why the presence of A improves the performance
of the standard cold dark matter model. The first is related to the fact that in
a spatially flat universe linearized density perturbations grow at a slower rate
in the presence of A than in its absence. (The growth rate is however faster
than that in an open universe for identical values of 1 — €),,.) This changes
the initial normalization of the density field since the linearized gravitational
potential now becomes time-dependent, which affects the Sachs-Wolfe integral
discussed in section 4.4. The slow down in the rate of growth also affects
the abundance of very massive objects (clusters and superclusters) some of
which may have formed only relatively recently and would therefore feel the
presence of long wavelength modes still in the linear regime. A small value
of Q,, (alternatively, a large value of Q4 = 1 — Q,,) also affects the matter
power spectrum in ACDM models which is strongly influenced by the epoch of
matter radiation equality. This effect is incorporated in the shape parameter®
' = Q,,h: a small value of €2,,, leads to a larger value of the horizon at matter-
radiation equality de;, ~ 16/(I'h) Mpc and hence to more long wavelength
power in the fluctuation spectrum P(k) = (|6x|?). Both open models and
ACDM models show better agreement with galaxy clustering data on large
scales [54], the ‘best fit’ value of I' being I' ~ 0.25.

An independent estimate of €2, is provided by the peculiar velocities of galax-
ies in our neighborhood (on scales ~ 10 — 100 h™! Mpc). The results of a
joint estimate from velocity flows and supernovae gives the most likely values
Q,, ~ 0.5 and Q ~ 0.8, thereby favouring an approximately flat universe [45].

A low value of €, is also indicated by studies of clusters of galaxies. Clusters
of galaxies have traditionally been powerful probes of cosmological structure
formation scenario’s. The masses of rich clusters can be estimated using three
independent methods: the velocity dispersion of member galaxies, the cluster
X-ray temperature due to hot intracluster gas and strong gravitational lensing
of background galaxies by the cluster. All three methods provide an estimate
of the cluster mass which ranges from 10 to 10 h=! M, for the mass located

9 The shape parameter is so named because it affects the shape of the Power spectrum
P(k), which interpolates between the asymptotic regimes [170] P(k) « k for ¥ — 0 and
P(k) o k3 log” k for k — co. The maximum value of P(k) occurs near k ~ d_!.
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within the central 1.5h ! Mpc. region of a cluster [6]. The resulting median
mass-to-light ratio for rich clusters is M/Lp ~ 300 + 100h My/Ls, which
when integrated over the full range of luminous matter in the universe gives
an estimate for the density parameter €2, = 0.2 + 0.1.

A low value of €2, is also indicated by a study of baryonic matter within
clusters. In a detailed study of the composition of the Coma cluster which
included estimates of the baryonic mass fraction provided by X-ray emitting
gas and virial measurements of its total mass, White et al (1993) showed that
the ratio of baryonic matter to total mass Q,h%?/Q,, = 0.07 + 0.03. As a
result the baryonic mass fraction greatly exceeds nucleosynthesis constraints
Qyh? = 0.015 £ 0.005 if Q,, = 1, leading to a ‘baryon catastrophe’. However
no catastrophe occurs if Q,,h/?2 = 0.21 4 0.12 since the value of €, is now
small enough to be acceptable by nucleosynthesis constraints [144]. This result
therefore is strongly supportive of either an open universe or one that is A
dominated and flat, so that €2, =1 — Q) < 1.

Observations of cluster abundances can be used to provide good estimates of
og — the average root-mean-square mass fluctuation in a sphere of radius 8h=*
Mpc. The best-fit value of g consistent with present day cluster abundances
is og >~ 0.5 Q,%°. This value gives a measure of the clustering amplitude on
small scales and therefore can be used to normalize the power spectrum of
density perturbations. A complementary method of normalization is provided
by large angle CMB anisotropies measured by COBE. Taken together the og
normalization on small scales and the COBE normalization on large scales
(~ 1000 Mpc.) provide very useful constraints on the cosmological parameters
Qm, Qa, Qp, on the biasing parameter b = jym/daare and on the ‘primordial
tilt” in the power spectrum |d;|? o< k™ which can be shown to lie in the range
1 —n| < 0.2 [144].

A potentially powerful method for discriminating between different cosmolog-
ical models is provided by the abundance of rich clusters of galaxies measured
at high redshifts. The presence of large amounts of X-ray emitting gas in many
rich clusters provides us with a useful observational tool with which to probe
cluster mass. Observations of galaxy clusters are then matched against theo-
retical models which model cluster formation and evolution using either Press-
Schechter techniques or N-body/Hydro-simulations [145,88,61,19,41,7,58,194].
As discussed earlier the growth of long wavelength perturbations which are
still in the linear regime, is significantly slower in low density models (both
with and without a cosmological constant) than in a critical density €, = 1
universe. This leads to dramatic differences in the redshift dependence of the
rich cluster abundance in cosmological models: rich clusters are much rarer
at high redshifts in an €2,, = 1 universe than they are in a low density uni-
verse (see figure 11). For instance, whereas almost all massive clusters with
M ~ 10 M, are expected to have formed by z ~ 0.5 in a low density uni-
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Fig. 11. The observed and expected cluster abundance is shown as a function of redshift
for massive clusters with M, > 8 x 1014 M, located within the Abell radius of 1.5h~!Mpc.
The curves show the expected cluster abundances in CDM models with different €2,,,. Figure
courtesy of Neta Bahcall (1999).

verse, only a small fraction (< 10%) of the present day 10> M, clusters would
have been in place by z ~ 0.5 in an €, = 1 universe [78,194]. The existence
of three massive clusters in the redshift range z ~ 0.5 — 0.9 has therefore been
viewed as a difficulty for the standard cold dark matter model with €, = 1
for which 1072 rich clusters are expected at z > 0.5 [78,7,6]. It must be noted
however that large uncertainties in both the observational data (only a few
very massive clusters have been reliably observed at high z) and in our the-
oretical understanding of rich clusters, makes it difficult at present to place
unambiguous constraints on the values of €2, and 2, [195]. It is hoped that
better quality data from satellite launches planned for the immediate future
(XMM) and more accurate modelling of large scale structure will improve the
situation significantly in the near future.

Constraints on the abundance of rich clusters also come from arcs caused
by the strong gravitational lensing of extended background sources (galaxies,
radio sources) by foreground clusters. Since clusters act as gravitational lenses
for background sources, the larger number of clusters at early epochs in (i)
open, low €2, models, and (ii) flat, high Q25 models, relative to (iii) flat Q,, = 1
models leads to a greater abundance of arcs in both (i) and (ii) relative to (iii).
An estimate by Bartelmann et al. (1998) based on numerical simulations of
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large scale structure, has shown that an order of magnitude more arcs are
predicted in flat models with ,, ~ 0.3, Qy ~ 0.7 (Naes ~ 280) than in
the flat Q,,, = 1 model (N5 ~ 36). In open models this effect is even more
dramatic (Nures ~ 2400 for Q,,, ~ 0.3,Q4 = 0). However, impressive as these
results are, the absence of a comprehensive data base for arcs and uncertainties
in the modelling of galaxy clusters makes it difficult to attempt to constrain
theoretical models on the basis of observations at present. (Bartelmann et al.
(1998) however make a case for a low density universe by arguing that the
observed number of arcs in the EMSS arc survey extrapolated to the full sky
is 1500 - 2300, which is close to what one observes for low density models in
their numerical simulations.) Both observational data sets and the theoretical
modelling of clusters are likely to improve significantly in the near future
giving this method potentially great importance in the ongoing ‘quest for A’.

Finally, the Lyman-« forest which populates the spectra of quasars provides a
potentially powerful means of discriminating between rival models of structure
formation and in probing the presence of a cosmological A-term at intermedi-
ate redshifts 0 < z < 5 [100,206].

5. Theoretical issues: Vacuum fluctuations and the Cosmological
constant

Having summarised the observational evidence for a cosmological A-term let
us now turn our attention to some theoretical implicationsi of A.

A turning point in our understanding of the cosmological constant occurred
when Zeldovich (1968), intrigued by A-based cosmological models presented to
explain an excess of quasars near redshift ~ 2, showed that zero-point vacuum
fluctuations must have a Lorentz invariant form P,,, = —py..c?, equivalently
T5% = Agg, i.e. the vacuum within the quantum framework had properties
identical to those of a cosmological constant.

Let us review this situation beginning with an oscillator consisting of a single
particle of mass m moving under the influence of a potential V = %kxz.
At the classical level one expects the lowest energy state to be associated
with the particle at rest at x = 0, so that the total energy vanishes: £ =
T+V = 0. Thus, within the classical framework, the vacuum can be viewed as
a state having zero energy and momentum. However when viewed in terms of
quantum mechanics the situation changes, the uncertainty relation preventing
the particle (wave function) from simultaneously having a fixed location (z =
0) and a fixed velocity (T = 0). As a result, the ground state energy of the
oscillator is finite and is given by F = %hw, where w = k/m. Turning now to
quantum theory, it is well known that after secondary quantization a classical
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field can be looked upon as an ensemble of oscillators each with frequency
w(k). The net ‘zero-point energy’ of this field is £ = ¥, $hw(k). Thus the
uncertainty relation endows the vacuum with both energy and pressure!

The existence of zero-point vacuum fluctuations has been spectacularly demon-
strated by the Casimir effect. ! The vacuum energy associated with zero-point
fluctuations is formally infinite and results in a ‘cosmological constant prob-
lem’ for the universe [205]. Because of the importance of this result we shall
perform a simple calculation aimed at evaluating the zero-point energy asso-
ciated with a quantized scalar field in flat space-time. (The reader is referred
to Birrell & Davies 1982 for a discussion of quantization of higher spin fields.)

Consider the action defined in flat four dimensional space-time !!

szfﬁum% (53)

where L£(x) is the Lagrangian density for a massive scalar field
L i 252

propagating in flat space-time with metric 7;;.

The variational principle d¢S = 0 gives the Klein-Gordon equation

(O+m*)®=0 (55)
where O = 1%0;0.

To quantize the system we treat the field ® as an operator

®(z) = Y lank(x,n) + afd;(x,m)] (56)
k
where ay, az are annihilation and creation operators [ay, a,t,] = Opxr, defining

the vacuum state ax|0) = 0, Vk. An orthonormal set of solutions defined using
periodic boundary conditions on a three dimensional torus of side L is given

10 The Casimir effect arises because vacuum fluctuations satisfy the quantum mechanical
wave equation and hence are sensitive to boundary conditions. As shown by Casimir (1948)
the presence of two flat parallel conducting plates at a separation [, alters the distribution
of electromagnetic field modes existing in the vacuum, resulting in an attractive force per
unit area between the plates: F = —her?/2401* which is of vacuum origin. The Casimir
effect has been experimentally measured by Spaarnay (1957) and others [18,189,205,139].
11 Following Landau & Lifshitz (1975) we use Latin indices to describe space-time coordi-
nates, so that i,j,k... = 0,1,2,3; and Greek indices to describe spatial coordinates: «, 3,7..
=1,2,3.
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by [18]

1
= exp (1kx — 1wyt
D= o P )
2 .
k; = ”L"J, nj €l (57)

where w? = k* + m?, and the field modes have been normalized using

(Px: Pw) = b (58)
where

(61, 02) = =i [[6:010} - d30.61]d°. (59)

Consider next, the energy-momentum tensor
1 1
Tij = ©,;®,; - 577ij77kl‘1’,kq>,l + §m2‘1’27h‘j (60)

where Ty, defines the energy density

1.
Too = 5(‘1’2 + 0,601 ® + m*®?) (61)

and Tp, the momentum density

o0
0™ "5t oz’

Substituting from (56) & (57) into (60) one obtains for the Hamiltonian H

a=1,2,3. (62)

1
H = /T00d3x =5 Z(al‘;ak + axa )wi (63)
k

which can be further simplified using the commutation relation [ay, a};,] = Ok

to
1

H= ij(aLak + )k (64)

A similar operation on the momentum density yields [18]

P, = /TOad?’x =Y afaxks, @=1,2,3. (65)
k

Inspecting expressions (63) and (65) for the Hamiltonian H and the momen-
tum operator P, we find, for the expectation value of these quantities in the
vacuum state |0)

(0[P[0) = 0, (0[H[0) = 5 >~ wie (66)

k

DO | =
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Transforming the sum ), to an integral we get

_Z“"‘_%(QLW)/ K) &k = /\/k2+m2k2dk (67)

From (66) & (67) we find that the energy density of zero-point vacuum fluc-
tuations is dominated by ultraviolet divergences which diverge as k* when
k — oo. The vacuum state therefore has zero momentum and infinite energy !
(In terms of Feynman diagrams the energy density of zero-point fluctuations
is associated with a one-loop vacuum graph, see figure (13).)

Within the framework of Newtonian gravity and either classical or quantum
mechanics, an infinite (or very large) vacuum energy does not cause serious
problems since interaction between particles is governed not by the absolute
value of the potential energy V', but by its gradient VV. As a result one
can always redefine V' — V + V4 so that the minimum of V' has zero net
energy. The situation changes dramatically when we view the vacuum within
the framework of general relativity. A central tenet of the general theory of
relativity is that the gravitational force couples to all forms of energy through
the Einstein equations G, = Szr—fTik. Therefore if the vacuum has energy then
it also gravitates ! In order to probe this effect further one needs to know the
equation of state possessed by the vacuum energy, equivalently the form of
its energy momentum tensor 7% . This question was answered by Zeldovich
(1968) who showed that the vacuum state had to have a Lorentz-invariant
form, one that was left unchanged by a velocity transformation and hence
appeared the same to all observers. This requirement is exactly satisfied by
the equation of state P = —p possessed by the cosmological constant, since
the relation T}, = Agi; is manifestly Lorentz-invariant. '2

All fields occurring in nature contribute an energy density to the vacuum and
expressions analogous to (66) for bosons can also be derived for fermions. Since

12 Zero-point fluctuation s are usually regularized by ‘normal ordering’ — a rather ad hoc
procedure which involves the substitution akaz - azak in (63). In curved space-time a single
regularization is not enough to rid (Tj) of all its divergences. Three remaining ‘infinities’
must be regularized, leading to the renormalization of additional terms in the one-loop
effective Lagrangian for the gravitational field, which, in an FRW universe becomes: Leg =
V—=9Aw + R/167G o + aooR? + oo Rij R¥]. Renormalization of the first term Ay, — 0
corresponds to normal ordering. The presence of the second term R/167G, led Sakharo
v to postulate that the gravitational field might be ‘induced’ by one-loop quantum effects
in a curved background geometry, since one could recover the ordinary Einstein action by
renormalizing the ‘bare’ value G, to its observed value: Goo — Gobs [173]. Thus both the
cosmological constant A and the gravitational constant G may be induced by quantum
effects. The remaining two terms in Leg give rise to vacuum polarization effects and have
been extensively discussed in the literature [18,81].
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fermionic creation, annihilation operators anti-commute this leads to
1
(0|H;|0) = _52“"“ (68)
k

Comparing (68) with (66) we find that the zero-point energy of fermions is
equal and opposite to that of bosons (having identical mass).

The advent of Supersymmetry in the 1980s, incorporating a fundamental sym-
metry between bosons and fermions, led to the hope that the cosmological
constant problem would finally be resolved, since the one-to-one correspon-
dence between bosons and fermions in such theories was expected to lead to
cancellation between bosonic and fermionic infinities [216]. However Super-
symmetry is expected to exist only at very high energies/temperatures. At
low temperatures such as those existing in the universe today, Supersymme-
try is broken. One might therefore expect the cosmological constant to vanish
in the early universe only to reappear later, when the universe has cooled
sufficiently so that T < Tsysy > 10° GeV. Thus the cosmological constant
problem re-emerges to haunt the present epoch !

Although the cosmological constant problem remains unresolved, an important
aspect of Zeldovich’s work was that it demonstrated a firm physical mechanism
for the generation of a cosmological constant. Later work, mostly associated
with Inflationary model-building, further strengthened this idea by showing
that an effective cosmological constant could arise due to diverse physical
processes including symmetry breaking, vacuum polarization in curved space-
time, higher dimensional ‘Kaluza-Klein’ theories etc. Some of these develop-
ments have been reviewed in [132].

6. The cosmological constant and spontaneous symmetry breaking

An important development in our understanding of the ‘vacuum energy’ was
associated with the phenomenon of symmetry breaking in the electroweak
Weinberg-Salam model. Consider the scalar field action

S = / J—gLd'z (69)

where L is the Lagrangian density
L
L= 470,606 —V(9) (70)
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and the scalar field potential has the form

V(g) = Vo 5H¢" + A" ()

This particular form of the potential (illustrated in Fig. 12) endows the system
with some interesting properties. For instance since the symmetric state ¢ = 0
is unstable (V"(¢) < 0) the system settles in the ground state ¢ = +o or

¢ = —o, where 0 = {/u?/\ thus breaking the reflection symmetry ¢ <> —¢
present in the Lagrangian. The energy momentum tensor 7;; of a scalar field
with Lagrangian density £ is given by

Ti = ¢,0 1 — gar L. (72)

Assuming ¢ to be homogeneous and time-independent one finds the ground
state energy-momentum tensor to be

T = gV (¢ = 0), (73)

the vacuum state therefore has precisely the form of an effective cosmological
constant Tjx = gixAesp where Agpp = V(d = o) = Vo — p*/4). Setting V, = 0,
results in a negative cosmological term A.;p = —p*/4). Substituting param-
eters arising in the electroweak theory results in a lower limit on the value
of the vacuum energy density [205] pyoc = |Aesr|/87G = 106GeV*, which is
almost 103 times larger than current observational upper limits on the cos-
mological constant pyaco = Ao/87G ~ 1072%g/cm® ~ 10~*"GeV*. Clearly in
order not to violate observational bounds today, one must set V5 ~ u*/4\ so
that Agpp ~ Ag. An interesting feature of this ‘regularization’ of the cosmolog-
ical constant is that, while drastically reducing the value of the cosmological
constant today it simultaneously generates a large cosmological constant ~ Vj
during an early epoch before symmetry breaking, thereby giving rise to the
possibility of Inflation ! The cosmological constant problem therefore presents
us with a dilemma: it is certainly good to have a large cosmological constant
during an early epoch so as to resolve — via Inflation — the horizon and flat-
ness problems and possibly generate seed fluctuations for galaxy formation.
However one must simultaneously ensure that the value of A today is small
so as not to conflict with observations. As we have seen, in models with SSB
this dual requirement of ‘large A in the past + small A at present’ results in
an enormous fine tuning of initial conditions.

7. Mechanisms for generating a small current value of A.

As we saw in the last two sections, the vacuum associated with both one-
loop quantum effects and models with spontaneous symmetry breaking, has
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Fig. 12. The ‘Mexican top-hat’ potential describing spontaneous symmetry breaking shown:
before (dashed) and after (solid) the cosmological constant has been ‘renormalized’.

properties identical to those of a cosmological constant. There is one problem
however, in the case of zero-point fluctuations, the vacuum density turns out
to be infinite leading to an infinitely large cosmological term and resulting in
a cosmological constant problem for cosmology (see section 5). Assuming that
the ultraviolet divergences responsible for the cosmological constant problem
can be cured by (hitherto unknown) physics occurring near the Planck scale,
one gets a finite but very large value

pr = A?/87G ~ pp; = ¢ /G*h ~ 5 x 10 g em ™2,

where pp; is the Planck density. On the other hand, as we saw earlier, recent
observations of the luminosities of high redshift supernovae combined with
CMB results give the following value for the dimensionless density in A

Ac?
Qp = o = —— ~ 0.7
A= Pa/per = 3 2
where p.. = 3H?/87G = 1.88 x 107%°h? g/cm? (see sections 4.3 & 4.4), which
leads to pp =~ pp; x 107122, 4.e. the value of the cosmological constant today
is almost 123 orders of magnitude smaller than the Planck density !
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As we have shown in section 6, a large (negative) value of the vacuum energy
also arises in models with spontaneous symmetry breaking. In this case, the
fine tuning involved in matching the present value of A to observations depends
upon the symmetry breaking scale, and ranges from 1 part in 10'23 for the
Planck scale, to 1 part in 10% for the electroweak scale.

Clearly the question begging an answer is: which physical processes can gen-
erate a small value for A today without necessarily involving a delicate fine
tuning of initial conditions? Although no clear cut answers are available at the
time of writing (it may even be that a very small A may demand completely
new physics) some avenues which could lead us to interesting answers will be
explored in this section.

7.1. A Decaying Cosmological Constant?

One method of resolving the dilemma between a very large cosmological con-
stant (predicted by field theory) and an extremely small one (suggested by ob-
servations) with obvious cosmological advantages is to make the cosmological
term time-dependent. An initially large cosmological term would give rise to
Inflation, ameliorating the horizon and flatness problems and (possibly) seed-
ing galaxy formation. The subsequent slow decay of A(t) would enable a small
present value A(tq) to be reconciled with observations suggesting Q24 ~ 0.7. (A
time dependent cosmological term of course arises in Inflationary models and
during cosmological phase transitions, but in such cases the post-inflationary
decay of the cosmological term is very rapid.)

The first proposal for dynamically reducing the cosmological constant was
made by Dolgov (1983) who considered a massless non-minimally coupled
scalar field having the Lagrangian density

1
L= §(¢’l¢,l — £R¢?) (74)
and the resulting equation of motion
Oo + (Re =0, (75)

where R is the scalar curvature and & the coupling to gravity. Considering the
special case of a homogeneous scalar field, the Einstein equations become

3H?=A+ 871G (pg + Pmatter) (76)

where )
po = 50"+ 3EH¢” + 66 Hoo (77)
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is the scalar field energy density. The scalar field equation (75) reduces to
.“ a - a a
¢+ 3—¢ + 6¢ [—+(—)2]¢=0. (78)
a a a

Dolgov made the discovery that, for negative values of £, the scalar field is
unstable: its energy density p, becomes large and negative compensating for
the cosmological constant in (76), so that the resulting effective cosmological
constant rapidly decays to zero. Let us demonstrate this by examining the
Einstein equation (76) which together with the scalar field equation (78) de-
fines a pair of nonlinear differential equations determining the behaviour of
the scale factor a(t) and the scalar field ¢(t). The term 3§H?¢? in py can be
carried over into the left hand side of (76) resulting in

A

SH2~ D
1 —8rGég

(79)
As Dolgov demonstrated, ¢(t) grows with time if £ < 0, so that the effec-
tive cosmological constant Acrp = A/(1 + 87G|E|$?) decreases. The late time
behaviour of a(t), ¢(t) obtained by solving (76 - 78) with p,, < ps has the
asymptotic form [46,66]

1 1

axtl g=—-4—, pxt.
2 4f¢]

As aresult, lim;_,, Acsr — 0 i.e. the cosmological term vanishes at late times.

Unfortunately this mechanism cannot be used in real universe. The first prob-
lem with this approach is that the very mechanism which decreases the cosmo-

logical constant also quenches the effective gravitational constant, since from
(76),

G
Geff=———-—— —0 as t— oc. 80
1 8nGeg? 0
As a result, the effective gravitational constant becomes noticeably time-
dependent: G.rp/Gesp = —2/t ~ —107'0 yr=' which strongly contradicts

upper limits from Viking radar ranging [87] and lunar laser ranging experi-
ments [211]. Another problem is that such screening of A is still not sufficient.
The remaining part of A remains of the order of the Ricci tensor all the time,
while we need it to be much less than the Ricci tensor during the matter
dominated epoch to obtain sufficient growth of scalar perturbations. Finally,
Q, < 1 during this regime.

An extension of this method to higher spin fields (massless vector and tensor)
can remove the first drawback by making a cancellation of the cosmologi-
cal constant possible while keeping the gravitational coupling constant time-
independent [47]. However, the other difficulties (especially, the second one)
remain. This shows that it is not easy to explain the observed A-term by a
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cancellation mechanism. Still this aesthetically attactive possibility should be
investigated further (some variants of the early Dolgov mechanism are dis-
cussed in [10,205]).

7.2. Vacuum polarization and the value of A

Zeldovich (1968), having demonstrated that the energy density of the vacuum
was infinite at the one-loop level, suggested that after the removal of diver-
gences, the ‘regularized’ vacuum polarization contributed by a fundamental
particle of mass m would be described by the expression

Gm?  mc.,
e (7) '

PA ~ (81)
One can arrive at this result by means of the following argument: the vac-
uum consists of virtual particle-antiparticle pairs of mass m and separation
A = h/mc. Although the regularized self-energy of these pairs is zero, their
gravitational interaction is finite and results in the vacuum energy density
€vac = PracC> ~ GT”‘Q /A3 = GmS¢c*/h* corresponding to (81). (In terms of Feyn-
man diagrams this corresponds to the energy associated with the two-loop
vacuum graph shown in figure 13.) Substituting m — m.(m,) we find that
the electron (proton) mass gives too small (large) a value for py. On the other
hand, the pion mass gives just the right value [106] '®

1 My

pr = ) pp (MP)6 ~13x10 Bpp =691 x10 * gem .  (83)

Finally, a small value of A can be derived from dimensionless fundamental
constants of nature using purely numerological arguments. For instance, the
fine structure constant o = e?/fic ~ 1/137 when combined with the Planck
scale pp, suggests the relation [187]

pr=1 PP_e-2/e v 192 % 10 Bpp =629 x 1030 gem ™3 . (84)

271'2)3

Or, when expressed in terms of 2y = 8?{25" we get Q,h? = 0.335, in excellent
0

agreement with observations. In principle, a could be some other fundamen-

13 The large difference between p, obtained using (81) for the proton and its observed value
prompted Zeldovich to suggest that Fermi’s weak interaction constant G might play a role
in determining the vacuum energy, so that

GGrm8c®
PASTT

Although this leads to some improvement, pa for the proton is still several orders of mag-
nitude larger than its observed value.

(82)
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Fig. 13. This figure shows the one-loop (a) and two-loop (b) vacuum diagrams
which contribute towards the vacuum energy density discussed in sections 5 & 7.2
respectively.

tal constant, such as the ‘string constant’ associated with superstring theory,
which might enter into exponentially small expressions for A of this type.

7.8. Late-time Inflation and A.

Conceivably, one might appeal to inflationary mechanisms which are so suc-
cessful at generating a large cosmological constant during an early epoch to
generate a small cosmological constant today. As pointed out in section 6, ef-
fective potentials giving rise to symmetry breaking generically predict a large
negative value for a cosmological constant which has to be ‘regularized’ to give
the small positive A observed today. The problem with these methods is that
they usually prescribe an unevolving cosmological term whose present value
is fixed at the time of symmetry breaking. This necessarily implies some fine
tuning of parameters which can be as large as one part in 10'?* (for symmetry
breaking at the Planck scale) to one part in 10% for the electroweak scale.

A different possibility is suggested by the family of potentials which lead to
‘chaotic Inflation’ V' o ¢?, ¢ > 2. For instance V = ;m?¢? will lead to the
inflationary equation of state P ~ —p associated with a cosmological constant
provided the scalar field rolls down its potential ‘slowly’ so that ¢ ~ 0 or
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(m/Hp)? < 1. In other words, the Compton wavelength of the inflaton should
be larger than the present Hubble radius A\ = A/mc > cH; ' suggesting an
extremely small mass for the inflaton m < 107** eV. One may be tempted
to associate m with the small mass difference associated with solar neutrino
oscillations m = Am?/Mp ~ 10733 eV where Am?2 ~ 107° eV?, an idea which
is speculative but not implausible [69,90].

7.4. Generating a small cosmological constant from Inflationary particle
production.

A novel means of generating a small A at the present epoch was suggested by
Sahni & Habib (1998).

Massive scalar fields in curved spacetime satisfy the wave equation
[O+&R+m?®=0 (85)

where R is the Ricci scalar and ¢ parametrizes the coupling to gravity. In a
spatially flat FRW universe the field variables separate so that

@, = (21) gy (1) ¢

for each wave mode. The comoving wavenumber k = 27wa/\ where )\ is the
physical wavelength of scalar field quanta. Defining the conformal field x; =
ady, and substituting R = 6a/a® into Eq. (85) leads to

Xe + [* + mPa® — (1 — 6€)d/a)xx = 0, (86)

where differentiation is carried out with respect to the conformal time n =
[ dt/a. Equation (86) closely resembles the one dimensional Schrédinger equa-
tion in quantum mechanics

h* 4>V
5 da? +[E -V (x)]¥ =0. (87)
Comparing (87) and (86) we find that the role of the “potential barrier in
space” V() is played by the time dependent term V (n) = —m?a?+(1—6£)d/a
which may be thought of as a “potential barrier in time” [82,178,84]. (The
form of the barrier is shown in Fig. 14 assuming that Inflation is succeeded
by radiative and matter dominated eras.) In quantum mechanics the pres-
ence of a barrier leads to particles being reflected and transmitted so that
U, (z) = exp (ikx) + R(k) exp (—ikz) in the incoming region, and W, (z) =
T(k) exp (ikz) in the outgoing region. Similarly, the presence of the time-like
barrier V(n) will lead to particles moving forwards in time as well as back-
wards, after being reflected off the barrier. The scalar field at late times will
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therefore not be in its vacuum state ¢ but will be described by a linear
superposition of positive and negative frequency states

Pout(k,n) = ady + By . (88)

The role of reflection and transmission coefficients R, T is now played by the
Bogoliubov coefficients «, § which quantify particle production and vacuum
polarization effects and are obtained by matching ‘in modes’ during Inflation
with ‘out modes’ defined during the radiation or matter dominated eras.

Due to the existence of space-time curvature, positive and negative frequencies
can be defined only in the limiting case of small wavelengths, limj_,, q&f ~
ﬁ exp (Fikn), for which effects of curvature can be neglected. The value of
a, f is obtained by matching modes corresponding to the ‘out’ vacuum with
those of the ‘in’ vacuum just after Inflation. (The ‘in’ and ‘out’ vacua are

defined during Inflation and radiation/matter domination respectively.)

The net effect of particle creation and vacuum polarization is quantified by
the vacuum expectation value of the energy-momentum tensor (7Tj). For & <
0,/¢| < 1 and m/H < 1 the leading order contribution to (Tj) is given by

<Tzk> ~ —f(Rik — %gikR) <<I>2> + %gikm2(<b2> =+ ..... (89)

We immediately see that the first term is simply proportional to the Einstein
tensor and the second has the covariant form usually associated with a cosmo-
logical constant (i.e. Tj, = gix/A). Substituting for (Tj) in the semiclassical
Einstein equations

1
R, — §gikR = =81G(Tix + (Tix)) , (90)
we find
3H? = 87G(pm + Poac) (91)
where
1
poac = (Too) =~ 3EH*(®?) + 5m?<<1>2> (92)
2\ _ L 2 2
(@) = 55 | kR doun(k, ) (93)

The term proportional to H?(®?) in (92) may be absorbed into the left hand
side of (91) leading to

= 1
3H? ~ 87G[py + §m2(<1>2)] (94)

where G ~ G/(1 + 87G|£[(®?)) is the new, time dependent gravitational
constant. (Observational bounds on the rate of change of G set the constraint
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Fig. 14. The process of super-adiabatic amplification of zero-point fluctuations (particle
production) is illustrated. The amplitude of modes having wavelengths smaller than the
Hubble radius decreases conformally with the expansion of the universe, whereas that of
larger-than Hubble radius modes freezes (if £ = 0) or grows with time (£ < 0). Consequently,
modes with & < 0 have their amplitude super-adiabatically amplified on re-entering the
Hubble radius after inflation (from Sahni & Habib 1998) (the case { =0 also describes
quantum mechanical production of gravity waves in a FRW model [82].)

€] < 1.) As shown in [171] for & < 0 the value of (®*) can be very large, so
that G ~ 1/(87|£|(®?)) and

Aepp = 81G(Too) = m?/2I¢,

QA Aeff/?)HQZ ﬁ(m/H)Q (95)

We therefore find that the energy density of created particles defines an ef-
fective cosmological constant which can contribute significantly to the total
density of the universe at late times leading to Q,,, + Qs ~ 1 [171].

However, it should be noted that this result was obtained in the Hatree-Fock
(or. semiclassical gravity) approximation (90) which is not exact in considera-
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tions of a single quantum field, since metric and field fluctuations may signif-
icantly deviate from their rms values. So, further study of this problem using
stochastic methods (similar to those used in stochastic inflation [182,183,196]
and stochastic reheating after inflation [115]) is desirable.

8. Phenomenological models of a dynamical A-term.

8.1. Owverview.

Having, under the pressure of observational evidence and an aesthetical desire
to keep the inflationary scenario of the early universe as simple as possible, ad-
mitted the existence of a constant positive A-term, it is natural to take a step
beyond Einstein’s original hypothesis and consider the additional possibility
that the A-term is not an exact constant, but rather, describes a new dynam-
ical degree of freedom (perhaps even a new form of matter). Really, neither
observational data, nor inflationary considerations tell us that a “cosmological
constant” is constant (though, as discussed above, it should change sufficiently
slowly with time, in particular, slower than the Ricci tensor). In fact the effec-
tive A-term which appears in the inflationary scenario of the early universe is
never an exact constant and rarely even an approximate constant of motion.
(A recent analysis of observational data in the light of a time dependent A
may be found in [203].)

To quantitatively describe this new degree of freedom (or a new form of mat-
ter), some phenomenological models of a dynamical A-term have to be intro-
duced. The word “phenomenological” means that no attempt to derive these
models from an underlying quantum field theory is being made, in contrast to
examples discussed in previous sections. Historically, many phenomenological
A-models were proposed since 1986 (not counting the “C-field” of Hoyle and
Narlikar (1962) which was perhaps the earliest, though unsuccessful, attempt
to introduce a dynamical A-term in cosmology). Depending upon their level
of “fundamentality”, these phenomenological methods may be classified into
3 main groups:

1) Kinematic models.
Here A is simply assumed to be a function of either the cosmic time ¢ or the
scale factor a(t) of the FRW cosmological model.

2) Hydrodynamic models.
Here a A-term is described by a barotropic fluid with some equation of state
pa(pa) (dissipative terms may also be present).
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3) Field-theoretic models.
The A-term is assumed to be a new physical classical field (which we shall call
a lambda-field) with some phenomenological Lagrangian.

Of course, models from the last group are in a sense also the most fundamental.
In particular, they may be used in a non-FRW setting. Additionally, their
quantization is straightforward. However, if we restrict ourselves to a FRW
model with small perturbations, the three different way of describing a A-
term could lead to converging results. Note also, that it was recently proposed
to call a dynamical A-term “quintessence” [24] (irrespective of the specifities
of modelling, so this notion is wider than the notion of a lambda-field), though
we don’t consider it to be obligatory.

In the case of field-theoretic models, the most simple and natural is the model
of a scalar field ¢ with some self-interaction potential V'(¢), minimal coupling
to gravity and no (or very weak) coupling to other known physical fields. The
latter requirement follows not only from simplicity, but also from observational
evidence (see [27] for a recent analysis of upper bounds on coupling of ¢ to
the electromagnetic field). The assumption of minimal coupling to gravity
may be relaxed, but only slightly (see [33] for constraints on the coefficient
¢ in case of the ER¢?/2 coupling). Since the minimally coupled scalar field
model has proven to be extremely successfuly in the case of the inflationary
scenario, one might be tempted to use it for the description of a A-term. As
a result, an overwelming part of recent theoretical activity has focussed on
the scalar field model (more appropriately, on this class of models differing
between themselves by the form of the scalar field potential V(¢)).

8.2. When may a A-term be described by a minimally coupled scalar field?

Now let us consider the following important question: can a A-term always be
described by a minimally coupled scalar field, for any observed behaviour of
a(t) or H(a) ? To answer this question let us first consider the equations of
motion describing a FRW universe with matter (dust) p,, and a scalar field ¢

H? = 88(p, + £ 4+ V), p, = 3288(2)3, (96)
¢+3He+ %5 =0,
H = —47G(pm + ¢2). (97)

The clue to whether a A-term can be successfully described by a minimally
coupled field is provided by the background equation for H which we rewrite
in the following form changing the independent variable from ¢ to a (k =0 is
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assumed):

oo (B’ dH 3. ., [ap\?
ArGa’H (da) = —aH — 20, H} (a) , (98)
where ag is the present value of the FRW scale factor a(t) and €2, includes
all dust-like matter at present (CDM, baryons, sufficiently massive neutrinos,
etc.). Since the left-hand side of Eq. (98) is always non-negative therefore so is
the right-hand side. From this follows a fundamental restriction on the expan-
sion law for the Universe, which we write in terms of the following inequality
on the redshift dependence of the Hubble parameter H(z), 1+ z = ap/a:

dH?

—— > 30 H(142) . (99)
dz

Actually, Eq. (99) is nothing more than the weak energy condition for a
lambda-field: py 4+ py > 0.

This inequality saturates in the case of a constant A-term (a cosmological
constant). Equation (99) constitutes the necessary condition for an arbitrary
H(z) dependence to be physically described by a minimally coupled scalar field
(in the absence of spatial curvature). It will be shown below that Eq. (99) is
also a sufficient condition, since a knowledge of H(z) and (2, permits a unique
reconstruction of the self-interaction potential V' (¢) of this scalar lambda-field
(see section 8.4). Taken at z = 0, Eq. (99) reduces to the following relation
between the acceleration parameter ¢o and €2,,:

3
(Jo§§§2m—1 : (100)

It should be emphasized that we have no idea at present whether or not Eqs.
(99,100) are fulfilled. Only future observations will tell us that. Moreover, as
was explained in previous sections, a constant A-term fits existing data very
well. Thus, we know already that the inequalities (99,100) are close to satu-
ration. So, it will be not an easy observational task. In this case, the presence
of even a small spatial curvature may dramatically change our conclusions.

In the case of non-zero spatial curvature (k # 0), Eq. (99) generalizes to:

dH? 2
2 30, Hi(1+2) - a—'; (1+2) . (101)
0

Therefore, if future data show that the inequality (99) is not valid, one has
either to invoke a positive spatial curvature for the Universe (k = 1), or else
to discard this model entirely and to consider a more complicated model of a
A-term, modelled by, say, a scalar-field non-minimally coupled to gravity. It
is easy to verify that in the case of £R¢?/2 coupling, no necessary conditions
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such as (99) or (101) appear. However, as was mentioned above, this type of
coupling is strongly restricted by observational data [33].

An interesting example of dissipationless decay of a lambda-field is provided
by Peebles and Ratra (1988) who consider a minimally coupled scalar field
rolling down a potential

V(o) = k/9%,
subject to the equation of motion
; . dv
¢+3H¢+%:0 (102)

(k and « are constants, we set Mp = 1 for simplicity). Let us assume that the
energy density of the scalar field

1, k
po =58+ (103)

is subdominant at early epochs (as demanded by CMB and nucleosynthesis
constraints) so that p, < pp at z > 1, where pg is the density of background
matter driving the expansion of the universe. Assuming a general expansion
law for the universe a(t) o ¢ the field equation of motion (102) becomes

6+ - =0 (104)

which has the solution
P, = . 105
¢ =51, (105)

Substituting ¢ in (103) we find p, oc P72, as a result if p > 0 the scalar field
density pys decreases more slowly than the background density of matter or
radiation which decreases as pg o t~2. Consequently we find

Pé  t3ta (106)

PB
i.e. for a > 0 the scalar field density can dominate the matter/radiation
density at late times even if it was subdominant to begin with [163,155]. (This
attractive property of scalar fields is occasionally referred to as ‘quintessence’.)
The rate of growth of py/ppm, can be modulated by ‘tuning’ the value of c.
Another way of arriving at this conclusion is to examine the equation of state
of the scalar field while the latter is subdominant, this turns out to be

awg — 2
Wy = ———— 107

¢ o+ 2 (107)
where wp is the background equation of state. From (107) we find wy < wg
i.e. the equation of state of the scalar field is less stiff than that of matter
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driving expansion. The conservation condition p(s gy ox a=3'*@.»)] now guar-
antees that the scalar field will come to dominate the expansion dynamics of
the universe even if it was initially subdominant. As a result pgs can be signif-
icantly small during the radiation dominated epoch to satisfy nucleosynthesis
constraints yet be large enough today to give rise to an accelerating universe
in agreement with recent supernovae results. (Once p; begins to dominate
the energy density, the universe enters into a period of accelerated expansion
driven by the scalar field energy density which begins to mimic an effective
A-term.)

A different possibility arises if we consider a scalar field rolling down an ex-
ponential potential

V(¢) = Voexp (—Ap/Mp).

In the case of a flat universe, the scalar field density scales exactly like the
background density of matter driving the expansion of the universe so that the
ratio of the scalar field density to the total matter density rapidly approaches
a constant value [163,63,64]

P N 3(1 + wB)
on+ e 2 (108)

(wp = 0, 1/3 respectively for dust, radiation). This ‘tracker-like’ quality
whereby the scalar field contributes the same fixed amount to the total matter
density allows it to play the role of a form of dark matter. However strong
constraints on this model come from cosmological nucleosynthesis which sug-
gests Q ~ £¢ < 0.2. ' As a result the scalar field in these models is forever
destined to remain subdominant, it can neither dominate the matter density
of the universe nor give rise to its accelerated expansion rate.

A potential which interpolates between an exponential and a power law is
V(¢) = Vp[cosh A\p — 1]. (109)

Since V(@) ox exp Ag, for A¢ > 1, we would expect this potential to reproduce
features of the exponential potential discussed earlier. As a result p,/pp =~
constant and wy >~ wag, if the scalar field commences rolling from a large initial
value. As the scalar field rolls down towards smaller values, the potential begins
to resemble the Inflationary ‘chaotic’ form V(@) oc A?¢?, leading to late-time
Inflation during which w, ~ —1. Finally oscillations of the scalar field give
rise to a ‘dust-like’ phase during which wg ~ 0.

14 In a spatially closed universe the presence of an exponential potential can give rise to an
intermediate ‘coasting’ epoch during which a(t) = at, where a < 1. Such a universe bears
great similarity to loitering models considered earlier, density perturbations grow faster
during ‘coasting’ and the ‘age problem’ too can be resolved [169].
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An unusual potential with interesting features was proposed in [215]
V(g) = VoleMr/? —1]. (110)

However, the requirement that €2y < 1 during the matter dominated epoch,
while €24 ~ 1 nowadays, is fulfilled for this potential only if the present value
of ¢ is significantly larger than Mp;. Thus, for practical applications in the
present universe, this potential shows little difference from the inverse-power-
law potential V oc ¢

A useful property of potentials (102), (109) & (110) is that they significantly
alleviate the fine tuning problem associated with generating a small cosmolog-
ical term at precisely the present epoch. As a result, py can come to dominate
the current cosmological density from a fairly general class of initial conditions.
A phase space analysis of scalar field models was carried out in [163,63,64,125]
where it was shown that both exponential and negative power-law potentials
display appealing attractor-like qualities. However, despite the many attrac-
tive features of ‘quintessence’ models a degree of fine tuning does remain in
fixing the parameters of the potential and has been commented on in [125,118].

It is worth pointing out in this context that the energy density of relic gravity
waves created during Inflation (p,) behaves like a tracker field since p,/pp =~
constant, if the expansion factor grows exponentially during Inflation [2]. For
more realistic situations in which the inflaton field rolls down its potential
slowly the ratio p,/pp increases with time with the result that the graviton
energy density may become comparable to pg at very late times provided
Inflation commenced at the Planck epoch [168]. COBE measurements of the
large angle anisotropy of the cosmic microwave background (CMB) however
ensure that the gravity wave contribution to the total matter density is neg-
ligibly small today: ©, < 1072 [178]. However the intriguing possibility that
quanta of a different type of fundamental field (the dilaton perhaps) may come
to dominate the energy density of the universe without necessarily violating
CMB bounds remains to be investigated.

Some cosmological consequences of scalar field models and models with a
decaying cosmological term have been analyzed in [155,75,140,177,36,69,70,23]
[24,202,98,34,96,77,156,201,203]. Candidates for quintessence based on high
energy physics and string theory are discussed in [35,118] and non-minimal
scalar field models are treated in [74,33].

Phenomenological A models usually belong to the general category of models
in which matter either violates or marginally satisfies the strong energy con-
dition (SEC) p+ 3P > 0. Scalar fields driving inflation as well as the models
discussed earlier in this section furnish examples of matter which can violate
the SEC. Other examples of such ‘strange’ or ‘exotic’ forms of matter include
cosmic strings and domain walls. The field configuration within a string is in
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Table 1
Summary of phenomenological A models. Here a is the scale factor, H the Hubble
parameter, T the temperature, ¢ the cosmic time (A, B, a are constants).

Evolutionary relation for A(f) Reference

A o t™2 [59,25,16,15,13,133,147]
Aot [14,103,104]

A x A+ Bexp(—at) [14,181]

A xa? [133,148,149,1,199,32,79,116]
Axa® [143,151,169,135,138,176,177] [93,102,147,193,23,24,202,96,77]
A x exp (—aa) [162]

Ao T® [25,107]

A < H? [127,207,208,63,42]

Ao H? + Aa™© [3,28,172,200]

A o f(H) [128,129]

A o g(A, H) [89,164]

the false vacuum state leading to P = —p along the string length. A network
of random non-intercommuting strings therefore possesses the average equa-
tion of state P = —p/3 which marginally satisfies the SEC [197]. The mean
energy density of a string network dominated by straight strings decays as
p o< a~? leading to the linear expansion law a o< ¢ [197,79]. Similarly P = —p
is satisfied along any two orthogonal directions within a domain wall leading
to P = —2p/3 for a network of walls [197,180] and resulting in ‘mild’ Infla-
tion p oc a7, a oc t2. The presence of tangled strings and/or domain walls
can be tested by measurements sensitive to the expansion dynamics of the
universe. For instance recent supernovae results strongly suggest w < — 2/3
which severely constraints the string network for which w ~ —1/3. Thus it
appears that a tangled network of strings is ruled out by current observations
(see section 4.3).

A brief summary of some models with a decaying cosmological term is given in
Table 1 (adapted from [147]), we should stress that most of these models are
phenomenological and are therefore not necessarily backed by strong physical
arguments.

Finally one should mention another phenomenological approach tied to the
possibility of a cosmological term decaying and transferring its energy into

54



particles and/or radiation [148,68]. Observationally such an approach can,
in principle, be tested: in the case of dissipative, baryon number conserving
decay of a A-term into baryons and antibaryons, the subsequent annihilation of
matter and antimatter would result in a homogeneous gamma-ray flux which
could be constrained by observations of the diffuse gamma-ray background in
the Universe [68,138]. A decay of the cosmological term directly into radiation
could be probed by cosmic microwave background anisotropies, cosmological
nucleosynthesis etc. [68,174,17,146,138,151,176,177].

8.3. Relation between kinematic and dynamical descriptions of A

As pointed out in the previous section, although kinematic and dynamical
models of A lie on completely different levels of fundamentality from the the-
oretical point of view, they may be equivalent if a background space-time
is described by a FRW model. In particular, the simplest class of kinematic
models

A =81Gpp = f(a) (111)

is then equivalent to hydrodynamic models based on an ideal fluid with the

equation of state

1 dlnpy

Palpa) = —pa =37

(with a being excluded from Eq. (112) using Eq. (111)).

(112)

Let us go further and present the correspondence between a popular subclass
of these models where A oc a=® (or, equivalently, py = (% — 1) pa) and field-
theoretical models for a minimally coupled lambda-field following [187] where
the particular case a = 2 (i.e. the A-term mimicking temporal behaviour of
spatial curvature or non-relativistic cosmic strings) was considered. This gives
an explicit example of the reconstruction of a lambda-field potential from
H(a). Now k = 0 is assumed for simplicity, and we take 0 < o < 3. The left
inequality is necessary for the condition (99) to be satisfied, while the right
inequality guarantees that py, < p,,, during the matter-dominated stage while
z > 1 (in addition, this condition makes p, negative). In this case, the Hubble
parameter H(a) is given by

Using the 0 — 0 background Einstein equation and Eq. (98), the lambda-field
potential V(¢) can be expressed in terms of H(a):

H 3
81V ($) = aHa;—a 4 3H? - ;QmHOQ (%) (114)
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which reduces to

a

V= 387TG H}(1—-9Q,) <;>a (115)

for the case under consideration.

Now Eq. (98) may be integrated for the given H(a) dependence to obtain

Q.2 G
ago = 1= 0 sinh3-« ((3 — oz)\/ 2% (¢ — o + ¢1)) (116)

where ¢, is the present value of the lambda-field and

exp ((3 - a)\/?gbl) = (1 S—)ﬂi)m)’i_Ta +\ll + (1 ;237”)3_& . (117)

Finally, combining Eqs. (115, 116) we get an explicit expression for the inter-
action potential:

V(o) = G %)gréagg)HaHg sinh 3-a ((3 —a)y/ ? (¢ — do + ¢1)) .
(118)

At early times during the matter-dominated stage, this potential is an inverse
power-law (V(¢) o (¢ — ¢o + ¢1)_3‘2‘_a°‘) (we do not consider here what happens
with V' (¢) even earlier, during the radiation-dominated stage). While during
the current, A-dominated epoch, it changes its form to an exponential. This
shows why the assumptions of a purely power-law dependence of A on a or,
equivalently, of a linear equation of state px = wapa, wa = const are not
“natural”: they require fine-tuning between the present value of the lambda-
field ¢y and the value of ¢ where the potential changes its form. On the other
hand, neither can this possibility be ruled out completely.

In addition, this example of reconstruction of V' (¢) shows that, in field-theoretic
models of A based on a minimally coupled scalar field, there is no lower limit
on the present value of wy other than —1 (which follows from the weak en-
ergy condition (99)). The opposite statement in [215,188] is a consequence of
a number of additional assumptions (equipartition of energy densities of all
fields including the lambda-field at the end of inflation, use of a subclass of
possible initial contitions whose solutions for ¢ have reached an intermediate
asymptote which they call the “tracker” solution by the present time, consid-
eration of some special classes of potentials), none of which is obligatory. In
particular, a “tracker” solution may have w, arbitrarily close to —1 at present,
if an inverse power-law potential with a small exponent is used.
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8.4. Reconstructing the effective potential V (¢) for a time-dependent A-term.

In view of the large number of models capable of predicting a small cosmolog-
ical constant at the present epoch, it is necessary to ask whether cosmological
observations themselves may be used to determine model parameters uniquely.
The answer to this question is (fortunately) in the affirmative, at least for the
class of minimally coupled scalar field models discussed earlier. This is easily
demonstrated by considering Equations (114) and (98) which express V()
and ¢ in terms of the Hubble parameter H and its first derivative dH/dz.
Consequently one can determine the form of the potential V' (2) (mimicking
the A-term) if the Hubble parameter H(z) is known from observations. There
are two independent methods for determining H (z). The first is related to the
luminosity distance dy,, discussed in section 4.2 [186,101]. From (28) we easily
find

d dL(Z)

HE@ =105

. (119)

Thus the luminosity distance dy,(z) determines the Hubble parameter H(z)
uniquely ! Now (98,114) can be used to reconstruct the form of the potential
V(z) (or V(¢)) and the equation of state w,(2) in a model independent man-
ner. (However, what is required for an unambiguous determination of V()
is the present matter density €2,,[186].) Formula (119) can also be used for
an unambiguous determination of H(z) from the angular-size distance d4(z)
introduced in section 4.5, if we use the relation da(z) = dr(1 + 2z) 2 [187].

Another means of determining H(z) is associated with the growth of lin-
ear density fluctuations responsible for the formation of large scale struc-
ture [185,186]. The growth of linearized perturbations in a collisionless medium
has the well known form

6+ 2H6 — 4nGpmd =0 (120)

where the value of H is determined from (97). (On scales < 200h~! Mpc the
A-field is practically unclustered and can be treated as a smooth component if
im3| = |d*V/d¢?| < H). Although it is not possible to solve (120) analytically
for an arbitrary potential V' (¢), the inverse problem of determining H once ¢
is known is exactly solvable ! We demonstrate this by first performing a change
of variables t — a, d/dt — aHd/da which reduces (120) to a first order linear
differential equation for H?:

2 2 2
( da? da

a”o AON 1r2 _ 2/%0,3
2 +3a )H 300 H3 (2%, (121)
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Equation (121) has the exact solution

3Q0H2a3 (d5\ 2 [ _do (1+2)* 7 3%
2 _ Dhodlgly (a0 ds, )
H” = P (da) /aédada 30 H; 52 J 1+Zdz, (122)

where ¢’ = dd/dz. Setting z = 0 in this expression, we arrive at a very inter-
esting relationship between g and §(z):

Qo = 67(0) (3 f o8] d;;)_l (123)
o / 142 '

Substituting this relationship in (122) we finally obtain

2

(142)% [ 8|0
672(z) S 142

(1 + 2)26"(0)

52(2) — 38

dz

H(z) = H(0) [ (124)

Clearly knowing § and ¢’ we can determine H(z) and hence V(z). For very
large z, z > 1, observational difficulties make it unlikely that ¢ will be known
to great accuracy, at least in the near future. However in this regime the flat
matter dominated solution § o (1 + z) ! provides a very good approximation
since €2,, — 1 for z > 1.

It should be pointed out that the above method of reconstructing the A-term
potential from observations is complementary to that used to reconstruct the
inflaton potential [126]. Whereas the luminosity distance dy, or the growth rate
of the linearized density contrast §(z) can be used to reconstruct V(¢), the
inflaton potential is reconstructed on the basis of the primordial amplitude
and spectrum of relic density perturbations and gravity waves created during
inflation (also see [141]).

9. Universality of A and anthropic arguments for its small value.

In this, the final section of our review, we must ask the following question: do
we expect the present value of A to be fundamental (= defined by the param-
eters of a physical theory) or accidental (= determined by initial conditions in
the early Universe)? At present, we have no answer to this question. Models
for A considered in previous sections admit both possibilities. For instance, in
the class of minimally-coupled lambda-field models with an inverse power-law
potential, the present value of A is fundamental (= defined by the parameters
of V(¢) only) if “initially” (at the end of inflation or at a later moment when
the lambda-field becomes a separate degree of freedom of matter) ¢ was suf-
ficiently small, so that the corresponding solution for ¢(¢) had time to reach
a future attractor (the “tracker” solution of [215,188]) by the present epoch.
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On the other hand, if the initial value ¢;, is large, then the present value
0o = ¢in, and the current value of the A-term is accidental. Note that in the
latter case A is practically time independent now. Such a large value of ¢,
may, for instance, be generated during an early inflationary stage, in which
case stochastic methods [182,183,196] may be used to derive probability distri-
butions for ¢;, and A. As a byproduct of such a mechanism, small quasi-static
inhomogeneous perturbations of A will also be generated. !°

If A is accidental, then a wide range of “explanations” for its currently (small)
value can be given, based on the most reliable form of the anthropic principle
- the weak anthropic principle. However, even if A is fundamental and can be
expressed through other microphysical constants, one may still try to use a
more controversial form of this principle - the strong anthropic principle. °

An anthropic argument for A > 0 has been suggested by Banks (1985) and
Weinberg (1987), who felt that the extraordinary difference between likely
values of the vacuum energy pa ~ pm ~ 10°2g/cm® and the expected value
(from a consideration of Planck scale physics) pp ~ 1093g/cm3 could only
be understood through anthropic arguments, since, in the absence of a fun-
damental symmetry which set the value of A to precisely zero, it would be
extremely fortuitous if particle physics determined a value for p, which was
comparable to the matter density at this precise moment in the history of the
universe. The case for the anthropic principle as a viable means for understand-
ing properties of the universe has received a strong measure of support from
recent developments in inflationary cosmology. A self-consistent treatment of
quantum effects in inflationary models has shown that the entire universe may
consist of an ensemble of sub-universes (separated from each other by particle
horizons) having ‘all possible types of vacuum states and all possible types
of compactification’ of extra space-time dimensions [131]. According to this
picture our observable universe is but one of an infinite number of universes
each having its own set of conserved quantities and dimensions. Since in each

15 Previous discussions involving quantum cosmology also held the possibility that the
value of A is not determined uniquely. For instance Hawking (1984) showed that the wave
function for the universe could contain a superposition of terms with different values for the
cosmological constant. Investigating the effect of wormholes on quantum gravity, Coleman
(1988a,b) subsequently showed that coupling constants whose values were not fixed by
symmetries in the Lagrangian could take on all possible values in the superposition of
terms describing the state vector in quantum cosmology.

16 The weak anthropic principle in the narrow sense states that our location in space and
time should be such that it admits the existence of intelligent life. An extension of this
principle is that initial conditions allow the existence of such a region in space-time. On
the other hand the strong anthropic principle states that laws of nature should permit the
existence of intelligent life. It may be noted that the border between these two versions of
the anthropic principle is not absolutely rigid. Namely, by generalizing a physical theory
(say, the electroweak model) with fixed constants into a more general theory where these
constants may have arbitrary values depending upon initial conditions, we make a step from
the strong to the weak anthropic principle (also see [11]).
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sub-universe physical fields determining the value of A have distinct values it
is reasonable to expect that the value of A varies from one sub-universe to
another.

Weinberg (1987) showed that large values of A were unlikely to be ‘observed’
since the presence of observers demanded the existence of galaxies and galaxy
formation was strongly suppressed if the energy in the cosmological constant
greatly exceeded the matter density (also see [55,198]). Martel, Shapiro &
Weinberg (1998) have suggested that the probability that observers living in
a given sub-universe will measure a value p, for the ‘vacuum energy’ be given
by the expression (o)
F(pa
PN = T P oo (129
where F'(py) is the fraction of matter in galaxies in a sub-universe with vac-
uum energy py = A/87G [137]. The value of F(p,) is calculated assuming
Gaussian initial fluctuations at recombination, with a COBE-normalized cold
dark matter spectrum with a cosmological constant (ACDM). The require-
ment that the observed value 2, , in our sub-universe equal the statistical
mean or median evaluated over all sub-universes (i.e. €, = (Q24), where
Qa = A/3H?) gives a value which peaks in the region Q4. ~ 0.6 — 0.9 for
a broad region of parameter space and assuming fairly reasonable conditions
for galaxy formation [137]. Thus small observed values of 2, appear to be
strongly disfavoured by the anthropic argument !

10. Summary and Discussion

In the absence of a symmetry in Nature which would set the value of the
cosmological constant to precisely zero, one is forced to either set A = 0 by
hand, or else look for mechanisms that can generate A = Ay > 0, where
Agps ~ 1072°g cm™3 is the value of the A-term inferred from recent supernovae
observations. We have discussed several mechanisms which could, in princi-
ple, give rise either to a time independent cosmological constant, or else a time
dependent A-term. To the former category primarily belong models which as-
sociate A with a property of the vacuum such as the vacuum energy associated
with symmetry breaking, or vacuum polarization and particle production ef-
fects in curved space-time. Mechanisms predicting a time dependent A take
their cue from Inflation and generate a time varying A out of scalar fields
rolling down a potential. Models with a fixed A run into fine-tuning problems
since the ratio of the energy density in A to that of matter/radiation must be
tuned to better than one part in 10°° during the early universe in order that
A/8TG =~ ppatter today. Scalar field models considerably alleviate this prob-
lem though some fine-tuning does remain in determining the ‘correct choice’
of parameters in the scalar field potential.
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It has been known for several years that the flat FRW ACDM cosmological
model with an approximately flat spectrum of initial adiabatic perturbations
fits observational data better and has a larger admissible region of parame-
ters (Hg, ;) than any other cosmological model with both inflationary and
non-inflationary initial conditions (see, e.g., [113,114,144,184,5]). For instance
according to a typical expert opinion made several years ago “for Hy > 60
kms~! Mpc™!, this model is probably the only feasable model” [184]). Now,
with new data on high redshift type Ia supernovae becoming available, we
are closer than ever to concluding that this is the right cosmological model
(at least to a first approximation) even if Hy < 60. Moreover, using type la
supernovae data and with improved data on gravitational clustering at high
redshifts soon expected, we may progress further and investigate whether A
depends weakly on time.

Turning to the observational situation, constraints on the cosmic equation of
state arise from observations at: low redshifts (age of universe, cluster abun-
dances, baryon fraction, velocity fields, etc.), intermediate redshifts (ages of
distant galaxies & QSO’s, angular size vs. redshift, gravitational lensing, Type
la supernovae, the Lyman « forest etc.) and high redshifts (cosmic microwave
background). Each set of observations has its own systematic errors and al-
though considerable progress has been made in trying to understand system-
atics it is safe to say that at any given time at least one set of observations is
likely to be well off the mark !

Of the low redshift tests, the age of the universe, cluster abundances and
baryon fraction all appear to favour a low density universe, with ,, < 0.3
in clustered matter. A tone of dissonance is however provided by recent ob-
servations of the angular size of compact radio sources which seem to suggest
a critical density matter dominated universe, although evolutionary effects
clearly need to be better understood before a strong case for €2, ~ 1 is made
based on these results alone.

The strongest support for an accelerating universe comes from intermediate
redshift results for Type 1la supernovae. At the time of writing close to a hun-
dred supernovae have been analyzed by two teams: The Supernova Cosmology
Project and the High-Z Supernova Search Team, both teams getting mutually
consistent results for {€,,, Q4 }. It should be pointed out that the supernovae
results do not by themselves pick out a flat universe from other possibilities;
a cursory look at fig. (6) shows that a closed universe with Q,, + Q, > 1
appears preferred although a flat universe is also accommodated by current
observations. However the combined likelihood analysis of Snla + CMB ob-
servations strongly supports a flat universe with €2, + 4 ~ 1, primarily due
to the presence of a Doppler peak in the CMB data at intermediate angular
scales @ ~ 1°. Thus although observations do seem to suggest that the uni-
verse may be spatially flat with a large fraction of its density in the form of a
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cosmological A-term, it may be premature to rule out, on the basis of current
data alone, models that are spatially open or even matter dominated and flat.

Great progress is however expected on the observational front in the coming
5 - 10 years. Conservative estimates suggest that one should expect over ~ 50
new Type la events to be added to the supernovae inventory every year (in-
cluding several at significantly higher redshifts than z ~ 1). Thus by the time
of the launch of the MAP and PLANCK satellites (during 2001 & 2007 respec-
tively) one would expect our understanding of supernovae related parameter
estimation to have improved by over an order of magnitude. Since both MAP
and PLANCK missions are expected to pinpoint the location and amplitude
of the first Doppler peak at the level of a few percent accuracy, they should
provide a decisive answer to the question of whether or not we live in a critical
density universe. The definitive answer to the question of whether the universe
is flat and accelerating may therefore have to wait just a few more years !
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