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ABSTRACT

Cosmic structure has formed as a result of gravitational amplification of pri-
mordial density fluctuations together with the action of other physical processes
(adiabatic gas dynamics, radiative cooling, photoionization and recombination,
radiative transfer). These complex nonlinear processes, acting over a wide range
of length scales (from kiloparsecs to tens of megaparsecs), make this a difficult
problem for computation. During the last two decades, significant progress has
been made in developing numerical methods and statistical tools for analyzing
simulations and data. Combined with observational advances, numerical sim-
ulations have led to the demise of several formerly popular models and to an
improved understanding of galaxy clusters, quasistellar object (QSO) absorption
line systems, and other phenomena. This review summarizes these advances.

1. INTRODUCTION

During the past twenty years, numerical simulations of cosmic structure for-
mation have become a powerful theoretical tool to accompany, interpret, and
sometimes to lead cosmological observations. Simulations bridge the gap that
often exists between basic theory and observation. They have found many
uses, including testing and calibrating methods used to measure cosmologi-
cal parameters, providing insight into nonlinear gravitational clustering and
hydrodynamic turbulence, helping to explain the nature of systems such as
quasistellar object (QSO) absorption lines, and highlighting shortcomings in
the current physical modeling of galaxy formation. However, their main use
has been and continues to be testing the viability of cosmological models
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of structure formation, such as the cold dark matter (CDM) model and its
variants.

Structure formation models attempt to reduce cosmology to an initial value
problem. Given the initial conditions—a background cosmological model with
specified composition of matter, radiation, and exotic fields, such as a cos-
mological constant, and primordial fluctuations in the matter, radiation, and
spacetime geometry—the goal is to compute using well-known laws of physics
the evolution of structure from the Big Bang to the present day. At any useful
level of abstraction, the Universe is an exceedingly complex system, hence
analytic theory has only a limited (but nonetheless valuable) place in cosmic
structure formation.

The current generation of cosmological simulations has antecedents that date
back several decades. The first gravitationalN-body simulation of interacting
galaxies was performed using an analog optical computer (Holmberg 1941):
Gravity was represented by the flux from 37 lightbulbs, with photocells and
galvanometers used to measure and display the inverse square law force. The
first astronomicalN-body computations using digital computers were made in
the early 1960s (von Hoerner 1960, 1963, Aarseth 1963). These early simula-
tions were limited to at most about 100 particles. Gas dynamical simulations of
galaxy formation began with the pioneering spherically symmetric calculations
of Larson (1969). Increasingly large simulations of cluster collapse and evolu-
tion were performed throughout the 1970s (e.g. Peebles 1970, White 1976).

The first truly cosmological simulations of structure formation were the
N-body integrations of Press & Schechter (1974) in their influential paper on
the mass distribution of bound clumps formed by hierarchical clustering. At
almost the same time, smaller simulations of cosmological clustering were per-
formed by Haggerty & Janin (1974). This work was followed by numerous
studies of the evolution of the two-point correlation function, a measure of
galaxy clustering (Miyoshi & Kihara 1975, Groth & Peebles 1976, Fall 1978,
Aarseth et al 1979, Efstathiou 1979, Gott et al 1979). Early work on galaxy
formation was reviewed by Gott (1977).

The early 1980s saw several important developments leading to an explosion
of activity in simulations of cosmic structure formation:

1. Plausible physical models for dark matter had been proposed (Cowsik &
McClelland 1972, Lee & Weinberg 1977, Bond et al 1980), including mas-
sive neutrinos (also known as hot dark matter or HDM) and cold dark matter
(CDM; see Trimble 1987 for a review of dark matter).

2. Cosmic inflation (Guth 1981) was shown to produce naturally the scale-
invariant Harrison-Zel’dovich spectrum (Harrison 1970, Zel’dovich 1972)
of primordial fluctuations in matter and radiation (Guth & Pi 1985 and
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references therein). InÄ= 1 (critical density) models, the initial conditions
were thus reduced to specification of one number (the fluctuation amplitude)
plus the composition of matter and radiation.

3. Accurate numerical computations were made of the evolution of density
fluctuations from their generation in the early Universe through recombina-
tion to the onset of nonlinear evolution (Peebles & Yu 1970, Bond & Szalay
1983).

3. The theory of Gaussian random fields was developed and applied to the
statistics of primordial density fields (Doroshkevich 1970, Bardeen et al
1986). Methods were developed to simulate Gaussian random fields with
arbitrary power spectra (Efstathiou et al 1985, Peacock & Heavens 1985),
using the Zel’dovich (1970) approximation to produce only the growing
mode (Doroshkevich et al 1980, Dekel 1982).

4. Grid-basedN-body algorithms were applied to cosmology, enabling dark
matter simulations with more than 105 particles to be performed (Section 2.1
below).

With all these developments occurring within a few years, there was great
optimism among many working in this area that cosmologists were on the verge
of understanding the formation of large-scale structure in the Universe. The
CDM model became the paradigm of this new understanding (Peebles 1982,
Blumenthal et al 1984, Davis et al 1985).

As interest in structure formation grew during the 1980s, increasingly so-
phisticated tests were made of the CDM model. Problems began to appear,
with the model seeming to show too little clustering on large (∼50 h−1 Mpc,
h=H0/100 km s−1 Mpc−1) scales compared with the real Universe when nor-
malized to produce the correct amplitude on galaxy and cluster scales (see
Ostriker 1993 for a review). The long sought after measurement of anisotropy
in the cosmic microwave background radiation (Smoot et al 1992) highlighted
and recast this problem: The CDM model has excessive power on small scales
when normalized to produce the measured microwave background anisotropy
(Efstathiou et al 1992). Although the optimism of the early 1980s waned, it
was replaced by an appreciation that structure formation is a richer problem that
needs the incorporation of much more physics into cosmological simulations,
especially of gas dynamics for the ordinary (“baryonic”) matter that is all we
can see directly.

With the demise of the simplest detailed model of structure formation, atten-
tion has turned to variants that retain many of the attractive features of the CDM
model while attempting to repair its deficiencies. These include replacing some
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of the CDM with light massive neutrinos (i.e. with HDM) or a cosmological
constant; tilting the primordial spectrum; or including spatial curvature. An-
other class of models has the fluctuations seeded from topological defects like
cosmic strings or global textures (Brandenberger 1994, Vilenkin & Shellard
1994) instead of quantum fluctuations produced during inflation. Texture mod-
els now appear to be inconsistent with the measured anisotropy of the cosmic
microwave background (Pen et al 1997).

The last decade has seen an impressive growth not only in the size of cos-
mological simulations—hydrodynamic grids of 5123 with 16 million or more
particles tracing the dark matter are now almost common—but also in the
sophistication of the physics. Although baryons are thought to contribute any-
where from about 3–30% of the total mass in the Universe (depending on the
uncertain value ofÄ, the mean density of nonrelativistic matter in units of
the critical density), they are responsible for 100% of the light we see, and
they dominate the mass of the bulges and disks of galaxies. Cosmological
gas dynamics has now come into maturity with a variety of algorithms being
applied and compared with each other and with observations (e.g. Kang et al
1994).

This article reviews the techniques and results of cosmological structure for-
mation simulations since the early 1980s. For the purposes of this article,
cosmological simulations begin, by definition, with small-amplitude stochastic
fluctuations in an expanding universe generated at high redshift. No attempt
is made to review simulations of galaxies, galaxy groups, or clusters treated
in isolation without such initial conditions. Only a limited discussion space is
given to simulations of topological defects, computations of primary microwave
background anisotropy (see White et al 1994 and Bond 1996 for pedagogical
reviews), analytic and semianalytic models of galaxy formation (White 1996),
and simulations based on approximate quasilinear dynamics. While many simu-
lations have been devoted to large-scale structure, that subject has been reviewed
recently elsewhere (Dekel 1994, Strauss & Willick 1995, Efstathiou 1996) and
no attempt is made at a comprehensive summary here. Sections 2 and 3, sum-
marizing simulation and analysis methods, present technical matter of interest
primarily to experts. Others may wish to skip directly to Section 4.

As this article was prepared, a bibliography of approximately 900 refereed
articles relevant to cosmological simulations was compiled. This bibliography
is available on the World Wide Web in the Supplemental Materials Section of
the Annual Reviews site (http://www.AnnualReviews.org).

2. SIMULATION ALGORITHMS

Cosmological simulations incorporate a range of physics: gravitation, gas
dynamics (adiabatic or with radiative cooling and heating), chemistry, and
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radiative transfer. The first is obligatory and the rest are important, even nec-
essary, refinements. These computations are nearly always performed using
comoving spatial coordinates and periodic boundary conditions so that a fi-
nite, expanding volume is embedded in an appropriately perturbed background
spacetime.

2.1 Gravity Calculation and Dark Matter Evolution
Dark matter is represented in cosmological simulations by particles samp-
ling the phase space distribution. Particles are evolved forward in time using
Newton’s laws written in comoving coordinates (Peebles 1980):

dEx
dt
= 1

a
Ev, dEv

dt
+ H Ev = Eg, E∇ · Eg = −4πGa[ρ(Ex, t)− ρ̄(t)]. (1)

Herea(t) is the cosmic expansion factor (related to redshiftz by a−1= 1+ z),
H = d ln a/dt is the Hubble parameter,Ev is the peculiar velocity,ρ is the
mass density, ¯ρ is the spatial mean density, andE∇ = ∂/∂Ex is the gradient in
comoving coordinates. Note that the first pair of relationships in Equation 1 is
to be integrated for every dark matter particle by using the gravity field produced
by all matter (dark and baryonic) contributing toρ.

The time integration of particle trajectories is generally performed using a
second-order accurate leapfrog integration scheme requiring only one force
evaluation per timestep (Efstathiou et al 1985). While higher-order schemes
would provide more accurate trajectories with longer timesteps, they are rarely
used in cosmological simulations because of the costly requirement for cal-
culating and storing additional forces or their derivatives. Mass resolution is
generally considered more important than attempting to accurately follow indi-
vidual particle trajectories, especially because the latter are chaotic (Goodman
et al 1993 and references therein). The simulator aims to follow accurately the
motions of gravitationally bound concentrations of hundreds or more particles
while bearing in mind that the particles themselves are samples of the dark
matter phase space.

In practice, it is preferable to uses = ∫ a−2 dt as the time variable for
cosmologicalN-body integrations instead of proper time because the equations
of motion then simplify tod2Ex/ds2 = aEg, which allows a symplectic (phase
space–volume preserving) integrator forEx anddEx/ds (Quinn et al 1997). The
simple leapfrog integrator is symplectic when used with an appropriately chosen
timestep for these variables (Hut et al 1995). Another consideration is the use
of individual timesteps (Hernquist & Katz 1989), which can significantly speed
up highly clustered simulations if the force evaluation is not dominated by fixed
costs that are independent of particle number.

The art ofN-body simulation lies chiefly in the computational algorithm used
to obtain the gravitational force. The desired pair force is a softened inverse
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square law representing the force between two finite-size particles in order to
prevent the formation of unphysical tight binaries. Evaluating the forces by di-
rect summation over all particle pairs is prohibitive even with the largest parallel
supercomputers. ForN= 107, a typical number for present-day cosmological
simulations, a single force evaluation by direct summation would take several
hours on a 100-GFlops (1 GFlops= 109 floating point operations per second)
machine but only a few seconds by fast algorithms. For collisionalN-body sys-
tems like globular clusters, where greater accuracy is required, special-purpose
processors like the GRAPE series (Makino et al 1997 and references therein)
hold great promise. Recently a GRAPE-4 running at a sustained speed of 406
Gflops was used to simulate the formation of a single dark matter halo with high
precision (Fukushige & Makino 1997). Even in large-scale cosmological simu-
lations, when the force evaluation is separated into long-range and short-range
parts, the GRAPE processor can be used effectively to speed up the computation
of dense regions (Brieu et al 1995, Steinmetz 1996).

2.1.1 BARNES-HUT TREE ALGORITHM The hierarchical tree algorithm (Appel
1985, Barnes & Hut 1986) divides space recursively into a hierarchy of cells,
each containing one or more particles. If a cell of sizes and distanced (from
the point whereEg is to be computed) satisfiess/d < θ , the particles in this
cell are treated as one pseudoparticle located at the center of mass of the cell.
Computation is saved by replacing the set of particles by a low-order multipole
expansion due to the distribution of mass in the cell.

The tree algorithm has a number of important advantages (Hernquist 1987,
1988, Barnes & Hut 1989, Jernigan & Porter 1989). Foremost is its speed:
O(N log N) operations are required to compute all forces onN particles.
Force errors can be bounded and made small by choosingθ <1 and includ-
ing quadrupole and high-order moments to the inverse square law. It is also
relatively easy to implement, and Barnes & Hut (1989) made their code pub-
licly available, leading to its widespread use. Finally, the algorithm is fully
spatially adaptive—the hierarchical tree automatically refines resolution where
needed. One drawback is the relatively large amount of memory required, from
20N to 30N words forN particles (Hernquist 1987). Another complication is
that the tree algorithm, like direct summation itself, does not provide periodic
boundary conditions. However, this can be corrected using a procedure known
as Ewald (1921) summation, leading to a practical tree code for cosmological
applications (Bouchet & Hernquist 1988, Hernquist et al 1991).

Several groups have parallelized the tree algorithm (Hillis & Barnes 1987,
Makino & Hut 1989, Olson & Dorbrand 1994, Salmon & Warren 1994, Dubinski
1996, Governato et al 1997), enabling cosmological large-scale structure sim-
ulations to be performed with more than 16 million particles (Zurek et al 1994,
Brainerd et al 1996).
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2.1.2 PARTICLE-MESH ALGORITHM The particle-mesh (PM) method is based
on representing the gravitational potential on a Cartesian grid (with a total of
Ng grid points), used in solving Poisson’s equation on this grid. The develop-
ment of the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey 1965)
made possible a fast Poisson solver requiringO(Ng log Ng) operations (Miller
& Prendergast 1968, Hohl & Hockney 1969, Miller 1970). Periodic boundary
conditions are automatic, making this algorithm natural for cosmology, and its
simplicity has led to many independent implementations (in two dimensions
by Doroshkevich et al 1980, Melott 1983, and Bouchet et al 1985, and subse-
quently in three dimensions by Centrella & Melott 1983, Klypin & Shandarin
1983, Miller 1983, White et al 1983, Bouchet & Kandrup 1985, and many
others since). Hockney & Eastwood (1988) have written an excellent mono-
graph on the PM and particle-particle/particle-mesh (P3M) methods (the latter
is discussed in Section 2.1.3 below).

The PM algorithm has three steps. The mass density field is first computed
on a grid. Poisson’s equation is then solved for the gravity field (or the potential,
which is then differenced to give the gravity field). Finally, the gravity field on
the grid is interpolated back to the particles.

The first step is called mass assignment:ρ(Ex, t) is computed on the grid
from discrete particle positions and masses. The simplest method assigns each
particle to the nearest grid point (NGP), with no contribution of mass to any other
grid point. Unsurprisingly, this method produces rather large truncation errors
(Efstathiou et al 1985, Hockney & Eastwood 1988). The most commonly used
assignment scheme is Cloud-in-Cell (CIC), which uses multilinear interpolation
to the eight grid points defining the cubical mesh cell containing the particle.
This procedure effectively treats each particle as a uniform-density cubical
cloud. The sharp edges introduce force fluctuations, which can be reduced
by using a higher-order interpolation scheme (e.g. Triangular Shaped Cloud or
TSC, which uses the nearest 27 grid points). These discretization errors are
similar to aliasing errors that occur in image processing. They may be reduced
further using a suitable anti-aliasing filter (“Quiet PM” of Hockney & Eastwood
1988; see also Ferrell & Bertschinger 1994).

The heart of the PM algorithm is the Fourier space solution of the Poisson
equation for the gravitational potential:

φ̂(Ek, t) = −4πGa2 ρ̂(
Ek, t)
k2

. (2)

Hereρ̂ andφ̂ are the discrete Fourier transforms of the mass density and po-
tential, respectively. One may replace the inverse Laplacian operator−1/k2

by another multiplicative factor in Fourier space, optionally including an anti-
aliasing filter. The gravity field is then obtained by transforming the potential
back to the spatial domain and approximating the gradient by finite differences,
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or by multiplication byi Ek in the Fourier domain (with care taken when any
wave vector component reaches the Nyquist frequency). The latter method
requires twice as many FFTs but leads to slightly more accurate forces (Ferrell
& Bertschinger 1994).

The third step is to interpolate the gravity from the grid back to the particles.
The same interpolation scheme should be used here as in the first step (mass
assignment) to ensure that self-forces on particles vanish (Hockney & Eastwood
1988).

The PM method has the advantage of speed, requiringO(N)+O(Ng log Ng)

operations to evaluate the forces on all particles. For typical grid sizes (with
twice as many grid points as particles in each dimension), it requires less mem-
ory and is faster per timestep than the tree algorithm. However, the forces
approximate the inverse square law poorly for pair separations less than sev-
eral grid spacings. Each particle has an effective diameter of about two grid
spacings and a nonspherical shape (particle isotropy can be improved with an
anti-aliasing filter at the expense of a larger particle diameter). Also, obtaining
isolated instead of periodic boundary conditions (desirable for simulations of
galaxies and galaxy groups, if not for cosmology) requires a factor of 8 increase
in storage in three dimensions (Hohl & Hockney 1969), unless the complicated
method of James (1977) is implemented. For high-resolution studies of galaxy
dynamics, the tree code is generally considered much superior. PM codes are
widely used for large-scale cosmological simulations. The PM algorithm has
been parallelized by Ferrell & Bertschinger (1994).

2.1.3 P3M AND ADAPTIVE P3M The primary drawback of the particle-mesh
method is that its force resolution (effectively, the particle size) is limited by
the spatial grid. This limitation can be removed by supplementing the forces
with a direct sum over pairs separated by less than two or three grid spacings,
resulting in the particle-particle/particle-mesh (P3M) algorithm. This hybrid
algorithm, first developed for plasma physics by Hockney et al (1974), was ap-
plied in cosmology by Efstathiou & Eastwood (1981). It is described in detail
by Hockney & Eastwood (1988) and Efstathiou et al (1985), and it was used
extensively by the latter authors in a series of articles beginning with Davis et al
(1985). Cosmological P3M codes have also been developed by Bertschinger &
Gelb (1991), Martel (1991), and others.

The P3M method readily achieves high accuracy forces through the combina-
tion of mesh-based and direct summation forces. The mesh may be regarded as
simply a convenience for providing periodic boundary conditions and removing
much of the burden of computation from the direct pair summation. However,
when clustering becomes strong, as occurs inevitably on small scales in realis-
tic, high-resolution cosmological simulations, the cost of the direct summation
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dominates, severely degrading the performance of P3M. One solution is to re-
place the direct summation by a tree code (Xu 1995) or fast hardware (Brieu
et al 1995, Fukushige et al 1996).

In his mesh-refined P3M algorithm, Couchman (1991) presented an elegant
solution to the bottleneck of strong clustering. Subgrids are placed over regions
of high density to shift some of the burden of force evaluation away from
pair summation and over to a subgrid PM calculation with isolated boundary
conditions. Pair summation is still done, but only for pairs whose separation is
less than two to three spacings of the subgrid mesh, resulting in a substantial
reduction. Multiple levels of grid refinement may be used to further reduce
pair summation in dense regions. The philosophy of this method is to compute
the exact desired pair force, to within a fraction of a percent accuracy for
(almost) every pair, by using the combination of mesh-based PM and pair
summation that gives the optimal performance. Because the pair summation
no longer dominates as it does in P3M, the force computation of this new,
adaptive P3M scales asO(N log N), similar to a tree code but with a somewhat
smaller coefficient (Bertschinger & Gelb 1991, Couchman 1991). An example
of the refinement grids used for a strongly clustered simulation is shown in
Figure 1.

The P3M algorithm has been parallelized by Ferrell & Bertschinger (1994,
1995), by Theuns (1994), and, including adaptive refinement, by Pearce &
Couchman (1997) as part of their HYDRA code, which also includes smooth-
particle hydrodynamics. At the present time, parallel adaptive P3M appears to
be the method of choice for large cosmologicalN-body simulations.

2.1.4 MULTIRESOLUTION MESH METHODS Adaptive P3M avoids the resolu-
tion limit imposed by a mesh by using a combination of finer meshes and pair
summation. An alternative is to dispense with pair summation altogether, in-
stead refining or concentrating the mesh where dictated by the needs of accuracy
or speed. This may be done by placing one or more levels of mesh refinement
where desired and solving the Poisson equation on multiple grids. Multiple
resolution algorithms have long been used in computational fluid dynamics,
but only recently have they been applied in cosmology. Here the programmer
must decide whether to refine only the force resolution (similar to using a finer
mesh in a PM simulation) or also to refine the mass resolution (equivalent to
using more particles in selected regions).

Methods that refine force but not mass resolution are similar in spirit to
adaptive P3M in that they use a fixed set of (usually but not necessarily equal-
mass) particles. Several groups have developed codes that automatically refine
the spatial resolution where needed during the computation by using higher-
resolution meshes (adaptive mesh refinement): Jessop et al (1994), Suisalu &
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Figure 1 Distribution of grid refinements placed by an adaptive particle-particle/particle-mesh–
smooth-particle hydrodynamics (P3M-SPH) code for the final timestep of a cluster simulation. Gas
particles are shown. From Couchman et al (1995).

Saar (1995), Gelato et al (1997), and Kravtsov et al (1997). Unlike P3M, these
codes have a variable spatial resolution of the forces. Although this leads to an
effective particle size that changes as particles move across refinements, it may
be closer to the spirit of phase space sampling with a resolution that might, for
example, scale with the local mean particle spacing.

Another class of methods refines both the mass and force resolution by split-
ting particles into several lower-mass particles and using multiple grids for the
force computation. All of these algorithms published to date are nonadaptive;
they work with nested grids that are fixed in space. The first implementation
was the hierarchical PM solver of Villumsen (1989). In Villumsen’s method,
an ordinary PM simulation is performed first to identify regions needing higher
resolution. The simulation is then repeated with high-resolution meshes added.
Particles that enter these regions (as judged by the first simulation) are split
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into several lower-mass particles. High-frequency waves are added to their
initial displacements and velocities to simultaneously increase the sampling of
the initial power spectrum. Anninos et al (1994) and Dutta (1995) have im-
plemented similar algorithms with some improvements; Dutta used a tree code
for the high-resolution forces in place of PM. Splinter (1996) chose to split up
massive particles only when they enter the refinement volume rather than at
the beginning of the simulation. While this precludes refining the sampling of
the initial power spectrum, it is less costly and closer to the spirit of adaptive
refinement of both mass and force resolution.

Variants of the multiresolution approach include moving-mesh algorithms
(Gnedin 1995, Pen 1995, Gnedin & Bertschinger 1996) in which the mesh used
for computing the potential and force is allowed to deform. By contracting in
regions of high particle density, the mesh can sample the gravitational field with
higher resolution. Xu (1997) solved the Poisson equation on an unstructured
mesh. In these codes, the irregularity of the mesh leads to force errors that
are difficult to control, but their adaptivity and high dynamic range make these
methods interesting for further study and development.

2.1.5 OTHER GRAVITY SOLVERS Various other methods have been proposed
and used for computing gravitational forces. Several methods are based on
multipole expansions (see Sellwood 1987), but those methods that pick out a
preferred center are generally inappropriate for cosmology. The fast multipole
method of Greengard & Rokhlin (1987) has attracted considerable attention,
but theO(N ) scaling of the original algorithm erodes in the presence of strong
clustering. Adaptive multipole methods appear promising but so far have seen
no use in cosmology.

More exotic approaches include direct integration of the collisionless
Boltzmann equation (Hozumi 1997), treatment of collisionless dark matter as a
pressureless fluid (Peebles 1987b, Gouda 1994), and even treating gravitating
matter as a quantum fluid obeying the Schr¨odinger equation (Widrow & Kaiser
1993, Davies & Widrow 1997). These methods are useful in providing insight
to the physics of gravitational clustering but are not meant to compete with
other techniques as a method of general simulation.

2.2 Gas Dynamics
The first cosmological simulations with gas dynamics were one-dimensional,
plane-parallel treatments of gas and dark matter flows in the sheet-like caustics
(“Zel’dovich pancakes”) that form as the first nonlinear structures in mod-
els with purely large-scale initial density fluctuations (e.g. Doroshkevich et al
1978). Shapiro et al (1983) and Bond et al (1984) modeled the combined
growth of baryon-neutrino pancakes in a universe dominated by massive neu-
trinos, showing that only a small fraction of the baryons would be able to cool
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in the postshock regions of these pancakes. In one dimension, even these early
simulations were able to include detailed treatments of ionization, recombi-
nation, radiative and Compton cooling, and thermal conductivity (Shapiro &
Struck-Marcell 1985).

The strong nonlinearity of the gas dynamical equations, manifested in the
ubiquity of oblique shock waves in cosmological simulations, makes it difficult
or impossible to develop numerical methods whose accuracy and convergence
can be proven. Computational gas dynamics is art more than science. For this
reason, testing of algorithms against simple (one-dimensional) problems with
exact solutions, as well as comparison of different codes against each other, is
essential to proving their validity. A comparison of several cosmological gas
dynamics codes was performed by Kang et al (1994); a more extensive project
is underway currently by Frenk et al (CS Frenk, SDM White, P Bode, JR Bond,
GL Bryan, et al, unpublished manuscript).

In comoving coordinates, the cosmological fluid equations are

∂

∂t

(
ρb

ρ̄b

)
+ 1

a
E∇ · Evb = 0,

∂Evb

∂t
+ 1

a
Evb · E∇Evb + H Evb = − 1

aρb

E∇ p+ Eg, (3)

whereρb, ρ̄b, Evb, andp are the (baryonic) mass density, mean mass density,
peculiar velocity, and pressure, respectively, andEg is the gravitational field
(Equation 1). These must be supplemented by either an energy or entropy
equation. Outside of shocks, these take the form

∂u

∂t
+ 1

a
Evb · E∇u = − p

aρb

E∇ · Evb + 1

ρb
(0 −3) ,

∂S

∂t
+ 1

a
Evb · E∇S= 1

p
(0 −3) . (4)

For a perfect gas with ratio of specific heatsγ , the thermal energy and entropy
per unit mass areu = p/[(γ −1)ρb] andS= (γ −1)−1 ln(pρ−γb ), respectively.
Artificial viscosity is often added to Equation 4 to generate the entropy needed
across shock waves. In nonadiabatic calculations, heating and cooling rates per
unit volume0 and3 and all they depend on, such as ionization and chemistry
rate equations, radiative transfer, etc, must be included.

2.2.1 SMOOTH-PARTICLE HYDRODYNAMICS Smooth-particle hydrodynamics
(SPH) is a Lagrangian (particle-tracking) method for integrating the fluid equa-
tions invented by Lucy (1977) and Gingold & Monaghan (1977). The fluid
variables (baryon density, velocity, temperature, etc) are followed using par-
ticles of fixed mass representing fluid elements. The method is therefore an
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extension ofN-body methods, making it relatively easy to add SPH to exist-
ing cosmological simulation codes. SPH has been reviewed by Monaghan
(1992).

The first cosmological SPH codes were written by Evrard (1988), who com-
bined gas dynamics with a P3M code, and by Hernquist & Katz (1989), who
based their SPH on a tree code (see also Katz et al 1996a). Since then, many
other groups have added SPH to cosmological simulation codes (Thomas &
Couchman 1992, Steinmetz & M¨uller 1993, Couchman et al 1995, Serna et al
1996, Shapiro et al 1996, Steinmetz 1996, Tissera et al 1997). Recently, sev-
eral parallel implementations have been developed (Pearce & Couchman 1997,
Davé et al 1997a, Nakasato et al 1997).

Because SPH is Lagrangian, the mass continuity equation (the first of Equa-
tion 3) is obviated. The baryonic mass density is estimated by treating each
particle as spread out with a smoothing kernelW:

ρb(Ex ) =
N∑

i=1

mi W
(Ex − Exi , h

)
, (5)

wheremi and Exi are, respectively, the particle mass and position, andh is a
smoothing length. A kernel of compact support such as a spline is used so
that the sum extends only over particles closer than some cutoff radius propor-
tional toh. These particles are easily found from neighbor lists constructed with
the tree or P3M algorithms. The smoothing length generally is taken to vary
with ρ−1/3

b so that a fixed number of particles (typically 30–40) is included in
the kernel sum. Numerical issues associated with variable smoothing length
have been discussed by many authors, including Hernquist (1993), Steinmetz &
Müller (1993), and Serna et al (1996). A stability analysis has been performed
by Balsara (1995), who provided suggestions for optimal parameters. The reso-
lution of SPH has been improved significantly by Shapiro et al (1996) by using
an adaptive ellipsoidal rather than spherical smoothing kernel and by switch-
ing off artificial viscosity for all particles except those that are in or about to
enter shocks. Navarro & Steinmetz (1997) have also found improvements after
reducing the amount of artificial shear viscosity.

The accuracy of SPH is more difficult to assess than for Eulerian (fixed-
grid) hydrodynamics algorithms because of the absence of any rigorous proof
of convergence to the solutions of the fluid equations in the continuum limit.
Comparisons with other algorithms (e.g. Kang et al 1994) suggest that while
SPH allows for very high-density contrasts, it suffers from poor resolution of
shocks as well as low resolution in low-density regions. Nonetheless, its relative
ease of implementation, combined with its high resolution in dense regions,
makes SPH an excellent practical method for cosmological gas dynamics.
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2.2.2 EULERIAN GRID ALGORITHMS Finite-difference methods have long been
used to provide numerical approximations of the Eulerian fluid equations for
computational fluid dynamics (Richtmeyer & Morton 1967). Cosmological gas
flows are often highly supersonic; the gas falling into clusters of galaxies is
shock-heated from 104 to 108 K. Robust schemes are needed to ensure the
correct treatment of shocks and other discontinuities (e.g. contact discontinu-
ities, across which the density and temperature jump but not the pressure, and
tangential discontinuities, across which the tangential velocity changes). A va-
riety of reliable methods have been developed and tested extensively in the
computational fluid dynamics community (e.g. Sod 1985, LeVeque 1992).

The first multidimensional applications of these methods to cosmology, using
artificial viscosity for the treatment of shocks, were made by Ryu et al (1990),
Cen et al (1990), and Yuan et al (1991). Ryu et al used the multidimensional flux-
corrected transport method (Sod 1985). Cen et al used an approach developed in
aeronautical engineering by Jameson (1989) and detailed by Cen (1992). Yuan
et al used ZEUS-2D, a radiation-magnetohydrodynamics code developed by
Stone & Norman (1992), with modifications described by Anninos & Norman
(1994). All of these early cosmological gas dynamics codes were robust and
performed reasonably well on simple tests. However, they did not resolve shocks
as well as modern shock-capturing methods based on solution of the Riemann
problem for the evolution of fluid discontinuities (Landau & Lifshitz 1959)
without explicit artificial viscosity (e.g. LeVeque 1992). Hence efforts have
shifted to the implementation of newer algorithms.

Two approaches have been used for high-resolution shock-capturing algo-
rithms in cosmology: total-variation diminishing (TVD) schemes and the piece-
wise parabolic method (PPM). In both schemes, the gas dynamical equations
are written in conservation law form, i.e.∂ui /∂t + (∂/∂x j )Fi j (u) = 0, where
ui is a vector of densities (mass, momentum, and energy) andFi j is a vector
of fluxes for these densities. Fluxes are computed across cell boundaries to up-
date the cell-average densities. Terms such as cosmological expansion, heating
and cooling, and gravity may be included as source terms using the method of
operator splitting with fractional timesteps (Richtmeyer & Morton 1967).

In TVD schemes, the fluxes are computed using an approximate solution
of the Riemann problem, with corrections added to ensure that there are no
postshock oscillations. The TVD codes of Ryu et al (1993) and Quilis et al
(1994, 1996) are “second-order” accurate away from shocks, meaning that as
the mesh spacing is reduced by a factorf, the numerical truncation errors go
down by a factorf 2. More importantly, perhaps, they resolve shock jumps
correctly in just two grid zones.

The PPM algorithm (Collela & Woodward 1984, Woodward & Collela 1984)
is a third-order accurate extension of the Godunov method (LeVeque 1992).
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The Riemann problem at cell boundaries is solved accurately using a quadratic
interpolation of the cell-average densities that is constrained to minimize (but
not entirely eliminate, unlike TVD) postshock oscillations. Away from shocks,
PPM is third-order accurate. Shocks are resolved slightly better than in lower-
order TVD codes. PPM has been implemented in cosmology by Bryan et al
(1995) and Sornborger et al (1997).

2.2.3 ADAPTIVE GRID ALGORITHMS Eulerian methods give the most accurate
solution of the gas dynamical equations for a given resolution, but they suffer
from the resolution limit of the grid. Current simulations generally use at most
5123 grid cells (with a few heroic runs of larger size on parallel machines),
whereas cosmologists need a spatial dynamic range of 104 or more to follow
galaxy formation. Two variations of grid-based hydrodynamics have been em-
ployed to increase the resolution: mesh refinement and deformable moving
meshes.

Mesh refinement is discussed above in the context of solving the Poisson
equation (Sections 2.1.3 and 2.1.4). Such methods have been used for more
than a decade in computational fluid dynamics. Their first application to cosmo-
logical gas dynamics was made by Anninos et al (1994), who used a two-level
hierarchy of cubic grids for solving the fluid equations with higher resolution
in an interesting simulation subvolume. The subvolume was taken to be fixed
in space and present throughout the simulation, and a three-dimensional imple-
mentation of the ZEUS code with second-order accurate fluxes was used for
the gas dynamics solver. Their method was a first step toward fully adaptive
mesh refinement in which refinement grids are placed (and removed) dynam-
ically at multiple levels of refinement where needed during the course of a
simulation. With PPM as the gas solver, adaptive mesh refinement has recently
been demonstrated by Bryan & Norman (GL Bryan & ML Norman, unpub-
lished manuscript, astro-ph/9710187). They achieved a peak dynamic range of
81923 using grids of size 643 or less. Their method is very promising for future
high-resolution studies of cosmological gas dynamics.

An alternative approach to higher resolution is to allow the mesh to deform
with the flow. Gnedin (1995) has developed a moving mesh hydrodynamics
solver in which the grid locally expands and contracts so as to approximately
track the flow of gas without the grid crossing itself. Such methods may offer
the advantages of both SPH (high resolution owing to its Lagrangian nature)
and Eulerian codes (shock capturing in two grid zones), although severe mesh
distortion leads to new errors that need further study.

2.2.4 OTHER GAS DYNAMICS ALGORITHMS Several other algorithms have
been used for approximate or phenomenological treatments of cosmological gas
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dynamics. One early approach was the method of “sticky particles” inN-body
codes, whereby particles labeled as gaseous are allowed to collide inelastically
when sufficiently close. Based on the local density and temperature estimated
from the pair separation and relative velocity, the colliding pair may be merged
together (Blumenthal et al 1986). Alternatively, the relative kinetic energy
may be dissipated and the gas particles converted into “stars” (i.e. made colli-
sionless) at sufficiently high density (Carlberg 1988a,b, Carlberg & Couchman
1989). A more sophisticated approach is the “beam scheme” in which the gas
is represented by sampling the microscopic Maxwellian velocity distribution at
several discrete values in each cell of the simulation volume. Mass, momentum,
and energy are transported according to kinetic theory (Sanders & Prendergast
1974). This method has been applied in cosmological simulations by Vishniac
et al (1985) and Chiang et al (1989); compared with Eulerian finite-difference
methods, it has relatively large numerical viscosity. A still more sophisticated
method, based on gas kinetic theory applied on an unstructured mesh, has been
used by Xu (1997). In one-dimensional simulations, Xu’s method resolves
shocks in about two mesh cells.

2.3 Additional Physics
Besides gravity and adiabatic gas dynamics, atomic and radiative processes are
very important in the formation of galaxies and the evolution of the intergalactic
medium. In particular, radiative cooling is thought to be primarily responsible
for the condensation and survival of galaxies within larger virialized structures
(e.g. White & Rees 1978, Blumenthal et al 1984). The processes included in
state-of-the-art cosmological simulation codes include optically thin radiative
cooling, multispecies chemistry, a phenomenological treatment of star forma-
tion and its associated energy feedback, and approximate radiative transfer.

The simplest way to incorporate radiative cooling is by means of an equi-
librium cooling function3(T ) such that the cooling rate per unit volume is
nenp3(T), plus a contribution proportional tone(T−Tγ ) from Compton cool-
ing of ionized gas by the microwave background radiation. In this approach,
the number densities of free electrons and protons,ne andnp, respectively, are
computed assuming equilibrium between recombination and collisional ioniza-
tion at temperatureT (with Tγ the microwave background temperature), which
eliminates the need to follow rate equations for multiple species. Cooling func-
tions were used in many early dissipative simulations, e.g. by Cen et al (1990)
and Katz & Gunn (1991), and continue to be adequate for many applications.

The cooling function approach breaks down when ionization equilibrium
breaks down, as can happen behind shocks or in dense cooling regions, and when
photoionization becomes more important than collisional ionization, as it does
in the tenuous intergalactic medium. Gnedin (1996a) accounted for the second
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effect by generalizing the cooling function to depend on the photoionization rate
while retaining a one-fluid treatment of the gas. However, a full treatment of
cooling requires following the nonequilibrium abundances of free electrons and
all atomic, ionic, and molecular species relevant for cooling. Cen (1992) was the
first to implement such a treatment in a cosmological simulation code, including
rate equations for electrons and all ionization states of hydrogen and helium.
Haehnelt et al (1996b) added heavier elements (“metals”), with their photoion-
ization equilibria computed using the code CLOUDY (Ferland et al 1998).

Because of the importance of molecular hydrogen as a coolant of primordial
(i.e. metal-free) gas below 104 K (e.g. Peebles & Dicke 1968, Shapiro & Kang
1987), recent treatments addH−, H+2 , andH2 (Haiman et al 1996, Abel et al
1997, Anninos et al 1997, Gnedin & Ostriker 1997). All species are treated as
though they are in the ground electronic state (although recombination rates
are computed including cascades from excited states), which is a good approx-
imation at the low densities of cosmological and intergalactic gas (Abel et al
1997).

Gas heating can also be important, both in raising the Jeans mass enough
to suppress dwarf galaxy formation (e.g. Couchman & Rees 1986, Dekel &
Silk 1986, Kepner et al 1997a) and in reionizing the intergalactic medium
(Shapiro & Giroux 1987, Ostriker & Gnedin 1996). Heating by star formation
(ultraviolet radiation from hot stars, stellar wind bubbles, and supernovae) has
been included in a phenomenological way, along with the conversion of gas
into collisionless particles representing stars or galaxies, by many workers, e.g.
Katz (1992), Cen & Ostriker (1992a, 1993b), Navarro & White (1993), and
Mihos & Hernquist (1994).

Radiative transfer has been treated so far only in relatively crude approxi-
mations because the specific intensity is computationally infeasible, as it is a
function of six variables (position, photon frequency, and direction) and time.
Cen (1992) treated the radiation field as spatially homogeneous and isotropic
while allowing for its detailed energy dependence, an approximation that has
been used frequently since. Gnedin & Ostriker (1997) treated radiative emis-
sion as uniform and isotropic but allowed absorption to vary locally depending
on the gas density, using a clever scheme they call the local optical depth
approximation.

In one (Ducloux et al 1992) or two (Stone et al 1992) space dimensions,
improved treatments of radiative transfer have been developed using a vari-
able Eddington factor (the ratio of radiation stress to energy density). In these
codes, the Eddington factor, needed to close the radiation moment hierarchy at
second order, is provided by approximate integrations of the radiative transfer
equation that are valid in both the optically thick and thin regimes. So far this
very promising method has not included the full frequency dependence of the
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radiation, nor has it been extended to three dimensions, which both require
substantial increases in computation.

2.4 Initial Conditions
Initial conditions for simulations of structure formation consist of specifying
the background cosmological model and the perturbations imposed on this
background. The background model is generally taken to be a spatially flat
or open Robertson-Walker spacetime with specified composition of dark mat-
ter, baryons, a possible cosmological constant, etc. Specifying such a model
requires more than just the two numbersH0 andÄ (or the deceleration param-
eterq0); at the very least the amount and nature of dark matter must be given
(Trimble 1987).

At very high redshift, e.g. atz≈ 1100 when recombination has occurred and
photons decouple from baryons, small-amplitude (“linear”) density fluctuations
were present in each component (baryons, photons, massless neutrinos, dark
matter). The statistical nature of these fluctuations depends, of course, on how
they were generated. Two classes of early universe models are widely consid-
ered to provide plausible mechanisms: inflation (Guth 1981) and topological
defects (Vilenkin & Shellard 1994). Inflation predicts Gaussian fluctuations,
while defect models are non-Gaussian.

Gaussian fluctuations are simple, as they are specified fully by one function,
the power spectrumP(k). In Gaussian models, the fluctuations are set down
ab initio (perhaps 10−35s after the Big Bang) and evolve straightforwardly there-
after. In real space, the joint probability distribution of density fluctuations at
N points is a multidimensional Gaussian (i.e. multivariate normal distribution).
Because the covariance matrix of this Gaussian becomes diagonal in Fourier
space, it is very easy to sample a Gaussian random field by sampling its Fourier
components on a Cartesian lattice (Peacock & Heavens 1985, Bardeen et al
1986). Salmon (1996) has implemented an alternative method based on con-
volving a white noise process, with the advantage that it can work for arbitrary
spatial sampling. Pen (1997) has implemented Salmon’s method with FFT con-
volution, truncating the convolution window in such a way as to improve the
sampling of long-wavelength waves in periodic boxes.

Non-Gaussian models are much more complicated. Not only do they re-
quire more information than the power spectrum, physical models also require
costly computation. For example, topological defects induce matter density
fluctuations from the time of their creation in the early universe all the way
to the present day. The dynamics of defect formation and evolution are rela-
tivistic and fully nonlinear, requiring large-scale simulations to compute. Two
classes of defect models have received the most attention: cosmic strings and
global textures. The dynamic range requirements for cosmic string simulations
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starting before recombination and proceeding to low redshift are daunting (Allen
& Shellard 1990, Bennett & Bouchet 1990). As a result, models for string ini-
tial conditions have been studied relatively little (e.g. Albrecht & Stebbins
1992a,b). Global textures are somewhat easier to simulate and have been in-
cluded in cosmological structure formation simulations by Park et al (1991),
Cen et al (1991), and Gooding et al (1992).

Weinberg & Cole (1992) proposed a simple phenomenological class of non-
Gaussian models: local nonlinear transformations of Gaussian random fields.
In these models, unlike topological defects, the fluctuations are seeded in the
early universe. They are easy to compute and provide useful comparisons against
Gaussian models in order to assess effects of non-Gaussianity in simple control
models.

Once the linear density fluctuation field has been specified at some initial
time (atz∼ 100 for typical high-resolution simulations), dark matter particle
positions and velocities must be obtained along with baryon density, velocity,
and temperature fields. The standard approach for the dark matter is to dis-
place equal-mass particles from a uniform Cartesian lattice using the Zel’dovich
(1970) approximation (Doroshkevich et al 1980, Dekel 1982, Efstathiou et al
1985):

Ex = Eq + D(t) Eψ(Eq ), Ev = a
d D

dt
Eψ = aH fD Eψ, (6)

whereEq labels the unperturbed lattice position,D(t) is the growth factor of the
linear growing mode, andf= d ln D/d ln a ≈ Ä0.6 is its logarithmic growth
rate (Peebles 1980). The irrotational (curl-free) displacement fieldEψ is com-
puted by solving the linearized continuity equation,

E∇ · Eψ = − δ

D(t)
, (7)

whereδ(Ex, t) = [ρ(Ex, t) − ρ̄]/ρ̄ is the relative density fluctuation. The dis-
placement field is readily evaluated from Equation 7 using Fourier transform
methods. The baryon velocity field is computed in a similar way, and the baryon
temperature is generally initialized to the (redshift-dependent) microwave back-
ground temperature or to about 104 K if the gas is ionized.

An alternative treatment of the dark matter sets the initial displacements
to zero but gives the particles variable masses in proportion to (1+ δ). The
velocity for the linear growing mode is then proportional to the gravity field,
Ev = −(H f/4πGρ̄)Eg. This method has been used by Warren et al (1992),
who showed that it led to statistically indistinguishable results from the particle
displacement method.

When particles are distributed initially on a lattice, the small-scale periodicity
of the lattice persists visibly until virialization occurs, i.e. until particles fall
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into and orbit in gravitationally bound objects. To avoid this artificial pattern,
particles may be perturbed from a random Poisson distribution instead of a
lattice. However, the Poisson noise itself is a seed for gravitational instability,
adding unwanted power to the desired spectrum. This noise may be eliminated
by arranging the particles initially, before applying displacements, in a random
“glass” state with very small gravitational forces. A gravitational glass is made
by advancing particles from random positions using the opposite sign of gravity
until they “freeze” in comoving coordinates (Baugh et al 1995, White 1996).

For some purposes, constraints may be imposed on the initial fluctuation field,
e.g. that the simulation volume contain a rare high density peak on a scale∼10
h−1 Mpc that will form a cluster of galaxies. Many independent realizations
could be generated until one arises that closely satisfies the desired constraint by
chance. An equivalent procedure is to use the method of constrained random
fields. Bertschinger (1987) introduced an iterative but inefficient algorithm
for constrained Gaussian random fields. Binney & Quinn (1991) showed that
the sampling of peaks simplifies considerably when spherical coordinates are
used, allowing a faster algorithm. A real breakthrough was made by Hoffman
& Ribak (1991), who devised a relatively simple exact algorithm for sampling
Gaussian random fields with arbitrary linear constraints [Salmon (1996) inde-
pendently discovered the same trick]. The Hoffman-Ribak algorithm has been
implemented in publicly available codes by van de Weygaert & Bertschinger
(1996). Ganon & Hoffman (1993) have extended the algorithm to the case of
many (hundreds or more) constraints specified on a regular lattice, in order to
provide initial conditions for simulations matching the large-scale density or
velocity fields of our own Universe. Sheth (1995) has extended the Hoffman-
Ribak algorithm to local nonlinear transformations of Gaussian random fields.

The last ingredient that needs specification for most models is the matter
power spectrumP(k), which is related (but not equal) to the mean squared
amplitude of the Fourier transform of density fluctuations (Bertschinger 1992):

〈δ(Ek )δ∗(Ek ′)〉 = P(k)δD(Ek− Ek ′), (8)

whereδD is the Dirac delta function and angle brackets denote an ensemble
average. [Each realization ofδ(Ex) or δ(Ek), including the one that describes our
own Universe at early times, is a random sample of an ensemble.] A factor of
(2π )3 may be included withP(k) in Equation 8 if an alternate Fourier transform
convention is used. With the definition of Equation 8, the variance of density
measured with a window functionW (kR), when, for example, averaging over
a sphere of radiusR (equation 21.52 of Peebles 1993), is

σ 2(R) =
∫

d3k P(k)W2(k R). (9)
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In much (though not all) of the cosmology literature,d3k (Equation 9) is divided
by (2π )3, andP(k) is defined as larger by the same factor.

In Gaussian models, the post-recombination density field is the linear con-
volution of the primordial fluctuation field with a transfer function. (Slightly
different transfer functions apply for CDM and baryons because of the finite
Jeans length for baryons.) The power spectrum used to initialize simulations
therefore generally takes the form

P(k, ti ) = Akn |T(k, ti )|2 . (10)

The primordial spectral slopen= 1 leads to curvature fluctuations of constant
amplitude on all scales (Harrison 1970, Zel’dovich 1972). Because inflation
occurred for only a finite duration, simple models predict a value slightly less
thann= 1, and power-law inflation or other variants can readily produce “tilts”
with 0.7< n< 1.2 (Steinhardt 1995). The transfer function is normalized so
thatT(0)= 1. For CDM models,k2T(k) approaches a constant on small scales
(e.g. Bardeen et al 1986).

The amplitudeAof the primordial power spectrum is not specified by inflation
or other models. Conventionally, it has been fixed one of two ways. The first
is to require that the relative density fluctuations at redshift zero, averaged over
a sphere of radius 8h−1 Mpc and computed using linear perturbation theory
(i.e. using the simple linear transfer functionT of Equation 10 withti set equal
to the present time), equal the inverse of the “linear bias factor”b (defined and
discussed below):σ 8= 1/b. The motivation for this choice is the observations
that galaxy counts show fluctuations of unit amplitude in 8h−1 Mpc spheres
(Davis & Peebles 1983) and the matter fluctuations are smaller by a factorb in
the linear bias model. A more direct physical normalization has been possible
since the measurement of microwave background anisotropy by theCosmic
Background Explorer(COBE) (Smoot et al 1992, Bunn & White 1997).

Transfer functions have been published by many workers; a useful early
compendium was provided by Holtzman (1989). Such tables and fitting for-
mulae have been superceded by publicly available codes that compute matter
transfer functions and microwave background anisotropy (COSMICS by Ma
& Bertschinger 1995, CMBFAST by Seljak & Zaldarriaga 1996). On a cau-
tionary note, models with HDM (massive neutrinos) require more than just the
transfer function; the HDM particles must be given a thermal distribution of
momenta. For an accurate treatment, this distribution should itself be perturbed
by gravitational effects (Ma & Bertschinger 1994a; see also Ma 1996).

Many papers have been written assessing structure formation models based
on linear perturbation theory, the Press-Schechter theory (Press & Schechter
1974), and so on. Recent reviews of variants of CDM have been written by
Liddle et al (1996a–c).
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Figure 2 Evolution of the potential and density in a simulation of a hot plus cold dark matter
(HCDM) universe in a cube 50h−1 Mpc across.Top left: scale-invariant gravitational potential
fluctuations in the early universe.Top right: Post-recombination potential, showing the modulation
by the transfer function.Bottom left: Post-recombination density fluctuations.Bottom right: Non-
linear density field at redshift 0, from a simulation withÄν = 0.2 by Ma & Bertschinger (1994b).

The roles of gravity, the transfer function, and linear and nonlinear evolu-
tion may be seen in Figure 2, which shows how the primordial scale-invariant
fluctuations are modulated in several stages, to produce finally a tapestry of
filaments, clusters, and voids.

2.5 Numerical and Physical Limitations
Cosmological simulations suffer from limited dynamic range, numerical errors,
and neglected physics. These effects have recently begun to receive greater
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attention as increasing computer power enables more rigorous testing. The
introduction of gas dynamics into simulation codes has also presented a new
set of numerical issues, stimulating practitioners to assess more carefully the
limitations of their results.

In purely gravitationalN-body simulations of structure formation, the nu-
merical issues include dynamic range, force accuracy, and time integration
accuracy. Most codes use the leapfrog scheme (Section 2.1); although this is
much less accurate than the high-order schemes used for globular cluster or
Solar System integration, tests suggest that with a timestep small enough so
that all particles travel less than a softening length each timestep, the statistical
results of cosmological interest converge (Quinn et al 1997). Most workers tune
their force evaluation algorithm to have pairwise errors of at most a few percent
(e.g. Pearce & Couchman 1997), which Hernquist et al (1993) concluded is ad-
equate given the masking effect of two-body relaxation. This leaves dynamic
range as the biggest concern. Three distinct kinds of dynamic range are needed
for a faithful simulation: mass resolution (number of particles), initial power
spectrum sampling (range of wavenumbers present in the initial conditions),
and spatial resolution (force-softening length compared with box size).

Mass resolution was perhaps the most severe problem when simulations had
fewer than 105equal-mass particles, but it is giving way to the relentless advance
of technology (N= 109 will become the standard on supercomputers within a
very few years) and to multimass methods (e.g. Katz et al 1994, Splinter 1996).
Particle masses of 109 M¯ or less are probably satisfactory for simulating the
gross dynamics of halos of galaxies like the Milky Way, and this resolution is
readily available today.

Resolution of the initial power spectrum is related to the mass resolution
because the initial density field is sampled at the particle positions. Little et al
(1991) suggested that initial high-frequency power is unimportant on scales that
become nonlinear, although Splinter et al (1998) argued to the contrary. Tormen
& Bertschinger (1996) and Cole (1997) suggested ways to extend the sampling
of the initial power spectrum by adding long waves to an evolved simulation.

Force resolution is probably the most significant dynamic range issue forN-
body simulations [although Melott & Shandarin (1989) argued that mass reso-
lution is equally important]. Resolving the dynamics of galaxies in simulations
sufficiently large to sample large-scale tidal fields requires 1-kpc resolution in
boxes of size 100 Mpc, a dynamic range of 105 in length scale, about a factor
of 10 beyond the current state of the art of high-resolution codes. Smaller force
softening requires more timesteps (Quinn et al 1997) and leads to increased
two-body relaxation (Huang et al 1993). The practical figure of merit is the
ratio of force softening distance to mean interparticle spacing. With P3M and
tree codes, this ratio is typically set to about 0.1, while with PM codes, it is
about unity. Most practitioners have accepted the benefits of higher-resolution
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enabling codes to follow gravitational collapse to high density. Low force
resolution leads to excessive merging of halos (e.g. Carlberg 1994, Gelb &
Bertschinger 1994a, Zurek et al 1994, Moore et al 1996). However, Melott
et al (1997) showed that high resolution leads to spurious heating and frag-
mentation for the collapse of planar Zel’dovich pancakes, and they advocated
a force softening no smaller than the mean interparticle spacing. Splinter et al
(1998) found less dramatic effects with realistic three-dimensional initial con-
ditions, yet they also concluded that cosmologicalN-body simulations cannot
be trusted on scales smaller than the mean interparticle spacing. While not all
would agree, the issues they raise merit further investigation.

When gas dynamics is added, several new types of errors can arise. The
most obvious (and also often the most subtle) are numerical problems with the
hydrodynamics algorithm, which can best be diagnosed by testing against exact
solutions and other codes (Kang et al 1994; CS Frenk, SDM White, P Bode,
JR Bond, GL Bryan, et al, unpublished manuscript). Two-body relaxation of
dark matter can also cause spurious heating of the gas solely by the gravitational
coupling; Steinmetz & White (1997) studied this effect and advised on the
resolution requirements to avoid it.

Self-gravity and cooling lead to potential problems for gas dynamics codes.
Gnedin & Bertschinger (1996) demonstrated the need for consistent treatment
of gravity and hydrodynamics in order to ensure local energy conservation.
Bate & Burkert (1997) compared SPH with an Eulerian code and showed that
SPH may give incorrect results unless the minimum resolvable SPH mass is
less than the Jeans mass. Truelove et al (1997) found a similar requirement for
Eulerian hydrodynamics by using adaptive mesh refinement, as did Owen &
Villumsen (1997) in two-dimensional simulations using SPH for gas coupled
with PM for dark matter. Evrard et al (1994) had previously noted the strong
resolution dependence of gas dynamical results for cold self-gravitating gas.
Even in a cluster in hydrostatic equilibrium, Anninos & Norman (1996) found
that the X-ray luminosity depends strongly on numerical resolution. Clearly
these resolution effects need further study.

With gravity and cooling but no heating or star formation, the baryons in
high-resolution simulations collapse to high density, impeding further progress
(e.g. Katz & White 1993). Recent work has focused on the role of photoion-
ization heating in suppressing galaxy formation (Efstathiou 1992; Navarro &
Steinmetz 1997 and references therein). In the course of investigating these ef-
fects, Weinberg et al (1997a) discovered an interplay between mass resolution,
photoionization, and radiative cooling that led to incorrect results on galaxy
formation when photoionization was included at low resolution. Their experi-
ence is a cautionary reminder that when physics is added or codes are run in a
new regime, careful testing must precede astrophysical conclusions.
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2.6 Biased Galaxy Formation
Biased galaxy formation refers to phenomenological models of galaxy for-
mation in simulations (or analytic theories) that lack sufficient resolution or
physical content to allow galaxies to form directly. Crudely speaking, “bias” as
used in this context refers to the difference between the galaxy distribution and
that of all matter. Although the current trend is toward more realistic modeling
of galaxy formation, biasing models are still used in large-boxN-body simula-
tions, analytic theories, and analysis of redshift survey data. For these reasons,
we include a brief discussion to conclude this section on numerical simulation
algorithms.

Bias was originally invoked to explain the stronger correlations of galaxy
clusters compared with galaxies themselves. Kaiser (1984) showed that the
regions of high density (plausibly those regions that preferentially form galax-
ies) in a Gaussian random field are more strongly correlated than the overall
field itself. Dekel & Rees (1987) reviewed the motivation and physical mech-
anisms for biased galaxy formation. In recent years, bias has been used most
commonly in the context of the linear bias model, where, on scales larger than
a few megaparsecs, the galaxy density fluctuations are enhanced over those of
the mass by a factorb, the linear bias factor:

δng

n̄g
= b

(
δρ

ρ

)
. (11)

Local nonlinear biasing models were investigated by Coles (1993). Mo &
White (1996) and Kauffmann et al (1997) devised an analytic model of bias
based on the Press-Schechter formalism.

Bardeen et al (1986) proposed that galaxy formation occurs at the peaks of
the initial density field smoothed on a galactic mass scale. This “peak bias”
model has been used inN-body simulations to tag a fraction of particles as
galaxies (Davis et al 1985, Park 1991, Suginohara & Suto 1991). White et al
(1987a) found that bias arose naturally when enough resolution was present
to identify dense dark matter halos forming within the simulations. However,
Katz et al (1993) showed that the association between dense halos and initial
peak particles is poor. Moreover, beginning with Carlberg & Couchman (1989),
many groups have found that the halos formed in dark matter simulations are
actually antibiased with respect to the mass, i.e.b< 1, because of excessive
merging of halos compared with real galaxies. They also showed that the root-
mean-square (rms) velocities of dark matter halos may be substantially less than
those of the mass, a phenomenon called cosmological velocity bias (Couchman
& Carlberg 1992, Summers et al 1995).

While biased galaxy formation remains a useful phenomenological model, re-
cent emphasis has shifted toward cosmological simulations with gas and cooling
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where dense baryonic clumps plausibly representing galaxies form without need
for a biasing model. Indeed such simulations permit the measurement of the
biasing factor (or scale-dependent bias function) itself (e.g. Cen & Ostriker
1992a, Tissera et al 1994, Summers et al 1995, Gnedin 1996b). Although nu-
merical simulation of galaxy formation will always rely on phenomenological
treatments of star formation and stellar energy feedback processes, these are
considerably more direct and physical than current biased galaxy formation
models and may one day obviate the need for biasing schemes.

3. ANALYSIS TECHNIQUES

Cosmic structure formation models are stochastic: The initial conditions are
random (albeit with well-specified statistical properties), and their evolution is
chaotic. No realistic model would claim to predict the exact structures we see
in our Universe; at best, theorists can hope to construct models of the Universe
that “look like” the real thing. But how is this vague test quantified? Many
statistics have been devised for this purpose. In this section, a brief summary
of methods is presented; a more complete review was given by Coles (1992).

Table 1 lists the major statistics applied in cosmological simulations of struc-
ture formation. They are distinguished by whether they are most naturally ap-
plied to continuous fields such as the density fluctuation fieldδ(Ex ) or to a set of
discrete points (e.g. galaxies or simulation particles). In practice these applica-
tions are interchangeable because a point set can be convolved with a window
function to produce a continuous field, and a continuous field may be Poisson
sampled (with spatially-varying Poisson density) to produce a point set (e.g.
Bertschinger 1992). Other statistics apply exclusively to the internal properties
of galaxies, clusters, or dark matter halos. Some statistical measures associated
with specific physical measurements (e.g. the column density distribution of
Lyα absorption lines or the distribution of gravitational lens separations) are
discussed in Section 5.

3.1 Statistics Using Particle Positions
The spatial properties of a statistically homogeneous set of points (galaxies or
simulation particles) is fully characterized by theN-point correlation functions
(Peebles 1980). The best known of these is the two-point correlation func-
tion, which is measured to be well fit by a power-lawξ(r ) = (r/r0)

−γ with
γ = 1.8 andr0 ≈ 5h−1 Mpc (Totsuji & Kihara 1969; Peebles 1980 and refer-
ences therein). This statistic has been widely used in cosmic structure formation
simulations beginning with those of Miyoshi & Kihara (1975). The standard
method to computeξ is based on counting pairs as a function of pair separation,
with subsampling if the total number of pairs is prohibitively large; Ruffa &
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Table 1 Statistical measures applied to galaxies and numerical simulations of structure formation

Category Statistic Name Reference

Particle positions ξ (r) Two-point correlation Peebles 1980
function

P(k) Power spectrum Bertschinger 1992
ζ(r1, r2, r3) Three-point correlation Groth & Peebles 1977

function
B(k1, k2, k3) Bispectrum Peebles 1980
ξN , ξ̄N N-point correlation Peebles 1980

functions and moments
P0(V), PN(V) Void probability function, White 1979

cell counts
— Percolation, minimal Coles 1992

spanning tree statistics
— Multifractal statistics Mart´ınez et al 1990

Density fields G(ν) Genus of isodensity Melott 1990
surfaces

— Area of isodensity Ryden 1988
surfaces

vi (ν) Minkowski functionals Mecke et al 1994
f (δ) One-point density Kofman et al 1994

distribution〈
δN

c

〉
One-point cumulants Peebles 1980

(skewness, kurtosis, etc)
— Shape statistics Dav´e et al 1997b

Velocity fields f (v) One-point velocity Inagaki et al 1992
distribution (and moments)

M Mach number Ostriker & Suto 1990
f (θ) Velocity divergence Bernardeau et al 1985

distribution (and moments)
f (v12), σ12 Pairwise radial velocity Davis & Peebles 1983

distribution and dispersion

Redshift space ξ(r p, π), ξ(s) Redshift space correlation Davis & Peebles 1983
functions

Ps(k, µ) Redshift space power Cole et al 1995
spectrum

Clusters or halos n(m) Mass distribution Press & Schechter 1974
n(Vc) Circular velocity distribution Gelb & Bertschinger 1994a
n(σ ) Velocity dispersion distribution Evrard 1989
n(T), n(L) Temperature and X-ray Cen & Ostriker 1994a

luminosity distributions
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Porter (1993) devised a fast algorithm based on a tree code. Simulations not
only use the correlation function as a comparative statistic, they also can test
the reliability of estimators ofξ applied to observational samples (e.g. Mo et al
1992). The three-point correlation function can be measured in simulations by
counting triplets (e.g. Efstathiou & Eastwood 1981), but higher-order correla-
tions are more efficiently estimated and characterized by their volume averages,
the irreducible moments (cumulants) of counts in cellsξ̄N (Peebles 1980).

The power spectrum and two-point correlation function are Fourier transform
pairs. From this fact, the incorrect conclusion may be reached that they are inter-
changeable in practice. Estimates of the two-point correlation function require
subtracting off the number of pairs for a Poisson distribution. This requires
knowing the mean density accurately when the correlation amplitude is low,
i.e. on large scales. Large-scale sample variations (“cosmic variance”) make
it difficult to estimate this density in any finite-size survey (but see Hamilton
1993 for an estimator that is relatively insensitive to this effect). The correla-
tion function is most accurately measured in the strong-clustering regime,ξ >1.
The power spectrum estimate involves no such subtraction of unclustered pairs;
therefore it offers a reliable estimate of clustering to the longest wavelengths
probed by a survey, subject to the caveat of cosmic variance (i.e. sampling fluc-
tuations) and to practical details of sample geometry. The power spectrum is
widely used as a measure of structure in numerical simulations as well as for
comparison with observations (e.g. Gramann & Einasto 1992, Vogeley et al
1992, Baugh & Efstathiou 1994). The Fourier transform of the three-point
correlation function is known as the bispectrum (e.g. Fry et al 1993).

The distribution of counts in cells,PN (V ), gives the probability of finding
N objects in a randomly placed volumeV of fixed shape. This set of statistics
provides an alternative and very useful characterization of clustering. Interest in
this cell count distribution grew after a simple prediction of its form was made by
Saslaw & Hamilton (1984), based on a thermodynamic theory of gravitational
clustering (see Sheth & Saslaw 1996 for a refinement of the theory). Although
the thermodynamic theory has been met with skepticism, it has spurred the
development of many alternative hierarchical scaling theories as well as their
investigation in cosmological simulations (e.g. Itoh et al 1988, Suto et al 1990,
Bouchet & Hernquist 1992, Ueda et al 1993, Bromley 1994, Colombi et al
1995, Ueda & Yokoyama 1996).

The void probability functionP0 (V ) contains information about all̄ξN and
is fully determined by them when these moments exist (White 1979). (Here
“void” should not be thought of in the sense of the large underdense regions of
the galaxy distribution. Instead it refers to any volume that contains no objects—
galaxies or simulation particles—whatsoever. Observationally, of course, a lu-
minosity limit must be stated to make this statement meaningful.) The void
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probability function has been studied extensively in numerical simulations com-
bined with analytical models of hierarchical clustering (e.g. Bouchet et al 1991,
Einasto et al 1991, Weinberg & Cole 1992, Colombi et al 1996a).

Additional statistics of point processes are provided by percolation analysis
(Zel’dovich et al 1982) and related statistics based on the minimal spanning tree
(Pearson & Coles 1995, Bhavsar & Splinter 1996; Krzewina & Saslaw 1996
and references therein). These approaches “connect the dots” with short line
segments. There has been considerable discussion about the utility of percola-
tion as a cosmological test, with some authors (e.g. Bhavsar & Barrow 1983,
Dekel & West 1985) emphasizing difficulties and expressing doubts about its
discriminating power, while others maintain its value (Dominik & Shandarin
1992, Yess & Shandarin 1996). Recently Sahni et al (1997) have proposed an
extension of percolation, the volume fraction of the largest cluster or void de-
fined at a given density threshold, that addresses some of the practical problems
of the percolation length and relates percolation to topology.

The hierarchical scaling of correlation functions has inspired comparisons
with statistical fractals (Peebles 1980 and references therein). The galaxy dis-
tribution cannot be a simple fractal because strong clustering on small scales
gives way to homogeneity on large scales; the distribution is not scale invariant.
However, over a limited range of scales it may be a multifractal, a clustered
distribution having different scaling properties as a function of density (e.g.
Jones et al 1988, Mart´ınez et al 1990). Analytical theories and simulations (e.g.
Bouchet et al 1991) suggest that there are two scalings, one for voids and one for
clusters, described by the Hausdorff and correlation dimensions, respectively.
Colombi et al (1992) gave an excellent summary of the numerical, statistical,
and dynamical issues involved in testing whether the matter distribution in
simulations (and, by extension, the Universe) is a bifractal.

3.2 Statistics of Density Fields
Turning next to statistics for continuous density fields, we note first thatN-point
correlation functions and power spectra are naturally defined and very useful in
this case much as they are for point sets. A family of new statistics, reviewed
by Melott (1990), is based on the two-dimensional surfaces of constant density
(isodensity surfaces). The best known of these is the genus per unit volume
g(ν) as a function of the standardized density contour levelν= δ/σ (Gott et al
1986). The total genusG of a surface is a topological invariant measuring the
number of “holes” (as in a doughnut) minus the number of isolated regions.
One of its attractions is the fact that an exact prediction exists for the shape
of G(ν) for Gaussian random fields (Doroshkevich 1970, Bardeen et al 1986,
Hamilton et al 1986), enabling a test of Gaussianity on large scales where the
matter distribution is expected to still approximate the linearly growing initial
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conditions. When the smoothing scale is varied, the amplitude of the genus
curve varies in a spectrum-dependent way, providing another useful clustering
statistic. Computer programs for computing the genus are given by Melott
(1990); an alternative and simpler algorithm is provided by Coles et al (1996).

Recent work has shown that the genus statistic is relatively insensitive to
redshift-space distortions (Matsubara 1996), is slightly dependent on biasing
(the relation of galaxies to mass, discussed below) (Park & Gott 1991), and is
more sensitive to non-Gaussianity arising from nonlinear evolution of Gaussian
initial conditions (e.g. Sahni et al 1997, Seto et al 1997) or from non-Gaussian
initial conditions (Beaky et al 1992, Weinberg & Cole 1992, Matsubara &
Yokoyama 1996, Avelino 1997). The area of isodensity contours provides an
independent and useful statistic (Ryden 1988, Ryden et al 1989).

Minkowski functionals (Mecke et al 1994) have recently been introduced in
cosmology as a very powerful descriptor of the topology of isodensity surfaces.
In three dimensions, there are four Minkowski functionals (v0, v1, v2, v3); two
of them are the genus (actually, its relative the Euler characteristic) and sur-
face area statistics discussed above, and the other two are the covered volume
(related to the void probability function) and integral mean curvature. Analyt-
ical results for Gaussian random fields have been provided by Schmalzing &
Buchert (1997), who also have made available a computer program for comput-
ing these statistics from a point process. The insight and unification provided
by these recent results suggests a promising future for Minkowski functionals
as a statistic for both cosmological simulations and redshift surveys.

Perhaps the simplest (though incomplete) test of Gaussianity is simply to ex-
amine the one-point distribution functionf (δ)dδ. When the density is defined
by smoothing as a function of scale, one has the continuous analog of the counts
in cell distributionPN (V ). It has long been known that on scales of a few mega-
parsecs or less,f (δ) is strongly skewed toward positive values and is fit well
by a lognormal distribution such that log(1+ δ) has a normal (Gaussian) dis-
tribution. Coles & Jones (1991) discussed the properties of lognormal random
fields. While lognormal primordial fluctuations can be envisaged (Weinberg
& Cole 1992), simulations show that nonlinear evolution of Gaussian initial
conditions produces af (δ) that is intriguingly well fitted by the lognormal form
(Kofman et al 1994, Ueda & Yokoyama 1996). Bernardeau & Kofman (1995)
have shown from perturbation theory and the Zel’dovich approximation that
this agreement is fortuitous.

Low-order moments off (δ), particularly the skewness (the third moment),
have also been studied extensively (e.g. Coles & Frenk 1991, Coles et al 1993,
Juszkiewicz et al 1993, Luo & Vishniac 1995; see Lokas et al 1995 for the
irreducible fourth moment, the kurtosis). With these, Juszkiewicz et al (1995)
obtained good approximations to the mildly nonlinearf (δ) by using a series
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expansion. Protogeros & Scherrer (1997) considered a class of local Lagrangian
approximations in which the nonlinear density of a mass element is a function
only of its initial density contrast and time. By choosing this function so that low-
order moments agree well with perturbation theory, they obtained a model for
f (δ) that agrees well with simulations in the mildly nonlinear regime (Protogeros
et al 1997).

Visual inspection of galaxy redshift surveys and projected catalogs gives a
clear impression of filamentary and sheet-like structure. Consequently, several
statistics have been developed that aim to quantify such structure. Recent work
has been summarized by Dav´e et al (1997b), who explored moment-based
shape statistics devised by several groups, as well as their own new filament
statistics. These statistics degrade under sparse sampling but are promising
discriminators of models, particularly with the large redshift surveys expected
to become available within a few years.

3.3 Velocity Statistics
The spatial statistics listed above make use of only half the phase space coordi-
nates of particles, neglecting velocity information (or, in redshift space, using
radial velocity in place of distance). Although it is difficult to measure suf-
ficiently accurate extragalactic distances to obtain reliable peculiar velocities
(Strauss & Willick 1995), different cosmological models vary substantially in
their predictions (especially as a function of the density parameterÄ), making
investigation of peculiar velocities well worthwhile.

The simplest velocity statistic is the velocity distribution of single particles,
f (v)4πv2dv wherev is the magnitude of peculiar velocity. This statistic is
poorly studied despite the fact that it is the lowest-order distribution function
appearing in the BBGKY kinetic theory of gravitational clustering (Peebles
1980). Either the radial component or one Cartesian component may be used
instead of the magnitude of the three-dimensional velocity; because of isotropy,
all three distributions are simply related. Inagaki et al (1992) and Raychaudhury
& Saslaw (1996) compared the predictions of the thermodynamic theory of
Saslaw & Hamilton (1984) with simulations starting from Poisson initial con-
ditions, and they found good agreement. Cen & Ostriker (1993c) examinedf (v)
for galaxies formed in their CDM simulations and noted that an exponential
distribution fits better than a Maxwellian.

Davis et al (1997) have proposed using the small-scale velocity dispersion
σ 1, the second moment off (v) after filtering out long-wavelength velocity
contributions, to provide an estimate ofÄ through the Layzer-Irvine cosmic
energy equation. In practice, they measure this single-particle dispersion using a
single-particle weighting of a pairwise velocity. This statistic has the advantage
of being less sensitive to sampling fluctuations from clusters of galaxies than the
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pair-weighted pairwise velocity dispersion (e.g. Zurek et al 1994, Somerville
et al 1997). Alternatively, a redshift dispersion may be measured as a function
of density, as suggested by Kepner et al (1997b).

Besides examining the velocities of individual particles or galaxies, study is
possible of the “fluid” or “bulk flow” velocity obtained by averaging the velocity
over a window of radiusR, EV(R). Kofman et al (1994) showed analytically and
with N-body simulations that in the mildly nonlinear regime, the distribution
of EV remains close to Maxwellian for Gaussian initial conditions. The steep
decline of the Maxwellian for bulk flows that are much larger than the rms leads
to a sensitive test of power on large scales (e.g. White et al 1987b, Bertschinger
& Juszkiewicz 1988). Other velocity field statistics include the cosmic Mach
numberM = V(R)/σ (R), whereσ (R) is the small-scale velocity dispersion
within the same window (Ostriker & Suto 1990). Bulk flows are sensitive to
large-scale power, while small-scale dispersions are sensitive to smaller scales,
soM is sensitive to the shape of the power spectrum.

Another statistic applied to the large-scale velocity field is the distribution
of velocity divergence,f (θ )dθ whereθ = E∇ · Ev (Bernardeau 1994). The ve-
locity divergence is attractive theoretically because in the linear regime, it is
proportional to the density fluctuation (see Equations 6 and 7); in the mildly
nonlinear regime for Gaussian initial conditions, the ratio of its skewness to the
square of its variance is sensitive toÄ (Bernardeau et al 1995, 1997); and for a
potential flow (as expected on large scales for gravitationally induced motions),
the velocity field is fully described byθ(Ex ) (Bertschinger & Dekel 1989).

The statistics of relative velocities of pairs of galaxies have been extensively
studied on small scales because of the possibility of measuringÄ using the
cosmic virial theorem (Peebles 1980), which relates these velocities to the two-
and three-point correlation functions. The relative velocity of a pair separated
by Er , Ev1− Ev2, is decomposed into a component alongEr and the remainder per-
pendicular to it. The distribution ofv12 ≡ r̂ · (Ev1 − Ev2), in particular its mean
〈v12〉 and standard deviationσ 12, has been studied extensively in numerical sim-
ulations, initially by Davis et al (1985) and more recently by others, including
Zurek et al (1994), Gelb & Bertschinger (1994b), Brainerd et al (1996), and
Colin et al (1997). The sensitivity ofσ 12 to rich clusters makes it difficult to
measure well but also provides discriminating power among different structure
formation models (Somerville et al 1997). Sheth (1996) recently has provided
analytical insight into the exponential form off (v12) by using an extension of
the Press-Schechter theory (Press & Schechter 1974; cf also Mo et al 1996).

3.4 Redshift Space Distortions
A few words may be said here about both the challenges and opportunities
afforded by the “redshift space distortions” arising when redshift is used in
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place of distance. The effects of peculiar velocities on the two-point correlation
function have been extensively studied with simulations (e.g. Suto & Suginohara
1991, Bahcall et al 1993, Matsubara 1994). To characterize these effects, it
is useful to distinguish redshift differences along the line of sight (π ) and
perpendicular to it (rp), leading to the two-dimensional correlation function
ξ(r p, π) (Davis & Peebles 1983). The effects of peculiar velocities on the power
spectrum were first investigated analytically by Kaiser (1987), who showed that
the anisotropy ofPs(k, µ) (where cos−1µ is the angle betweenEk and the line
of sight) in the quasilinear regime (i.e. on large scales) depends simply on
β ≡ f (Ä)/b ≈ Ä0.6/b, whereb is the linear bias parameter. This effect
has been studied thoroughly in simulations (e.g. Bahcall et al 1993, Cole et al
1995, Brainerd et al 1996). The measured spectrum contains information about
both the spatial clustering andβ; both are important to obtain from redshift
surveys. Gramann et al (1994) have explored means of undoing the redshift
space distortion on large scales to recover the real-space density. Cole et al
(1994) focused instead on practical determination ofβ.

3.5 Internal Properties of Galaxies, Halos, or Clusters
The next set of statistics listed in Table 1 refers to the internal properties of
galaxies or galaxy clusters. In cosmological simulations, galaxies must be
identified according to some prescription in order to apply these statistics. Thus
the first question is how to identify dense objects in simulations. When baryons
are present with high resolution and cooling, this problem is greatly simplified
(at the expense of a much costlier simulation) by the condensation of cold gas
in dark matter potential wells.

In simulations with only dark matter, several algorithms have been proposed
for identifying objects, including the friends-of-friends linking algorithm used
by Davis et al (1985), extensions devised by Barnes & Efstathiou (1987), meth-
ods based on spherical overdensity (e.g. Warren et al 1992, Lacey & Cole 1994),
and the DENMAX algorithm of Bertschinger & Gelb (1991) (and modified by
Governato et al 1997, who have publicly released their code called SKID). The
reader must exercise caution in “galaxy” or “halo” results from simulations
without baryons because of the strong merging of dark matter halos and the
dependence of this process on resolution and method of halo identification (e.g.
Gelb & Bertschinger 1994a, Summers et al 1995).

Given a set of galaxies or clusters, all the particle statistics listed in Table 1
may be applied and compared with those applied to other classes of objects
(e.g. galaxies versus mass) in order to deduce the relative bias. This issue is
discussed further in Section 2.6. However, the distribution functions can also
be measured for internal properties of the composite objects including mass
(e.g. Press & Schechter 1974, Brainerd & Villumsen 1992) or, for clusters,



               
P1: NBL/dat/ary P2: NBL/vks QC: NBL/anil T1: NBL

July 4, 1998 5:55 Annual Reviews AR062-14

632 BERTSCHINGER

the number of members (the multiplicity function of Bhavsar et al 1981 is a
logarithmic number distribution). For objects with “isothermal” density profiles
ρ ∝ r−2, the total mass is divergent, but the circular speedVc = (GM/r )1/2

is constant and provides an alternative to mass (Frenk et al 1988, Gelb &
Bertschinger 1994a, Ueda et al 1994). For clusters of galaxies, the velocity
dispersion, temperature, and luminosity provide alternative statistics whose
distributions provide tests of theory against observations (Evrard 1989, Peebles
et al 1989, Cen & Ostriker 1994a).

4. TESTING OF COSMOLOGICAL MODELS

During the 1980s the dominant use of cosmological simulations was to test
models of structure formation, particularly the CDM model. While simulations
have proven to be much more versatile in recent years, model testing remains
an important application.

Perhaps the first test of a cosmogonical model should be whether it is
sufficiently well posed to enable meaningful simulation in the first place.
Phenomenological models must be formulated precisely within a consistent
physical framework (e.g. explosive galaxy formation models). Sometimes the
fundamental physics is known but is too complex to allow for fully satisfactory
simulation, given the limitations of current computers and numerical algorithms
(e.g. superconducting cosmic strings). It is possible that even the best current
simulations vastly oversimplify the physics needed for reliable structure for-
mation models. However, the detailed comparison of these models with data
suggests that such a view is overly pessimistic. Recent high-resolution sim-
ulations compare remarkably well with many aspects of the observed galaxy
distribution.

4.1 Cold Dark Matter
The CDM model became the platform on which simulations of cosmic structure
formation matured into a powerful theoretical tool during the 1980s. It is not
reviewed extensively here, as accounts have been given already by Frenk (1991),
Davis et al (1992a), Liddle & Lyth (1993), and Ostriker (1993). However, a brief
discussion of the CDM model and its shortcomings is worthwhile to motivate
study of the currently popular alternatives.

The CDM model adopts parameter valuesH0≈ 50 km s−1 Mpc−1 andÄc =
1−Äb ≈ 0.95, whereÄc andÄb give the present mean mass density of CDM
and baryons, respectively, normalized to the critical density 8πG/3H2

0 . Prior to
theCOBEmeasurement of temperature anisotropy (Smoot et al 1992), the only
significant free parameter in the CDM model was the normalization of the power
spectrum, conventionally specified by the rms relative mass density fluctuation
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in a sphere of radiusR8= 8 h−1 Mpc,σ8 = σ(R8), computed using Equation 9
with the power spectrum extrapolated to the present day assuming linear theory.
When set to the observed value based on galaxy counts,σ 8= 1, the CDM model
predicts excessive peculiar velocities for galaxies (Davis et al 1985). A similar
conclusion follows from the cosmic virial theorem, which impliesÄ≈ 0.3 if
galaxies are a fair tracer of the clustering and dynamics of the mass (Peebles
1986). However, Carlberg et al (1990) and Couchman & Carlberg (1992) found
in their high-resolution simulations that dark matter halos have substantially
smaller velocities than the mass, an effect they termed velocity bias. During
this same period, evidence accumulated that theb = 1/σ8 = 2.5 “standard
biased” CDM model favored by Davis et al (1985) lacked sufficient power
on large (∼50 h−1 Mpc) scales to explain the observed clustering (Maddox
et al 1990, Saunders et al 1991) or velocity fields (Lynden-Bell et al 1988) of
galaxies.

Without exotic physics such as gravitational radiation produced in “tilted” in-
flationary models, the large–angular-scale microwave background anisotropy
measurements pinned down the normalization of CDM models toσ8 ≈ 1.2
(Wright et al 1992, Bunn & White 1997). With a strong velocity bias, inter-
est revived in “unbiased” (b≈ 1) CDM models. Several groups explored the
constraints imposed by small-scale clustering, pairwise velocities, the circular
velocity and mass distributions of galaxies, galaxy cluster masses, etc (e.g.
Bahcall & Cen 1993, Cen & Ostriker 1993c, Brainerd & Villumsen 1994a,b,
Gelb & Bertschinger 1994a,b, Zurek et al 1994). From this and additional
work, the consensus has emerged that the unbiased CDM model is ruled out
because it has too much power on small scales.

4.2 Variants of Cold Dark Matter
Based on theCOBEresults combined with smaller-scale constraints from galax-
ies, galaxy clusters, and large-scale structure, it has become apparent that there
are several ways to modify the CDM model to reduce its excessive small-scale
power (Efstathiou et al 1992, Wright et al 1992). These include “tilting” the
primordial power spectrum index ton< 1 (TCDM), replacing some of the CDM
with HDM that clusters much less efficiently on small scales (HCDM), replac-
ing some of the CDM with a cosmological constant3 that does not cluster at
all (LCDM), and simply eliminating most of the matter, leaving an open uni-
verse (OCDM). All these models retain the assumption of “adiabatic” primeval
perturbations of the sort produced during inflation (Guth & Pi 1985). Dodelson
et al (1996) have recently reviewed the status of the expanded family of CDM
models.

The most obvious way to reduce small-scale power, while retaining consis-
tency with the large-scale power required for microwave background anisotropy,
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is to decrease the primeval spectral indexnof Equation 10, which is a possibility
allowed by inflationary models. The TCDM model has been investigated with
simulations by Cen et al (1992), Cen & Ostriker (1993a), Gelb et al (1993), and
Moscardini et al (1995). Based on their results and the more recent summaries
by White et al (1995) and Cole et al (1997), it appears that TCDM models with
0.7≤ n ≤ 0.9 remain viable, although they are less attractive than some of the
other alternatives.

The HCDM model is attractive because the extra ingredient added to the
CDM model is a particle that is known to exist and whose abundance is predicted
in standard cosmology, the neutrino. The twist is that one or more flavors of
neutrino must have nonzero masses adding up to 18.7h2(Äν/0.2) eV, where
Äν is the fraction of the critical mass density in massive neutrinos. The first
simulations of this model, performed by Davis et al (1992b), Jing et al (1993),
and Klypin et al (1993), showed that withÄν = 0.3, the HCDM model is
in better agreement with observations of pairwise velocities and large-scale
structure than the CDM model. Bryan et al (1994) showed that this model also
succeeds in reproducing the observed abundance of X-ray clusters. However,
simulations by Cen & Ostriker (1994b), Ma & Bertschinger (1994b), and Klypin
et al (1995) showed that galaxy formation occurs too late unlessÄν is decreased
in order to increase the small-scale power. HCDM withÄν = 0.2 (with one
or two massive neutrino flavors) remains an attractive model, although it may
overproduce rich clusters (Cen & Ostriker 1994b, Borgani et al 1997). Liddle
et al (1996b) gave a recent review.

Although an astrophysically interesting cosmological constant3 6= 0 is very
unnatural in particle physics, cosmologists are attracted by its ability to increase
the age and size of the Universe for a fixedH0 as well as providing for a spatially
flat model (Äb + Äc + Ä3 = 1 with Ä3 =3/3H2

0 ) with low matter density
(Efstathiou et al 1990, Carroll et al 1992, Ostriker & Steinhardt 1995). First
simulated by Davis et al (1985), this model has attracted a great deal of attention
in the 1990s (e.g. Martel 1991, Suginohara & Suto 1992b, Cen et al 1993a,
Cen & Ostriker 1994a, Gnedin 1996a,b). The preferred value ofÄ3 is around
0.6–0.7, although its optimal range is still a subject of debate (e.g. Klypin et al
1996, Liddle et al 1996c).

The OCDM model withÄ = Äb +Äc ≈ 0.2 is attractive in that it requires
no ingredients beyond the baryons observed and inferred from primordial nu-
cleosynthesis and the dark matter inferred in clusters of galaxies. The case
for an open universe has been presented in a review by Coles & Ellis (1994);
simulations have been performed by Davis et al (1985), Martel (1991), Bahcall
& Cen (1992), Kauffmann & White (1992), and Cole et al (1997). Although
the simplest versions of inflation favorÄ= 1 (Guth 1981), recent interest has
developed among theorists in open-universe inflationary models compatible
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with microwave background constraints and structure formation (Liddle et al
1996a).

4.3 Other Models
Currently less popular structure formation models include several Gaussian and
non-Gaussian models. The oldest one is the hot dark matter (HDM) model, with
all the dark matter in the form of massive neutrinos with a free-streaming length
(the collisionless analog of the Jeans length) of several megaparsecs. The HDM
model was the first physically motivated model studied with simulations (Melott
1982, White et al 1983, 1984). Recent work supports the early conclusion that
galaxy formation occurs too late because of the absence of initial small-scale
power (e.g. Cen & Ostriker 1992b).

If CDM has too much small-scale power and HDM too little, perhaps a
Goldilocks solution exists with warm dark matter. Colombi et al (1996b) in-
vestigated warm models with a range of free-streaming lengths (hence varying
degrees of suppression of small-scale power). They found that models tuned
to match large-scale structure have too much power on small scales.

Peebles (1987a) proposed a low-density model without nonbaryonic dark
matter, withÄb ≈ 0.1 and primeval “isocurvature” fluctuations corresponding
to a spatially varying entropy per baryon. Structure formation simulations of
this isocurvature baryon model by Suginohara & Suto (1992a) and Cen et al
(1993b) indicated some difficulties, but the greatest conflict arises with the
microwave background (Hu et al 1995).

Several classes of non-Gaussian models have been explored. Early simula-
tions of structure formation with cosmic strings assumed that loops acted as
accretion sites (e.g. Scherrer et al 1989), but later work showed that long strings
are dominant (e.g. Albrecht & Stebbins 1992a,b). Cosmic textures, another type
of hypothetical topological defect, also act as seeds (e.g. Gooding et al 1992),
and generic seed models have been explored by Villumsen et al (1991). Re-
cently, Cen (1997b) has shown that models with random seeds cannot account
for the strong clustering of rich galaxy clusters.

Other non-Gaussian models include local nonlinear transformations of
Gaussian random fields (e.g. Moscardini et al 1991, Weinberg & Cole 1992).
While less physically motivated than the other models discussed above, they
provide useful foils for assessing the effect of nonlinear gravitational evolution
in producing non-Gaussianity from Gaussian initial conditions.

The discussion given above is only a partial summary of nonstandard structure
formation models that have been considered. Nonetheless, a general conclusion
applies: No model has emerged as a popular alternative to the generalized CDM
models discussed in Section 4.2. Their initial conditions are more complicated,
and when evolved, they show no compelling advantages to the variants of
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CDM models. However, nature need not be so kind as to always favor the
simplest theories we can conceive. For this reason, it remains valuable to explore
nonstandard models with a close eye on observational signatures that can be
tested.

5. APPLICATIONS

Cosmological simulations have numerous applications besides testing of struc-
ture formation models. This section presents some of the applications that have
become active areas of research. Space limitations preclude discussing many
other valuable and often ingenious uses of simulations.

5.1 Clusters of Galaxies
Rich clusters of galaxies are the most massive virialized objects in the Uni-
verse. At the same time, they are sufficiently young, and the relevant physics
sufficiently simple (compared, for example, with galaxy formation), so that
present-day simulations are effective in exploiting them as a probe of initial
conditions. A great many papers have applied structure-formation simulations
to clusters of galaxies because of their power to constrain cosmological param-
eters, includingÄ,Äb, andσ 8 (the power spectrum normalization).

Numerical simulations of galaxy clusters have been used for the following
goals, among others: (a) understanding the general processes of formation
and evolution of single clusters (galaxy evolution and dynamics, intracluster
medium); (b) testing observational methods of mass estimation (for both dark
matter and baryons); (c) using the distribution of X-ray temperature (or lu-
minosity, mass, or cluster velocity dispersion) and its evolution to constrain
cosmological parameters; and (d ) using substructure, morphology, shape, or
radial profile to constrain cosmological parameters.

The first cosmological simulations of cluster formation with gas were per-
formed by Evrard (1990) and Thomas & Couchman (1992), both of whom
combined P3M for gravity with SPH for gas dynamics. These and later simu-
lations (Frenk et al 1996 and references therein) have explored several issues,
including the equilibrium and distribution of the hot intracluster gas, the cluster
response to mergers, and, in simulations with radiative cooling (Katz & White
1993, Frenk et al 1996), the survival of dissipatively condensed galaxies within
dense cluster cores. Figure 3 shows maps of a simulated X-ray cluster at several
epochs.

Observers and theorists have devoted much attention to the ratio of veloc-
ity dispersions of galaxies and gas,β ≡ σ 2/(kT/µmp), whereσ is the one-
dimensional velocity dispersion of galaxies in the cluster,T is the gas temper-
ature,µ is the mean molecular weight, andmp is the proton mass. (Note that
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Figure 3 Evolution of an X-ray cluster in the standard cold dark matter (CDM) model.Columns
from left to right show the projected dark matter density, projected baryon density, emission-
weighted temperature, and predictedROSATX-ray surface brightness.Rowsfrom top to bottom
show the cluster at redshiftsz= 0.7, 0.3, 0.1, and 0.03, respectively. From Frenk et al (1996).

this is a different use of the symbolβ than in Section 3.4.) Direct measurement
of this quantity in high-resolution simulations (e.g. Navarro et al 1995) yields
β ≈ 1, as expected for gas and galaxies that have fallen through the same po-
tential. Values estimated from fitting the X-ray surface-brightness distribution
yield underestimates by a variety of effects (Evrard 1990, Bahcall & Lubin
1994, Navarro et al 1995).

The reliability of cluster mass estimates based on X-ray observations of the
hot gas when assuming hydrostatic equilibrium has been examined by several
groups, including Tsai et al (1994), Evrard et al (1996), and Bartelmann &
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Steinmetz (1996). Their papers show that the reliability of the deduced masses
depends somewhat on how the X-ray surface-brightness profiles are fit but that
accuracies of better than 25% are readily achievable. Bartelmann & Steinmetz
(1996) and Cen (1997a) also argued that cluster projection effects systematically
bias the ratio of masses estimated from X-ray data and gravitational lenses below
unity (Bartelmann et al 1996 and references therein).

X-ray measurements of intracluster gas naturally provide an estimate of the
gas density as well as the total binding mass. Including the relatively small
contribution to baryons made by galaxies in luminous X-ray clusters, the baryon
fraction of the mass is found to be

fb = Äb

Ä
≈ (0.06± 0.003) h−3/2 (12)

(White et al 1993b; Evrard 1997 and references therein). Simulations show
that the baryon fraction in clusters is expected to vary little from the cosmic
mean value (White et al 1993b, Cen & Ostriker 1994a). As White et al noted in
the title of their paper (“The baryon content of galaxy clusters—a challenge to
cosmological orthodoxy”), Equation 12 represents a challenge to cosmological
orthodoxy, which favorsÄ= 1, 0.5< h< 0.9, andÄb ≈ 0.015h−2 from stan-
dard Big Bang nucleosynthesis (Copi et al 1995). Although a recent measure-
ment of the deuterium abundance in QSO absorption lines implies the higher
valueÄb ≈ 0.019h−2 (Tytler et al 1996; S Burles & D Tytler, unpublished
manuscript, astro-ph/9712109), even this value from Big Bang nucleosynthe-
sis is incompatible with Equation 12 ifÄ= 1. However, the measured baryon
fraction is perfectly compatible for an open universe or one with a cosmological
constant, lending further support to the LCDM and OCDM models.

Rich clusters are rare objects corresponding to high-density peaks in the initial
conditions. Their abundance is therefore highly sensitive to the normalization
of the power spectrum. Because the virialized mass of rich clusters roughly
equals the mass within a sphere of radius 8h−1 Mpc at the cosmic mean density,
the cluster abundance and its evolution with redshift therefore provide a strong
constraint onσ 8 (Evrard 1989, Bahcall & Cen 1992, White et al 1993a). The
mean mass density parameterÄ enters the argument directly through the mass
within the sphere; it enters indirectly through the scaling of fluctuations from
the linear regime (implicit inσ 8) to the nonlinear regime of virialized clusters.

Conceptually, this cluster abundance test compares predicted and measured
distributions of cluster masses (although X-ray luminosity or velocity dispersion
may be used instead). Eke et al (1996) provided a comprehensive analysis
leading to the conclusion

σ8 = (0.52± 0.04)Ä−1/2. (13)

(Their exponent onÄ actually differs slightly from−1/2, and it depends weakly
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onÄ and3.) Fan et al (1997) have shown recently that the rate of evolution
of the cluster abundance depends onσ 8 but is insensitive toÄ, enabling the
degeneracy between these parameters to be broken. They obtainedσ8 = 0.83±
0.15 andÄ = 0.3± 0.1. These results are exciting, but a prudent observer may
wish to wait for confirmation that we really know the cosmological parameters
this well.

A different test ofÄ was proposed by Richstone et al (1992), who noted
that the presence of substructure in clusters argues that they are dynamically
young. Because the growth of clustering slows greatly whenÄ¿ 1, if clusters
indeed formed recently, this would favor a highÄ. This argument is qualitative,
as there is neither a perfect measure of substructure nor a unique relation be-
tween substructure and age. Nevertheless, it has inspired much attention from
simulators, beginning with Evrard et al (1993), who confirmed the qualitative
connection between cluster morphology andÄ. Several groups have tested a
range of statistical measures of substructure (with either galaxy counts or X-ray
data) using simulations in an attempt to make a quantitative and robust test (e.g.
Dutta 1995, Crone et al 1996, Buote & Tsai 1995, Pinkney et al 1996). The
latest results appear to favor a low-density universe withÄ≈ 0.35 (Buote &
Xu 1997). In related work, Wilson et al (1996b) showed that reconstructions of
cluster mass distributions by using weak gravitational lensing inversion should
provide enough substructure information to allow a test ofÄ.

5.2 Gravitational Lensing
Gravitational lensing provides a powerful way to study the distribution of mat-
ter in the Universe through the deflection of light from distant sources. There
are many aspects of lensing, but only a few have been studied with cosmo-
logical simulations. An excellent (though already dated) review was given by
Blandford & Narayan (1992). Here we summarize applications of simulations
in two areas: strong gravitational lensing (formation of double images and long
arcs) and weak lensing by clusters.

Cen et al (1994a) used cosmological simulations to estimate the frequency
distribution of splitting angles for background QSOs lensed by the mass in
their simulations. Their work extended an analytic treatment by Narayan &
White (1988) based on the Press-Schechter formalism. Cen et al showed that,
when the power spectrum is normalized by theCOBEanisotropy, the CDM
model predicts many lenses of separations greater than 8 arcsec, which con-
tradicts observations. Wambsganss et al (1995) reached a similar conclusion
based on simulated maps of the sky lensed by the mass distribution in their
CDM simulation. Bartelmann et al (1995) used realistic cluster potentials from
cosmological simulations to study the formation of arcs. They showed that the
asymmetric cluster potentials greatly increase the frequency of arcs compared
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with spherically symmetric models. Bartelmann & Steinmetz (1996) noted
similarly that arcs form preferentially in clusters with substructure.

Kaiser & Squires (1993) developed a nonparametric method for reconstruct-
ing the projected mass distribution of clusters from the coherent weak distortions
of background galaxies. Their work has inspired a large number of observa-
tional applications and theoretical tests and extensions. Bartelmann et al (1996)
have proposed a reconstruction method for the projected mass distribution us-
ing chi-squared minimization of image stretching and magnification and tested
it with simulations. Bartelmann (1995) used simulations to test the accuracy
of cluster mass reconstructions, concluding that the Kaiser & Squires method
and variants should provide accurate results. However, the smearing of images
caused by atmospheric seeing causes a bias on the order of a factor of two that
must be corrected (Wilson et al 1996a).

5.3 Quasistellar Object Absorption Lines
Our knowledge of QSO absorption line systems has increased tremendously
in the last decade (see the review by Rauch 1998, in this volume). Struc-
ture formation simulations have played an important role in elucidating the
nature of the Lyα forest of narrow hydrogen absorption lines, which are seen
in spectra of QSOs at redshiftz> 2. Early models of the forest were based on
isolated spherical or sheet-like clouds. About a decade ago, hierarchical clus-
tering models like CDM ones were realized to have small-scale structure that
might readily produce clouds with abundance (Bond et al 1988) and clustering
(Salmon & Hogan 1986) comparable to the Lyα forest lines. Another key was
the realization by McGill (1990) that because of peculiar velocities, optically
thin line profiles do not necessarily reflect the density profile of neutral hydro-
gen in space. Lines can form from velocity caustics (e.g. a structure that has
just started to reverse the Hubble expansion) even if the gas is not particularly
overdense.

Cosmological simulations of dark matter and gas with photoionization from
the ultraviolet background (Cen et al 1994b, Zhang et al 1995, Hernquist
et al 1996, Mücket et al 1996) have shown that the Lyα forest arises nat-
urally from the filamentary web (Bond et al 1996) of structure that occurs
in hierarchical clustering models with an appropriate amount of small-scale
power. When the ratio of ionizing flux to baryon density is set near the ob-
servationally favored value, hierarchical models almost automatically predict
the correct density distribution, redshift evolution, and clustering of the Lyα

lines. Some of the lines form in well-defined clouds (particularly the damped
lines; Katz et al 1996b), while others form in transient filamentary or sheet-
like structures (Cen & Simcoe 1997), and still others are velocity caustics that
may even be underdense in real space (Zhang et al 1995). Figure 4 shows
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Figure 4 Simulated column density distribution of Lyα absorption lines (filled circles for H I,
diamondsfor He II) at redshiftz = 3 in a standard CDM universe. Observational data are shown
for H I (open symbols). From Zhang et al (1997).

the impressive match of simulated and measured column density distribu-
tions for the hydrogen Lyα line at z= 3, along with a prediction for ionized
helium.

The success of numerical simulations has inspired analytical models that can
account very well for the column density distribution and provide an under-
standing of how it arises (Bi et al 1995, Gnedin & Hui 1996, Bi & Davidsen
1997, Hui et al 1997). The agreement of analytical and numerical models with
each other and with observational data is a remarkable success story that sup-
ports the hierarchical clustering models of structure formation. These results
also show that the concept of a uniform medium producing continuous absorp-
tion, used by Gunn & Peterson (1965) to sharply limit the neutral hydrogen
density in the intergalactic medium, must be replaced by absorption arising in a
fluctuating medium (Reisenegger & Miralda-Escud´e 1995, Rauch et al 1997b).
There is, however, predicted to be a Gunn-Peterson trough for He II absorption
(Miralda-Escud´e et al 1996, Croft et al 1997, Zhang et al 1997). Requiring the
Lyα forest to produce the observed overall opacity constrains the baryon abun-
dance toÄb > 0.017h−2 (Rauch et al 1997b, Weinberg et al 1997b), which is
consistent with the high value obtained by Tytler et al (1996).
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The computational modeling has been extended to include the physics of
metal lines with a sophisticated treatment of photoionization equilibrium
(Haehnelt et al 1996a,b, Hellsten et al 1997, Rauch et al 1997a,b), Voigt-profile
fitting to the simulated absorption-line spectra for rigorous comparison with
observations (Dav´e et al 1997c), and the examination of correlations between
close lines of sight (Charlton et al 1997).

The high column density-damped Lyα lines are thought to originate in dense
gas associated with galaxies. Their abundance therefore can be used to constrain
models of structure formation (e.g. Gardner et al 1997 and references therein).

5.4 Radial Profiles of Dark Matter Halos
Numerical simulations of hierarchical models (Section 4) show that most of
the mass is drawn into dense clumps by gravity. The dark matter components
of these clumps are identified with extended dark matter halos around galaxies
(Frenk et al 1985).N-body simulations have allowed cosmologists to address
a straightforward question: What is the shape of dark matter halos formed by
hierarchical clustering? This question is relevant observationally to the cusps of
elliptical galaxies (e.g. Faber et al 1997) and the profiles of clusters of galaxies.

Gunn & Gott (1972) and Fillmore & Goldreich (1984) presented analytical
models for spherical “secondary” infall of collisionless matter onto a density
peak in an expanding universe. Building on this work, Hoffman & Shaham
(1985) proposed that virialized dark matter halos should have a power-law
radial profileρ(r ) ∝ r−ν , whereν is related to the logarithmic slopen of
the power spectrum on the scales of interest. Forn<−1, the slope relevant
on galaxy scales in plausible models, the prediction of the secondary infall
model isν= 2, corresponding to flat rotation curves such as those observed
for the baryonic component of galaxies. Forn>−1, the profiles steepen to
ν = (9+ 3n)/(4+ n), corresponding to falling rotation curves.

The predictions of Hoffman & Shaham (1985) have been supported by many
N-body simulations (e.g. Quinn et al 1986, Zurek et al 1988, Warren et al 1992,
Crone et al 1994, Zaroubi et al 1996). However, high-resolution simulations
(e.g. Frenk et al 1988) showed a steepening of the density profile with radius.
Dubinski & Carlberg (1991) found that the halos formed in the CDM model
have a logarithmic slopeν varying between 1 and 4, in good agreement with the
Hernquist (1990) model. However, Navarro et al (1995, 1996) found instead a
better fit to

ρNFW(r ) ∝ 1

r (r + rs)2
, (14)

wherers is a scale radius. Their most surprising result was that this profile is
universal for all hierarchical clustering models, regardless of the halo mass, the
initial power spectrum, or cosmological parameters.
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Navarro et al’s results have been confirmed by Cole & Lacey (1996) and
Kravtsov et al (1997) and in higher-resolution simulations by Tormen et al
(1997) and Navarro et al (1997). The latter paper also shows that earlier work
is, in fact, consistent with Equation 14. The characteristic density atr= rs cor-
relates with mass in a way that reproduces the trends of the Hoffman & Shaham
(1985) model. However, in a still higher-resolution simulation, Fukushige &
Makino (1997) found that the profile remains steeper thanr−1 to the limit of
their resolution, and they attributed contrary results to two-body relaxation.

Why are the central profiles shallower than isothermal (ν= 2)? Teyssier et al
(1997) showed that when the Fillmore & Goldreich (1984) model is modified for
gas, or dark matter with isotropic orbits, the limiting profile isν= 1 instead of
ν= 2. Alternatively, Evans & Collett (1997) examined the effect of diffusion
driven by gravitational scattering and showed that the collisional Boltzmann
equation of stellar dynamics has an attractor solution withν= 4/3.

Halo shapes and angular momenta have also been studied withN-body sim-
ulations (e.g. Barnes & Efstathiou 1987, Dubinski & Carlberg 1991, Warren
et al 1992). Numerically simulated dark matter halos are found to be generally
triaxial and slowly rotating.

5.5 Self-Similar Clustering in Scale-Free Models
Hierarchical clustering from scale-free initial conditions—initial power spectra
P(k) ∝ kn in an Einstein–de Sitter universe (Ä= 1)—is expected to evolve in
a self-similar way, with a unique length scale growing in comoving coordinates
as [a(t)]α, α = 2/(3 + n) (e.g. Press & Schechter 1974, Efstathiou et al
1979, Peebles 1980, 1985). Although scale-free initial conditions differ from
realistic models with a physical transfer function (Equation 10), they provide a
theoretical laboratory for understanding nonlinear gravitational instability and
have therefore been studied extensively.

One of the few analytical approaches to the strongly nonlinear regime is pro-
vided by self-similar solutions of the BBGKY hierarchy governing the growth
of clustering (Peebles 1980). Making several approximations to close the hier-
archy and render it tractable, Davis & Peebles (1977) obtained power-law solu-
tions for the nonlinear correlation functions. Their key assumption was that on
small scales, the mean proper velocity between pairs vanishes so that, on aver-
age, each particle has a fixed number of neighbors per unit volume. Under this
assumption, known as stable clustering, the logarithmic slope of the nonlinear
two-point correlation function is predicted to beγ = (9+ 3n)/(5+ n). Higher-
order correlation functions are expected to vary asξN ∝ r−(N−1)γ , in agreement
with the measured hierarchical scaling of correlation functions (Peebles 1980).
The tempting conclusion is that the observed correlation function, withγ = 1.8,
could be explained by stable clustering starting after recombination from white



         
P1: NBL/dat/ary P2: NBL/vks QC: NBL/anil T1: NBL

July 4, 1998 5:55 Annual Reviews AR062-14

644 BERTSCHINGER

noise (n = 0; Peebles 1974). However,N-body simulations show that scale-
free initial conditions result in a varying slope of the nonlinear correlation
function, approaching the predicted slope asymptotically only at very high val-
ues ofξ (Efstathiou & Eastwood 1981, Efstathiou et al 1988, Bertschinger &
Gelb 1991).

The assumption of stable clustering has come under increased scrutiny re-
cently. Padmanabhan et al (1996) concluded from their simulations that stable
clustering is violated, while Jain (1997) concluded that it holds. Colombi et al
(1996a) tested stable clustering and the predicted scaling of theN-point cor-
relation functions as determined from the cumulants of counts in cells, and
they found a departure from the predicted scaling but also showed that higher-
resolution simulations are needed for a definitive test.

Stable clustering is one of the ingredients of a remarkable linear to nonlin-
ear mapping of the correlation function introduced by Hamilton et al (1991).
Guided by the simulation results of Efstathiou et al (1988), they showed
how the initial linear correlation function may be deduced from the nonlinear
evolved one and vice versa. Their method has been modified and tested with
high-resolutionN-body simulations by Jain et al (1995) and Padmanabhan
(1996) and extended to the power spectrum and to universes withÄ < 1
and3 6= 0 by Peacock & Dodds (1994, 1996). This body of work is impor-
tant in enabling deduction of the initial power spectrum of fluctuations from
the observed nonlinear spectrum (Peacock & Dodds 1994, 1996, Baugh &
Gaztañaga 1996, Peacock 1997). However, its theoretical basis is not yet fully
understood.

5.6 Testing Approximations for Nonlinear
Gravitational Dynamics

Theoreticians devise approximations to nonlinear gravitational clustering with
three purposes in mind: (a) to understand the nonlinear dynamics arising in sim-
ulations and thereby perhaps understand the Universe, (b) to replace expensive
simulations with fast approximations, and (c) to relate the present-day distribu-
tion of galaxies directly to the initial conditions for structure formation. Many
approaches have been adopted; only a brief and incomplete synopsis of recent
work is given here. An early review was given by Shandarin & Zel’dovich
(1989). Sahni & Coles (1995) provided an excellent comprehensive pedagog-
ical review.

The Zel’dovich (1970) approximation (Equation 6) gives an accurate de-
scription of motion for pressureless dark matter (and even baryons or HDM
on scales larger than the Jeans or free-streaming lengths). However, it breaks
down once trajectories intersect; particles never turn around to orbit in bound
systems. Several approximations have been suggested to cure this defect. The
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first was to add an approximate viscosity term to the equation of motion to
prevent trajectories from crossing (the adhesion approximation of Gurbatov
et al 1989). A simpler method is to prefilter the linear density fluctuation field
with a window of radius large enough so thatσ(R) = 1 before applying the
Zel’dovich approximation (the truncated Zel’dovich approximation of Kofman
et al 1992). In both methods, coherent motion is reduced on small scales in
virialized regions, which is in agreement with the fully nonlinear evolution of
the gravitational potential (Melott et al 1996).

Sathyaprakash et al (1995) compared these modified Zel’dovich approxima-
tions and other dynamical approximations againstN-body simulations, finding
that the truncated Zel’dovich approximation is favored because of its simplic-
ity and accuracy. Besides being slower, the adhesion approximation does not
conserve comoving momentum. Shandarin & Sathyaprakash (1996) presented
a promising new fast approximation that conserves momentum by replacing
the Burgers equation of the adhesion approximation with the Navier-Stokes
equation of viscous fluid flow.

The Zel’dovich approximation may be regarded as the first-order pertur-
bation theory for the trajectories of mass elements. Higher-order Lagrangian
perturbation theory would include additional terms in a power series inD in
Equation 6. The second-order perturbation theory has been applied and com-
pared against simulations of hierarchical models by Melott et al (1995) and
Bouchet et al (1995), who concluded that it gives significant improvements
over the Zel’dovich approximation, particularly when the initial density field
is smoothed (truncated) at high wavenumbers. Karakatsanis et al (1997) have
improved these methods further by artificially slowing down the growth of
D(t) in the perturbation series to prevent the displacements from growing too
rapidly.

The least-action principle provides an alternative formulation of gravitational
dynamics that underlies several new approximations. Peebles (1989, 1994; see
also Giavalisco et al 1993) introduced the least-action method as a way to
trace galaxy orbits back in time, given the final positions and requiring that the
peculiar velocities vanish initially. By requiring the final velocities to match
observations, the mean mass-to-light ratios of the galaxies can be deduced and,
from this,Ä (Shaya et al 1995). Although simulations have raised questions
about the reliability of this estimate (Branchini & Carlberg 1994, Dunn &
Laflamme 1995), the least-action principle offers a powerful approach to dy-
namical approximations. Its difficulty lies in being nonlocal: The motion of
all mass elements must be considered simultaneously to minimize the action.
Its advantage over other techniques lies in the ability to reconstruct the initial
conditions. Two impressive implementations of this idea have been published
recently. Susperregi & Binney (1994) worked with Eulerian density and velocity
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fields, whereas Croft & Gazta˜naga (1997) used straight-line Lagrangian trajec-
tories. Their methods agree reasonably well withN-body simulations and offer
the hope that, with data from large redshift surveys, similar methods may allow
accurate reconstruction of the initial density fluctuation field.

6. FUTURE DIRECTIONS

Ten years ago, the field of computational cosmology was in something of a
doldrums, with the standard CDM model reeling and rather little to replace it.
The experience brought valuable lessons to the field and encouraged new ideas
and applications. Now simulations are used to provide invaluable insight into
physical systems such as quasar absorption lines, despite our lack of a definite
structure formation model.

During the next decade, simulations will be applied toward investigation of
the leading outstanding questions in cosmology, such as the following. What
are the values of the cosmological parameters? What is the dark matter and
how much is there? What was the nature of the primordial density fluctuations?
How different are the galaxy and mass density fields? When did galaxies and
clusters of galaxies form? Why is galaxy morphology different in rich clusters
from lower-density environments? What are the best ways to analyze the new
large redshift surveys and other datasets that will become available?

Addressing many of these questions more rigorously than heretofore will re-
quire more physics and higher resolution than are available in current-generation
simulations. Significant steps have been taken already with inclusion of mul-
tispecies chemistry in several gas dynamics codes. Improved treatments of
radiative transfer and energy feedback through star formation will be required.
In some environments, e.g. clusters of galaxies, inclusion of magnetic fields
may be desirable. Yet for many problems, the limiting factor remains resolu-
tion. Gradually, this limitation will recede with the combination of adaptive
algorithms and the relentless speedup of computers. Students wishing to enter
this field will benefit from a broad background in physical processes, numerical
algorithms, and high-performance computing in addition to astrophysics and
cosmology.

ACKNOWLEDGMENTS

I gratefully acknowledge support from the National Science Foundation under
grants AST-9318185 and AST-9529154 and from the National Aeronautics and
Space Administration under grant NAG5-2816.

Visit the Annual Reviews home pageat
http://www.AnnualReviews.org.



    

P1: NBL/dat/ary P2: NBL/vks QC: NBL/anil T1: NBL

July 4, 1998 5:55 Annual Reviews AR062-14

STRUCTURE FORMATION SIMULATIONS 647

Literature Cited

Aarseth SJ. 1963.MNRAS126:223–55
Aarseth SJ, Gott JR, Turner EL. 1979.Ap. J.

228:664–83
Abel T, Anninos P, Zhang Y, Norman ML. 1997.

New Astron.2:181–207
Albrecht A, Stebbins A. 1992a.Phys. Rev. Lett.

68:2121–24
Albrecht A, Stebbins A. 1992b.Phys. Rev. Lett.

69:2615–18
Allen B, Shellard EPS. 1990.Phys. Rev. Lett.

64:119–22
Anninos P, Norman ML. 1996.Ap. J.459:12–26
Anninos P, Norman ML, Clarke DA. 1994.Ap.

J. 436:11–22
Anninos P, Zhang Y, Abel T, Norman ML. 1997.

New Astron.2:209–24
Anninos WY, Norman ML. 1994.Ap. J.429:

434–64
Appel AW. 1985.SIAM J. Sci. Stat. Comp.6:85–

93
Avelino PP. 1997.Ap. J.487:18–32
Bahcall NA, Cen R. 1992.Ap. J. Lett.398:L81–

84
Bahcall NA, Cen R. 1993.Ap. J. Lett.407:L49–

52
Bahcall NA, Cen R, Gramann M. 1993.Ap. J.

Lett.408:L77–80
Bahcall NA, Lubin LM. 1994.Ap. J.426:513–

15
Balsara DS. 1995.J. Comp. Phys.121:357–72
Bardeen JM, Bond JR, Kaiser N, Szalay AS.

1986.Ap. J.304:15–61
Barnes J, Efstathiou G. 1987.Ap. J.319:575–

600
Barnes J, Hut P. 1986.Nature324:446–49
Barnes J, Hut P. 1989.Ap. J. Suppl.70:389–417
Bartelmann M. 1995.Astron. Astrophys.303:

643–55
Bartelmann M, Narayan R, Seitz S, Schneider

P. 1996.Ap. J. Lett.464:L115–18
Bartelmann M, Steinmetz M. 1996.MNRAS

283:431–46
Bartelmann M, Steinmetz M, Weiss A. 1995.

Astron. Astrophys.297:1–12
Bate MR, Burkert A. 1997.MNRAS288:1060–

72
Baugh CM, Efstathiou G. 1994.MNRAS270:

183–98
Baugh CM, Gazta˜naga E. 1996.MNRAS280:

L37–41
Baugh CM, Gazta˜naga E, Efstathiou G. 1995.

MNRAS274:1049–70
Beaky MM, Scherrer RJ, Villumsen JV. 1992.

Ap. J.387:443–48
Bennett DP, Bouchet FR. 1990.Phys. Rev. D

41:2408–33
Bernardeau F. 1994.Astron. Astrophys.291:

697–712

Bernardeau F, Juszkiewicz R, Dekel A, Bouchet
FR. 1995.MNRAS274:20–26

Bernardeau F, Kofman L. 1995.Ap. J.443:479–
98

Bernardeau F, van de Weygaert R, Hivon E,
Bouchet FR. 1997.MNRAS290:566–76

Bertschinger E. 1987.Ap. J. Lett.323:L103–6
Bertschinger E. 1992. InNew Insights into

the Universe, ed. VJ Mart´ınez, M Portilla,
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Quilis V, Ibañez JM, S´aez D. 1996.Ap. J.
469:11–25

Quinn PJ, Salmon JK, Zurek WH. 1986.Nature
322:329–35

Quinn T, Katz N, Staedel J, Lake G. 1997.Ap.
J. Submitted (astro-ph/9710043)

Rauch M. 1998.Annu. Rev. Astron. Atrophys.
36:267–316

Rauch M, Haehnelt MG, Steinmetz M. 1997a.
Ap. J.481:601–24

Rauch M, Miralda-Escud´e J, Sargent WLW,
Barlow TA, Weinberg DH, et al. 1997b.Ap.
J. 489:7–20

Raychaudhury S, Saslaw WC. 1996.Ap. J.461:
514–24

Reisenegger A, Miralda-Escud´e J. 1995.Ap. J.
449:476–87

Richstone D, Loeb A, Turner EL. 1992.Ap. J.
393:477–83

Richtmeyer RD, Morton KW. 1967.Difference
Methods for Initial-Value Problems.New
York: Wiley-Intersci.

Ruffa GJ, Porter DH. 1993.Ap. J. Suppl.87:
179–95

Ryden BS. 1988.Ap. J. Lett.333:L41–44
Ryden BS, Melott AL, Craig DA, Gott JR,

Weinberg DH, et al. 1989.Ap. J.340:647–
60

Ryu D, Ostriker JP, Kang H, Cen R. 1993.Ap.
J. 414:1–19

Ryu D, Vishniac ET, Chiang W-H. 1990.Ap. J.
354:389–99

Sahni V, Coles P. 1995.Phys. Rep.262:1–136
Sahni V, Sathyaprakash BS, Shandarin SF.

1997.Ap. J. Lett.476:L1–5
Salmon J. 1996.Ap. J.460:59–67
Salmon J, Hogan C. 1986.MNRAS221:93–104
Salmon JK, Warren MS. 1994.J. Comp. Phys.

111:136–55
Sanders RH, Prendergast KH. 1974.Ap. J.188:

489–500
Saslaw WC, Hamilton AJS. 1984.Ap. J.276:

13–25
Sathyaprakash BS, Sahni V, Munshi D, Pogo-

syan D, Melott AL. 1995.MNRAS275:463–
82

Saunders W, Frenk C, Rowan-Robinson M, Ef-
stathiou G, Lawrence A, et al. 1991.Nature
349:32–38

Scherrer RJ, Melott AL, Bertschinger E. 1989.
Phys. Rev. Lett.62:379–82

Schmalzing J, Buchert T. 1997.Ap. J. Lett.
482:L1–4

Seljak U, Zaldarriaga M. 1996.Ap. J.469:437–
44



    

P1: NBL/dat/ary P2: NBL/vks QC: NBL/anil T1: NBL

July 4, 1998 5:55 Annual Reviews AR062-14

STRUCTURE FORMATION SIMULATIONS 653

Sellwood JA. 1987.Annu. Rev. Astron. Atro-
phys.25:151–86

Serna A, Alimi J-M, Chièze J-P. 1996.Ap. J.
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