Annu. Rev. Astron. Astrophys. 1997. 35: 309-355
Copyright © 1997 by . All rights reserved

Next Contents Previous

5. TYPE II SUPERNOVAE

5.1. Type II-P Supernovae

Excellent examples of SNe II-P are SN 1969L (Ciatti et al 1971), SN 1986I (Pennypacker et al 1989), SN 1988A (Turatto et al 1993a), SN 1990E (Schmidt et al 1993, Benetti et al 1994), and SN 1991G (Blanton et al 1995). At very early times, the spectrum is nearly featureless and quite blue, indicating a high color temperature (gtapprox 10,000 K). Very weak hydrogen Balmer lines and He I lambda5876 are often visible. Initially, the widths of the Balmer lines and the blueshifts of their P Cygni absorption minima decrease noticeably in some objects (e.g. SN 1987A; Menzies 1991), as the photosphere quickly recedes to the inner, more slowly moving layers of the homologously expanding ejecta. The temperature rapidly decreases with time, reaching ~ 5000 K within a few weeks, as expected from the adiabatic expansion and associated cooling of the ejecta. It remains roughly constant at this value during the plateau, while the hydrogen recombination wave moves through the massive (~ 10 Modot) hydrogen ejecta and releases the energy deposited by the shock. At this stage, strong Balmer lines and Ca II H&K with well-developed P Cygni profiles appear, as do weaker lines of Fe II, Sc II, and other iron-group elements. Subsequently, as the light curve drops to the late-time tail, the spectrum gradually takes on a nebular appearance; the continuum fades, but Halpha becomes very strong, and prominent emission lines of [O I], [Ca II], and Ca II also appear.

This behavior is well illustrated in Figure 12 with SN 1992H (see also Clocchiatti et al 1996a, who estimated the explosion date to be February 8, 1992). Although its V-band plateau (tau = 40-100 days, or perhaps 50-90 days, depending on one's definition) was somewhat shorter than that of the most famous SNe II-P mentioned above and declined slowly with time, SN 1992H can still be considered a SN II-P, and its spectral development was quite typical. Weak He I lambda5876 was superposed on a blue continuum on day 20. Hbeta absorption was present, but the corresponding component of Halpha was weak or absent; Halpha emission, on the other hand, was obvious. The Halpha absorption line must have developed very rapidly, as it was strong by day 34, and the continuum was redder. The spectrum changed little between days 34 and 123, with the absorption lines gradually growing stronger; Na I D became very prominent, and many lines of singly ionized metals were present. The emergence of weak forbidden emission lines (day 105), most notably [Ca II] lambda lambda7291, 7324, roughly coincided with the end of the plateau phase; the Ca II near-IR triplet and Na I D emission also became more prominent. By day 138, and certainly by day 177, [O I] lambda5577 and [O I] lambda lambda6300, 6364 were unmistakable. At tau approx 1 year, when the continuum was faint, the spectrum was dominated by Halpha, [Ca II] lambda lambda7291, 7324, and [O I] lambda lambda6300, 6364; weaker [Fe II] lambda7155, Na D, Mg I] lambda4571, the Ca II near-IR triplet, and blends of Fe II lines (especially near 5300 Å) were also present.

Figure 12

Figure 12. Montage of spectra of SN 1992H in NGC 5377 (cz = 1793 km s-1). Epochs (days) are given relative to the estimated date of explosion, February 8, 1992.

SNe II-P are excellent distance indicators, using the "Expanding Photosphere Method" (a variant of the Baade-Wesselink method) described by Kirshner & Kwan (1974); see Schmidt et al (1994a, b), Eastman et al (1996), Filippenko (1997b), and references therein. This technique is independent of the various uncertain rungs in the cosmological distance ladder: It relies only on an accurate measurement of the effective temperature (from the measured colors, with appropriate modeling of deviations from a blackbody spectrum) and the velocity of the photosphere (from the wavelengths of weak absorption lines such as those of Sc II) during the plateau phase. An important check is that the object's derived distance should be independent of time.

Next Contents Previous