The framework for understanding the evolution of the universe is the hot bigbang model, technically referred to as the FriedmannLemaitreRobertsonWalker (FLRW) cosmological model. Grounded in Einstein's theory of general relativity, this model assumes that on the largest scales the universe is homogeneous and isotropic, features which have now been confirmed observationally.
The FLRW model incorporating inflation, can be described by 16 cosmological parameters that we group here into two categories (see Table I). The first 10 parameters describe the expansion, the global geometry, the age and the composition of the underlying FLRW model, while the final 6 describe the deviations from exact homogeneity, which at early times were small, but today manifest themselves in the abundance of cosmic structure, from galaxies to superclusters.
Parameter  Value ^{1}  Description  WMAP ^{2} 
Ten Global Parameters  
h  0.72 ± 0.07  Present expansion rate ^{3}  0.71^{+0.04}_{0.03} 
q_{0}  0.67 ± 0.25  Deceleration parameter ^{4}  0.66 ± 0.10 ^{5} 
t_{0}  13 ± 1.5 Gyr  Age of the Universe ^{6}  13.7 ± 0.2 Gyr 
T_{0}  2.725 ± 0.001 K  CMB temperature ^{7}  
_{0}  1.03 ± 0.03  Density parameter ^{8}  1.02 ± 0.02 
_{B}  0.039 ± 0.008  Baryon Density ^{9}  0.044 ± 0.004 
_{CDM}  0.29 ± 0.04  Cold Dark Matter Density ^{9}  0.23 ± 0.04 
_{}  0.001  0.05  Massive Neutrino Density ^{10}  
_{X}  0.67 ± 0.06  Dark Energy Density ^{9}  0.73 ± 0.04 
w  1 ± 0.2  Dark Energy Equation of State ^{11}  < 0.8 (95% cl) 
Six Fluctuation Parameters  
S  5.6^{+1.5}_{1.0} × 10^{6}  Density Perturbation Amplitude ^{12}  
T  < S  Gravity Wave Amplitude ^{13}  T < 0.71S (95%cl) 
_{8}  0.9 ± 0.1  Mass fluctuations on 8 Mpc ^{14}  0.84 ± 0.04 
n  1.05 ± 0.09  Scalar index ^{8}  0.93 ± 0.03 
n_{T}    Tensor index  
dn / d ln k  0.02 ± 0.04  Running of scalar index ^{15}  0.03 ± 0.02 
^{1} The
1 uncertainties quoted in
this table represent our combined analysis of published data.

The Friedmann equation governs the expansion rate and relates several of the first 10 parameters:
(1) 
where H is the expansion rate, a(t) is the cosmic scale factor (which describes the separation of galaxies during the expansion), _{tot} is the massenergy density, and R_{curv} is the curvature radius. The well known cosmological redshift z (which relates the observed wavelength of a photon _{R} when received at time t_{R}, to its restframe wavelength _{E} when emitted at time t_{E}) is directly tied to the change in cosmic scale factor a(t): 1 + z _{R} / _{E} = a(t_{R}) / a(t_{E}).
From the Friedmann equation it follows that the total massenergy and spatial curvature k are linked:
(2) 
where the subscript `0' denotes the current value of the parameter, _{0} _{tot} / _{crit} and _{crit} 3H_{0}^{2} / 8G is the socalled "critical density" that separates positively curved (k > 0), highdensity universes from negatively curved (k < 0), lowdensity universes. Recent measurements of the anisotropy of the cosmic microwave background have provided convincing evidence that the spatial geometry is very close to being uncurved (flat, k = 0), with _{0} = 1.0 ± 0.03 (deBernardis et al., 2002).
The currently known components of the Universe include ordinary matter or baryons (_{B} = _{B} / _{crit}), cold dark matter (_{CDM}), massive neutrinos (_{}), the cosmic microwave background and other forms of radiation (_{rad}), and dark energy (_{X}). The values for these densities are derived empirically, as discussed below, and sum, to within their margins of error, to the critical density, _{0} = 1, consistent with the determination of the curvature, k = 0.
The second set of parameters, which broadly characterize the individual deviations from homogeneity, describe (a) the tiny (~ 0.01%) primeval fluctuations in the matter density as encoded in the CMB, (b) the inhomogeneity in the distribution of matter today, and (c) the possible spectrum of gravitational waves produced by inflation. The initial spectrum of density fluctuations is described in terms of its power spectrum P(k), which is the square of the Fourier transform of the density field, P(k) _{k}^{2}, where the wavenumber k is related to the wavelength of the fluctuation, k = 2 / . (Galaxies like ours are formed from perturbations of wavelength ~ 1 Mpc.) The primordial power spectrum is described by a power law, P(k) k^{n}, where a power index n = 1.0 corresponds to fluctuations in the gravitational potential that are the same on all scales (socalled scale invariant). The scaleinvariant spectrum is predicted by inflation and agrees well with current observations. The overall amplitude of the density perturbations can be described by either S, the CMB quadrupole anisotropy produced by the fluctuations or _{8}, the amplitude of fluctuations on a scale of 8h^{1} Mpc, which is found from observations to be of order unity.
Accurately measuring these parameters presents a significant challenge. As we now describe, thanks to major advances in technology, the challenge is being met, and in some cases, with independent measurements that check the consistency of both the theoretical framework, and the results themselves.