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Abstract. After a short introduction on how we get information of the
magnetic fields from radio observations I discuss the results concerning
the magnetic field structure in galaxies: Large-scale regular magnetic
field pattern of spiral structure exist in grand-design spirals, flocculent
and even irregular galaxies. The regular field in spirals is aligned along
the optical spiral arms but strongest in the interarm region, sometimes
forming ‘magnetic arms’. The strongest total field is found in the optical
arms, but mainly irregular. The large-scale regular field is best explained
by some kind of dynamo action. Only a few galaxies show a dominant ax-
isymmetric field pattern, most field structures seem to be a superposition
of different dynamo modes or rather reveal more local effects related to
density waves, bars or shocks. Observations of edge-on galaxies show that
the magnetic fields are mainly parallel to the disk except in some galaxies
with strong star formation and strong galactic winds as e.g. NGC 4631.

1. Introduction or What do we get from Radio Observations?

Radio observations of the continuum emission are best suitable to study the
magnetic fields in galaxies. The total intensity of the synchrotron emission
gives the strength of the total magnetic field. The linearly polarized intensity
reveals the strength and the structure of the resolved regular field in the plane
of the sky. However, the observed polarization vectors suffer Faraday rotation
and depolarization (i.e. a decrease of the degree of linear polarization when
compared to the intrinsic one) on the way from the radiation’s origin to us.
Correction for Faraday rotation is possible with observations at two or better
more wavelengths by determining the rotation measure RM (being proportional
to

∫
neB‖dl). The rotation measure itself is a measure of the magnetic field

strength parallel to the line of sight, whereas its sign gives the direction of this
magnetic field component. The field strength of both components, parallel and
perpendicular to the line of sight, together with the information of the intrinsic
polarization vectors enables us in principle to perform a ‘tomography’ of the
magnetic field.

2. Faraday Rotation and Depolarization Effects

Figure 1 gives an example of observations of M51 at 4 different wavelengths, all
smoothed to the same linear resolution of 75′′ HPBW. The vectors are rotated
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by 90◦ but not corrected for Faraday rotation. The figure illustrates nicely the
different effects of Faraday rotation and depolarization effects depending on the
observing wavelength: the observed vectors at λ2.8 cm and λ6 cm are mainly
parallel to the optical spiral arms as expected in spiral galaxies (see below), Fara-
day rotation is small at centimeter wavelengths. However, the pattern looks very
different at λ18/20 cm where Faraday rotation is expected to be strong. Further,
we see a region in the northeastern part of M51 with complete depolarization.

Figure 1. Maps of the E-vectors rotated by 90◦ of M51 observed at
λλ2.8 cm, 6.2 cm, 18.0 cm, and 20.5 cm. The length of the vectors is
proportional to the polarized intensity. They are shown superimposed
onto an optical picture (Lick Observatory).

After substraction of the thermal fraction of the emission we distinguish
between beam-dependent and wavelength-dependent depolarization. The differ-
ence in depolarization at different wavelengths in maps with the same linear res-
olution should be purely wavelength dependent where two different wavelength-
dependent depolarization effects are important to consider: the differential Fara-
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day rotation and Faraday dispersion as despcribed by Burn (1966) and Sokoloff
et al. (1998). The latter effect is due to turbulent magnetic fields within the
source and between the source and us, whereas the Faraday rotation depends
on the regular magnetic field within the emitting source. The differential Fara-
day rotation has a strong wavelength dependence as shown e.g. in Fig. 1 in
Sokoloff et al. (1998) leading to a complete depolarization at λ20 cm already at
a RM ≈ 40 rad/m2, with again decreasing depolarization for higher RMs. Such
an effect has first been detected in small isolated areas in M51 (Horellou et al.
1992). At λ6 cm the depolarization is much smaller, increasing smoothly to zero
at RM ≈ 400 rad/m2 (the first zero point is at RM = π/(2 · λ2)).

Hence, the galaxies may not be transparent in linear polarization at decime-
ter wavelengths so that we may observe just an upper layer of the whole disk.
At centimeter wavelengths we do not expect complete depolarization even in
galaxies viewed edge-on, i.e. centimeter wavelengths are best suitable to trace
the magnetic field structure.

3. Magnetic Field Strength and Structure

The total magnetic field strength in a galaxy can be estimated from the nonther-
mal radio emission under the assumption of equipartition between the energies of
the magnetic field and the relativistic particles (the so called energy equipar-
tition). The degree of linear polarization and some assumptions of the geometry
of the magnetic field give the strength of the magnetic field that has a uniform
direction within the beam size. The estimates are based on the formulae given
by e.g. Pacholczyk (1970) and Segalowitz et al. (1976), and are described e.g.
by Krause et al. (1984) and Beck (1991).

3.1. ... in Spiral Galaxies

The magnetic field has been found to be mainly parallel to the galactic disk and
to show a large spiral pattern similar to that of the optical spiral arms. The
total magnetic field strength is generally highest at the positions of the optical
spiral arms, whereas the highest regular fields are found offset of the optical
arms and in the interarm region.

The mean equipartition value for the total magnetic field strength for a sam-
ple of 74 spiral galaxies observed by Niklas (1995) is on average 8µG with a stan-
dard deviation of 3µG. It can however reach values of about 20µG within spiral
arm regions as e.g. in NGC 6946 (Beck 1991). Strongly interacting galaxies
or galaxies with a strong central radio emission tend to have generally stronger
total magnetic fields. The strengths of the regular fields are typically 1–5 µG
in the interarm regions in nearby spirals but reach locally 13µG in NGC 6946
(Beck & Hoernes 1996).

3.2. Regular Magnetic Fields and Dynamo Action

The large-scale magnetic field is generally thought to be amplified and main-
tained by the action of a large-scale dynamo. According the mean field dynamo
theory (e.g. Ruzmaikin et al. 1988; Wielebinski & F. Krause 1993; Beck et al.
1996; Lesch & Chiba 1997) the structure of the large-scale field is also given
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by the dynamo action. It is generally of spiral shape with different azimuthal
field directions and symmetries. The mode that can be excited most easily is
the axisymmetric mode (ASS) followed by higher modes as the bisymmetric
(BSS), etc. The field configurations can be either symmetric (quadrupole type)
or asymmetric (dipole type) with respect to the galactic plane. According to
the dynamo theory the pitch angle of the magnetic field spiral is determined by
the dynamo numbers, not by the pitch angle of the gaseous spiral arms.

ASS and BSS field configurations can be distinguished observationally by
analyzing the rotation measures or – more sophisticated – by analyzing directly
the observed polarization vectors at different wavelengths (as has been described
e.g. in Sokoloff et al. (1992) and Berkhuijsen et al. (1997)). It has been found
that only M31 and IC342 show clear ASS fields (Beck 1982; Krause et al. 1989a),
whereas many other galaxies seem to have a superposition of different modes.

A special case is M81 as it has a dominating BSS field field (Krause et
al. 1998b; Sokoloff et al. 1992). The dominance of the BSS field structure
requires additional physical mechanism to be invoked that can occur only in
rare cases. For M81 a three-dimensional, nonlinear dynamo model has been
developed including the disturbed velocity field due to the encounter with its
companion NGC 3077 (Moss et al. 1993) or alternatively, parametric resonance
with the spiral density wave as has been proposed by Chiba & Tosa (1990) and
investigated numerically by Moss (1996).

Most other spiral galaxies observed so far indicate a mixture of magnetic
modes. The analysis of the observations at all 4 frequencies of M51 (Fig. 1)
revealed even two different magnetic field configurations for the disk and the halo
resp. (Berkhuijsen et al. 1997): a halo with an axisymmetric field configuration
parallel to the disk with magnetic field lines pointing inwards and a superposition
of an axisymmetric and a bisymmetric field with about equal weights in the disk.
The magnetic field lines in the disk are spirals generally directed outwards except
in a few sectors in the inner northwestern part of M51 as shown in Fig. 2.

It is clear that such a global description of the regular magnetic field cannot
describe local effects that become more and more visible with increasing linear
resolution of the observations. Further, in grand-design galaxies the magnetic
field lines follow quite often the dust lanes. In M51 e.g. one dust lane in the
eastern part crosses the optical spiral arm, so does the regular magnetic field
(visible in Fig. 1 at in the short wavelengths observations).

3.3. Magnetic Arms

The regular interarm field in M81 fills the whole interarm region. Different to
this some galaxies host so-called magnetic arms. Long, highly polarized arms
disconnected from the optical spiral arms were first discovered in IC342 (Krause
et al. 1989a; Krause 1993). Two symmetric magnetic arms running right in
the interarm region parallel to the optical spiral arms were found in NGC 6946.
Their width is less than 1 kpc, hence they do not fill the whole interarm region.
Magnetic arms have also been found in NGC 2997 (Han et al. 1999) and M83
(Beck, Ehle & Sukumar in prep.).

Several models have been developed to explain these magnetic arms. Slow
MHD waves have been proposed by Fan & Lou (1996) and Lou & Fan (1998) to
explain the generation of magnetic arms shifted with respect to the optical spiral
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Figure 2. The vectors give the directions of the horizontal regular
magnetic field in the disk (left) and the halo (right) of M51 as fitted to
the observations at 4 different wavelengths in Fig. 1. They are shown
superimposed onto an optical picture (Lick Observatory). Note that
the magnetic field direction in the disk is opposite to that in the halo,
except in a few sectors in the inner northwestern part of the galaxy.

arms. These MHD waves occur only in an almost rigidly rotating disk. However,
all galaxies with magnetic arms are found to rotate differentially beyond 1–2 kpc
from the center, different to older measurements with lower angular resolution.
Han et al. (1999) found some correlation between the magnetic arms and inter-
arm gas features generated at the 4:1 resonances in numerical models of Patsis
et al. (1997).

In the framework of dynamo theory the generation of magnetic arms can be
described if one considers that the turbulent velocity of the gas is higher in the
optical arms (Moss 1998; Shukurov 1998), or that turbulent diffusion is larger
in the arms (Rohde et al. 1999). Both effects reduce the dynamo number in the
spiral arms when compared to the interarm regions and hence allow to generate
magnetic arms preferently in the interarm region.

3.4. ... in Flocculent and Irregular Galaxies

Regular magnetic fields have also been detected in flocculent galaxies like M33
(Buczilowski & Beck 1991) and NGC 4414 (Soida et al. 2002). These are galaxies
with a flocculent spiral structure without signs of the action of density waves.
The mean degree of polarization (corrected for different angular resolution) is
similar between flocculent and grand-design galaxies (Knapik et al. 2000). As
expected from classical α − Ω dynamo models the dynamo works well without
the assistance of density waves.

Even in a dwarf irregular galaxy with weak rotation and non-systematic
gas motion like NGC 4449 a large-scale (partly spiral) regular magnetic field
has been observed (Chyzy et al. 2000). The strength of the regular field reaches
7µG and that of the total field 14µG, which is high even in comparison with
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fields strengths of radio-bright spirals. The absence of ordered differential ro-
tation requires a different kind of dynamo action in this galaxy. A fast field
amplification is predicted by a dynamo e.g. driven by magnetic buoyancy and
sheared Parker instabilities (e.g. Moss et al. 1999; Hanasz & Lesch 1998, 2000)
or without any α effect at all (Blackman 1998).

3.5. ... in Barred Galaxies and Other Shocked Areas

A sample of 20 barred galaxies has been observed extensively in total power and
linear polarization (Beck et al. 2002). They found that the total radio emission
(and hence the total magnetic field) is strongest along the bar and correlates
with the bar length. The regular magnetic field is enhanced upstream of the
shock fronts in the bar. The upstream field lines are at large angle to the bar,
but turn sharply towards the bar about 1 kpc upstream from the dust lanes as
observed in NGC 1097 (Beck et al. 1999). According to these authors similar
effects have also been observed in NGC 1365, NGC 1672, and NGC 7552.

Indications for a compression of the galactic magnetic field possibly by gas
tidally stripped during an interaction with the neighbouring galaxy have been
observed in NGC 3627 (Soida et al. 2001) where the observed regular field
apparently crosses the dust lanes at a large angle in the east. Another example
for such a compression is the wind-swept galaxy NGC 4254 (Soida et al. 1996).

3.6. Edge-on Galaxies and Vertical Fields

Several galaxies seen edge-on have been observed in radio continuum and po-
larization. Most of them have regular magnetic fields that are parallel to the
galactic disks (Dumke et al. 1995), only a few are found with large-scale ver-
tical fields like M82 (Reuter et al. 1994), NGC 4631 (Golla & Hummel 1994),
NGC 4666 (Dahlem et al. 1997), and NGC 5775 (Tüllmann et al. 2000).

The apparent disk thicknesses vary quite a lot among the galaxies with
plane-parallel field as well as their intensities does. Interferometer observations
of edge-on galaxies have to be combined with single-dish observations in order
to correct for the missing zero-spacings before the scale heights of the emission
perpendicular to the disk (in z-direction) can be determined. We found that the
emission in z-direction can best be fitted with two exponential functions, whose
scale heights are about equal for all four galaxies with plane-parallel fields that
have been analyzed so far, namely NGC 891, NGC 3628, NGC 4565, NGC 5907
(Dumke & Krause 1998; Dumke et al. 2000). The scale height for the thin
disk is ' 300 pc and that of the thick disk/halo is ' 1.8 kpc for these galaxies,
independent of the star-forming activity and interaction state.

Recent λ3.6 cm observations of NGC 4631 obtained with the Effelsberg
100-m telescope are presented in Fig. 3. Faraday rotation could be determined
between this wavelength and λ6.2 cm observations with the VLA and revealed
−300 rad/m2 < RM < 300 rad/m2. The vectors shown in Fig. 3 give the intrinsic
magnetic field orientation. NGC 4631 has a large-scale vertical magnetic field in
the central 7 kpc. Outside this radius the field is plane parallel in the western
half but still has vertical field components in the eastern half. The RM does not
show a typical symmetric pattern as expected from a dipole or quadrupole field.
Hence we conclude that the vertical field is rather wind-driven and related to
the high star-forming activity in this galaxy. The exponential scale heights for
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Figure 3. Contour map of
NGC 4631 at λ3.6 cm as
observed with the Effelsberg
100-m telescope. The angu-
lar resolution is 85′′ HPBW.
The vectors give the orien-
tation of the intrinsic regu-
lar field in the plane of the
sky. Their lengths are pro-
portional to the polarized in-
tensity.
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Figure 4. Contour map of
M104 at λ6.2 cm as ob-
served with the VLA in D ar-
ray. The angular resolution
is 23′′ HPBW. The vectors
give the observed E-vectors
rotated by 90◦, their lengths
are proportional to the polar-
ized intensity.

NGC 4631 are about 50% larger than those found for galaxies with plane-parallel
fields which may also be related to the galactic winds and vertical fields.

Another edge-on galaxy is M104, the Sombrero galaxy, classified as an Sa
galaxy and known for its huge bulge. We observed M104 at λ6.2 cm with the
VLA in D array and detected that the observed E+90◦ vectors are surprisingly
regular and mainly parallel to the galactic disk as shown in Fig. 4. Unfortu-
nately, the observations could not yet be corrected for Faraday rotation because
we have no observations at another wavelength. The regularity of the vectors
at λ6.2 cm may indicate that Faraday rotation is rather small. Hence it seems
that the regular magnetic field in M104 is mainly disk parallel, also inside the
central 6 kpc where the rotation curve is still rising. The radio emission in
z-direction can best be fitted by a one-component Gaussian rather than an ex-
ponential function with a scale height of ' 3 kpc. According to Combes (1991)
a Gaussian z-distribution is just expected for a thin disk inside a self-gravitating
mass distribution, i.e. the huge bulge in M104.
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