The Most Distant Galaxies

Hyron Spinrad
Department of Astronomy University of California, Berkeley, California, U.S.A. 94720-3411
e-mail:hspinrad@astro.berkeley.edu

Abstract

I review selected current observations of distant galaxies and our interpretation of the fragile (and occasionally contradictory) data. Galaxies at the “contemporary limit” of technology and redshift ($z \sim 6$) are difficult to locate in the first place. Moreover, the large redshift may push some critical confirming and/or interpretative analysis toward unfamiliar IR wavelengths. I will concentrate on observational means and results to explore the early evolution of galaxies. We also note the biases that intrude on plans for the interpretative aspects of distant galaxy photometry and spectroscopy. We discuss the best methods of selection for those very distant systems; these methods include utilizing strong sub-mm emission from dust, photometry indicating a UV “spectral break,” and finally the signal of a strong Lyα emission line. This feature has now carried us to a galaxy redshift in excess of $z = 6.57$.

1.1 Introduction, Motivations, and Questions

The study of distant galaxies is empirically demanding – not surprisingly, as these galaxies are very faint.

Of course there are a variety of motivations to observe and perhaps understand distant “units of the Universe”. We would like to detail the present-day “lumpiness” of the Cosmos and its evolution from a very smooth “sea” at decoupling. At the nominal redshift of the Cosmic Microwave Background the key fluctuations on reasonable scales are only of order 10^{-5}. Of course at $z \sim 0$ we have a very inhomogeneous distribution of baryons we call galaxies and the Intergalactic Medium (IGM hereafter).

Noting the obvious, studying distant galaxies is synonymous with traveling far back in cosmic time towards the birth of massive sub-structures and large
galaxies. Can we now see directly the development of single galaxies of Milky Way
dimensions?

We now believe that most galaxies form and accumulate either (1) by the infall
of gas (and dark matter) as “monolithic” entities, self-gravitating by the time we
can observe them, or (2) by a series of major and/or minor mergers. This is
the now-popular “bottom-up” scenario. Here it is presumably difficult to catch
the small and immature systems in the act of merging, depending perhaps on
the appropriate dynamical time scales. Thus for scenario (2) we would anticipate
young galaxies to illustrate complex morphologies, quite different from those of the
mature galactic systems we study readily here and now, at zero redshift. There is
indeed some evidence for “recent” mergers from the fine images of distant galaxies
observed with the Hubble Space Telescope (HST) - see Stern & Spinrad (1999)
for some plausible early merger examples (Fig. 1). And we’d like to push these
examples back in cosmic time to even “younger” galaxy growth - but the first
problem is, quite naturally, the location of small and dimmally faint candidates for
galaxies in formation

Another important contemporary research area emerging is the study of inter-
galactic (gaseous) matter usually seen in silhouette against a bright background
source like a QSO or an unusually bright and distant galaxy. And now, new
observational techniques are beginning to tell us about the interaction history of
galaxies and the IGM (cf. Adelberger et al., 2003).

One of this paper’s topics, directly or indirectly stated, is just how early in
cosmic epoch (parameterized by redshift) we can study individual galaxies or their
“pre-galactic” fragments. There is only a short time interval between the early
epochs beyond \(z = 3 \) (see Figure 2). How can the galaxies evolve so quickly?

The historical view of our empirical and theoretical march outward toward
higher redshift has shown a fairly rapid expansion. By 1976 a few radio galaxies
had been located and studied at \(z > 0.5 \). The \(z = 1.0 \) threshold (for galaxies)
was crossed in 1981. Of course Quasars and QSOs had been actively observed
and known earlier at large distances - redshifts in the 1960s and 1970s taking
us to \(z = 2.01 \) (Schmidt 1965) and then 2.88, and then to \(z = 3.5 \) (OQ 172;
Baldwin et al., 1974). Finally, \(z = 4 \) for QSOs was surpassed by the Palomar
two-color-based searches (Schneider, Schmidt & Gunn 1991), and searches for Ly
on low-resolution grism spectra (Osmer 1999) were equally successful. Almost all
the recent stages of the “QSO-z race” have emphasized red-IR photometry and
unusual colors, since the \(z \sim 5 \) QSOs are heavily depressed by the Ly\(\alpha \)
forest of the IGM (see Fan et al. 2001). The largest published QSO redshift to date is
\(z = 6.28 \) (Fan et al., 2002; Pentericci et al., 2002a).

Now we are witness to the era of a friendly race toward higher and record-
breaking galaxy redshifts. The current limit for galaxies, which we shall detail
later in this publication, is near \(z = 6.5 \). Is this redshift close to the end of the
“dark ages”, where re-ionization by massive stars and/or early QSOs play as vital
sources of ionizing radiation? We return to this topic, with empirical evidence,
toward the conclusion of this review.
Figure 1: HST images of five spectroscopically confirmed galaxies located in the HDF(N). Note the distortions, small tails, and multiple central components - presumably due to mergers. Overall the galaxies are obviously quite small at this stage of their evolution. From Stern & Spinrad (1999)
1.2 Some Issues In The Contemporary Theory Of Early Galaxy Evolution

Over the last three or four years, the thoughts of theorists have narrowed on the birth and evolution of galaxies - including dark matter halos, plus the baryons we observe more directly. These adventurous researchers have bi-modally attacked the problems with a pair of model types. Most contemporary modeling assumes, \textit{ab initio}, the Lambda Cold Dark Matter cosmology (LCDM).

Following Weinberg \textit{et al.}, (1999), we note that the current (broad) theory of galaxy formation and early evolution follows White & Rees (1978) and their “successors” - gravitational collapse of a dark matter halo, gas falling into the potential well so defined, and then gas astrophysics (cooling, contracting, and eventually forming stars in a dense baryonic core). Now we often add inflationary cosmological parameters and thus demand $\Omega_m + \Omega_{\Lambda} = 1$.

The “technology” for modeling often takes one of two paths. The first is hierar-
chical numerical simulations (with a realistic treatment of the collapse) including additional gas-phase physics and plenty of computational effort to cover the wide size range of non-spherical assemblies (the “roots” of the assembly “tree”) that appear.

The second tool, deemed the semi-analytical approach, assumes again LCDM halos. The proto-galaxies contract within, and then we find small sub-galactic systems (or fragments?) with the specific physically-motivated “stories” given by the strengths of their star-burst mergers. The mergers obviously increase the model masses, and also modify the relative numbers of luminous stars and the amount of residual gas. Even before that step, the semi-analytic models utilize the Press-Schechter (Press & Schechter 1974) formalism to describe the number of halos as a function of their mass. This approach allows conventional and mature use of population synthesis and even chemical evolution schemes in conjunction with the mergers demanded to build up galaxies of reasonable mass with moderate star-formation rates.

One of the strengths of the direct numerical simulations is to utilize the non-spherical distribution of dark matter and baryons to produce a more realistic treatment of the model’s gravitation. Then the more “astrophysical” computations can proceed; Weinberg et al., (1999) predict the surface densities of galaxies as a function of their star-formation rate (SFR) over a relevant range of redshifts.

The semi-analytic models (cf. Baugh et al. 1999; Somerville & Primak 1999) have now been amplified to include a range of interesting physical processes, hopefully relevant to early galaxy evolution. For example, the central baryons and the outer dark matter (DM) halo interact to change the halo structure and foster further contraction of the model galaxy. Baugh et al. (1998) mention that the main constraining property of local galaxies they favor for comparison with semi-analytic modeling is the field galaxy luminosity function. The agreement is good; one can then easily visualize the effect of omitting or including various individual physical processes, like star-formation (SF) feedback.

The SFR in the early Universe (say, to $z = 3$ or 4) of these models is also well-matched by observations of the SFR per unit volume. (Madau et al. 1999).

Weinberg et al. (1999) also show the numerical simulation’s cumulative distribution of galaxies (with the parameter = surface density/\odot’/unit z) as a function of their SF rate from $z = 10$ to $z = 0.5$. At the moderately large galaxian SFR = 10 M_\odot yr$^{-1}$ for $z = 5$, the predicted surface density of galaxies is nearly 5/\odot. This surface density is rather higher (by a factor of ~3) than observed by Spinrad and collaborators (although some of this observational statistic is derived from the Lyα - SFR correlation, which may be suspect). The best unpublished observational estimate for the SFR surface density at $z \sim 5$ is now 2 ± 1/\odot. However, this surface density for Lyα emitters is uncertain because their continua are often very weak and thus not necessarily sampled consistently in terms of galaxy luminosity. The theoretical simulations and follow-up astrophysical scaling may, of course, be systematically over-efficient in, for example, converting cooling gas to massive star births.

The numerical simulations with LCDM may have one flaw: they over-predict
the number of small galaxies near larger ones (which are countable) and thus the number of stars at low redshifts. We are not positive that a real problem exists; it may be that dark halos with coupled non-stellar baryons (e.g., high velocity clouds (Klypin et al., 1999) are being “counted” as observable systems.

The potential problems of early galaxy evolution from the theoretical side may well change, increasing or decreasing as their confrontations with empirical “facts” or new understandings go forward. The general outlines of the theory and relevant observations are probably fairly firm.

1.3 A Race For The Maximum Redshift

It is a very human tendency to climb a celestial mountain. So it stands for any race, including that of finding individual objects at greater and greater distances, abbreviated usually as at larger redshift, or “bigger z” (where $1+z = \lambda_{\text{observed}}/\lambda_{\text{emitted}}$).

As Stern & Spinrad (1999) pointed out in their Table 1, there has been a fairly rapid increase in “z_{max}” for galaxies; we went from $z = 0.20$ in 1956 to $z = 1$ by 1982, but then to $z = 5.3$ in 1998 and $z = 5.7$ in 1999. The record-breaking progress since 1998 has been due to observations of the strong Lyα (from rest $\lambda 1216$ Å) emission line, shifted to the visible and red by the Universal expansion. Over the past year the “LALA” (Large Area Lyman Alpha survey) team (Rhoads et al. 2003) have selected Lyα emitters to $z = 5.75$. They are currently taking images for the $z = 6.6$ airglow window. Also in 2002 Hu et al. have located a cluster-lensed galaxy at the outstanding redshift of $z = 6.56$! And as these pages are completed, a Subaru group has found a faint Lyα galaxy at $z = 6.578$.

Modern research on quasars (QSOs, to be more precise), has also progressed; Osmer (1999) reviewed the situation 3 years ago, with QSOs located up to $z = 5.0$. Since then, the Sloan Digital Sky Survey has been successfully pushed QSO redshifts to and beyond $z = 6!$ The key here is to obtain good red and near IR photometry, in particular looking for objects with very red (I-z) colors. The Sloan results are very current; Fan et al. (2002) found SDSS J103027.1 at $z = 6.28$, and a preprint on another Sloan QSO at $z \sim 6.43$ is just available as this section is being written. So the most distant QSO to date still trails the most distant, much fainter normal galaxy by a modest margin!

The distant QSOs are likely buried in a host galaxy which itself is well-hidden in the glare of the Active Galactic Nucleus (AGN). We now assume the presence of the underlying galaxy of stars and gas, in part confirmed indirectly by the normal abundances of the elements inferred from the emission lines in the QSO spectra.

1.4 The Identification Of Very Distant Galaxies

How do we go about locating the faint and distant galaxies at the heart of our exploration and this review?

We found several successful (or partly successful) methods to locate the faint targets at high redshift: none are without “flaws”. For example, some methods are
weakened by “contaminants”, be they intrinsically faint M, L, or T dwarf stars in the galactic disk, or a mis-identified (longer wavelength, smaller redshift) emission line.

Following the theme in the Stern & Spinrad (1999) review, we shall discuss several of the more successful search techniques; initially we’ll review the finding of distant galaxies utilizing non-optical wavelengths. Often these techniques turn out to be “safe” and productive.

1.4.1 Radio-Loud Galaxies

Radio galaxies at high redshift are rare but interesting guides to the location of large, mature galaxies and correlated structures - sometimes actual (rich) clusters (van Breugel et al. 1999; Lilly & Longair 1984). For some specific cases, like 4C 41.17 \((z = 3.798) \), and also radio sources resembling it, we note that steep radio spectral indices and moderate flux densities correlate with high redshift and great luminosity. Such objects are visible across much of the presently observable Universe.

The stronger radio galaxies, those with fluxes \(S_{408} \geq 100 \text{ mJy} \), tend to follow a good Hubble relationship in the observer’s near-IR bands; that is, their \((K, z)\) magnitude–redshift correlation is linear with only a moderate scatter.

This result shows that the powerful radio galaxies, E systems in morphological appearance, have a fairly strong resemblance to a luminous “standard candle” (van Breugel et al. 1999; Best et al. 1999). The history of the steep radio spectral index “angle” is reviewed by de Breuck et al. (2000). Going for the steep radio spectral counterparts also tends to minimize the “contamination” by Quasars (radio spectral indices \(< -1.3\)).

We then may inquire: are all steep radio sources luminous galaxies and Quasar candidates? The answer here is mainly negative; it is the medium strength (so as not to exceed some limiting intrinsic luminosity) steep spectrum sources, identified at long wavelengths in the optical and IR that have the greatest promise in pointing out very distant spectrographic targets. These may be radio-loud stellar systems at a large redshift, say \(z \geq 4 \).

Somewhat tangential to our central motivation, we note that at both small and large distances, radio galaxies possess some/many of the characteristics of giant E galaxies (or luminous cluster Es). Since these E galaxies here and now have a strong correlation amplitude at small separations, we can anticipate many of the distant radio Es to also have smaller companions - perhaps in a group population. These earmarks of early structure are going to be valuable; the recent paper of Venemans et al. (2002) illustrates a large (2Mpc) overdense region at a redshift \(z = 4.1 \) located “around” the radio galaxy TNJ1338-1942. So the radio galaxy becomes a valuable marker in such a case. We note another, less well-documented case in the HDF(N) is currently being explored by Stern, Dey, Dawson, and Spinrad. Here the redshift is even greater; the first observed galaxies have \(z \simeq 5.2 \). No radio source takes part in that overdensity region, however. Stern et al. (2003) show a group surrounding the radio galaxy MG0442+0202 at
The record redshift for a radio galaxy is still \(z = 5.19 \) (van Breugel et al. 1999), with TNJ0924-2201. Several observing groups are concentrating on the identification of deep samples showing a steep spectrum, with the expectation that some are ultra-luminous and located at \(z > 5 \). These are rare systems; one problem in interpretation is that it should be a fairly slow process to “build” a large and luminous galaxy. Perhaps it requires a cosmic interval in excess of a billion years to do so, either in the model described as a “monolithic collapse” (Eggen, Lynden-Bell & Sandage 1962), or by the accumulation of smaller structures (Searle & Zinn 1978) - a hierarchical model. With the currently popular cosmology \([H_0 = 65, \Omega_\lambda = 0.7, \Omega_m = 0.3]\), the look-back interval between \(z = 4 \) and (an arbitrary) \(z = 20 \) is only \(\sim 1.2 \) Gyr (see Fig. 2 again). That might be sufficient time to build a large galaxy; the implication is then a SFR of \(\sim 80 \) M\(\odot \) yr\(^{-1}\). That is a rarely observed and atypically high SFR. So it is a clue that massive radio galaxies are unlikely to be found at \(z > 5 \). But the near-IR Hubble Diagram of the highest-\(z \) radio galaxies plotted by van Breugel et al. (1999) continues to suggest a continuity in galaxy luminosity which we may still extrapolate to stellar (and gaseous) mass similarities.

Under standard CDM-based models of galaxy evolution, we expect the giant elliptical galaxies, which are the hosts of today’s radio galaxies, to form late (at \(z \sim 1 \)) through a process of merging of smaller sub-units. Although these models seem to be consistent with what is known so far about field galaxy evolution (e.g. Barger et al. 1999), and indeed with observations of the hosts of the radio-quiet quasar population (Ridgway 2000), it is clear that radio galaxies are an exception. They seem to only show significant evolution at \(z > 2 \), and still appear to be luminous galaxies at \(z \sim 3 \) and perhaps beyond. One possible solution is that the most massive galaxies formed first in so-called anti–hierarchical baryonic collapse. In this model (Granato et al. 2001) the high baryon densities in the centers of the most massive dark matter halos cause them to start forming stars early. Thus, the fate of simplistic theoretical analyses suggest the need for a sharper observational analysis.

1.4.2 Galaxies With Strong X-ray Emission (Hidden AGNs)

To date many new X-ray galaxies have been located, using modern X-ray satellites such as Chandra and XMM-Newton. However, there are few X-ray-selected very distant galaxies, or AGN. To my knowledge there is one at a redshift in excess of 5; it is \#174 in Barger et al. (2002) at \(z = 5.186 \), in the Chandra Deep-Field, North. We will return to this galaxy a bit later. There are, however, a considerable number of QSOs and other clearly noticed AGN at \(z > 4 \) (cf. Brandt 2002). Why are we physically interested in X-ray galaxies, anyway? As Barger et al. (2001) affirm, X-ray surveys, especially at hard (2-7keV) energies, provide a direct indication of an AGN, presumably due to an ultra-massive black hole at the galaxy nucleus. At \(\gtrsim 5 \) keV, absorption will play less of an obscuring role than seen for some “hidden” AGNs at optical frequencies and soft X-ray energies.
Complete samples of hard X-ray energies are now possible with the Chandra X-ray Observatory; the 1" X-ray positions produce robust optical identifications of the counterparts. And about half of the sources can be identified with optically bright and “quiet” galaxies; they are at small redshifts.

With the longest integrations (say, one mega-second integrations) we begin to locate the faint X-ray population. Some of these sources are quite distant, \(z > 4 \) (cf. Barger et al. 2002). Their survey of the Chandra Deep-Field, North (equivalent to the HDF(N)) yielded a fair number of more-distant X-ray identifications; Table 1, below, puts them in \(\Delta z = 0.5 \) bins, and includes both narrow and broad-line (AGN) X-ray sources.

<table>
<thead>
<tr>
<th>(\Delta z)</th>
<th>2.5-3.0</th>
<th>3.0-3.5</th>
<th>3.5-4.0</th>
<th>4.0-4.5</th>
<th>> 4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

A quick inspection of Table 1 and 2, and Fig. 3 suggests no dramatic physical change in the co-moving density of X-ray emitting galaxies compared to all field galaxies.

<table>
<thead>
<tr>
<th>Barger (2002)</th>
<th>#</th>
<th>(\text{z})</th>
<th>R</th>
<th>I</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>5.186</td>
<td>24.5</td>
<td>23.1</td>
<td>Ly(\alpha), optically luminous</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>4.137</td>
<td>25.7</td>
<td>25.0</td>
<td>Ly(\alpha) emission</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>2.638</td>
<td>24.4</td>
<td>23.9</td>
<td>weak Ly(\alpha)</td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>2.240</td>
<td>24.1</td>
<td>23.5</td>
<td>weak Ly(\alpha)</td>
<td></td>
</tr>
</tbody>
</table>

The largest redshift in the securely-identified group we discuss is B174 at \(z = 5.186 \). This source is associated with a moderately faint optical identification - a bit too faint to classify morphologically. The near-IR I and z band photometry of this \(z \sim 5.2 \) source suggest its intrinsic luminosity may lie between that of luminous QSOs and an \(L^\ast \) galaxy; the AGN may be partly hidden, as the spectra of B174 does not display a broad component to its strong Ly\(\alpha \) emission line. The other three X-ray galaxies at \(z > 2 \) appear to be residents in normal-luminosity host galaxies, based upon their photometry. The rough field galaxy correlation between I mag and the galaxy redshift can be seen in Fig. 3.

With the present generation of X-ray satellites and plausible integration times (Mega-secs), we cannot anticipate a large identification content of X-ray (AGN, or even “star-burst”) galaxies beyond \(z = 5 \). Eventually I would speculate that some sources with fluxes in the 2-8 keV range below \(10^{-16} \text{ erg s}^{-1} \text{ cm}^{-2} \) may yield a few very large redshift objects.
1.4.3 Dusty Sub-mm (IR) Galaxies

In recent years it has become evident that a modest number of fairly high redshift galaxies ($z \gtrsim 2$) are most readily recognized as unusual at far-IR or sub-mm wavelengths. Our Earth’s atmosphere is a substantial barrier to sub-mm research on galaxies likely to be both very dusty and also have a rapid pace of star formation. That recipe augurs for reddened high IR emission, which we can most readily discover at sub-mm wavelengths. It follows that the most-secure continuum detections are at a wavelength of 850 μm (where receivers are fairly efficient, and our atmosphere fairly transparent). The detection system of choice at the moment is called SCUBA, for Submillimeter Common User Bolometer Array. This camera, utilized on the JCMT (James Clerk Maxwell Telescope), has enabled, for the first time, deep and relatively unbiased surveys which may identify the distant dusty galaxies (and/or AGN).
It is important to clarify which galaxies (or AGN) radiate so profusely at IR and sub-mm wavelengths. They may be largely responsible for the Far-IR extragalactic background. With the presently available redshifts for securely identified IR/sub-mm galaxies, their integrated energy density may be quite comparable to the integrated optical (emitted UV galaxy light measured in the HDFs) energy (e.g., Genzel et al. 2002).

To deal with this global question, and also to understand the limit of SFR in a huge star-burst, reddened or not, the crying need is a reliable set of redshifts.

Blain et al. (1999) comment on the reason why many galaxies detected in the sub-mm spectral window are likely to be at high redshift. This is because the long wavelength side of the canonical sub-mm source spectrum has a very steep slope (cf. Blain et al. 2002). The steepness of the long-wave side leads to substantial negative K-corrections. That is, the observer’s band (850 µm) benefits from a larger redshift moving the emitted and then redshifted peak distribution into that atmospheric window. This effect compensates for the usual geometric dimming of increasing luminosity-distance at higher z. Thus comparing the sub-mm (850 µm) flux with the VLA radio flux (say, near 1.4 GHz) can yield approximate redshifts without an optical spectrum. But they are not individually robust.

Another method of deriving a more precise redshift for a sub-mm galaxy detection is to make good use of the fact that dusty systems occasionally also show strong molecular lines of CO in emission. The transitions in CO are (3-2) or (4-3) for the redshift domain of $z \sim 2.6-2.8$ (Frayer et al. 1998). But only a small minority have yielded CO molecular redshifts to date.

Very recently Chapman et al. (2003) have succeeded in obtaining good numbers of optical spectroscopic redshifts for sub-mm galaxies and AGN with precise radio positions. 16 redshifts of quality were obtained; probably one is a quasar. A few others may have some weaker AGN signal. The median redshift for the galaxies is $z = 2.4$, with a maximum redshift of $z = 3.699$. Thus one must extrapolate the 850 µm fluxes down to 1-2mJy in anticipation of future achievements in the $z \geq 5$ domain for sub-mm galaxies. That will surely require new hardware.

One sort of instrument planned for the near future is the APEX antenna (the Atacama [Chile] Pathfinder Experiment). It is a planned 12-m diameter sub-mm telescope at a high, dry site in northern Chile.

Surveys with the APEX should go deeper than the present SCUBA system. And that will be just a taste of what is to come with ALMA (the Atacama Large Millimeter Array). ALMA will be the mm/sub-mm counterpart of the VLT with 64 times the collecting area of APEX! It should make possible IR galaxy detections 100 times fainter than we now do with SCUBA and with good spatial acuity. This great array should lead to many redshifts with molecular CO lines and the [CII]158 µm line.

We end this section with an astrophysical speculation: with the Chapman et al. (2003) data we suggest a relatively high space density of very luminous and distant sub-mm ($z > 2$) galaxies. They may be 1000 times the density of similarly IR-luminous local star-bursts found here and now. Hence the detailed study of a few of the powerful IR galaxies will tell us much about young galaxy SF and dust
interactions.

1.4.4 Gamma-Ray-Bursters

A new and exciting demonstration of extragalactic “power” has recently emerged with the realization that Gamma-Ray-Bursters (GRBs) are apparently the most powerful cosmic explosions; observing their optical or radio afterglows can give us an indirect glimpse of a distant host galaxy. Not all bursters are successfully tracked for days or weeks after the outburst, but a reasonable fraction do point to distant \(z \gtrsim 1 \) star-burst galaxy hosts. So, for this review we note that occasional luminous afterglows may signal the locations of star-forming young galaxies at \(z > 4 \).

The detailed physics of the situation is unclear, but there are now believable scenarios suggesting that the GRBs originate from the collapse of a massive star or even a stellar merger. So sites of active SF may be one of the “usual suspects”, much as Type II SNe may be sited in young-star-rich locations. With the improved ability to locate GRBs we do find several annual opportunities to follow the afterglows as they decay; occasionally a redshift from an afterglow spectrum rich in UV interstellar lines (shifted to the visible) is obtained. The highest conventional spectroscopic redshift measured to date is \(z = 3.42 \) (Kulkarni et al. 1998).

Because many GRBs are very luminous (for a short time interval) we note that the possibility exists to derive “photo-z’s” or obtain low-resolution spectra of even more distant GRBs - perhaps with a little help from their galaxy hosts. Indeed Andersen et al. (2000) suggest a GRB at \(z \sim 4.5 \) from the afterglow’s broad-band colors. At higher redshifts we will need photometry and/or spectroscopy in the near-IR. The J-band at \(\lambda \sim 1.2 \mu m \) will take the strong spectral discontinuity anticipated at Ly\(\alpha \) (1216 Å, rest) to \(z \sim 9 \)!! Of course our present abilities to obtain good S/N infrared spectra would be taxed by all but the earliest bright GRB afterglows; spectroscopy in the first minutes may be needed!

1.4.5 Optical Selections of Distant Galaxies: “Photo-z’s” and Ly\(\alpha \) Emission Lines

The case for the use of photometric redshifts – that is, redshifts based upon colors in 2 or (likely) more wave bands – has gradually strengthened since the mid-1990s. Most critically, we now expect fair precision from photometric redshifts and few catastrophic failures.

Stern & Spinrad (1999) compare spectroscopic and photometric redshifts in the HDF. The photometric redshifts are from the Stony Brook group (Fernandez-Soto, Lanzetta & Yahil 1999), and are determined by fitting the observed galaxy colors (long wavelengths only for really distant candidates) with redshifted spectral templates. These templates may be empirical, synthetic, or a hybrid. A second approach (Connolly et al. 1995) is purely empirical - having already a relationship between previously-observed galaxy redshifts and the observed total magnitudes \((m) \) with color information \((C) \) to boot. Then a derived redshift can be found from the multi-dimensional \((m,C)\) pairs, used for training. More detail on these “tem-
plate fits” can be found in the Stern and Spinrad review. Comparisons between photometric and spectroscopic determination in the HDF yield residuals typically around 0.1 for ∆z at almost all redshifts.

Naturally the most important usage of such photometric redshifts is at very faint levels (m > 26.5). These numerous faint galaxies are well beyond the capabilities of 10-m class telescopes for spectroscopic redshifts. The danger here is that galaxies marginally detected in the red-optical I, z bands and perhaps also in J, H, K [1.2, 1.6, 2.2µm] can feign very large redshifts if their signal is just a noise incursion at I or z bands, slightly below the 1 µm observational limit of silicon-based CCDs. Since this topic is close to the kernel of this review, we note that Lanzetta et al. (1999) give some examples of faint, red photometric-z cases of difficult S/N. Their redshifts could exceed 6. Almost all of these ambiguous but potentially exciting cases have yet to be resolved. I speculate that better IR photometry (perhaps using the rejuvenated NICMOS camera on HST) would help in resolving that situation and perhaps suggest targets for future generations of near-IR spectrographs.

There is also a systematic problem at some level with color/redshift degeneracies; blue galaxies in general may show similar colors over a substantial intermediate z range. Prior information like the galaxy apparent magnitude can help decisively. This “Bayesian” procedure is illustrated by Benitez & Broadhurst (1999) for the HDF(N).

My personal recent experience with “I-drops” (implying a galaxy with only detectable flux at wavelengths above the I band, λ ≥ 8500 Å at the red edge) is that many of the spectroscopic candidates (15 to 20 targets per slitmask) are very difficult due to their faintness (z~ 25-26 mag) at longer wavelengths. A few also turn out to be low-luminosity galactic stars; these late M, L, and T class dwarfs turn up rather frequently. Since many of the candidates come from ground-based imaging, their image structure is not a very discriminating way to separate stars from QSOs or galaxies.

Most of the I-drops show a marginally detected red-color continuum, and thus add little to our initial appraisal. It turns out that approximately a quarter of the I-drops do eventually yield a redshift; about a third of these with the continuum discontinuity at Lyα (λ_0 1216 - the Lyα “forest”). Two-thirds of the spectroscopically detected I-drop systems (with eventual redshifts) have a noticeable to strong Lyα emission line. That usually yields an unambiguous redshift, as the reader can see with the illustrations in Weymann et al. (1998) and Fig. 4, here, by Spinrad, Stern, Dawson, Filippenko, and the GOODS team (z = 5.83).

The pairing of a red continuum color, a continuum discontinuity, and a fairly strong emission line usually signifies a robust Lyα redshift. The multiple-criteria spectroscopic technique has been successful to at least z = 5.8 and probably to z = 6.57. It should eventually be pushed to z ~ 9 with the Lyα line at (rest) 1216 Å, right in the middle of the conventional near-IR J-band. Right now that is too technically difficult.

As these pages were being written, two preprints crossed our desk. In the first, Lehnert & Bremer (2003) discovered 6 galaxies at 4.8 ≤ z ≤ 5.8. These
Astrophysics Update

Chapter 1

Figure 4: A recent Keck spectrogram of a color-selected (I-drop) faint galaxy. The strong Lyα emission line indicates a redshift \(z = 5.83 \). Also note the continuum discontinuity. The “spectral teams” were led by Spinrad and Filippenko, with reductions by Daniel Stern and Steve Dawson. This galaxy was originally selected by Mark Dickinson and the GOODS team.

Galaxies were selected as photometric “R-drops”- that is, with little flux in the R-band and a flat spectrum at longer wavelengths. Follow-up spectroscopy with the VLT yielded accurate redshifts for these 6, with fairly strong Lyα emission. Their largest redshift was \(z = 5.869 \) (see Table 3 in §1.4.7).

The second very timely contribution, by Kodaira et al. (2003) (a Subaru telescope team), used deep narrow-band near-IR images to locate potentially very distant Lyα galaxies. The group also obtained a few spectra which lead to two fairly certain identifications. One line, with a symmetric line shape, is assumed to be Lyα and in the other case it appears to be satisfactorily asymmetric, hence reliably Lyα (see §1.4.6 for discussion of this point). The best spectrum is of SDFJ 132418.3 at \(z = 6.578 \). That would make this Lyα galaxy the largest redshift of any individual system measured to date. The redshift is only slightly greater than that of HCM 6 A (\(z = 6.56 \)) by Hu et al. (2002), and Hu, Cowie & McMahon (2002).

These very contemporary detections of galaxies beyond the “QSO-limit” of
Figure 5: Star-formation rate density as a function of redshift based on the UV-luminosity function with a magnitude limit \(M_{UV} < -20 \). Triangles and diamonds are from Connolly et al. (1997) and Lilly et al. (1996), respectively. Squares represent data from Steidel et al. (1999) at \(\langle z \rangle \sim 3 \) and \(4 \). The circle is the data of Iwata et al. (2003) at \(z = 5 \). Filled symbols indicate values without correction for dust extinction. Dust extinction was corrected following the prescription of Calzetti et al. (2000) with \(E(B-V) = 0.15 \) for all data points. Dust-corrected values are denoted by open symbols. Plot courtesy of I. Iwata.

\[z = 6.4 \] show us that UV emission from galaxies is still present at the “tail” of the “dark ages”. A future space-desideratum will be the galaxy morphology in the Ly\(\alpha \) line. We are interested in any extended neutral gas about the galaxy – via the scattered Ly\(\alpha \) emission from the central ionizing region (Haiman 2002 and references therein).

When the luminosity function of Ly\(\alpha \) emitters is extended to \(z \sim 6.5 \) (fainter galaxies have to be included) we should be able to extend the SFR density to that great distance. A sample of the near-constancy of the SFR density from \(z \sim 2 \) to \(z \sim 5 \) is illustrated in Fig 5 (from Iwata et al. 2003). The galaxies going into the computation of the SFR density are photometrically selected, using the top of the UV-luminosity function \((M_{UV} - 5 \log h < -20) \). Interestingly, an attempt by D. Stern and the author to utilize serendipitously discovered Ly\(\alpha \) emitters at \(z \sim 5 \) yields a SFR density slightly higher than that of the \(z \sim 5 \) Iwata point in Fig. 5 (with considerable uncertainty). We view this as a possible coincidence, as these two methodologies may be sampling different populations. It is somewhat
surprising that the relatively slight decline of the SFR density, noted by Iwata et al. (2003) should be maintained to $z \sim 5$. At that redshift the detected objects are effectively sub-galactic in size and probably rather modest in mass. At least temporarily, their M/L ratios must be quite low. Will that be true of most small sub-galactic systems?

1.4.6 Details on the Lyα Emission Line in Very Distant Galaxies

The classic proposal by Partridge & Peebles (1967) that the Lyα emission line might carry a fair fraction of the escaping bolometric luminosity of a young-star-rich galaxy is now testable. The review by Pritchet (1994) is also strongly recommended. Of course these early predictions did not reflect the possible presence of dust. Since the 1990s various searches have been initiated for Lyα-emitting galaxies at large redshifts. Initially all of these searches led to negative results (e.g., Thompson & Djorgovski 1995).

However, deeper photometric and spectroscopic searches of the last 6-7 years have yielded a modest number of “safe” Lyα emitters - often (at the largest z’s) the line being the only measurable spectral feature. The peak flux from a distant Lyα emission line galaxy can often exceed the (redward) continuum level by a factor greater than 10! Of course the line from a faint system still has to compete with the strong telluric sky emission bands of OH and O2. Space-spectra won’t deal with such a bright near-IR sky, and that will be advantageous.

Successful Lyα searches include Cowie et al. (1998); Hu et al. (1998), Pascale et al. (1998), Hu et al. (1999), Steidel et al. (2000), Kudritski et al. (2000), Fynbo, Möller, and Thomsen, (2001).

There are three modes of Lyα detection used with success in the past few years. They are narrow-band photometric excesses at fixed wavelengths (redshifts), a Lyα forest (Lyman breaks in the continua) plus emission at the line, and serendipitous or fortuitous detections on multi-slit spectrograms. The issues we may face for each/all of the sub-types include the emission line strength and shape, the luminosity function of Lyα emitters (and their surface densities), the effect of widespread neutral gas and dust, and the termination of the “dark ages” before or during the re-ionization epoch. Many of these topics have been addressed recently by Stern & Spinrad (1999); Rhoads et al. (2003); Ellis et al. (2001); Hu et al. (1999); Hu et al. (2002a), and in a predictive manner by Stiavelli (2002).

I suggest a few specific points where new observations and interpretations may be of substantial interest. For example, we’d like to confirm or deny that strong emission line Lyα galaxies ($z \geq 4$) obey the same luminosity function distribution as do photometrically selected Lyman break systems at $z = 3$ and $z = 4$ (cf. Steidel et al. 1999; Giavalisco 2002).

The difficulty in a present-sample comparison between Lyman break galaxies and Lyα emitters is that (at high luminosities, at least) only a modest fraction of Lyman break (continuum selected) galaxies have strong Lyα emission lines ($W_0 > 20$ Å, say). Among the Lyα-emitting systems (narrow-band or serendipitous detections) many candidates have very faint continua and would be missed in
normal broad-band photometry. This latter bias is stressed by Fynbo et al. (2001). Indeed, Rhoads et al. (2003) found that if they summarized the line/continuum ratio in Lyα galaxies, the equivalent widths occasionally “rose” to $W_{\lambda}^{0} \geq 1000$ Å but more frequently to 190 Å. 60% of the Lyα emitters studied by Malhotra & Rhoads (2002) had observed equivalent widths (hereafter EW) > 240 Å. For Ly-break systems, Shapley et al. (2001) find their 60th-percentile line to be a marginally-detectable 20 Å EW. The Shapley galaxies are at a slightly lower redshift; that difference is not critical.

If the above trend of lower-continuum-luminosity galaxies ($z > 4$) having stronger Lyα-emission were to continue, we might diagnose this systematic as a trend toward lower metallicities for lower masses. But there are other possibilities; the Lyα-emission line may as easily depend upon physical outflows (galactic winds), which in turn could have some total mass-dependence (or merger timing).

To get some idea as to the evolution of the luminosity function of young galaxies, we can compare the surface densities of distant galaxies. Pritchet (1994) made a first approximation to this. We utilize the Steidel et al. (1999) luminosity function zero point, and the “predictions” by Lanzetta et al. (1999) and Stern & Spinrad (1999) for a constant (with z) luminosity function. The cumulative surface density of identified $z \geq 4.5$ galaxies in the HDF(N) is about 1.5/′′. These galaxies constitute a sample of continuum galaxies (photons) and emission line galaxies with $I_{814} \leq 26.5$. This is very close to the “prediction” of the Lanzetta (unevolved) surface density (also see Ouchi et al. 2002).

The Lanzetta (1999) surface density curves do suggest a drop in the faint galaxy surface densities for the extreme case, $z \geq 6$; that is not surprising at about $I_{814} = 26$. Still at slightly fainter magnitude levels a measure of the $z \geq 6.0$ density by broad-band/narrow-band photometry may be a viable check on the luminosity function zero point and its shape (Lehnert & Bremer 2003).

What is the best physical interpretation of the very large EWs of Lyα often measured for galaxies at $z > 3$?

The Lyα-emitting galaxies with line EW in excess of 200 Å (rest-frame) (Malhotra & Rhoads 2002) are difficult to explain with a conventional O-B star mass function and ionizing spectra that are similar to those anticipated in extant solar-abundance models. The models rarely (and temporally) exhibit $W_{\lambda}^{0} \geq 150$ Å (e.g., Charlot & Fall 1993). To decrease the observed Lyα EW would be easy; as the dominant resonance line it is scattered frequently, and the resulting “random spatial walk” at the center of this line, coupled by small amounts of dust, can easily and drastically reduce the emission measure. It would, of course, also depend on the geometry.

To obtain a higher EW and/or higher flux in Lyα, one can call upon three scenarios:

(a) A “tilted” mass function, with more O stars than found in local HII regions, as an ad hoc premise.

(b) We can also reduce the heavy element abundances in our models, and this allows an increase in the number of ionizing photons per O star. A recent paper by Schaerer (2003) considers the temporal evolution of the Lyα line from
model stellar populations ranging down from solar metal-abundances to very low metallicities (below the abundance level of the most metal-poor stars and gas in relatively nearby star-forming systems). We amplify this discussion below.

(c) Finally, sometimes a strong Lyα emission line is the signature of an AGN. However, “real” AGN spectra, from QSOs down to modest-luminosity accretions, usually produce a broader Lyα emission line ($\Delta v \geq 1000$ km s$^{-1}$) than seen in normal galaxies ($\Delta v \sim 500$ km s$^{-1}$). They usually, but not always, also show C IV (moderately broad) 1549 Å. So most of the narrow-line Lyα galaxies must have a line powered by the UV flux from OB stars. This is confirmed by the lack of hard X-ray flux in LALA galaxies at $z \simeq 4.5$ (Malhotra et al., 2003), indicating they are not obscured AGN.

The previously-mentioned Schaerer paper (Schaerer, 2003) predicts EW of ~ 240-350 Å for metallicities down to $Z = 4 \times 10^{-4}$ (down from solar by a factor of ~ 50 times). Stiavelli (2002) shows even larger EW for Lyα in metal-poor OB stars. Conceivably the initial stellar mass function (IMF) could also vary and be itself slanted toward higher masses because of the lower abundances. So the pairing of low abundance and a structure favoring massive O stars might allow EW to match most of the Lyα galaxies selected by Malhotra & Rhoads (2002) and by Rhoads et al. (2003). An almost-practical spectroscopic test of this idea can be made by examining the UV HeII transition at λ_{9164} Å. This line is much weaker than Lyα in star-forming populations - with EW ~ 5 Å anticipated at low abundances of the metals. At higher abundances (near solar) it will be even weaker. Thus higher S/N spectrograms will be required in practice to use this HeII feature in Lyα “test galaxies”.

The shape of the Lyα emission line in distant star-forming galaxies is peculiar and may turn out to be an interesting guide to the circumgalactic medium as well as to galaxian winds or sporadic outflows.

The asymmetry of the Lyα line has been noted by Kunth et al. (1998) and Pettini et al. (2001); it is also mentioned by Stern & Spinrad (1999). We have utilized the broad red wing of the Lyα line and its sharp ISM/IGM cutoff on the blue side as a secondary criterion for assuming a single strong emission line is to be identified as Lyα. This is opposed to the profile of the [O II] λ3727 doublet – unresolved in most lower-spectral-purity observations of faint objects. Recent work by E. Landes, S. Dawson, and the author has compared a spectral asymmetry index (a lambda-space ratio) for ten strong Lyα emission lines; this particular index is small for a symmetric line and large for a red winged emission. Out of a sample of seven medium-resolution spectra of galaxies with a “solid” [O II] identification ($z = 1.0$) the asymmetry index averages 0.9 ± 0.1, while the 10 bonafide Lyα galaxies, with $\langle z \rangle \approx 4$ display a larger range of index, from 1.0 to 2.3, with none less than unity. Seven of the Lyα systems are clearly asymmetric with a noticeable red wing (see Fig. 6).

The Lyα line is usually steeply declining on its blue side; we’ll soon come back to this observation. So deciding whether an emission line is [O II] at a modest z or Lyα at a large z, can often be helped by measuring the asymmetry. Of course a Lyα (bigger redshift) decision based upon a large line asymmetry index becomes
The Most Distant Galaxies

Figure 6: The Lyα emission line asymmetry index, applied to [O II] emitters (upper panel) and to Lyα lines (lower panel). The line wavelength asymmetry is defined at 30% of the line peak; an index over unity implies a stronger red wing to the line profile. Most but not all of the strong Lyα line emitters show an asymmetric red wing, with an index ≥ 1.5. The Lyα galaxies range in redshift from $z = 3$ to $z = 5.3$. Figure and reductions by Emily Landes.

A sufficient, but not necessary condition for claiming the Lyα identification.

The astrophysics behind the red wing of Lyα has been well expounded by Tenorio-Tagle et al. (1999), Ahn, Lee & Lee (2002), and Dawson et al. (2002). The scenario here is a mini-galaxy scale outflow of neutral and partly ionized matter; the blueward velocity component being absorbed by external and expanding neutral H gas between us and the outflow. The backscattered component can be sufficiently redshifted off of the receding wind, and hence avoid immediate absorption. This will impose a broadened red wing to the Lyα line.

On the blue side of Lyα we have a rapid decrease in intensity, a very sharp cutoff to the galaxy emission line at a slightly smaller redshift. The actual galaxy systemic velocity is likely to be near but blueward of the line peak, rather than its bisector at about half of maximum intensity.

In any case the Lyα H absorption can take place in neutral circumgalactic gas, and in putative cluster gas, and also, at slightly lower redshift, neutral H clouds in the IGM - the well-studied Lyα forest.
One interesting semi-quantitative aspect of the blue side cutoff is the difference we have noticed between the blue edge of Lyα in QSO spectra and that of the normal distant galaxies, highlighted in this review (see Fig. 7). A new type of “proximity effect” seems in place, in the sense that the galaxy Lyα profile on the short wavelength side is extremely steep, going from the line peak to near zero intensity in $\Delta v_1 = 100 \text{ km s}^{-1}$, on our few echelle (higher spectral resolution) observations of the brightest distant systems (in their Lyα line). The profile on the blue side of the strong emission line in QSO spectra (also $z > 4$) is moderately steep, but has a typical $\Delta v_2 \approx 800 \text{ km s}^{-1}$, but often $> 1000 \text{ km s}^{-1}$.

![Figure 7: The steepness of the ultraviolet side of the Lyα emission line in a QSO ($z = 5.09$) and a faint galaxy, RD1 ($z = 5.34$, Dey et al. 1998). The very sharp and rapid decline of the blue side in the distant galaxy may be indicative of nearby (surrounding?) neutral gas. On the other hand, the QSO presumably ionizes much of any circumgalactic H originally present (with a small Δv). Thus the QSO line and continua are detectable to $\Delta v_2 \simeq 2500 \text{ km s}^{-1}$. Reductions and Figure by S. Dawson.](image)

Our interpretation of this systematic difference between UV-luminous QSOs and UV-fainter galaxies is straightforward. In proximity to the luminous ultraviolet radiation field of the QSOs H is very thoroughly ionized and thus doesn’t absorb Lyα photons at small Δv. On the other hand, a galaxy’s UV ionizing radiation may not escape (or fully escape - see Dawson et al. 2002). Thus the rapid decline on the blue side of Lyα may simply augur the existence of neutral gas in the circumgalactic environment near the galaxy. The effect may increase with
redshift, but this is not yet well documented. This trend is potentially of interest in our present and future attempts to document the degree of IGM ionization near active objects and also on a diffuse, larger scale. Our coverage in redshift implies that we are looking back close to the re-ionization redshift, between $z = 6$ and $z = 20$, apparently.

1.4.7 Current Redshift Record Breakers With Lyα Emission or Absorption Breaks

In Table 3 we list published or otherwise secure “record redshifts” for galaxies; most have prominent Lyα emission lines or at least a strong Lyα forest absorption.

We note that since 1999 astronomers have added at least 25 galaxies with $z \geq 5$. This is an impressive and useful score; however, a more physical analysis of several aspects of the pioneering effort is now an obvious and desired second approach. Also, the morphologies of the continuum and Lyα lines may provide useful information on the environs of very early galactic systems. The cut-off date for entries in Table 8.3 was 2003 February.

1.5 The Future

Wide-field narrow-band and broad-band imaging with large ground-based telescopes have considerable promise. Narrow-band and broad-spectral-band studies of the sky areas already earmarked for multi-wave observation is one useful approach. It is already been successful in the Hubble Deep Fields. Such imaging photometry has already turned up distant galaxies, especially at $z = 5.7$ and $z = 6.6$ (airglow windows for narrow-band studies). We know of several groups planning to search for Lyα emitters at the highest redshifts available to CCD detectors ($\lambda \approx 9200$ Å; $z_\alpha = 6.6$). A more ambitious plan would be to utilize IR detectors at the best (OH-band-free) sky windows in J band ($\lambda \approx 12,000$ Å; $z = 9$). Exploration of the interval $6.6 \leq z \leq 9$ should bring us to the edge of the re-ionization epoch where the first stars and quasars began to ionize (again) the halos around collections of dark matter and baryons. A schematic cartoon (Pentericci et al. 2002b) is shown by Loeb & Barkana (2001). Is it realistic? We'll hope that very distant galaxy images and spectra will tell us about very early star formation at the end of the long “dark age”. At this time it is uncertain as to whether the first luminous and ionizing objects were star-forming galaxies! But something or some process began star-formation through the darkness and led to the formation of young stars and young galaxies. We may soon barely detect these faint “first galaxies” with our telescopes and intellects.

1.6 Acknowledgments

I thank Curt Manning, Steve Dawson, Arjun Dey, Mark Dickinson, Ikuru Iwata, Emily Landes, Scott Chapman, and Dan Stern for help with the science, and with this manuscript. I acknowledge the support from NSF Grant AST–0097163.
Table 3: Census of Galaxies Confirmed at $z \gtrsim 5$

<table>
<thead>
<tr>
<th>z</th>
<th>Source</th>
<th>Reference</th>
<th>NB</th>
<th>LBG</th>
<th>ser</th>
<th>other</th>
<th>lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.578</td>
<td>SDFJ 132418.3</td>
<td>Kodaira et al.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.56</td>
<td>HCM 6A</td>
<td>Hu et al.</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6.541</td>
<td>SDFJ 132415.7</td>
<td>Kodaira et al.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.869</td>
<td>BDF1:19</td>
<td>Lehnert and Bremer</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.83</td>
<td>CDFS 5144</td>
<td>GOODS</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.783</td>
<td>CDFS SBM03#3</td>
<td>Bunker et al. 2003</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.746</td>
<td>LALA5 1-03</td>
<td>Rhoads et al.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.744</td>
<td>BDF1:10</td>
<td>Lehnert and Bremer</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.74</td>
<td>SSA22-HCMI</td>
<td>Hu et al.</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5.700</td>
<td>LALA5 1-06</td>
<td>Rhoads et al.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.69</td>
<td>LAE J1044-0130</td>
<td>Ajiki et al. 2002</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.674</td>
<td>LALA5 1-5</td>
<td>Rhoads et al. 2002</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.655</td>
<td>LAE J1044-0123</td>
<td>Taniguchi et al.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.649</td>
<td>BDF2:19</td>
<td>Lehnert and Bremer</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.631</td>
<td>HDFS 36246-1511</td>
<td>Dawson et al. 2001</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.621</td>
<td>Lynx R-drop</td>
<td>Stern et al. prep.</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5.60</td>
<td>HDF 4-473</td>
<td>Weymann et al. 1998</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.576</td>
<td>Abell 2218 lens</td>
<td>Ellis et al. 2001</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5.46</td>
<td>NDFWS R-drop</td>
<td>Dey et al., in prep.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.34</td>
<td>HDF 3-951.0</td>
<td>Spinrad et al. 1998</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.34</td>
<td>RD1</td>
<td>Dey et al. 1998</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.190</td>
<td>HDFS ES1</td>
<td>Dawson et al. 2001</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.19</td>
<td>TN J0924-2201</td>
<td>van Breugel et al. 1999</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.19</td>
<td>ES1</td>
<td>Dawson et al. 2001</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.186</td>
<td>HDFS Chandra source</td>
<td>Barger et al. 2002</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>A1689 lens</td>
<td>Frye et al. 2002</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5.056</td>
<td>BDF1:26</td>
<td>Lehnert et al. 2002</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.018</td>
<td>BDF1:18</td>
<td>Lehnert et al. 2002</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.99</td>
<td>Cetus R-drop</td>
<td>Stern et al. prep.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes on the initial discovery techniques – NB = narrow-band selected; LBG = continuum Lyman-break/Lyman-forest break selected; ser = serendipitously identified; other = selected in other manner (e.g., radio-selected, X-ray selected); lens = known gravitational lens.
Bibliography

sion from Luminous Infrared Starburst Galaxies Ap. J. 568 85
[26] Fan X et al. (2001) A Survey of \(z > 5.8 \) Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at \(z \sim 6 \) Astron. J. 122, 2833
[38] Hu E et al. (2002) A Redshift $z = 6.56$ Galaxy behind the Cluster Abell 370
Ap. J. (L) 568 L75
[40] Iwata I et al. (2003) Lyman Break Galaxies at $z \sim 5$: Luminosity Function.
P.A.S.J. 55 415
[42] Kodaira K, Taniguchi Y et al. (2003). The Discovery of Two Lyα Emitters
Beyond Redshift 6 in the Subaru Deep Field P.A.S.J. 55 L17
[43] Kudritzki R. et al. (2000) Discovery of Nine Lyα Emitters at Redshift $z \sim 3.1$
the Gamma-Ray Burst of 23 January 1999 Nature 393 35
[46] Lanzetta K et al. (1999) in The Hy Redshift Universe ed A J Bunker and
W van Breugel ASP Conf. Ser. 193 p. 544
MNRAS 211 833
Density and Star Formation History of the Universe to $z \approx 1$ Ap. J. 460 L1
[50] Loeb A and Barkana R (2001) The Reionization of the Universe by the First
at $z = 4.5$: Young Galaxies in a Young Universe? Ap. J. 565 L71
[53] Malhotra S et al. (2003) No X-Ray-bright Type II Quasars among the Lyα
Emitters Ap. J. 585 25
Breugel ASP Conf. Ser. 193 566
[55] Ouchi M et al. (2002) Subaru Deep Survey. II. Luminosity Functions and
Clustering Properties of Lyα Emitters at $z = 4.86$ in the Subaru Deep Field
Ap. J. 582, 60
147 868
[57] Pentericci L et al. (2002a) VLT Optical and Near-Infrared Observations of
the $z = 6.28$ Quasar SDSS J1030+0524 Astron. J. 123 2151
[58] Pentericci L et al. (2002b) The VLT and the Most Distant Quasars, ESO
Messinger 108, 24
554 981

[81] Weinberg D H et al. (1999) in Photometric Redshifts and High Redshift
Galaxies ed R J Weymann, L Storrie-Lombardi, M Sawicki and R Brunner
ASP Conf. Ser. 191 341
