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Abstract

Irregular (Irr) and dwarf irregular (dIrr) galaxies are gas-rich galaxies with recent or on-
going star formation. In the absence of spiral density waves, star formation occurs largely
stochastically. The scattered star-forming regions tend to be long-lived and migrate slowly.
Older populations have a spatially more extended and regular distribution. In fast-rotating
Irrs high star formation rates with stronger concentrationtoward the galaxies’ center are
observed, and cluster formation is facilitated. In slowly or nonrotating dIrrs star formation
regions are more widely distributed, star formation occursmore quiescently, and the forma-
tion of OB associations is common. On average, Irrs and dIrrsare experiencing continuous
star formation with amplitude variations and can continue to form stars for another Hubble
time.

Irrs and dIrrs exhibit lower effective yields than spirals,and [α/Fe] ratios below the solar
value. This may be indicative of fewer Type II supernovae andlower astration rates in
their past (supported by their low present-day star formation rates). Alternatively, many
metals may be lost from the shallow potential wells of these galaxies due to selective winds.
The differences in the metallicity-luminosity relation between dIrrs and dwarf spheroidals
(which, despite their lower masses, tend to have too high a metallicity for their luminosity as
compared to dIrrs) lends further support to the idea of slow astration and slow enrichment in
dIrrs. The current data on age-metallicity relations are still too sparse to distinguish between
infall, leaky-box, and closed-box models. The preferred location of dIrrs in the outer parts
of galaxy groups and clusters and in the field as well as the positive correlation between gas
content and distance from massive galaxies indicate that most of the dIrrs observed today
probably have not yet experienced significant interactionsor galaxy harassment.

1.1 Introduction
In this contribution, I will focus on the evolutionary histories of irregular (Irr) and

dwarf irregular (dIrr) galaxies, including their chemicalevolution. The name “irregular”
refers to the irregular, amorphous appearance of these galaxies at optical wavelengths, where
the light contribution tends to be dominated by scattered bright H II regions and their young,
massive stars. Irrs are typically gas-rich galaxies that lack spiral density waves as well as a
discernible bulge or nucleus. Many Irrs are disk galaxies and appear to be an extension of
late-type spirals. The most massive disky Irrs with residual spiral structure are also called
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Magellanic spirals; e.g., the Large Magellanic Cloud (LMC)(Kim et al. 1998) is a barred
Magellanic spiral. Looser and more amorphous Irrs like the Small Magellanic Cloud (SMC)
are sometimes also referred to as Magellanic irregulars (orbarred Magellanic irregulars
if a bar is present); see de Vaucouleurs (1957). A different system of subdivisions was
suggested by van den Bergh in his DDO luminosity classification system (van den Bergh
1960, 1966). DIrrs are simply less massive, less luminous Irrs; the distinction between the
two is a matter of definition rather than physics. Typical characteristics of dIrrs are a central
surface brightnessµV . 23 mag arcsec−2, a total mass ofMtot . 1010M⊙, and an HI mass of
MHI . 109M⊙. Solid body rotation is common among the Irrs and more massive dIrrs, while
low-mass dIrrs do not show measurable rotation; here randommotions dominate. A typical
characteristic of Irrs and dIrrs alike is ongoing or recent star formation. The star formation
intensity may range from burst-like, strongly enhanced activity, to slow quiescent episodes.
Irrs and dIrrs can continue to form stars over a Hubble time (Hunter 1997).

Substantial progress has been made in the photometric exploration of the star formation
histories of Irrs and dIrrs over the past decade, largely thanks to the superior resolution
of the Hubble Space Telescope. There is still very little known about the progress of the
chemical evolution in these galaxies as a function of time, but the advent of 6-m to 10-m
class telescopes and their powerful spectrographs is beginning to change this situation. The
most detailed information is available for nearby Irr and dIrr galaxies in the Local Group,
most notably the LMC, which is the Irr galaxy closest to the Milky Way.

1.2 Distribution and Census of Irregulars in the Local Group
The Local Group, our immediate cosmic neighborhood, resembles other nearby

galaxy groups in many ways, including in its galaxy content,structure, mass, and other
properties (e.g., Karachentsev et al. 2002a, b). It is our best local laboratory to study galaxy
evolution at the highest possible resolution and in the greatest possible detail. The Lo-
cal Group contains two dominant spiral galaxies surroundedby a large number of smaller
galaxies. Thirty-six galaxies are currently believed to bemembers of the Local Group if a
zero-velocity surface of 1.2 Mpc is adopted (Courteau & van den Bergh 1999; Grebel, Gal-
lagher, & Harbeck 2003)∗. The smaller galaxies in the Local Group include a spiral galaxy
(M33), 11 gas-rich Irr and dIrr galaxies (including low-mass, so-called transition-type galax-
ies that comprise properties of both dIrrs and dwarf spheroidals), four elliptical and dwarf
elliptical galaxies, and 17 gas-deficient dwarf spheroidal(dSph) galaxies. For a listing of
the basic properties of these galaxies, see Grebel et al. (2003). Their three-dimensional
distribution is illustrated in Grebel (1999; Fig. 3). Recent reviews of Local Group galaxies
include Grebel (1997, 1999, 2000), Mateo (1998), and van denBergh (1999, 2000).

DIrrs are the second most numerous galaxy type in the Local Group. While new dwarf
members of the Local Group are still being discovered (e.g.,Whiting, Hau, & Irwin 1999),
these tend to be gas-deficient, low-mass dSph galaxies, which have intrinsically low optical
surface brightnesses and cannot be found from their HI 21 cm emission lines. The Irr and
dIrr census of the Local Group appears to be complete.

Irrs and dIrrs are found in galaxy groups and clusters as wellas in the field and exhibit
little concentration toward massive galaxies in contrast to early-type dwarfs. This morpho-
logical segregation is clearly seen in the Local Group and innearby groups (Fig. 1.1). It
∗ Note that recent kinematic estimates suggest an even smaller radius of (0.94±0.10) Mpc for the zero-velocity

surface (Karachentsev et al. 2002c), which reduces the above number of Local Group dwarf galaxies by two.
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Fig. 1.1. Morphological segregation in the Local Group (filled histograms; see Grebel
2000) and in the M81 and Cen A groups (dashed histograms; input data from Karachentsev
et al. 2002a, b). Note the pronounced concentration of gas-poor, early-type dwarfs around
the nearest massive primary galaxy, while the gas-rich, late-type dwarfs show less concentra-
tion and are more widely distributed. This may be a signatureof the impact of environmental
effects, such as gas stripping.

becomes even more pronounced in galaxy clusters, where the distribution of Irrs shows the
least concentration of all galaxy types toward the cluster core (e.g., Conselice, Gallagher, &
Wyse 2001, and references therein), which has been attributed to continuing infall of Irrs and
subsequent harassment. Conversely, in very loose groups or“clouds” (such as the Canes Ve-
natici I Cloud) that are still far from approaching dynamical equilibrium, an overabundance
of Irrs and dIrrs is observed as compared to early-type dwarfs (Karachentsev et al. 2003a),
indicative of a lack of interactions.

1.3 The Interstellar Medium of Local Group Irregulars

1.3.1 The Magellanic Clouds
The Magellanic Clouds are the two most massive Irrs in the Local Group, and the

only two Irrs in immediate proximity to a massive spiral galaxy. Their distances from the
Milky Way are 50 kpc (LMC) and 60 kpc (SMC), respectively. They are the only two Local
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Group Irrs that are closely interacting with each other (andwith the Milky Way). According
to the earlier definition, the SMC qualifies as a dIrr.

The global distribution of neutral hydrogen within the Magellanic Clouds and other com-
paratively massive Irrs tends to show a regular, symmetric appearance, in contrast to their
visual morphology. On smaller scales, the HI is flocculent and exhibits a complicated fractal
pattern full of shells and clumps (e.g., Kim et al. 1998; Stanimirovic et al. 1999). The lack
of correlation between the HI shells and the optically dominant HII shells suggests that HI
shells live longer than the OB stars that caused them initially (Kim et al. 1999). The HI

associated with HII regions is usually more extended than the ionized regions. The fractal
structure of the neutral gas is self-similar on scales from tens to hundreds of pc (Elmegreen,
Kim, & Staveley-Smith 2001) and appears to result from the turbulent energy input caused
by winds of recently formed massive stars and supernova explosions.

With 0.5× 109 M⊙ (Kim et al. 1998) the LMC’s gaseous component contributes about
9% to its total mass, while it is∼ 21% in the SMC (HI mass of 4.2×108 M⊙; Stanimirovic
et al. 1999). In comparison to the Milky Way, the gas-to-dustratio is roughly 4 times lower
in the LMC (Koornneef 1982) and about 30 times lower in the SMC(Stanimirovic et al.
2000), implying a smaller grain surface area per hydrogen atom, fewer coolants, and thus a
reduced H2 formation efficiency (Dickey et al. 2000; Stanimirovic et al. 2000; Tumlinson
et al. 2002). Indeed, the total diffuse H2 mass is only 8× 106 M⊙ in the LMC and 2×
106 M⊙ in the SMC, which corresponds to 2% and 0.5% of their HI masses, respectively
(Tumlinson et al. 2002). Also the reduced CO emission from both Clouds (3–5 times lower
than expected for Galactic giant molecular clouds) is indicative of the high UV radiation
field in low-metallicity environments and hence high CO photodissociation rates (Israel et
al. 1986; Rubio, Lequeux, & Boulanger 1993). While high dustcontent is correlated with
high H2 concentrations, H2 does not necessarily trace CO or dust (Tumlinson et al. 2002).

Photoionization through massive stars is the main contributor to the optical appearance
of the interstellar medium (ISM) at∼ 104 K in the Clouds and other gas-rich, star-forming
galaxies. The LMC has a total Hα luminosity of 2.7×1040 erg s−1; 30% to 40% is con-
tributed by diffuse, extended gas (Kennicutt et al. 1995). In the LMC nine HII supershells
with diameters> 600 pc are known (Meaburn 1980). Their rims are marked by strings of
H II regions and young clusters/OB associations. The standard picture for supershells sug-
gests that these are expanding shells driven by propagatingstar formation (e.g., McCray &
Kafatos 1987). However, an agegradientconsistent with this scenario was not detected in
the largest of these supershells, LMC4 (Dolphin & Hunter 1998). Nor are other LMC su-
pershells expanding as a whole, but instead appear to consist of hot gas confined between
H I sheets and show localized expansion. Supershells in several other galaxies neither show
evidence for expansion (e.g., Points et al. 1999), nor the expected young massive stellar
populations (Rhode et al. 1999). In contrast, the three HI supershells and 495 giant shells in
the SMC appear to be expanding (Staveley-Smith et al. 1997; Stanimirovic et al. 1999).

The hot, highly ionized corona of the LMC with collisionallyionized gas (temperatures
& 105 K) (Wakker et al. 1998) is spatially uncorrelated with star-forming regions. A hot
halo is also observed around the SMC, but here clear correlations with star-forming regions
are seen. This corona may be caused in part by gas falling backfrom a galactic (i.e., SMC)
fountain (Hoopes et al. 2002). The OVI column density exceeds the corresponding Galactic
value by 1.4 (Hoopes et al. 2002), consistent with the longercooling times expected at lower
metallicities (Edgar & Chevalier 1986).
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The Magellanic Clouds, which only have a deprojected distance of 20 kpc from each
other, interact with each other and with the Milky Way. Apartfrom an impact on the structure
and star formation histories of these three galaxies (e.g.,Hatzidimitriou, Cannon, & Hawkins
1993; Kunkel, Demers, & Irwin 2000; Weinberg 2000; van der Marel et al. 2002), this has
given rise to extended gaseous features surrounding the Magellanic Clouds (Putman et al.
2003, and references therein). Part of these are likely caused by tidal interactions, but ram
pressure appears to have played an important role as well (Putman et al. 1998; Mastropietro
et al. 2004). Metallicity determinations for gas in the Magellanic Stream, which is trailing
behind the Magellanic Clouds and subtends at least 10◦×100◦ on the sky, confirm that the
gas is not primordial (Lu et al. 1998; Gibson et al. 2000). TheH2 detected in the leading
arm of the Stream may originally have formed in the SMC (Sembach et al. 2001). No stars
are known to be connected with the Magellanic Stream (Putmanet al. 2003).

Another prominent HI feature is the “Magellanic Bridge” or InterCloud region (108 M⊙;
Putman et al. 1998), which connects the LMC and SMC. Cold (20 to 40 K) H I gas has been
detected in the Bridge (Kobulnicky & Dickey 1999), and recent star formation occurred
there over the past 10 to 25 Myr (Demers & Battinelli 1998). Intermediate-age stars are
also present in parts of the Bridge (carbon stars: Kunkel et al. 2000, and references therein).
Higher ionized species with temperatures up to∼ 105 K show an abundance pattern suggest-
ing depletion into dust (Lehner et al. 2000). Interestingly, the metallicities of young stars
in the Bridge were found to be [Fe/H]≈ −1.1 dex (Rolleston et al. 1999), 0.4 dex below
the mean abundance of the young SMC population, which is inconsistent with the proposed
tidal origin 200 Myr ago (Murai & Fujimoto 1980; Gardiner & Noguchi 1996).

1.3.2 More Distant Dwarf Irregular Galaxies
The other Local Group dIrrs are more distant from the dominant spirals, and fairly

isolated. Interactions may still occur, but if this happensthe interaction partners tend to be
gas clouds rather than galaxies. Generally, star formationactivity and gas content decrease
with galaxy mass, but the detailed star formation historiesand ISM properties of the dIrrs
present a less homogeneous picture.

NGC 6822, a dIrr at a distance of∼ 500 kpc, is embedded in an elongated HI cloud with
numerous shells and holes. Its total HI mass is 1.1×108 M⊙, ∼ 7% of its total mass. The
masses of individual CO clouds reach up to (1− 2)× 105 M⊙ (Petitpas & Wilson 1998),
while the estimated H2 content is 15% of the HI mass (Israel 1997), and the dust-to-gas
mass ratio is∼ 1.4× 10−4 (Israel, Bontekoe, & Kester 1996). NGC 6822 contains many
H II regions. Its huge supershell (2.0× 1.4 kpc) was likely caused by the passage of and
interaction with a nearby 107 M⊙ H I cloud and does not show signs of expansion (de Blok
& Walter 2000). The older stars in IC 10 describe an elliptical, extended halo (Letarte et
al. 2002) distinct from the elongated HI distribution. The latter, however, is traced closely
by a population of young blue stars (∼ 180 Myr) that appear to have formed following the
interaction with the passing HI cloud (de Blok & Walter 2003; Komiyama et al. 2003) some
300 Myr ago. In NGC 6822, the HI distribution is thus only slightly more extended than the
stellar loci.

The HI of IC 10 (distance 660 kpc) is 7.2 times more extended than itsHolmberg radius
(Tomita, Ohta, & Sait̄o 1993). While the inner part of the neutral hydrogen of IC 10 is a
regularly rotating disk full of shells and holes, the outer HI gas is counter-rotating (Wilcots
& Miller 1998). IC 10 is currently experiencing a massive starburst, which is possibly trig-
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gered and fueled by an infalling HI cloud (Sait̄o et al. 1992; Wilcots & Miller 1998). IC 10
contains a nonthermal superbubble that may be the result of several supernova explosions
(Yang & Skillman 1993). The masses of the CO clouds in IC 10 appear to be as high as
up to 5×106 M⊙ (Petitpas & Wilson 1998), which would indicate that more than 20% of
this galaxy’s gas mass is molecular. Owing to the high radiation field and the destruction
of small dust grains, the ratio of far-infrared [CII ] to CO 1–0 emission is a factor 4 larger
than in the Milky Way (Bolatto et al. 2000), resulting in small CO cores surrounded by large
[C II ]-emitting envelopes (Madden et al. 1997). Two H2O masers were detected in dense
clouds in IC 10, marking sites of massive star formation (Becker et al. 1993). The internal
dust content of IC 10 is high, and its properties prompted Richer et al. (2001) to suggest that
this galaxy should actually be classified as a blue compact dwarf.

Less detailed information is available for the ISM in the other Local Group dIrrs, which do
not appear to be involved in ongoing interactions and which are evolving fairly quiescently.
The HI in these dIrrs may be up to 3 times more extended than the optical galaxy and
is clumpy on scales of 100 to 300 pc. The most massive clumps reach∼ 106 M⊙. H I

concentrations tend to be close to HII regions. Some dIrrs contain cold HI clouds associated
with molecular gas. The total HI masses are usually< 109 M⊙, and less than 107 M⊙ for
transition-type dwarfs. The center of the HI distribution coincides roughly with the optical
center of the dIrrs, although the HI may show a central depression surrounded by an HI

ring or arc (e.g., SagDIG, Leo A), possibly a consequence of star formation, or the HI may
be off-centered (e.g., Phoenix; St-Germain et al. 1999). Inlow-mass dIrrs there are no
signatures of rotation, but these may be obscured by expanding shells and bubbles. Further
details are given in Lo, Sargent, & Young (1993), Young & Lo (1996, 1997), Elmegreen &
Hunter (2000), and Young et al. (2003).

Lower gravitational pull and the lack of shear in the absenceof differential rotation imply
that HI shells may become larger and are long-lived (Hunter 1997). Diameters, ages, and
expansion velocities of the HI shells increase with later Hubble type (Walter & Brinks 1999)
and scale approximately with the square root of the galaxy luminosity (Elmegreen et al.
1996). Shell-like structures, HI holes, or off-centered gas may be driven by supernovae and
winds from massive stars following recent star formation episodes or tidal interactions.

For a review on nebular abundances in Irrs, see the contribution by Garnett (2004). Here
it should only be mentioned that the effective yields in Irrscomputed from gas-phase abun-
dances are lower than those in the main stellar disks of spirals. Lower effective yields are
also correlated with lower rotational velocities (Garnett2002). This is interpreted as pref-
erential metal loss through winds in the more shallow potential wells of Irrs and dIrrs, but
may also be due to lower astration levels (e.g., Pilyugin & Ferrini 2000). For a review of the
general ISM properties in Local Group dwarf galaxies, see Grebel (2002a).

1.4 Large-scale Star Formation and Spatial Variations
The dwarf galaxies in the Local Group vary widely in their star formation and en-

richment histories, times and duration of their major star formation episodes, and fractional
distribution of ages and subpopulations. Indeed, when studied in detail, no two dwarf galax-
ies turn out to be alike, not even if they are of the same morphological type or have similar
luminosities (Grebel 1997). On the other hand, in spite of their individual differences, they
do follow certain common global correlations such as increasing mean metallicity with lu-
minosity (§1.6.2).
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1.4.1 Large-scale Star Formation
The ISM properties of Irrs and dIrrs outlined in the previoussection already show

that there are spatial variations in star formation historyand other characteristics within
these galaxies. In general, dwarf galaxies of all types showa tendency for the younger
populations to be more centrally concentrated (and possibly more chemically enriched),
whereas older populations are more extended (Grebel 1999, 2000; Harbeck et al. 2001). In
Irr and dIrr galaxies, HII regions tend to be located within the part of the galaxy that shows
solid body rotation and are usually even more centrally concentrated (Roye & Hunter 2000).
Star-forming regions may, however, be found out to six optical scale lengths, indicating
that star formation is truncated at lower gas density thresholds than in spirals (Parodi &
Binggeli 2003). In dIrrs dominated by chaotic motions, the degree of central concentration
of recent star formation is lower, whereas fast-rotating Irrs tend to exhibit the highest central
concentrations. The same trend also holds for the star formation activity: low-mass dIrrs
with no measurable rotation also have lower star formation rates (Roye & Hunter 2000;
Parodi & Binggeli 2003).

How does star formation progress in irregular galaxies? Irrs and the more massive dIrrs
usually contain multiple distinct regions of concurrent star formation. These regions often
remain active for several 100 Myr, are found throughout the main body of these galaxies (see
above), and can migrate. This is illustrated in Figure 1.2 for the LMC, where the large-scale
star formation history of the last∼ 250 Myr (approximately one rotation period) is shown
(see Grebel & Brandner 1998 for full details). Note how some of the active regions have
continued to form stars over extended periods and propagated slowly, whereas others only
became active during the past 30 Myr. The star formation complexes resemble superassoci-
ations and may span areas of a few hundred pc (Grebel & Brandner 1998). In supershells,
typical time scales for continuing star formation on lengthscales of 0.5 kpc range from 15 to
30 Myr, usually without showing clear signs of spatially directed propagation with time (see
also Grebel & Chu 2000 and §1.3.1). CO shows a strong correlation with H II regions and
young (< 10 Myr) clusters, but only little with older clusters and supernova remnants (Fukui
et al. 1999; cf. Banas et al. 1997). Massive CO clouds have typical lifetimes of∼ 6 Myr
and are dissipated within∼3 Myr after the formation of young clusters (Fukui et al. 1999;
Yamaguchi et al. 2001). Spatially resolved star formation histories have also been derived
for two dIrr galaxies just beyond the Local Group covering the past 500–700 Myr. They
reveal similar long-lived, gradually migrating zones of star formation (Sextans A: Van Dyk,
Puche, & Wong 1998; Dohm-Palmer et al. 2002; GR 8: Dohm-Palmer et al. 1998), as seen
in the more massive Magellanic Clouds.

In low-mass dIrrs one usually observes only one single low-intensity star-forming region.
DIrrs and transition-type dIrr/dSph galaxies tend to be fairly quiescent, often having ex-
perienced the bulk of their star formation at earlier times.(In fact, transition-type dwarfs
resemble dSphs in their gradually declining star formationrates; see Grebel et al. 2003 for
details.) Evidence for migrating star formation is found inlow-mass dIrrs as well, albeit on
smaller scales owing to the smaller sizes of these galaxies (e.g., Phoenix: Martínez-Delgado,
Gallart, & Aparicio 1999).

1.4.2 Intermediate-age and Old Stellar Populations
Irrs and massive dIrrs tend to show extended halos of intermediate-age stars (ages

∼ 1 to∼ 10 Gyr), which can be conveniently traced by carbon stars (e.g., Letarte et al. 2002).
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Fig. 1.2. Large-scale star formation patterns in the Large Magellanic Cloud spanning the
past∼ 250 Myr. The individual dots correspond to age-dated Cepheids (upper panel) and
supergiants (lower panel). A few prominent features like the LMC bar, supershell LMC 4,
and 30 Doradus are marked by solid and dashed lines. Note how star formation migrated
along the LMC’s bar and finally vanished in its southernmost past, and how other regions
such as 30 Doradus and LMC 4 only became strongly active over the past∼ 30 Myr. Within
the time scales depicted here, which incidentally correspond to roughly one rotation period,
stars are not expected to have migrated far from their birthplaces. (From Grebel & Brandner
1998.)

In the Magellanic Clouds, the density distributions of different populations ages become in-
creasingly more regular and extended with increasing age (e.g., Cioni et al. 2000; Zaritsky
et al. 2000), whereas the young populations are responsiblefor the irregular appearance of
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these two galaxies. The centroids of the different populations do not always coincide. Fea-
tures resembling stellar bars are found in many dIrrs, whichdo not necessarily coincide with
the peak HI distribution or its centroid. In low-mass dIrrs there are not enough intermediate-
age tracers such as C stars to say much about the distributionof these populations (see, e.g.,
Battinelli & Demers 2000); the number of C stars decreases with absolute galaxy luminosity
and also with galaxy metallicity (see Groenewegen 2002 for arecent review and census of
C stars in the Local Group).

All Irr and dIrr galaxies examined in detail so far show clearevidence for the presence of
old (> 10 Gyr) populations, a property that they appear to share with all galaxies whose stel-
lar population have been resolved. For instance, deep ground-based imaging of the “halos”
of dIrrs led to the detection of old red giant branches (e.g.,Minniti & Zijlstra 1996; Minniti,
Zijlstra, & Alonso 1999). In closer dIrrs, horizontal branch stars have been detected in field
populations (e.g., IC 1613: Cole et al. 1999; Phoenix: Holtzman, Smith, & Grillmair 2000;
WLM: Rejkuba et al. 2000; Leo A: Dolphin et al. 2002) and in globular clusters (e.g., WLM:
Hodge et al. 1999). Horizontal branch stars are unambiguoustracers of ancient populations.
In the closest dIrrs and Irrs even the old main sequence turn-offs have been resolved, allow-
ing differential age dating. Interestingly (with the possible exception of the SMC), the oldest
datable populations in all nearby dwarf galaxies turn out tobe indistinguishable in age from
each other and from the Milky Way, indicating a common epoch of early star formation (e.g.,
Olsen et al. 1998; Johnson et al. 1999; see Grebel 2000 for a full list of references). Apart
from the recent interaction in NGC 6822 (§1.3.2), the old populations also are usually the
most extended ones. However, their fractions vary: in some cases they only constitute a tiny
portion of the stellar content of their parent galaxy.

1.4.3 Modes of Star Formation
The ISM in dIrrs is highly inhomogeneous and porous, full of small and large shells

and holes. The global gas density tends to be significantly below the Toomre criterion for
star formation (van Zee et al. 1997). Stochastic, star formation may be driven by homo-
geneous turbulence, which creates local densities above the star formation threshold (e.g.,
Stanimirovic et al. 1999). Self-propagating stochastic star formation (Gerola & Seiden 1978;
Gerola, Seiden, & Schulman 1980; Feitzinger et al. 1981) canlead to structures of sizes of
up to 1 kpc, in which star formation processes remain active for 30–50 Myr, or to the for-
mation of long-lived spiral features if an off-centered baris present (Gardiner, Turfus, &
Putman 1998). In the absence of shear, star formation continues along regions of high HI
column density, fueled by the winds of recently formed starsand supernovae explosions.

Dense gas concentrations may, however, also remain inactive for hundreds of Myr, and
there are not usually obvious triggers for the onset of star formation (see Dohm-Palmer et al.
2002). This may be different in nonquiescently evolving, starbursting dIrrs like IC 10: gas
accretion or other interactions may be triggering the starburst (see §1.3.2). The existence of
isolated dIrrs with continuous star formation outside of groups shows that external triggers
are not needed. Quiescently evolving dIrrs exhibit widely distributed star formation and
have very small color gradients, whereas starbursting dIrrs show much more concentrated
star formation and strong color gradients (van Zee 2001). The analysis of 72 dIrr galaxies
in nearby groups and in the field revealed that the radial distribution of star-forming regions
follows on average an annulus-integrated exponential distribution, and that secondary star-
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Table 1.1.Star Clusters in the Local Group Irr and dIrr Galaxies

Galaxy Type DSp MV NGC SN [Fe/H] NOC

[kpc] [mag] [dex]

LMC Ir III -IV 50 −18.5 ∼13 0.5 −2.3, −1.2 &4000
SMC Ir IV /IV-V 63 −17.1 1 0.1 −1.4 &2000
NGC 6822 IrIV-V 500 −16.0 1 0.4 −2.0 ∼20
WLM Ir IV-V 840 −14.4 1 1.7 −1.5 ≥1
IC 10 Ir IV : 250: −16.3 0 0 — &13
IC 1613 IrV 500 −15.3 0 0 — &5
Phe dIrr/dSph 405 −12.3 [4:] [48:] — ?
PegDIG IrV 410 −11.5 0 0 — .3
LGS 3 dIrr/dSph 280 −10.5 0 0 — .13

Notes: Only galaxies known to contain star clusters are listed. DSp denotes the distance to the nearest spiral
galaxy (M31 or Milky Way, Col. 3).NGC andNOC (Cols. 5 & 8) list the number of globular clusters and open
clusters, respectively. Note that the globular cluster suspects in Phoenix are highly uncertain.SN (Col. 6) is the
specific globular cluster frequency. When two values are listed in Col. 7 (metallicity), these indicate the most
metal-rich and most metal-poor globular clusters. For moredetails, a full list of galaxies with star clusters in the
Local Group, and references, see Grebel (2002b).

forming peaks at larger distances are consistent with internal triggering via stochastic, self-
propagating star formation (Parodi & Binggeli 2003).

Quiescent dIrrs tend to form OB associations, while massivestarbursts can lead to the for-
mation of more compact star clusters. The number of massive clusters tends to correlate with
galaxy mass (i.e., roughly with luminosity; see, e.g., Parodi & Binggeli 2003). For instance,
in the dIrr NGC 6822 on average one cluster is formed per 6× 106 years (a much smaller
number than in the more massive LMC), while an OB associationforms every 7×105 years,
similar to the LMC (Hodge 1980). The distinctive, well-separated peaks in the formation
rate of populous clusters in the LMC, however, seem to be caused by close encounters with
the Milky Way and the SMC (Gardiner, Sawa, & Fujimoto 1994; Girardi et al. 1995; Lin,
Jones, & Klemola 1995); it is surprising that no corresponding enhancement in the SMC’s
fairly continuous cluster formation rate is seen. Generally, old globular clusters are rare in
dIrrs. For the cluster census in Local Group Irr and dIrr galaxies, see Table 1.1.

On a global, long-term scale, star formation in dIrrs has essentially occurred continuously
at a constant rate with amplitude variations of 2–3 (Tosi et al. 1991; Greggio et al. 1993),
is largely governed by internal, local processes, and will likely continue for another Hubble
time (Hunter 1997; van Zee 2001).

1.5 Metallicity and Age

1.5.1 Young Populations and Chemical Homogeneity
The gas in Irrs and dIrrs is fairly well mixed, and mixing mustproceed rapidly con-

sidering how homogeneous present-day HII region abundances at different locations within
the same galaxy are. Nebular abundances of ionized gas tracethe youngest populations and
the chemical composition of the star-forming material. Whythere is such a high degree of
homogeneity is not fully understood, nor is it clear how the mixing proceeds; mechanisms
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may include winds and turbulence. Inhomogeneities are onlyexpected to be detectable very
shortly after the responsible stellar population formed (e.g., when pollution by Wolf-Rayet
stars occurs; see Kobulnicky et al. 1997). Note that such global chemical homogeneity ap-
pears to be less pronounced in gas-deficient dSph galaxies, which seem to have experienced
different star formation and chemical enrichment histories than dIrrs (see, e.g., Harbeck et
al. 2001; Grebel et al. 2003).

If Irrs and dIrrs are chemically homogeneous, one would expect to measure comparable
abundances in HII regions and young stars of a given dIrr, since both trace the same popula-
tion. Due to their proximity, in the Magellanic Clouds supergiants, giants, and even massive
main sequence stars can be analyzed with high-dispersion spectroscopy and individual el-
ement ratios can be measured. Indeed, in the Magellanic Clouds good agreement is found
between nebular and stellar abundances (e.g., Hill, Andrievsky, & Spite 1995; Andrievsky et
al. 2001). Star-to-star variations in the overall metallicity of young stars (B to K supergiants
and B main sequence stars) are small (±0.1 dex: Hill 1997; Luck et al. 1998; Venn 1999;
Rolleston, Trundle, & Dufton 2002), and there is no evidencefor a significant Population I
metallicity spread in either Cloud. Also, the differences between the stellar abundances in
young clusters and field stars are small (Gonzalez & Wallerstein 1999; Hill 1999; Korn et
al. 2000, 2002; Rolleston et al. 2002). The mean metallicityof the young population in the
LMC is [Fe/H]≈ −0.3 dex and∼ −0.7 dex in the SMC.

Very good agreement between young stellar and nebular abundances is also found in the
more distant dIrrs NGC 6822 (B supergiants: Muschielok et al. 1999; A supergiants: Venn
et al. 2001, both yielding [Fe/H] =−0.5 dex), GR 8, and Sex A (Venn et al. 2004). The two
blue supergiants analyzed in WLM, on the other hand, have clearly higher metallicities than
found in its HII regions (Venn et al. 2003). The reasons for this discrepancyin WLM are
still unknown.

1.5.2 Intermediate-age/Old Populations and Chemical Inhomogeneity
Whereas young populations in dIrrs tend to be fairly homogeneous, old and inter-

mediate-age stellar populations show considerable metallicity spreads. In part this may be
due to the large age range sampled here, and the difficulty of assigning ages to individual
field stars. Metallicity spreads have mainly been derived based on the color width of the
red giant branch in color-magnitude diagrams, or via metallicity-sensitive photometric sys-
tems (e.g., Cole, Smecker-Hane, & Gallagher 2000; Davidge 2003). These methods have
the drawback that they are affected by the age-metallicity degeneracy. Near-infrared CaII

triplet spectroscopy is now increasingly being employed for general [Fe/H] derivations in-
stead. In the LMC, red giants in different parts of the galaxyshow significantly different
mean abundances (Cole et al. 2000, 2004). Cole et al. conclude that in the LMC azimuthal
metallicity variations may in part be due to different fractions of bar and disk stars sampled
at different positions (with the bar stars being younger andmore metal-rich). With regard to
field populations, star clusters have the advantage of consisting of well-datable, single-age
populations. Old globular clusters in the LMC may differ substantially in metallicity (Ol-
szewski et al. 1991). Interestingly, there is also evidencefor a radial abundance gradient in
the LMC old cluster population, i.e., a trend for old clusters to be more metal-rich closer to
the LMC’s center (Da Costa 1999). In the SMC, there are indications that intermediate-age
star clusters of a given age may occasionally differ by a few tenths of dex in [Fe/H] (Da Costa
& Hatzidimitriou 1998; Da Costa 2002), which would indicateconsiderable chemical dif-
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SMC clusters

NGC 6822 clusters
NGC 6822 field

SMC field stars

Fig. 1.3. Age versus metallicity for clusters and field starsin the SMC (circles) and in NGC
6822 (squares). The diagram for the SMC was adopted from Da Costa (2002) and comprises
both spectroscopic and photometric abundances. The data points for NGC 6822 are based
on a variety of different measurements and methods (clusters: Cohen & Blakeslee 1998;
Chandar, Bianchi, & Ford 2000; Strader, Brodie, & Huchra 2003; field: Muschielok et al.
1999; Tolstoy et al. 2001; Venn et al. 2001) and should not be used to derive a quantitative
age-metallicity relation. The solid-line box denoting themean metallicity of NGC 6822’s
red giant field population is shown for an assumed age of 10 Gyr, while the much larger
dashed box indicates the spread in metallicity and gives a rough idea of the possible age
range.

ferences in the enrichment of their birth clouds—possibly due to infall. However, refined
age determinations and more spectroscopic abundance determinations are needed to verify
the SMC intermediate-age metallicity spread.

In NGC 6822 and IC 1613, abundance spreads among the field red giants have been con-
firmed spectroscopically (Tolstoy et al. 2001; Zucker & Wyder 2004); again, age uncer-
tainties remain. Although the present-day field star metallicity in NGC 6822 lies between
those of the LMC and the SMC, the cluster metallicities tend to lie below those of the SMC
(Chandar, Bianchi, & Ford 2000; Strader et al. 2003; see Fig.1.3). One needs to caution
that the cluster measurements are based on a number of different studies and methods. Also,
the present-day metallicity of NGC 6822 may have been enhanced by the recent interaction-
triggered star formation episode (see §1.3.2).
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1.5.3 Individual Element Abundances and Ratios
The [α/Fe] ratio in the Magellanic Clouds, NGC 6822, and WLM measured in the

above studies is lower than the solar ratio. There are several possible reasons. This may
be a consequence of the lower star formation rates in dIrrs orthe possibility of a steeper
initial mass function (see Tsujimoto et al. 1995; Pagel & Tautvaišieṅe 1998), i.e., a reduced
contribution of Type II supernovae as compared to Type Ia supernovae (e.g., Hill et al. 2000;
Smith et al. 2002), or the possibility of metal loss through selective winds (Pilyugin 1996). It
seems that in the LMC, whereα element abundances (most notably oxygen) were measured
in clusters of different ages, the evolution of the [α/Fe] ratio was fairly flat with time (Hill
et al. 2000 and Hill 2004). Field red giants also show reduced[O/Fe] values (Smith et al.
2002).

The r-process (traced by, e.g., Eu), which is the dominant process in massive stars, ap-
pears to prevail at low metallicities or the early stages of the LMC’s evolution. Thes-
process (traced by, e.g., Ba and La), which takes place in cool intermediate-mass giants
such as asymptotic giant branch stars, dominates at higher metallicities (Hill 2003). Nitro-
gen appears to be close to primary and may come mainly from nonmassive stars (see also
Maeder, Grebel, & Mermilliod 1999). Stellar and gaseous nitrogen abundances in the Mag-
ellanic Clouds show considerable variations. Nitrogen enhancement in supergiants and old
red giants may be due to mixing of CN-enhanced material to their surface during the first
dredge-up (e.g., Russell & Dopita 1992; Venn 1999; Dufton etal. 2000; Smith et al. 2002;
not observed, however, in LMC B main sequence stars; Korn et al. 2002).

1.5.4 Age-metallicity Relations
In order to derive a reliable, detailed, age-metallicity relation suitable to constrain

the quantitative nature of the chemical evolution history of a galaxy, including the impor-
tance of infall, gas and metal loss, burstiness, etc., one would ideally want very well-resolved
temporal sampling. This is not yet possible with the currently available, sparse data.

Present-day abundances are traced well by HII regions and massive stars. Progress is
being made at intermediate and old ages using planetary nebulae and field red giants. Plan-
etary nebulae have recently been used for an independent derivation of the age-metallicity
evolution of the LMC at intermediate ages (Dopita et al. 1997). While extragalactic plane-
tary nebulae cannot normally easily be age-dated, Dopita etal. extended their spectroscopic
data set for the LMC to the ultraviolet to try to directly measure the flux from the central
star and also used the size information for the nebulae. Theywere then able to not only
derive abundances but also ages using full photoionizationmodeling, and found their results
in good agreement with stellar absorption-line spectroscopy. In less massive dIrrs, the num-
ber of planetary nebulae tends to be small, making it more difficult to derive a well-sampled
age-metallicity relation. In order to derive ages for individual field stars, one has to com-
plement the spectroscopic abundances by photometric luminosities and colors and rely on
isochrone models. Considerably more accurate informationcan presently be obtained when
using star clusters as single-age, single-metallicity populations. Disadvantages of relying
on star clusters are that one often only has very few such objects in a galaxy, and that their
properties are not necessarily representative of the field populations.

In all Irrs and dIrrs studied in some detail to date, there is evidence for the expected
increase in chemical enrichment with younger ages. The LMC’s cluster age-metallicity re-
lation clearly demonstrates this, although there is the famous cluster age gap in the age range
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from∼ 4 to∼ 9 Gyr (Da Costa 2002, and references therein). The SMC has theunique ad-
vantage among all Local Group dIrrs to have formed and preserved clusters throughout its
lifetime. While spectroscopic abundance determinations and improved age determinations
are still missing for many clusters, the SMC shows a very well-defined age-metallicity rela-
tion with what appears to be considerable metallicity scatter at a certain given age (see Fig.
1.3, adopted from Da Costa 2002, and discussion in the previous subsection). While the
age-metallicity relation appears to be flatter than predicted by closed-box models in LMC
and SMC, Da Costa (2002) notes that the presently available data do not yet permit one to
distinguish between simple closed-box or leaky-box evolution models, bursty star formation
histories, or infall.

Figure 1.3 also shows data points for clusters and field starsin NGC 6822, for which
rough age estimates and spectroscopic abundance determinations are available from a variety
of different sources. As noted by Chandar et al. (2000), the clusters generally seem to be
more metal-poor than the SMC clusters and NGC 6822’s field population. It is unclear
whether these differences would be reduced if all metallicities were determined using the
same method, but overall the graph seems to indicate a trend of increasing metallicity with
decreasing age. Undoubtedly, these kinds of studies will berefined in the coming years.

1.6 Other Global Correlations

1.6.1 Gas and Environment
When plotting galaxy HI masses versus distance from the closest massive galaxy

in the Local Group and its immediate surroundings, we see a tendency for HI masses to
increase with galactocentric distance (Fig. 1.4; Grebel etal. 2003, and references therein).
Only fairly large galaxies, such as the Magellanic Clouds, IC 10, and M33, with HI masses
≫ 107 M⊙, seem to be able to retain their gas reservoirs when closer than∼ 250 kpc to
giants (Grebel et al. 2003). Note that weak lensing measurements and dynamical modeling
indicate typical dark matter halo scales for massive galaxies of 260h−1 kpc (e.g., McKay et
al. 2002). The bulk of the Local Group dIrrs and transition-type galaxies are located beyond
∼250 kpc from M31 and the Milky Way. At these distances these gas-rich galaxies seem
to be less prone to galaxy harassment (i.e., in this case lossof gas through interactions with
spirals), although the details will depend on their (yet unknown) orbital parameters (Grebel
et al. 2003). A similar trend for dIrrs and dIrr/dSphs is seenin the Sculptor group (Skillman,
Côté, & Miller 2003a).

Skillman, Côté, & Miller (2003b) investigated correlations between HI mass fraction and
metallicity (oxygen abundance) for Local Group dIrrs and dIrrs in the Sculptor group of
galaxies. They found that the Local Group dIrrs deviate frommodel curves expected for
closed-box evolution, whereas the Sculptor group dIrrs follow these curves rather closely.
Indeed the dIrrs that exhibit the strongest deviations are those with very low metallicity and
gas content. Considering that the Sculptor group is, in contrast to the Local Group, a very
loose and diffuse group or cloud (Karachentsev et al. 2003b), this may indicate that closed-
box evolution is more likely to occur in low-density environments with little harassment.

1.6.2 Luminosity and Metallicity
Mean galaxy metallicity and mean galaxy luminosity are wellcorrelated, as has

been known for a long time. For dIrrs, one usually considers present-day oxygen abun-
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Fig. 1.4. Dwarf galaxy HI mass versus distance to the nearest massive galaxy. Filled circles
stand for dwarf spheroidals (dSphs), open circles for dwarfellipticals, open diamonds for
dwarf irregulars (dIrrs), and filled diamonds for dIrr/dSphtransition-type galaxies. Lower
or upper HI mass limits are indicated by arrows. There is a general trendfor the HI masses
to increase with increasing distance from massive galaxies. DSphs lie typically below 105

M⊙ in H I mass limits, while potential transition-type galaxies have H I masses of∼ 105 to
107 M⊙. DIrr galaxies usually exceed 107 M⊙. (Figure from Grebel et al. 2003.)

dances, and when comparing them to other galaxy types without ionized gas (such as dSphs),
stellar [Fe/H] values are converted into what is assumed to be the corresponding nebular
abundance. This conversion comes with a number of uncertainties. Grebel et al. (2003)
therefore used the stellar (red giant) metallicities of Local Group dwarf galaxies of all types
to directly compare the properties of their old populations. A plot of V-band luminosityLV

versus〈[Fe/H]〉 (Fig. 1.5, left panel) shows a clear trend of increasing luminosity with in-
creasing mean red giant branch metallicity. However, different galaxy types (gas-rich dIrrs
and gas-deficient dSphs) are offset from each other in that the dIrrs are more luminous at the
same metallicity.

In other words, the dIrrs have too low a metallicity for theirluminosity as compared to
dSphs. Thus, dSphs, most of which have been quiescent over at least the past few Gyr,
must have experienced chemical enrichment faster and more efficiently than dIrrs, which
continue to form stars until the present day(Grebel et al. 2003). It is tempting to speculate
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Fig. 1.5. V-band luminosity (left panel) and baryonic luminosity (right panel, corrected for
baryon contribution of gas not yet turned into stars) versusmean metallicity of red giants.
The symbols are the same as in Fig. 1.4. The error bars in metallicity indicate the metallicity
spread in the old populations, not the uncertainty of the metallicity. DIrrs are more lumi-
nous at equal metallicity than dSphs. Or, in other words, dSphs are too metal rich for their
low luminosity. However, several dIrr/dSph transition-type galaxies coincide with the dSph
locus. These objects are indistinguishable from dSphs in all their properties except for gas
content. (Figure from Grebel et al. 2003.)

that environment may once again have affected this in the sense of a denser environment
leading to more vigorous early star formation rates.

When plotting the baryonic luminosity (Milgrom & Braun 1988; Matthews, van Driel, &
Gallagher 1998) against metallicity (Fig. 1.5, right panel), the locus of the dSphs remains
unchanged while the dIrrs move to higher luminosities as compared to the dSphs. Thus, if
star formation in present-day dIrrs were terminated when all of their gas was converted into
stars, then these fading dIrrs would be even further from thedSph luminosity-metallicity
relation. For a discussion of the amount of fading, time scales, angular momentum loss,
etc. required for converting a dIrr into a dSph, see Grebel etal. (2003). Here we simply
want to emphasize that dIrrs follow a metallicity-luminosity relation that requires a different
evolutionary path than in other types of dwarf galaxies. In particular, it seems that dIrrs are
an intrinsically different type of galaxy than dSphs. We note in passing that for dIrrs not
only do metallicities correlate well with luminosities, but also with surface brightness.
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1.7 Summary
Irr and dIrr galaxies are usually gas-rich galaxies with ongoing or recent star for-

mation. They are preferentially found in the outer regions of groups and clusters as well as
in the field. Irrs and massive dIrrs exhibit solid body rotation, while low-mass dIrrs seem to
be dominated by random motions. Spiral density waves are absent.

Irrs and dIrrs are often embedded in extended HI halos, which, in the absence of interac-
tions, appear fairly regular. In low-mass dIrrs, the centroid of the HI distribution does not
necessarily coincide with the optical center of the galaxy,and occasionally annular struc-
tures are seen. The neutral gas tends to be flocculent, dominated by shells and bubbles, and
driven by the turbulent energy input from massive stars and supernovae. Molecular gas and
dust form less easily and are more easily dissociated due to the high UV radiation field and
fewer coolants in low-metallicity environments.

Irrs and dIrrs usually contain multiple distinct zones of concurrent star formation. Ex-
tended regions of active star formation tend to be long-lived and gradually migrate on time
scales on a few tens to hundreds of Myr. Stochastic self-propagating star formation seems
to be the main driver of star formation activity. There is no need for external triggering.
In quiescently evolving dIrrs and/or dIrrs with slow or no rotation (usually the less massive
dIrrs), the degree of central concentration of star formation is small, while the reverse trend
is true for more massive and faster rotators. The formation of populous clusters seems to
be preferred in more massive and/or interacting dIrrs. Generally, gas consumption is suffi-
ciently low that star formation in Irrs and dIrrs may continue for another Hubble time. On
global scales the star formation rate of Irrs and dIrrs is close to constant, with amplitude
variations of factors of 2–3.

Old stellar populations are ubiquitous in all Irrs and dIrrsstudied in detail so far, although
their fractions vary widely. In contrast to the many scattered young OB associations and
superassociations, older populations show a smooth and regular distribution that is much
more extended than that of the young populations. Both youngstellar populations and HII
regions agree very well in their abundances, underlining the chemical homogeneity of Irrs
and dIrrs. However, taken at face value, intermediate-age and old populations tend to exhibit
considerably more scatter in their metallicity. There are indications that star clusters of the
same age may differ by several tenths of dex in metallicity, although observational biases
cannot yet be fully ruled out. Overall, Irrs and dIrrs followthe expected trend of increas-
ing metal enrichment toward younger ages; the currently available data do not yet permit
one to unambiguously distinguish between infall and leaky-box versus closed-box chemical
evolution, nor to reliably evaluate the importance and impact of possible bursts.

Substantial progress is being made not only in spectroscopic measurements of stellar
metallicities, but also in the determination of individualelement abundances. The [α/Fe]
ratios in Irrs and dIrrs, which tend to be lower than the solarratio, and the lower effective
yields may be interpreted as indicative of lower astration rates and a reduced contribution
of Type II supernovae. Other interpretations (different initial mass functions, leaky-box
chemical evolution with metal loss through selective winds) are being entertained as well.

Correlations between gas content and distance from massivegalaxies as well as morpho-
logical segregation indicate that environment (in particular gas loss through ram pressure or
tidal stripping; see also Parodi, Barazza, & Binggeli 2002;Lee, McCall, & Richer 2003 for
the Virgo cluster) does have an impact on the evolution of Irrs and dIrrs. Irrs and dIrrs follow
the well-known relation of increasing mean metallicity with increasing galaxy luminosity.
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The offset in this relation from the relation for dSphs, suchthat dIrrs are more luminous than
dSphs at the same metallicity, indicates that the early chemical evolution in these two galaxy
types proceeded differently, with dSphs becoming enrichedmore quickly.
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