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Research done during the previous century established our Standard Cosmological Model. There are many details
still to be filled in, but few would seriously doubt the basic premise. Past surveys have revealed that the large-
scale distribution of galaxies in the Universe is far from random: it is highly structured over a vast range of scales.
Surveys being currently undertaken and being planned for the next decades will provide a wealth of information
about this structure. The ultimate goal must be not only to describe galaxy clustering as it is now, but also to
explain how this arose as a consequence of evolutionary processes acting on the initial conditions that we see in
the Cosmic Microwave Background anisotropy data.
In order to achieve this we will want to describe cosmic structure quantitatively: we need to build mathematically
quantifiable descriptions of structure. Identifying wherescaling laws apply and the nature of those scaling laws
is an important part of understanding which physical mechanisms have been responsible for the organization of
clusters, superclusters of galaxies and the voids between them. Finding where these scaling laws are broken is
equally important since this indicates the transition to different underlying physics.
In describing scaling laws we are helped by making analogieswith fractals: mathematical constructs that can
possess a wide variety of scaling properties. We must beware, however, of saying that the Universeis a fractal
on some range of scales: it merely exhibits a specific kind of fractal-like behavior on those scales. We exploit
the richness of fractal scaling behavior merely as an important supplement to the usual battery of statistical
descriptors.
We review the history of how we have learned about the structure of the Universe and present the data and
methodologies that are relevant to the question of discovering and understanding any scaling properties that
structure may have. The ultimate goal is to have a complete understanding of how that structure emerged. We are
getting close!
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I. PHYSICAL COSMOLOGY

With the discovery of the Cosmic Background Radiation by
Penzias and Wilson (1965), cosmology became a branch of
physics: there was a well defined framework within which to
formulate models and confront them with observational data.
Prior to that there had been a few important observations and
a few important solutions to the Einstein Field Equations for
General Relativity. We suspected that these were somehow
connected: that the Friedman-Lemaitre solutions of the Ein-
stein field equations described the cosmological redshift law
discovered by Hubble.

With the discovery of the background radiation we were
left in no doubt that the Universe had a hot singular ori-
gin a finite time in our past. That important discovery also
showed that our Universe, in the large, was both homoge-
neous and isotropic, and it also showed the appropriateness
of the Friedman-Lemaitre solutions.

The establishment of the “Big Bang” paradigm led to a
search for answers, in terms of known physical laws, to key
questions: why was the Universe so isotropic, how did the
structure we observe originate? and so on. Cosmologists built
models involving only known physics and confronted them
with the data. Cosmology became a branch of physics with
a slight difference: we cannot experiment with the subject
of our discussion, the Universe, we can only observe it and
model it.

With the current round of cosmic microwave background
anisotropy maps we are able to see directly the initial condi-
tions for galaxy formation and for the formation of large-scale
structure. That observed structure is thought to reflect directly
the fluctuations in the gravitational potential that gave birth to
cosmic structure and it is a consequence of the physics of the
early universe. The goal is to link those initial conditionswith
what we see today.

The aim of this article is to show how the “homogeneous
and isotropic Universe with a hot singular origin” paradigm
has emerged, and to explain how, within this framework, we
can quantify and understand the growth of the large scale cos-
mic structure.
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A. Cross-disciplinary physics

Gravitation is the driving force of the cosmos and so Ein-
stein’s General Theory of Relativity is the appropriate tool for
modelling the Universe. However, that alone is not enough:
other branches of physics have played a key role in building
what has emerged as a “Standard Model” for cosmology.

Nucleosynthesis played an early role in defining how the
light elements formed (Alpheret al., 1948): the abundances
of Helium and Deuterium play a vital part in confronting our
models with reality. In following how the cosmic medium
cooled sufficiently to enable gravitational collapse to form
galaxies and stars we need to understand some exotic molec-
ular chemistry.

Today, our understanding of high energy physics plays a
key role: some even defined a new discipline and refer to it as
“astro-particle physics”. We have strong evidence that there is
a substantial amount of dark matter in galaxies and clustersof
galaxies. So far we have not been able to say what is the nature
of this dark matter. There is also growing evidence that the ex-
pansion of the Universe is accelerating: this would requirean
all-pervading component of matter or energy that effectively
has negative pressure. If this were true we would have to res-
urrect Einstein’s cosmological constant, or invoke some more
politically correct “fifth force” concept such as quintessence.

B. Statistical mechanics

The statistical mechanics of a self-gravitating system is a
totally nontrivial subject. Most of the difficulty arises from
the fact that gravitation is an always-attractive force of infinite
range: there is no analogue to the Debye shielding in plasma
physics. Perhaps the most outstanding success was the dis-
covery by Jeans in the 1920’s of equilibrium solutions to the
Liouville equation for the distribution function of a collection
of stars (the Jeans Theorem). This has led to a whole industry
in galaxy dynamics, but it has had little or no impact on cos-
mology where we might like to view the expanding universe
with galaxies condensing out as a phase transition in action.

This has not deterred the brave from tackling the statisti-
cal mechanics or thermodynamics of self-gravitating systems,
but it is perhaps fair to say that so far there have been few out-
standing successes. The discussion by Lynden-Bell and Wood
(1968) of the so-called gravo-thermal collapse of a stellarsys-
tem in a box is probably as close as anyone has come. It was
only in the 1970’s that cosmologists “discovered” the two-
point clustering correlation function for the distribution of
galaxies and it was not until the late 1980’s with the discovery
by de Lapparentet al. (1986) of remarkable large scale cos-
mic structure that we even knew what it was we were trying
to describe.

The early work of Saslaw (1968, 1969) on “Gravithermody-
namics” predated the knowledge of the correlation function.
Following the discovery of the correlation function we saw
the work of Fall and Severne (1976), Kandrup (1982), and Fry
(1984b), providing models for the evolution of the correlation
function in various approximations.

One major problem was how to describe this structure. By
1980, it was known that the two-point correlation function
looked like a power law on scales1 < 10h−1 Mpc. It was also
known that the 3-point function too had a power law behavior
and that it was directly related to sums of products of pairs
of two-point functions (rather like the Kirkwood approxima-
tion). However,N -point correlation functions were not really
evocative of the observed structure and were difficult to mea-
sure pastN = 4.

Two suggestions for describing large scale cos-
mic structure emerged: void probability functions
proposed by White (1979) and measured first by
Maurogordato and Lachieze-Rey (1987) and multifractal
measures (Joneset al., 1988), the latter being largely mo-
tivated by the manifest scaling behavior of the lower order
correlation functions on scales< 10h−1 Mpc. Both of these
descriptors encapsulate the behavior of high order correlation
functions.

C. Scaling laws in physics

The discovery of scaling laws and symmetries in natu-
ral phenomena is a fundamental part of the methodology of
physics. This is not new: we can think of Galileo’s observa-
tions of the oscillations of a pendulum, Kepler’s discoveryof
the equal area law for planetary motion and Newton’s inverse
square law of gravitation. Some authors claim that the actual
discovery of the scaling laws is attributable to Galileo in the
context of the strength of materials as discussed in his book
Two New Sciences(Peterson, 2002).

The establishment of a scaling relationship between physi-
cal quantities reveals an underlying driving mechanism. Itis
the task of Physics to understand and to provide a formalism
for that mechanism.

The self-affine Brownian motion is a good example for vi-
sual illustration of a scaling process (see Fig. 1). In this case
scaling is non-uniform, because different scaling factorshave
to be applied to each coordinate to keep the same visual ap-
pearance.

The breaking of symmetries and of scaling laws is equally
important and has played a key role in 20th century physics.
Scale invariance is typically broken when some new force
or phenomenon comes into play, and the result can look far
more significant than it really is. Dubrulle and Graner, 1994;
Graner and Dubrulle, 1994 have suggested that this may be
the case for the Titius–Bode law (which is, of course, not a
law, and can be traced back before Titius and Bode at least to
David Gregory in 1702). Their point is that, if the primordial
proto- planetary disk had a power-law distribution of density
and angular momentum then any process that forms planets
will give them something like the Titius–Bode distributionof

1 The natural unit of length to describe the large scale structure is the mega-
parsec (Mpc): 1 Mpc =106 pc ≃ 3.086 × 1022 m ≃ 3.26 × 106 light
years.h is the Hubble constant in units of 100 Mpc−1 km s−1.
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FIG. 1 Scaling relations in one-dimensional Brownian motion x(t). In successive zooms the vertical coordinate (x) is multiplied by 2, while
the horizontal coordinate (the timet) is multiplied by 4 to properly rescale the curve.

orbit sizes. Thus the distribution cannot be used as a test for
any particular formation mechanism.

Within cosmology, some of the examples of quan-
tized redshifts reported over the years (Burbidge, 1968;
Burbidge and Burbidge, 1967; Tifft, 1976) may have been
analogous cases, where the “new phenomenon of physics”
was observational selection effects resulting when strong
emission lines passed into and out of the standard observed
wavelength bands.

As we shall see, there are important scaling relationships
in the spatial distribution of galaxies. This scaling is almost
certainly a consequence of two factors: the nature of the initial
conditions for cosmic structure formation and the fact thatthe
gravitational force law is itself scale-free.

This scaling is observed to break down at very large dis-
tance. This breakdown is a consequence of the large-scale ho-
mogeneity of the Universe and of the fact that the Universe has
a finite age: gravitational agglomeration of matter has only
been able to spread over a limited domain of scales, leaving
the largest scales unaffected.

The scaling is also expected to break down for small ob-
jects where non-gravitational forces have played a role: gas-
dynamic processes play an important role in the later stagesof
galaxy formation. There are important scaling relationships
among the properties of galaxies which provide clues to the
mechanisms of their formation. We do not deal with these
in detail here, although the main scaling laws in the galaxy
properties are summarized in Sect. VII.A.5.

D. Some psychological issues

Cosmology presents physics with a formidable challenge.
The Universe is not a bounded and isolated system. The Uni-
verse is far from being in any form of dynamical equilibrium.
The gravitational force is of infinite range and always attrac-
tive. Nor can we experiment on the subject of interest, we
are mere observers. Thus the usual concepts from statistical
physics cannot be simply imported, they have to be redefined
to suit these special circumstances.

This process of redefinition is apt to misdirect the struggle
for understanding the issues involved and is inevitably frus-
trating to those who work in statistical physics or who seek
to use techniques from statistical physics. Indeed there have
been occasions where the notions of the standard model have
been abandoned simply in order to exploit standard concepts
that would otherwise be invalid (eg.: model universes having
one spatial dimension or model universes that have zero mean
density in the large). Those papers may be interesting, but
they have little or nothing to do with the Universe as we know
it.

II. THE COSMIC SETTING

The establishment of a definitive cosmological picture has
been one of the triumphs of 20th Century physics. From Ein-
stein’s first investigations into relativistic cosmological mod-
els, through Hubble’s discovery of the cosmic expansion, to
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the discovery of the Cosmic Microwave Background Radia-
tion in 1965, most physicists would now agree on the basic
ingredients of what might as well be called “the Standard Cos-
mological Model”. The astrophysics of the 21st century will
consist largely of filling in and understanding the details of
this model: a nontrivial process that will consume substantial
human, technical and financial resources.

While there are suggestions that the standard model may
not be complete, the data as a whole do not as yet demand any
further parametrization such as “quintessence”. Of course, as
our understanding of fundamental physics deepens, the stan-
dard model might be recast in a new wider, more profound,
framework such as that offered by brane cosmologies.

A. Key factors

There are several important factors to support our current
view of cosmic structure formation:

• The discovery by Hubble in 1928 of the linear velocity-
distance relationship for galaxies (Hubble, 1929). This
relationship was soon interpreted by Robertson (1928)
as being due to the expansion of the Universe in the
manner described by the Friedman-Lemaitre cosmolog-
ical solutions of the Einstein Field equations for grav-
itation. These solutions described a homogeneous and
isotropic Universe emerging from a singular state of in-
finite density: the Big Bang. Later on, Bondi and Gold
(1948) and Hoyle (1948) provided an alternative homo-
geneous and isotropic expanding model that avoided the
initial singularity: the Steady State Theory.

• The discovery in 1965 of the Cosmic Microwave Back-
ground Radiation tells us the cosmological framework
within which we have to work. Our Universe is, in the
large, homogeneous and isotropic; it was initially hot
enough to synthesize the element Helium. This is the
Hot Big Bang theory promoted early on by Gamow.
This discovery signaled the end of the Steady State The-
ory.

• The observation in 1992 by the COBE satellite of the
large-scale structure of the Universe at very early times
provides us with precise information about the initial
conditions for structure formation. This is ongoing re-
search that will lead to detailed knowledge of the fun-
damental parameters of our Standard Model and to de-
tailed knowledge of the initial conditions in the Big
Bang that resulted in the currently observed structure.

We know a great deal about our Universe. Studies of cos-
mic structure must fall within the precepts set by our Standard
Model or they will simply be dismissed at best as being aca-
demic curiosities or at worst as being totally irrelevant.

B. Some caveats

The most important caveat in all of this is the fact that when
studying cosmic structure we observe only the luminous con-

stituents of the Universe. It is true that we can observe cosmic
structure over an enormous range of the electromagnetic spec-
trum, but nevertheless we face the prospect that about 85% of
what there is out there may forever remain invisible except
indirectly though its gravitational influence.

Fortunately, we can directly study the gravitational influ-
ence of the dark component in a number of ways. If it is uni-
formly distributed it has an influence on the overall cosmic
expansion and on the physics of the early Universe. We can
detect its influence by studying the cosmic expansion law, or
by studying the nature of the spatial inhomogeneities seen in
the cosmic microwave background radiation. If it is not uni-
formly distributed it will influence the dynamics of the large
scale structure as seen in the velocity maps for large samples
of galaxies and it may reveal itself through studies of gravita-
tional lensing.

Our numerical simulations of the evolution of structure can
in principle take account of several forms of matter. While this
has been a successful program, the lack of detailed knowledge
about the nature of the dark matter is nevertheless a serious
impediment. Some astrophysicists would turn the problem
around and argue that those simulations that best reproduce
what is seen will provide important information about the na-
ture of the dark matter.

III. EARLY IDEAS ABOUT THE GALAXY DISTRIBUTION

A. Cosmogony

In the 4th. Century BCE, Epicurus taught that there are an
infinite number of worlds like (and unlike) ours, while Aris-
totle taught that there is only one. Neither hypothesis can cur-
rently be falsified, and indeed we may see the continuation of
this metaphysical battle in the so-called inflationary cosmo-
logical models.

Philosophers since Anaximander (Kahn, 1994) have long
debated the true nature of the Universe, presenting often re-
markably prescient ideas notwithstanding the lack of any real
data. Given the lack of data, the only basis for constructing
a Universe was symmetry and simplicity or some more pro-
found cosmological principle.

The ancients saw nested crystalline spheres fitting neatly
into one another: this was a part of the then culture of think-
ing of mathematics (i.e. geometry in those days) as being
somehow a fundamental part of nature2. Later thinkers such
as Swedenborg, Kant and Descartes envisioned hierarchies of
nested whirls. While these ideas generally exploited the sci-
entific trends and notions of their time, none of them were
formulated in terms of physics. Many are reviewed in Jones
(1976) where detailed references to the classical works are
given.

2 Einstein’s great intellectual coup was to geometrize the force of gravity:
we are governed on large scales by the geometry of space-timemanifesting
itself as the force of gravity.
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Perhaps the first detailed presentation of cosmogonic ideas
in the modern vein was due to Poincaré in hisLeçons sur les
Hypoth̀eses Cosmogoniques(Poincaré, 1894), some of which
was to be echoed by Jeans in his texts on Astronomy and Cos-
mogony (Jeans, 1928). Jeans’ work is said to have had a pro-
found effect on Hubble’s own thoughts about galaxy evolution
and structure formation (Christianson, 1995).

B. Galaxies as “Island Universes”

Once upon a time there was a single galaxy. William and
Caroline Herschel had drawn a map of the Galaxy (Herschel,
1785) on the basis that the Sun was near the center of the
Galaxy, and this image persisted into the 20th Century with
the “Kapteyn Universe” (Kapteyn, 1922) which depicted the
the Milky Way as a relatively small flattened ellipsoidal sys-
tem with the Sun at its center, surrounded by a halo of globular
clusters. Trumpler (1930) recognized the role played by inter-
stellar absorption; he provided a far larger view of the Galaxy
and moved the Sun outwards from the center of the Galaxy to
a position some 30,000 light years from the Galactic Center.

Competing with this view was the hypothesis of Island
Universes, though at least some astronomers 100 years ago
thought that had been completely ruled out. Remember that
100 years ago it was not known that the “nebulae” were ex-
tragalactic systems: they were thought of as whirlpools in the
interstellar medium.

The controversy between the Great Galaxy and Island Uni-
verse views culminated in the great debate between Curtis and
Shapley in 1920 (Hoskin, 1976). Shapley, who had earlier
placed our Sun in the outer reaches of the Greater Galaxy by
observing the distribution of globular clusters3, defended the
Great Galaxy hypothesis and won the day for all the wrong
reasons.

However, it was left to Edwin P. Hubble to settle the is-
sue in favour of the Island Universes when he found Cepheid
variables in the galaxy NGC6822 and the Andromeda nebula
(Hubble, 1925a,b).

There was one anomaly that persisted into the early 1950’s:
our Galaxy seemed to be the largest in the Universe. This was
resolved by Baade who recognized that there were in fact two
populations of Cepheid variables (Baade, 1956). This dou-
bled the distances to the external galaxies, thereby solving the
problem.

For Hubble and most of his contemporaries what had been
found were “field galaxies” largely isolated from one another.
This was in part due to the sorts of telescope and their fields
of view that Hubble was using (Hubble, 1934, 1936) and also
in part due to the lingering effects of the phrase “Island uni-
verse” which evoked images of isolation. Indeed, as late as
the 1960’s, astronomers who should have known better said

3 We should recall that at about this time Linblad (1926) and Oort (1928)
showed that the stars in the Galaxy were orbiting about a distant center,
thus clearly placing the Sun elsewhere than at the center.

that galaxies were the building blocks of the Universe (eg:
McCrea (1964) and Abell in undergraduate lectures at UCLA
1961-1963).

In fact, most galaxies are clustered. This is implicit in im-
ages taken with smaller telescopes having larger fields (Shap-
ley often said that large telescopes were over-rated (Shapley,
1932), perhaps in part because he had deliberately cut him-
self off from them by moving to Harvard) and explicit in
the remarks of Zwicky (1938, 1952) who had begun to look
at the Universe through Schmidt-coloured glasses. (The 18”
Schmidt telescope on Palomar Mountain came into use a cou-
ple of years before).

C. Earliest impressions on galaxy clustering

In the 19th century William Herschel and Charles Messier
noted that the amorphous objects they referred to as “nebulae”
were more common in some parts of the sky than others and
in particular in the constellation of Virgo.

However, clusters of galaxies were not described in detail
until the work of Wolf (1924) who described the Virgo and
Coma clusters of galaxies. It was not known at that time that
the nebulae, as they were then called, were in fact extragalac-
tic systems of stars comparable with our own Galaxy.

Hubble, using the largest telescopes, noted the remark-
able overall homogeneity and isotropy of the distribution of
galaxies. The first systematic surveys of the galaxy distribu-
tion were undertaken by Shapley and his collaborators (often
uncited and under-acknowledged wealthy Bostonian women).
This lead to the discovery of numerous galaxy clusters and
even groups of galaxy clusters.

D. Hierarchical models

The clustering together of stars, galaxies, and clusters of
galaxies in successively ordered assemblies is normally called
a hierarchy, in a slightly different sense of the dictionary
meaning in which there is a one-way power structure. The
technically correct term for the structured universes of Kant
and Lambert is multilevel. A complete multilevel universe has
three consequences. One is the removal of Olbers paradox
(the motivation of John Herschel and Richard Proctor in the
19th century). The second, recognized by Kant and Lambert,
is that the universe retains a primary center and is therefore
nonuniform on the largest cosmic scales. The third, recog-
nized by the Irish physicist Fournier d’Albe and the Swedish
astronomer Carl Charlier early in the 20th century is that the
total amount of matter is much less than in a uniform universe
with the same local density. D’Albe put forward the curious
additional notion that the visible universe is only one of a se-
ries of universes nested inside each other like Chinese boxes.
This is not the same as multiple 4-dimensional universes in
higher dimensional space and does not seem to be a forerun-
ner of any modern picture.



7

1. Charlier’s Hierarchy

The idea that there should be structure on all scales up to
that of the Universe as a whole goes back to Lambert (1761)
who was trying to solve the puzzle of the dark night sky that is
commonly called “Olber’s paradox”. (It was not formulated
by Olbers and it is a riddle rather than a paradox (Harrison,
1987)). Simply put: if the Universe were infinite and uni-
formly populated with stars, every line of sight from Earth
would eventually meet the surface of a star and the sky would
therefore be bright. The idea probably originated with John
Herschel in a review of Humboldt’s Kosmos where the clus-
tering hierarchy is suggested as a solution to Olber’s Paradox
as an alternative to dust absorption.

At the start if the 20th century, The Swedish astronomer
Carl Charlier provided a cosmological model in which the
galaxies were distributed throughout the Universe in a clus-
tering hierarchy (Charlier, 1908, 1922). His motivation was
to provide a resolution for Olber’s Paradox. Charlier showed
that replacing the premise of uniformity with a clustering hi-
erarchy would solve the problem provided the hierarchy had
an infinite number of levels (see Fig. 2).

Charlier’s idea was not new, though he was the first person
to provide a correct mathematical demonstration that Olber’s
Paradox could indeed be resolved in this way. It should be
recalled that he was working at a time before any galaxies had
measured redshifts and long before the cosmic expansion was
known.

It is interesting that the Charlier model had de Vaucouleurs
as one of its long standing supporters (de Vaucouleurs, 1970).

More recently still there have been a number of at-
tempts to re-incarnate such a universal hierarchy in terms
of fractal models. Fractal models were first proposed
by Fournier d’Albe (1907) and subsequently championed
by Mandelbrot (1982) and Pietronero (1987). Several
attempts have been made to construct hierarchical cos-
mological models (a Newtonian solution was found by
Wertz (1971), general-relativistic solutions were proposed by
Bonnor (1972); Ribeiro (1992); Wesson (1978)). All these
solutions are, naturally, inhomogeneous with preferred posi-
tion(s) for the observer(s), and thus unsatisfactory. So the
present trend to conciliate fractal models with cosmology is to
use the measure of last resort, and to assume that although the
matter distribution in the universe is homogeneous on large
scales, the galaxy distribution can be contrived to be fractal
(Ribeiro, 2001). Numerical models of deep samples contra-
dict this assumption.

2. Carpenter’s law

Edwin F. Carpenter spent his early days at Steward Obser-
vatory (of which he was director for more than 20 years, from
1938) scanning zone plates to pick out extragalactic nebulae
for later study. In 1931, he found a new cluster in the direc-
tion of Cancer (independently discovered by Hubble at about
the same time.) He measured its size on the sky, estimated
its distance, and counted the number of galaxies,N , he could

FIG. 2 Hierarchical universes were very popular at the end ofthe
19th century and the first half of the 20th century. Reproduced from
Harrison (2000), Cosmology, Cambridge University Press.

recognize within its confines. This gave him a sample of 7
clusters with similar data, all from Mt. Wilson plates (5 in
the Mt. Wilson director’s report for 1929-30 and one then just
found by Lundmark). He was inspired to graphlog(N) vs.
the linear sizes of the clusters (Carpenter, 1931) and found
a straight line relation, that is, a power law inN(diameter),
nowhere near as steep asN ∼ D3 orN proportional to vol-
ume. The then known globular cluster system of the Milky
Way (with about 35 clusters within105 pc) also fit right on
his curve.

Carpenter later considered a larger sample of clusters and
found that a similar curve then acted as an upper envelope to
the data (Carpenter, 1938). If his numbers are transformed to
the distance scale withH0 = 100 km s−1 Mpc−1, then the
relations are (de Vaucouleurs, 1971)

logN(max) = 2.5 + 1.5 logR(Mpc) (1)

or

logN(max) = 2.19 + 0.5 logV (Mpc3) (2)

and the maximum number density in galaxies per Mpc3 is also
proportional to0.5 log(V ). De Vaucouleurs called this Car-
penter’s law, though the discoverer himself had been some-
what more tentative, suggesting that this sort of distribution
(which we would call scale free, though he did not) might
mean that there was no fundamental difference among groups,
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clusters, and superclusters of galaxies, but merely a non-
random, non-uniform distribution, which might contain some
information about the responsible process. It is, with hind-
sight, not surprising that the first few clusters that Carpenter
(1931) knew about were the densest sort, which define the up-
per envelope of the larger set (Carpenter, 1938). The ideas of a
number of other proponents, both observers and theorists, on
scale-free clustering and hierarchical structure are presented
(none too sympathetically) in Chapter 2 of Peebles (1980).

3. De Vaucouleurs hierarchical model

De Vaucouleurs first appears on the cosmological stage
doubting what was then the only evidence for galaxy evolu-
tion with epoch, the Stebbins-Whitford effect, which he at-
tributed to observational error (de Vaucouleurs, 1948). He
was essentially right about this, but widely ignored. He was
at other times a supporter of the cosmological constant (when
it was not popular) and a strong exponent of a hierarchical
universe, in which the largest structures we see would always
have a size comparable with the reach of the deepest surveys
(de Vaucouleurs, 1960, 1970, 1971). He pointed out that esti-
mates of the age of the universe and of the sizes of the largest
objects in it had increased monotonically (and perhaps as a
sort of power law) with time since about 1600, while the den-
sities of various entities vs. size could all be plotted as another
power law,

ρ(r) ∼ r−x,with x between 1.5 and 1.9. (3)

By putting “Carpenter’s Law” into modern units, de Vau-
couleurs showed that it described this same sort of scale-
free universe. A slightly more complex law, with oscillations
around a mean, falling line in a plot of density vs. size (see
Fig. 3), could have galaxies, binaries, groups, clusters, and su-
perclusters as distinct physical entities, without violating his
main point that what you see is what you are able to see.

De Vaucouleurs said that it would be quite remarkable if,
just at the moment he was writing, centuries of change in the
best estimate for the age and density of the universe should
stop their precipitous respective rise and fall and suddenly
level off at correct, cosmic values. Thus he seemed to be pre-
dicting that evidence for a universe older than 10-20 Gyr and
for structures larger than 100 Mpc should soon appear. (He
held firmly to a value ofH0 near 100 km s−1 Mpc−1 for most
of his later career, except for the 1960 paper where it was 75,
but thought of local measurements ofH0 as being relevant
only locally).

Remarkable, but apparently true. Instead of taking off
again, estimates of the age of the universe made since 1970
from radioactive decay of unstable nuclides, from the evolu-
tion of the oldest stars, and from the value of the Hubble con-
stant, increasingly concur. And galaxy surveys have now pen-
etrated a factor 10 deeper in space than the Shane-Wirtanen
and Harvard counts in which de Vaucouleurs saw his super-
clusters.

FIG. 3 In this idealized diagram de Vaucouleurs shows two hier-
archical frequency distributions of the number of clumps per unit
volume. In the top panel there are no characteristic scales in the dis-
tribution. This is the model proposed by Kiang and Saslaw (1969).
The bottom panel shows a more sophisticated alternative in which
the overall decrease of the number of clumps per unit volume does
not behave monotonically with the scale, but it displays a series of
local maxima corresponding to the characteristic scales ofdifferent
cosmic structures: galaxies, groups, clusters, superclusters, etc. Re-
produced from de Vaucouleurs (1971), Astronomical Societyof the
Pacific.

E. The cosmological principle

The notion that the Earth is not at the center of the Universe
is generally referred to as the “Copernican Principle”, though
it traces its origins back to Aristarchus who thought that the
Sun and the stars were in fact fixed, with the stars being at
great distances.

The modern notion that the Universe on the very largest
scales should be homogeneous and isotropic appears to have
originated with Einstein (1917). At that time there could have
been no observational basis for this assumption. However, ho-
mogeneity is a consequence of the notion that we are not in a
special place in the Universe and the assumptions of homo-
geneity and isotropy provide for easy solutions of the Einstein
field equations. The first cosmological models of Einstein
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and of de Sitter were based on this principle. Robertson and
Walker derived their famous solution of the Einstein equations
using only that principle.

It was frequently stated in the years that followed that the
Universe in the large looked homogeneous and isotropic. The
first systematic study was Hubble (1926) who used a sample
of 400 galaxies with magnitudes, the sample was thought to
be complete to magnitude 12.5. He found his counts fitted the
relationship

logN(< m) = 0.6m+ constant (4)

and concluded, importantly, that “The agreement between ob-
served and computedlogN over a range of more than 8 mag.
is consistent with the double assumption of uniform luminos-
ity and uniform distribution or, more generally, indicatesthat
the density function is independent of the distance.” He goes
on to look at systematics in the residuals in this plot and con-
cludes that they may be due to “... clustering of nebulae in
the vicinity of the galactic system. The cluster in Virgo alone
accounts for an appreciable part.”

Hubble only had data to magnitude 12. Anyone look-
ing at the considerably fainter Shane and Wirtanen’s iso-
plethic maps of galaxy counts based on the Lick Sky Survey
(Shane and Wirtanen (1967)), or the more recent Center for
Astrophysics (CfA-II) slices data (Geller and Huchra, 1989)
might be forgiven for questioning the homogeneity conjec-
ture!

The first demonstration of homogeneity in the galaxy distri-
bution was probably the observation by Peebles that the (pro-
jected) two-point correlation function estimated from diverse
catalogs probing the galaxy distribution to different depths
followed a scaling law that was consistent with homogene-
ity. The advent of automated plate-measuring machines pro-
vided deeper and more reliable samples with which to con-
firm the uniform distribution number-magnitude relationship.
However, at the faintest magnitude levels, these counts show
significant systematic deviations from what is expected from
a uniform distribution: these deviations are due to the effects
of galaxy evolution at early times and their interpretationde-
pends on models for the evolution of stellar populations in
galaxies. Recent, very deep studies (Metcalfeet al. (2001))
show convincingly “... that space density of galaxies may not
have changed much betweenz = 0 andz = 3”.

The first incontrovertible proof of cosmic isotropy came
only as recently as early 1990s from the COBE satellite
all-sky map of the cosmic microwave background radiation
(Smootet al., 1992). This map is isotropic to a high degree,
with relative intensity fluctuations only at the level of10−5.
With this observation, and with the reasonable hypothesis that
the Universe looks the same to all observers (the Coperni-
can Principle) we can deduce that the Universe must be lo-
cally Friedman-Robertson Walker, ie: homogeneous as well
as isotropic (Ehlerset al., 1968).

IV. DISCOVERING COSMIC STRUCTURE

A. Early catalog builders

Observational cosmology, like most other physical sci-
ences, is technology driven. With each new generation of
telescope and with each improvement in the photographic pro-
cess, astronomers probed further into the Universe, catalogu-
ing its contents.

Early on, Edward Fath used the Mount Wilson 60” tele-
scope to photograph Kapteyn’s selected areas. That survey
showed inhomogeneities that were later analyzed by Bok
(1934) and Mowbray (1938) who demonstrated statistically,
using counts in cells, that the galaxy distribution was nonuni-
form. About this time, Carpenter (1938) noticed that small
objects tend to be dense while vast objects tend to be tenu-
ous. He plotted a remarkable relationship between scale and
density ranging all the way from the Universe, through galax-
ies and stellar systems to planets and rock, as it has been ex-
plained in Sect. III.D.2. This was perhaps the first example of
a scaling relationship in cosmology.

By 1930, the Shapley/Ames catalog of galaxies revealed
the Virgo cluster as the dominant feature in the distribution of
bright galaxies. It was already clear from that catalog that
the Virgo Cluster was part of an extended and rather flat-
tened supercluster. This notion was hardly discussed except
by de Vaucouleurs who thought that this was indeed a coher-
ent structure whose flattening was due to rotation.

The Lick Survey of the sky provided extensive plate mate-
rial that was later to prove one of the key data sets for stud-
ies of galaxy clustering. The early isoplethic maps drawn
by Shane and Wirtanen (1954) provided the first cartographic
view of cosmic structure. Their counts of galaxies in cells was
to provide Rubin (1954) and Limber (1954) with the stimulus
to introduce the two point clustering function as a descriptor
of cosmic structure.

But it was the Palomar Sky Survey using the new 48”
Schmidt telescope that was to provide the key impetus in un-
derstanding the clustering of galaxies. Zwicky and his collab-
orators at Caltech systematically cataloged the position and
brightness of thousands of brighter galaxies on these plates,
creating what has become known as the “Zwicky Catalog”.
Abell (1958) made a systematic survey for rich clusters of
galaxies and drew up a catalog listing thousands of clus-
ters. This has become simply known as the “Abell catalog”.
Fig. 4 shows a modern image of the cluster Abell 1689 ob-
tained by the ACS camera aboard of the Hubble Space Tele-
scope (HST). A catalog of galaxy redshifts noting the clus-
ters to which galaxies belonged was published in 1956 by
Humasonet al. (1956).

1. The Lick survey

The first map of the sky revealing widespread clustering
and super-clustering of galaxies came from the Lick survey
of galaxies undertaken by Shane and Wirtanen (1967) using
large field plates from the Lick Observatory. This was, or
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FIG. 4 The cluster of galaxies Abell 1689 at redshiftz = 0.18 seen
by the HST with its recently installed Advanced Camera for Surveys
(ACS). The arcs observed amongst hundreds of galaxies conforming
the cluster are multiple images of far-away individual galaxies whose
light has been amplified and distorted by the total cluster mass (vis-
ible and dark) acting as a huge gravitational lens, (image courtesy
of NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew Univer-
sity), H. Ford (JHU), M. Clampin (STScI), G. Hartig (STScI),G.
Illingworth (UCO/Lick Observatory), and the ACS Science Team,
and ESA).

anyhow should have been, the definitive database. It was the
subject of statistical analysis by Neymanet al. (1953), which
was a major starting point for what have subsequently become
known as Neyman–Scott processes in the statistics literature.
Ironically, although these processes have become a discipline
in their own right, they have since that time played only a
minor role in astronomy.

Scott in the IAU Symposium 15 (Scott, 1962) mentions that
there are clearly larger structures to be seen in these counts, as
Shane and Wirtanen (1954) had already noted. They spoke
of “larger aggregations” or “clouds” as being rather general
features. The Lick survey was later to play an important role
in Peebles’ systematic assault on the problem of galaxy clus-
tering. Peebles obtained from Shane the notes containing the
original counts in 10’x10’ cells and computerized them for his
analysis. The counts in 1 degree cells had been used first by
Vera Cooper-Rubin (as Vera Rubin was then known) to study
galaxy clustering in terms of correlation functions, a taskset
by her adviser George Gamow. Rubin did this at a time when
there were no computers. It was Totsuji and Kihara (1969)
who first did this on a computer and published the first two-
point correlation function as we now know it with the power
law that has dominated much of cosmology for the past three

decades and more4.

2. Palomar Observatory sky survey

The two main catalogs of clusters derived from the Palomar
Observatory Sky Survey (POSS) were that of Abell (1958)
and that of Zwicky and his collaborators (Zwickyet al.,
1961–1968).

Abell went on immediately to say that there was significant
higher order clustering in his data, giving, in 1958, a scalefor
superclustering of 24(H0/180)−1 Mpc. In 1961 at a meet-
ing held in connection with the Berkeley IAU Abell published
(Abell, 1961) a list of these “super-clusters”, dropped the
Hubble constant to 75 km s−1 Mpc−1 and estimated masses of
1016 − 1017 M⊙ with velocity dispersions in the range 1000-
3000 km s−1. At about the same time, van den Bergh (1961)
remarks that Abell’s most distant clusters (distance class6
having redshifts typically around 50,000 km s−1) show struc-
ture on the sky on a scale of some20◦, corresponding to 100
Mpc, for hisH0 = 180 km s−1 Mpc−1, or about 300 Mpc
using current values.

Zwicky explicitly and repeatedly denied the exis-
tence of higher order structure (Zwicky and Berger, 1965;
Zwicky and Karpowicz, 1966; Zwicky and Rudnicki, 1963,
1966). Some of his “clusters” were on the order of 80 Mpc
across (forH0 less than 100), had significant substructure,
and would to any other person have looked like superclus-
ters! Herzog, one of Zwicky’s collaborators in the cluster
catalog, found large aggregates of clusters in the catalog and
had the temerity to say so publicly in a Caltech astronomy
colloquium. He was offered “political asylum” at UCLA
by George Abell. Karachentsev (1966) also reported finding
large aggregates in the Zwicky catalog.

3. Analysis of POSS clusters

Up until about 1960 most of those involved seemed to
envisage a definite hierarchy of structures: galaxies (per-
haps binaries and small groups), clusters and superclusters.
Kiang remarked that the existing data were best described by
continuous, “indefinite”, clustering: quite different from the
clustering hierarchy as understood at the time (Kiang, 1961;
Kiang and Saslaw, 1969). Kiang, incidentally, bridged a criti-
cal era in data processing, using “computers” (i.e., poorlypaid
non-PhD labour, mostly women after the style of Shapley) and
later on real computers (Atlas). Flinet al. (1974) came inde-
pendently to the same conclusion, and in his presentation at
IAU Symposium 63 was scolded by Kiang for not having read
the literature.

4 BJ “discovered” this paper at the time of writing his Review of Modern
Physics article (Jones, 1976) while perusing the Publications of the Astro-
nomical Society of Japan in the Institute of Theoretical Astronomy Library
in Cambridge. There do not appear to be any citations prior tothat time.
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The later investigation by Peebles and Hauser (1974) using
the power spectrum of the cluster distribution showed super-
clustering quite conclusively: clusters of galaxies are not ran-
domly distributed and as they are correlated they are them-
selves clustered. Later analyses revealed a variation of cluster
clustering with cluster richness.

Nevertheless, there still remained mysteries to be cleared
up: the level measured for clustering of clusters was far in ex-
cess of what would be expected on the basis of the measured
clustering of the galaxies from which they are built. Many
solutions have been proposed to explain this anomaly, includ-
ing the argument that the Abell catalog is too subjective and
biased. However, the phenomenon still persists in cluster cat-
alogs constructed by machine scans of photographic plates.

B. Redshift Surveys

1. Why do this?

Those early catalogs simply listed objects as they appeared
projected onto the celestial sphere. The only indication of
depth or distance came from brightness and/or size. These cat-
alogs were, moreover, subject to human selection effects and
these might vary depending on which human did the work, or
even what time of the day it was.

What characterizes more recent surveys is the ability to
scan photographic plates digitally (eg: the Cambridge Auto-
matic Plate Machine, APM), or to create the survey in digital
format (eg: IRAS, Sloan Survey and so on). Moreover, it is
now far easier to obtain radial velocities (redshifts) for large
numbers of objects in these catalogs.

Having said that, it should be noted that handling the data
from these super-catalogs requires teams of dozens of as-
tronomers doing little else. Automation of the data gathering
does little to help with the data analysis!

Galaxy redshift surveys occupy a major part of the total ef-
fort and resources spent in cosmology research. Giving away
hundreds of nights of telescope time for a survey, or even con-
structing purpose built telescopes is no light endeavour. We
have to know beforehand why we are doing this, how we are
going to handle and analyze the data and, most importantly,
what we want to get out of it. The early work, modest as
it was by comparison with the giant surveys being currently
undertaken, has served to define the methods and goals for
the future, and in particular have served to highlight potential
problems in the data analysis.

We have come a long way from using surveys just to de-
termine a two-point correlation function and wonder at what
a fantastic straight line it is. What is probably not ap-
preciated by those who say we have got it all wrong (eg:
Sylos Labiniet al. (1998)) is how much effort has gone into
getting and understanding these results by a large army of peo-
ple. This effort has come under intense scrutiny from other
groups: that is the importance of making public the data and
the techniques by which they were analyzed. The analysis of
redshift data is now a highly sophisticated process leavinglit-
tle room for uncertainty in the methodology: we do not simply

count pairs of galaxies in some volume, normalise and plot a
graph!

The prime goals of redshift surveys are to map the Universe
in both physical and velocity space (particularly the deviation
from uniform Hubble expansion) with a view to understanding
the clustering and the dynamics. From this we can infer things
about the distribution of gravitating matter and the luminosity,
and we can say how they are related. This is also important
when determining the global cosmological density parameters
from galaxy dynamics: we are now able to measure directly
the biases that arise from the fact that mass and light do not
have the same distribution.

Mapping the universe in this way will provide information
about how structured the Universe is now and at relatively
modest redshifts. Through the cosmic microwave background
radiation we have a direct view of the initial conditions that led
to this structure, initial conditions that can serve as the starting
point forN -body simulations. If we can put the two together
we will have a pretty complete picture of our Universe and
how it came to be the way it is.

Note, however, that this approach is purely experimental.
We measure the properties of a large sample of galaxies, we
understand the way to analyse this throughN -body models,
and on that basis we extract the data we want. The purist
might say that there is no understanding that has grown out
of this. This brings to mind the comment made by the math-
ematician Russell Graham in relation to computer proofs of
mathematical theorems: he might ask the all-knowing com-
puter whether the Riemann hypothesis (the last great unsolved
problem of mathematics) is true. It would be immensely dis-
couraging if the computer were to answer “Yes, it is true, but
you will not be able to understand the proof”. We would know
that something is true without benefiting from the experience
gained from proving it. This is to be compared with Andrew
Wiles’ proof of the Fermat Conjecture (Wiles, 1995) which
was merely a corollary of some far more important issues he
had discovered on his way: through proving the fundamen-
tal Taniyama-Shimura conjecture we can now relate elliptic
curves and modular forms (Horgan, 1993).

We may feel the same way about running parameter-
adjusted computer models of the Universe. Ultimately, we
need to understand why these parameters take on the particu-
lar values assigned to them. This inevitably requires analytic
or semi-analytic understanding of the underlying processes.
Anything less is unsatisfactory.

2. Redshift distortions

Viewed in redshift space, which is the only three-
dimensional view we have, the universe looks anisotropic:
the distribution of galaxies is elongated in what have been
called “fingers-of-god” pointing toward us (a phrase proba-
bly attributable to Jim Peebles). These fingers-of-god appear
strongest where the galaxy density is largest (see Fig. 5), and
are attributable to the extra “peculiar” (ie: non-Hubble) com-
ponent of velocity in the galaxy clusters. This manifests itself
as density-correlated radial noise in the radial velocity map.
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FIG. 5 A view of the three dimensional distribution of galaxies
in which the members of the Coma cluster have been highlighted
to show the characteristic “finger-of-God” pattern, from Christensen
(1996).

Since we know that the real 3-dimensional map should be
statistically isotropic, this finger-of-god effect can be filtered
out. There are several techniques for doing that: it has be-
come particularly important in the analysis of the vast 2dF
(2 degree Field) and SDSS (Sloan Digital Sky Survey) sur-
veys (Tegmarket al., 2002). The earliest discussion of this
was probably Davis and Peebles (1983).

There is another important macroscopic effect to deal
with resulting from large scale flows induced by the
large scale structure so clearly seen in the CfA-II Slice
(de Lapparentet al., 1986). Matter is systemically flowing
out of voids and into filaments; this superposes a density-
dependent pattern on the redshift distribution that is not ran-
dom noise as in the finger-of-god phenomenon. This distorts
the map (Hamilton, 1998; Kaiser, 1987; Sargent and Turner,
1977). As this distortion enhances the visual intensity of
galaxy walls, which are perpendicular to the line-of-sight, it
is called “the bull’s-eye effect” (Pratonet al., 1997).

3. Flux-limited surveys and selection functions

Whenever we see a cone diagram of a redshift survey (see
Fig. 6), we clearly notice a gradient in the number of galaxies
with redshift (or distance). This artefact is consequence of
the fact that redshift surveys are flux-limited. Such surveys
include all galaxies in a given region of the sky exceeding an
apparent magnitude cutoff. The apparent magnitude depends
logarithmically on the observed radiation flux. Thus only a
small fraction of intrinsically very high luminosity galaxies
are bright enough to be detected at large distances.

For the statistical analyses of these surveys there are two
possible approaches:

1. Extracting volume-limited samples.Given a distance
limit, one can calculate, for a particular cosmological
model, the minimum luminosity of a galaxy that still

can be observed at that distance, considering the flux
limit of the sample. Galaxies in the whole volume
fainter that this luminosity will be discarded. The re-
maining galaxies form a homogeneous sample, but the
price paid —ignoring much of the hard-earned amount
of redshift information— is too high.

2. Using selection functions.For some statistical pur-
poses, such as measuring the two-point correlation
function, it is possible to use all galaxies from the
flux-limited survey provided that we are able to assign
a weight to each galaxy inversely proportional to the
probability that a galaxy at a given distancer is in-
cluded in the sample: this is dubbedthe selection func-
tion ϕ(r). This quantity is usually derived from the
luminosity function, which is the number density of
galaxies within a given range of luminosities. A stan-
dard fit to the observed luminosity function is provided
by the Schechter function (Schechter, 1976)

φ(L)dL = φ∗
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L∗

)
d
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)
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whereφ∗ is related to the total number of galaxies and
the fitting parameters areL∗, a characteristic luminos-
ity, and the scaling exponentα of the power-law domi-
nating the behavior of Eq. 5 at the faint end.

The problem with that approach is that the luminosity
function has been found to depend on local galaxy den-
sity and morphology. This is a recent discovery and has
not been modelled yet.

4. Corrections to redshifts and magnitudes

The redshift distortions described earlier can be accounted
for only statistically (Tegmarket al., 2002); there is no way to
improve individual redshifts. However, individual measured
redshifts are usually corrected for our own motion in the rest
frame determined by the cosmic background radiation. This
motion consists of several components (the motion of the solar
system in the Galaxy, the motion of the Galaxy in the Local
Group (of galaxies), and the motion of the Local Group with
respect to the CMB rest frame). It is usually lumped together
under the label “LG peculiar velocity” and its value isvLG =
627±22 km s−1 toward an apex in the constellation of Hydra,
with galactic latitudeb = 30◦±3◦ and longitudel = 276◦±3◦

(see, e.g., Hamilton (1998)). If not corrected for, this velocity
causes a so-called “rffect” (Kaiser, 1987), an apparent dipole
density enhancement in redshift space. Application of this
correction has several subtleties: see Hamilton (1998).

Most corrections to measured galaxy magnitudes are usu-
ally made during construction of a catalog, and are specific
to a catalog. There is, however, one universal correction:
galaxy magnitudes are obtained by measuring the flux from
the galaxy in a finite width bandpass. The spectrum of a far-
away galaxy is redshifted, and the flux responsible for its mea-
sured magnitude comes from different wavelengths. This cor-
rection is called the “K-correction” (Humasonet al., 1956);
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the main problem in calculating it is insufficient knowledgeof
spectra of far-away (and younger) galaxies. In addition, direc-
tional corrections to magnitudes have to be considered due to
the fact that the sky is not equally transparent in all directions.
Part of the light coming from extragalactic objects is absorbed
by the dust of the Milky Way. Due to the flat shape of our
galaxy, the more obscured regions correspond to those of low
galactic latitude, the so-called zone of avoidance, although the
best way to account for this effect is to use the extinction maps
elaborated from the observations (Schlegelet al., 1998).

C. The first generation of redshift surveys

1. CfA surveys

The first CfA redshift survey was undertaken by
Huchraet al. (1983) who mapped some 2400 galaxies down
tom ≃ 14.5 taken from the Zwicky catalog. This survey was
too sparse to show definite structure.

The first survey to truly reflect the cosmic structure was the
first CfA-II slice of de Lapparentet al. (1986), the “Slice of
the Universe” (the smallest wedge in Fig. 6). The slice showed
very clearly the “bubbly” nature of the large-scale structure,
as the authors defined it. This important discovery generated
a lot of publicity: cartoons appeared in newspapers depicting
females with their arms in a sink full of soap bubbles, and the
Encyclopaedia Britannicawas updated to include a picture of
the slice.

Prior to that there had been smaller surveys, such as
the Perseus-Pisces region survey of Giovanelli and Haynes
(1985) and the Coma-A1367 survey of Chincariniet al.
(1983). These surveys had revealed rich structures in the dis-
tribution of galaxies, similar to Zel’dovich’s predicted pan-
cakes and voids. But since they were restricted to a volume
around a major cluster of galaxies they could not be thought
of as being representative of the universe as a whole.

At first glance it may seem that similar critique ap-
plies also to the CfA surveys, since the first CfA slice
(de Lapparentet al., 1986) was indeed centered on the Coma
cluster. However, the breadth of the slice (some 120 degrees
on the sky) samples a far greater volume, and it was very deep
for that time, extending to about 150h−1Mpc. The slice also
contains an unusual number of rich galaxy clusters. Subse-
quent surveys, the following CfA slices and the ESO Southern
survey (da Costaet al., 1991) amply confirmed the impression
given by the CfA slice.

The main source for redshifts during those years was ’Zcat’,
a heterogeneous compilation of galaxy redshifts by J. Huchra.
But it took many years before the data from the CfA slices
entered the public domain. This was unfortunate since many
other groups would have liked to try their own analysis tech-
niques on such a well defined sample. By the time that the
data became available there existed already more substantial
surveys with publicly available data and much of the impe-
tus of the CfA slices, apart from the fine work done by the
Harvard group itself, was lost.

The work to improve and extend the CfA surveys has con-

tinued. The Century Survey (Gelleret al., 1997) covers the
central1◦ region of the famous CfA-II slice, but is much
deeper, extending toR = 16.1 in the apparent magnitude and
to 450h−1Mpc in space. The final CfA catalog is the Up-
dated Zwicky Catalog (Falcoet al., 1999) that includes uni-
form measurements of almost all (about 19,000) galaxies of
the Zwicky catalog (with the magnitude limit ofmZw ≈ 15.5)
in the northern sky. Nowadays catalogs are made public as
soon as possible; the CfA redshift catalogs can be obtained
from the web-page of the Smithsonian Astronomical Obser-
vatory Telescope Data Center (http://tdc-www.harvard.edu/).

2. SSRS and ORS

The Southern Sky Redshift Survey (da Costaet al., 1991)
was meant to complement the original CfA survey, mapping
galaxies in the southern sky. It includes almost 2000 redshifts;
the followup survey, the extended SSRS (da Costaet al.,
1998) with about 5400 redshifts mirrored the Second CfA
survey for the southern sky. These catalogs were mostly
used for comparison with the CfA survey results; they
were made public at once and produced many useful re-
sults. Presently they are available from the Vizier database
(http://vizier.u-strasbg.fr).

The Optical Redshift Survey (Santiagoet al., 1995), had
a depth of 80h−1Mpc, similar to the first CfA survey, but
attempted a complete coverage of the sky (except for the
dusty avoidance zone around the galactic equator). They
measured about 1300 new redshifts, including about 8500
redshifts in total. This survey was heavily exploited to
describe the nearby density fields, to estimate the lumi-
nosity functions, galaxy correlations, velocity dispersions
etc. The catalog and the publications can be found in
http://www.astro.princeton.edu/∼strauss/ors/.

3. Stromlo-APM and Durham/UKST redshift surveys

The Stromlo-APM redshift survey (Lovedayet al., 1996)
is a sparse survey (1 in 20) of some 1800 optically selected
galaxies brighter than the apparent magnitude limitB ≈ 17
taken from the APM survey of the Southern sky. As the APM
survey (Maddoxet al., 1990) itself, the Stromlo-APM survey
was an important data source and generated several impor-
tant results on correlation functions in real and redshift space,
power spectra, redshift distortions, cosmological parameters,
bias and so on. It was eventually put into the public domain,
although rather too late to be of much use to any third party
investigators.

The APM survey was also used to generate a galaxy clus-
ter catalog. The APM cluster redshift catalog (Daltonet al.,
1997) was the first objectively defined cluster catalog. It not
only provided important data on the distribution of clusters,
it also provided an assessment of the reliability of the only
cluster source available before that, the Abell cluster catalog.

The Durham/UKST redshift survey (Ratcliffeet al., 1998)
measured redshifts for about 2500 galaxies around the South

http://tdc-www.harvard.edu/
http://vizier.u-strasbg.fr
http://www.astro.princeton.edu/~strauss/ors/
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Galactic Pole. The depth of the survey was similar to that
of the Stromlo-APM survey, and it was also a diluted survey
sampling 1 galaxy in 3.

These catalogs can be found now at the Vizier site (see
above).

4. IRAS redshift samples: PSCz

The story of the IRAS (Infrared Astronomical Satellite)
redshift catalogs stresses the importance of having a good base
photometric catalog before starting to measure redshifts.As
galactic absorption in infrared is much smaller than in the op-
tical bands, the IRAS Point Source Catalog (PSC) covers uni-
formly almost all of the sky. This catalog was used to select
galaxies for redshift programs, which extended down to suc-
cessively smaller flux limits: the 2 Jy survey of Strausset al.
(1992) with 2658 galaxies; the 1.2 Jy survey of Fisheret al.
(1995) added 2663 galaxies; and the 0.6 Jy sparse-sampled
(1 in 6) QDOT survey of Lawrenceet al. (1999) with 2387
galaxies. This culminated in the PSCz survey of some 15000
galaxies by Saunderset al. (2000), which includes practically
all IRAS galaxies within the 0.6 Jy flux limit.

The IRAS redshift catalogs have been used for the usual
battery of large-scale studies, but their main advantage istheir
full-sky coverage (about 84%). This allows using the Wiener-
type reconstruction methods to derive the true density and ve-
locity fields, and to get an independent estimate of the biasing
parameter. The first fields to be studied were taken from the 2
Jy survey by Yahilet al. (1991), the last fields came from the
PSCz survey by Branchiniet al. (1999) and Schmoldtet al.
(1999).

The PSCz survey has also been used for fractal studies. Al-
though the IRAS samples are not too deep (PSCz extends to
about 200h−1Mpc), Pan and Coles (2000) found that multi-
fractal analysis shows a definite crossover to homogeneity al-
ready before this scale.

5. ESO Deep Slice and the Las Campanas redshift survey

The ESO Deep Slice (Vettolaniet al., 1998) measured red-
shifts of 3300 galaxies down to the blue magnitudebJ =
19.4 in the BJ , R, I photometric system (Gullixsonet al.,
1995). The surveyed region is a1◦ × 22◦ strip of depth
about 600h−1Mpc. The most interesting discussion that this
data caused was about the fractal nature of the large-scale
galaxy distributions. While Scaramellaet al. (1998) found
the correlation dimensionD = 3, Joyceet al. (1999) showed
that a more reasonable choice of the K-correction (redshift-
dependent apparent dimming of galaxies) gave a clearly frac-
talD = 2 correlation dimension.

The Las Campanas Redshift Survey (Shectmanet al.,
1996) had a similar geometry, six thin parallel slices (1.5◦ ×
90◦) with the depth about 750h−1Mpc (z ≈ 0.25). The
survey team measured redshifts of about 24000 galaxies in
these slices. This was the first deep survey of sufficient vol-
ume that it could be used to test if our knowledge of the

nearby Universe was sufficient to describe more distant re-
gions. The usual tests included the luminosity functions (these
were found to depend on galaxy density and morphology),
second- and third-order correlation functions, power spectra,
and fractal properties. A catalog of groups of galaxies was
generated. The survey results were quickly made public: the
general interest in the data was high and close to a hundred
papers have been published using these data.

D. Recent and on-going Surveys

1. 2dF galaxy redshift survey

The 2dF multi-fiber spectrograph on the 3.9m Anglo-
Australian Telescope is capable of observing up to 400 objects
simultaneously over a field of view some 2 degrees in diam-
eter, hence the name of the survey. The sample of galaxies
targeted for having their redshifts measured consists of some
250,000 galaxies located in extended regions around the north
and south Galactic poles. The source catalog is a revised APM
survey. The galaxies in the survey go down to the magnitude
bJ = 19.45. The median redshift of the sample isz = 0.11
and redshifts extend to aboutz ≃ 0.3. In mid-2001 the survey
team released the data on the first 100,000 galaxies, and pub-
lished also an interim report on the analysis of some 140,000
galaxies: Peacocket al. (2001) and Percivalet al. (2001).

The survey is already complete, and the resulting correla-
tion functions, redshift distortions and pairwise velocity dis-
persions (Hawkinset al., 2003) demonstrate the quality of the
data set. The 2dFGRS currently provides us with the best esti-
mates for a large number of cosmological parameters describ-
ing the population of galaxies. Not only can we determine
clustering properties of the sample as a whole, but the sam-
ple can be broken down by galaxy absolute brightness or by
morphological type (Percivalet al., 2004). The surveys’s web
page is http://www.mso.anu.edu.au/2dFGRS/.

2. Sloan digital sky survey

Hot on the heels of the 2dF survey is an even larger survey:
the Sloan Digital Sky Survey (SDSS). The survey team has
close to two hundred members from 13 institutions in U.S.,
Europe, and Japan, and uses a dedicated 2.5 m telescope. The
initial photometric program is measuring the positions andlu-
minosities of about108 objects inπ sterradians of the North-
ern sky, and the follow-up spectroscopy is planned to give red-
shifts of about106 galaxies and105 quasars. Good descrip-
tions of the survey can be found in Loveday (2002) and on the
surveys’s web page (http://www.sdss.org/).

The first official data release was done in 2003, but the as-
tronomical community had already have the chance to see
and use the data from a preliminary Early Data Release
(Stoughtonet al., 2002). These data and the data from the
commissioning phase of the project have served as a basis for
more than one hundred papers on such diverse subjects as the
study of asteroids, brown dwarf stars in the vicinity of the Sun,
remnants of destroyed satellites of our Galaxy, star formation

http://www.mso.anu.edu.au/2dFGRS/
http://www.sdss.org/
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FIG. 6 The top diagram shows two slices of4◦ width and depthz = 0.25 from the 2dF galaxy redshift survey, from Peacocket al. (2001).
The circular diagram at the bottom has a radius corresponding to redshiftz = 0.2 and shows 24,915 galaxies from the SDSS survey, from
(Loveday, 2002)). As an inset on the right, the first CfA-II slice from de Lapparentet al. (1986) is shown to scale.

rates in galaxies, galaxy luminosity functions, and, of course,
on the statistics of the galaxy distribution.

The main difference between the 2dF and the SDSS sur-
veys, apart of their data volume and sky coverage, is the fact
that they are based on different selection rules. While the 2dF
survey is a blue-magnitude limited survey withblim = 19.45,
the limiting magnitude of the SDSS survey is redrlim =

17.77. This causes considerable differences in galaxy mor-
phologies of the two surveys. Also, while the depths of the
main surveys are similar (z ≈ 0.25), a part of the SDSS sur-
vey, including about105 luminous red galaxies, will reach
redshiftsz ≈ 0.5.
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3. 2MASS and 6dF

The Two Micron All Sky Survey (2MASS) has scanned the
whole sky in three different near-infrared bands. The Ex-
tended Source Catalog (XSC) is the 2MASS galaxy catalog
(Jarrett, 2004) and contains more then 1.5 million galaxies,
mapping rather well the zone of avoidance, The view of our
local universe provided by 2MASS is shown in Fig. 7.

The 6dF galaxy survey (Joneset al., 2004) targeted on the
2MASS galaxy catalog (XSC) will encompass twice the vol-
ume of the PSCz and will contain ten times more galaxies,
allowing combined knowledge of galaxy masses and redshift.
It will be the best sample for studies of the peculiar velocity
field, allowing a better understanding of the relation of galaxy
clustering with mass, and hence providing important clues to
understand how bias depends on the scale.

4. Deep spectroscopic and photometric surveys

Deep spectroscopic surveys such as the Canadian Network
for Observational Cosmology (CNOC2) (Yeeet al., 2000),
DEEP2 (Daviset al., 2003), and the Visible Imaging Multi-
Object Spectrograph (VIRMOS-VLT) survey (Le Fèvreet al.,
2003) have allowed the study of the evolution of clustering
with redshift and with various morphological properties of
galaxies (Carlberget al., 2000; Coil and DEEP2 Team, 2003).
Nevertheless, it is extremely difficult to measure redshifts of
very faint objects. The present limit reached making use of
the largest ground-based telescopes is aboutI ≃ 24. An al-
ternative to spectroscopy, is the poor manz- machine (Koo,
1985), provided by multi-wavelength imaging.

Following the pioneering work of Baum (1962) and Koo
(1985), Fernández-Sotoet al.(1999) have shown that it is pos-
sible to reliably estimate redshifts using CCD images at differ-
ent wavebands —the so called photometric redshifts—. This
technique is particularly useful when mapping the very dis-
tant universe because galaxies in deep surveys could not be
spectroscopically observable. Bayesian techniques have been
introduced to improve the accuracy of the photometric redshift
estimation (Benı́tez, 2000).

Different surveys reaching extremely large depths are pro-
viding us with the possibility of analyzing the evolution of
clustering with cosmic time. We can mention the COMBO17
survey (Classifying Objects by Medium-Band Observations)
which lists photometry in 17 passbands (Wolfet al., 2004),
the Calar Alto Deep Imaging Survey (CADIS), used by
Phleps and Meisenheimer (2003) to show how the clustering
strength grows fromz = 1 to the present epoch and its depen-
dence on morphological type, and the recently released Great
Observatories Origins Deep Survey (GOODS) described in
Giavaliscoet al.(2004). The SDSS provides also photometric
information in five bands allowing the measurement of photo-
metric redshifts for a volume-limited sample containing more
than 2 million galaxies within the range0.1 < z < 0.3. An-
alyzing the angular two-point correlation function of thissur-
vey, Budaváriet al. (2003) have found an interesting bimodal
behavior betweenred elliptical-like galaxies andbluegalax-

ies.
The recent project named the ALHAMBRA-survey (Ad-

vanced Large, Homogeneous Area Medium Band Redshift
Astronomical survey) is being carried out by Moles and col-
laborators using the 3.5m Calar Alto telescope. The pho-
tometric survey will cover an area of eight square degrees.
Imaging will be performed using 20 optical filters plus three
standard bands in the near infrared. It is expected to collect
about 600,000 photometric galaxy redshifts with an accuracy
of ∆z < 0.015(1 + z). This photometric survey, midway
between the wide-angle spectroscopic surveys and the narrow
imaging surveys, is deep enough and wide enough to be ex-
tremely useful for all kind of studies involving cosmic evolu-
tion.

E. The radio, X-ray and γ-ray skies

The 1950’s was a great era for cataloguing radio sources,
much of the work being done at Cambridge in England (with
the 2C, 3C, etc. surveys) and at Parkes in Australia. The sur-
veys were done at considerably different frequencies and gave
disparate views of the source counts. This had a strong influ-
ence on the Steady State versus Big Bang debate, each survey
being used to support a different cosmological hypothesis.

The sources in early surveys were randomly distributed
over the sky (for instance, Holden, 1966 on the Third Cam-
bridge Catalog and Payne, 1967 on the southern counter-
part). This remained true for later surveys at low fre-
quencies, which found, for the most part, intrinsically very
bright sources at somewhat larger distances (for instance,
Webster, 1976 analyzing the Fourth Cambridge and Green-
bank surveys, and Masson, 1979 on the Sixth Cambridge
Catalog). Indeed it remains true down to the present day
(Trimble and Aschwanden, 2001), for the low-frequency sur-
veys that pick out large, bright, steep-spectrum, extendeddou-
ble sources: Artyukh (2000); Venturiet al. (2000) reported
that they did not even identify the Shapley concentration).
What this means is that, on average, there is only one of these
sources in each of the largest-scale structures to be found in
the local universe. The absence of clustering is, therefore, in
some sense evidence for the existence of “largest structures,”
though Artyukh and Venturiet al. note that mergers of small
groups into large clusters and superclusters may well turn off
fainter radio sources that would otherwise reveal intermediate
structure.

In contrast, higher frequency surveys that yield intrinsi-
cally fainter radio galaxies find that they are clustered very
much like radio-quiet galaxies of the same Hubble types
(Cresset al., 1996 on the Faint Images of the Radio Sky
at Twenty-cm (FIRST) survey from the Very Large Array
(VLA), and Magliocchettiet al., 1998 a further analysis of
FIRST, showing that the distribution of those radio sourcesin
space is consistent with their having grown by gravitational in-
stabilities from Gaussian initial conditions). Returningto the
Shapley concentration, Venturiet al. (2002) found no fewer
than 124 radio sources there.

Distant radio sources (of which quasars are an important
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FIG. 7 The near-infrared view of the local universe providedby the 2MASS survey. Beyond the Milky Way lying at the Galactic equator,
more than 1.5 million galaxies are depicted using a grey-scale code based on their photometrically deduced redshift, from Jarrett (2004).

sort) are rather sparsely distributed throughout the Universe
and are consequently not good indicators of large scale struc-
ture. It is therefore not surprising that radio source catalogs
provide little evidence for the large scale clustering.

Galaxy clusters are prominent features of the X-ray sky
that can provide a good measure of the large scale cluster-
ing. X-ray selected samples of clusters are less prone to
bias than catalogs for clusters selected from maps of the
galaxy distribution. One problem, however, is that the selec-
tion criteria for galaxy clusters selected from X-ray surveys
(Borgani and Guzzo, 2001) are quite different from the selec-
tion criteria for clusters selected from optically scannedpho-
tographic plates (Daltonet al., 1997) and it is not so easy to
relate studies based on the two sources of data.

The REFLEX (ROSAT-ESO Flux Limited X-ray) cluster
survey contains 449 clusters, covering an area of4.24 steradi-
ans in the southern hemisphere (δ < 2.5◦). It is complete at
≥ 90%, down to a nominal flux limit of3 × 10−12 erg s−1

cm−2 in the 0.1 − 2.4 keV band. REFLEX, as other clus-
ter samples, shows unambiguously very large-scale inhomo-
geneities that appear when the clustering power is measured
and compared with that of galaxies at the same scales (Guzzo,
2002).

F. Distribution of quasars and Ly- α clouds

The spectra of quasars are populated by narrow absorption
lines from intervening gas clouds along the line of sight (the
Ly-α forest). Owing to the great redshift of most quasars these
absorption clouds provide an important probe of clusteringat
large distances and at times long in our past.

Wu et al. (1999) used the large-scale uniformity of the Ly-
α forest to argue against fractal distribution of matter. Re-
cently, Croftet al. (2002) showed that it is possible to esti-

mate the full 3-D power spectrum of density fluctuationsP (k)
from the (one-dimensional) Ly-α flux power spectrum. This
is extremely important, as it allows us to check for theoreti-
cal predictions at large redshifts (z ≈2–4). It also allows us
to recover the linear (post-recombination) power spectrumfor
small scales, which have turned nonlinear by now.

Lines of sight to quasar pairs, be they optical pairs or pairs
that are a consequence of gravitational lensing, provide ad-
ditional clues to the clustering transverse to the line of sight
(Wu et al., 1999).

The statistical analysis of the distribution of quasars and
Ly-α clouds has provided additional evidence for the large
scale homogeneity in the universe (Andreaniet al., 1991;
Carbone and Savaglio, 1996).

G. The cosmic microwave background

The importance of the CMB anisotropy measurements can-
not be over-emphasized and would warrant an entire review by
itself. From the point of view of this article we are concerned
with knowing the initial conditions for galaxy formation and
the parameters of the cosmological framework within which
galaxy formation takes place. Given that data, the task is to
derive the currently observed clustering properties of galaxies
in the Universe.

1. Structure before our eyes

Arguably the most important observation in the study
of clustering is the recent measurement of the struc-
ture in the cosmic microwave background radiation at
the time of recombination. This structure was pre-
dicted independently by Silk (1967) and by Sachs and Wolfe
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FIG. 8 The agreement between the estimated power spectrum of
the CMB anisotropies from four different experiments with similar
sensitivity, from Dickinsonet al. (2004).

(1967), although the phenomenon is generally referred to
as the “Sachs-Wolfe” effect. Understanding the details
of how the structure in the microwave background arises
in any of a vast number number of cosmological mod-
els has been a cosmic folk-industry spanning some 30
years. The results are encapsulated in a run-it-yourself
computer program of Zaldarriaga and Seljak, 2000 (see
http://physics.nyu.edu/matiasz/CMBFAST/cmbfast.html).

The structure was first seen at about7◦ in angular reso-
lution in the data of the COBE satellite DMR experiment
(Bennett et al, 1996). Smaller structure has been detected in
recent high angular resolution experiments with names like
DASI (Leitchet al., 2002; Prykeet al., 2002), MAXIMA-1
(Balbi et al., 2000; Hananyet al., 2000; Leeet al., 2001) and
BOOMERANG-98 (de Bernardiset al., 2000; Langeet al.,
2001; Netterfieldet al., 2002), and in the WMAP first-year
full-sky data (Bennettet al., 2003). An analysis of the cosmo-
logical conclusions to be drawn from the combination of these
is given by Jaffeet al. (2001) and by Spergelet al. (2003);
an example of present data sets and the curves fitted to them
is shown in Fig. 8 where, in addition to the WMAP power-
spectrum, several other recent experiments are shown (VSA
analyzed by Dickinsonet al.(2004), CBI (Masonet al., 2003)
and ACBAR (Kuoet al., 2004)), having similar sensitivity,
but being different in the frequency range and observing tech-
niques.

Here we observe unambiguously the structure in the grav-
itational potential that will lead to the birth and clustering of
galaxies and clusters of galaxies as we see them today. We
also observe structure on scales far larger than can be traced
by galaxies.

The units in Fig. 8 could use a little bit of explanation. As
the sky we see can be thought of as a surface of a sphere, the
distribution of temperature on the sky is analysed into scales
using Legendre polynomialsY m

l (θ, φ). A polynomial of or-
derl picks out structure on an angular scale that is roughly, in
degrees,

θ◦ ≈ 180◦

l
(6)

This corresponds to structure on a linear scale today of

L =
2πc

H0Ω0.4
m ℓ

≈ 19000

ℓ
Ω−0.4

m h−1Mpc. (7)

for a flat universe withΩm+ΩΛ = 1 (Vittorio and Silk, 1992).
The range ofl-values covered by current experiments range
over about two decades:

10 < l < 1500 (8)

with the limit of higherl-values being pushed upward all the
time. The low resolution end is from the COBE and WMAP
data (Bennettet al., 1996; Bennettet al., 2003) and reveals in-
homogeneities on scales in excess of100h−1 Mpc.

Notice that the highest resolution data still only cover linear
scales in excess of around30h−1 Mpc and so we do not yet
see the initial condition for the scales over which the two-point
galaxy clustering correlation function is significantly greater
than zero. We are just seeing the scales where rich cluster
clustering may be significant. The prominent peak in the spec-
trum atl ∼ 250 corresponding to scales of around50h−1 Mpc
is intriguing. We must not forget, however, that this is a peak
in a normalized spectrum; in the real matterP (k) these peaks
are much less pronounced. There is evidence of oscillations
in the observed power spectra of clusters and galaxies, but
current surveys are not able yet to detect such structure with
confidence (Elgarøyet al., 2002; Milleret al., 2002a).

2. Defining the standard model

The presence of significant peaks in the angular distribution
of the cosmic microwave background strongly constrains the
global parameters that describe our Universe. If these dataare
combined with data from other sources, such as local determi-
nations of the Hubble constant and observations of very dis-
tant supernovae (Perlmutteret al., 1999; Riesset al., 1998),
we arrive at the so-calledconcordance model(Tegmarket al.,
2001). We hasten to add that this is not a term we invented: it
might have been OK to use the termstandard model, but the
high energy physicists got there first. The actual values of the
parameters in the concordance model depends on whose paper
we read: there is a little disaccord here, though it would seem
to be relatively minor. It all depends on what prior knowledge
is assumed when making fitting the model to the data. The
error bars are impressively small.

3. Initial conditions for galaxy formation

One of the best determined parameters is the slopen of the
power spectrum of the pre-recombination inhomogeneities.It
was suggested by Harrison and by Zel’dovich thatn = 1 on
the grounds that (a) the spectrum had to be a power law (what
else could it be?) and that (b) this value of the slope was the
value that did the minimal violence to the geometry of space-
time on either the large or small scales. Following on Guth’s
brilliant notion of inflationary cosmology (Guth, 1981), many
subsequent revisions of the inflationary model and theoriesfor
the origin of cosmic fluctuations gave physical reasons why
we should haven = 1 (e.g.: Guth and Pi (1982), Starobinskii
(1982), Linde (1994, 1982, 1983)).

http://physics.nyu.edu/matiasz/CMBFAST/cmbfast.html
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The DASI experiment (Prykeet al., 2002) gives

n = 1.01+0.08
−0.06 (9)

where the error bars are68% confidence limits. This result
comes from fitting the DASI data alone, making typical prior
assumptions about such things as the Hubble constant. The
recent WMAP data gives a value

n = 0.99 ± 0.04 (10)

(Spergelet al., 2003). (This latter value comes from the
WMAP data alone, no other data is taken into account.)
Other similar numbers come from Wanget al. (2002) and
Miller et al. (2002b).

It is perhaps appropriate to point out that this fit comes
from data on scales bigger than the scale of significant galaxy
clustering and that it is a matter of belief that the primordial
power law continued in the same manner to smaller scales. In
fact, more complex inflationary models predict a slowly vary-
ing exponent (spectral index) (see, e.g., Kosowsky and Turner
(1995)); this is in accordance with the WMAP data. The
scales which are relevant to the clustering of galaxies are just
those scales where the effects of the recombination process
on the fluctuation spectrum are the greatest. We believe we
understand that process fully (Huet al., 2001, 1997) and so
we have no hesitation in saying what are the consequences of
having an initialn = 1 power spectrum. That, and the success
of theN -body experiments, provide a good basis for the belief
thatn ≈ 1 on galaxy clustering scales. Anyway, it is probable
that the Sunyaev-Zel’dovich effect (Sunyaev and Zel’dovich,
1980) will dominate on the scales we are interested in so we
may never see the recombination-damped primordial fluctua-
tions on such scales.

We therefore have a classical initial value problem: the dif-
ficulty lies mainly in knowing what physics, subsequent to
recombination, our solution will need as input and knowing
how to compare the results of the consequent numerical sim-
ulations with observation. CMB measurements can also give
us valuable clues for these later epochs in the evolution of the
universe. A good example is the discovery of significant large-
scale CMB polarization by the WMAP team (Kogutet al.,
2003) that pushes the secondary re-ionization (formation of
the first generation of stars) back to redshiftsz ≈ 20.

V. MEASUREMENTS OF CLUSTERING

A. The discovery of power-law clustering

The pioneering work of Rubin and Limber has already been
mentioned. These early authors were limited by the nature of
the catalogs that existed at the time and the means to analyze
the data – there were no computers!

It was Totsuji and Kihara (1969) and, independently,
Peebles (1974b) who were first to present a computer-
based analysis of a complete catalog of galaxies. Tot-
suji and Kihara used the published Lick counts in cells
from Shane and Wirtanen (1967), while Peebles and cowork-
ers analysed a number of catalogs: the Reference catalog

of Bright Galaxies, the Zwicky catalog, the Lick catalog
and later on the very deep Jagellonian field (Peebles, 1975;
Peebles and Groth, 1975; Peebles and Hauser, 1974). All this
work was done on the projected distribution of galaxies since
little or no redshift information was available.

The central discovery was that the two-point correlation
function describing the deviation of the galaxy distribution
from homogeneity scales like a simple power law over a sub-
stantial range of distances. This result has stood firm through
numerous analyses of diverse catalogs over the subsequent
decades.

The amplitudes of the correlation functions calculated from
the different catalogs were found to scale in accordance with
the nominal depth of the catalog. This was one of the first di-
rect proofs that the Universe is homogeneous. Before that we
knew about the isotropy of the galaxy distribution at different
depths and could only infer homogeneity by arguing that we
were not at the center of the Universe.

B. The correlation function: galaxies

1. Definitions and scaling

The definition of the correlation function used in cosmol-
ogy differs slightly from the definition used in other fields.In
cosmology we have a nonzero mean field (the mean density
of the Universe) superposed on which are the fluctuations that
correspond to the galaxies and galaxy clusters. Since the Uni-
verse is homogeneous on the largest scales, the correlations
tend to zero on these scales.

On occasion, people have tried to use the standard definition
and in doing so have come up with anomalous conclusions.

The right definition is: In cosmology, the 2-point galaxy
correlation function is defined as a measure of the excess
probability, relative to a Poisson distribution, of findingtwo
galaxies at the volume elementsdV1 anddV2 separated by a
vector distancer:

dP12 = n2[1 + ξ(r)]dV1dV2, (11)

wheren is the mean number density over the whole sample
volume. When homogeneity5 and isotropy are assumedξ(r)
depends only on the distancer = |r|. From Eq. (11), it is
straightforward to derive the expression for the conditional
probability that a galaxy lies atdV at distancer given that
there is a galaxy at the origin ofr.

dP = n[1 + ξ(r)]dV. (12)

Therefore,ξ(r) measures the clustering in excess (ξ(r) > 0)
or in defect (ξ(r) < 0) compared with a random Poisson point
distribution, for whichξ(r) = 0. It is worth to mention that in
statistical mechanics the correlation function normally used is
g(r) = 1+ξ(r) which is called theradial distribution function

5 This property is called stationarity in point field statistics.
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(McQuarrie, 1999). Statisticians call this quantity thepair
correlation function(Stoyan and Stoyan, 1994). The number
of galaxies, on average, lying at a distance betweenr andr +
dr from a given one isng(r)4πr2.

A similar quantity can be defined for projected catalogs:
surveys compiling the angular positions of the galaxies on the
celestial sphere. The angular two-point correlation function,
w(θ), can be defined by means of the conditional probabil-
ity of finding a galaxy within the solid angledΩ lying at an
angular distanceθ from a given galaxy (arbitrarily chosen):

dP = N [1 + w(θ)]dΩ, (13)

Now,N is the mean number density of galaxies per unit area
in the projected catalog. Since the first available catalogs
were two-dimensional, with no redshift information,w(θ)
was measured before any direct measurement ofξ(r) was
possible. Nevertheless,ξ(r) can be inferred from its angular
counterpartw(θ) by means of the Limber equation (Limber,
1954; Rubin, 1954) which provides an integral relation be-
tween the angular and the spatial correlation function for small
angles,

w(θ) =

∫ ∞

0

y4φ2(y) dy

∫ ∞

0

ξ
(√

x2 + y2θ2
)
dx. (14)

Herey is the comoving distance andφ(y) is the radial selec-
tion function normalized such that

∫
φ(y)y2dy = 1. If ξ(r)

follows a power lawξ(r) = (r/r0)
−γ , it is straightforward to

see that the angular correlation function is also a power law,
w(θ) = Aθ1−γ (Peebles, 1980). Totsuji and Kihara (1969)
were the first to derive a power-law model forξ(r) on the
basis of the angular data. Their canonical value for the scal-
ing exponentγ = 1.8 has remained unaltered for more than
30 years. Eq. 14 provides the basis for an important scaling
relation. Peebles (1980) has shown that, in a homogeneous
universe,w(θ) must scale with the sample depthD∗ as

w(θ) =
1

D∗
W (θD∗) (15)

where the functionW is an intrinsic angular correlation func-
tion which does not depend on the apparent limmiting magni-
tude of the sample. The characteristic depthD∗ is the distance
at which a galaxy with intrinsic luminosityL∗ is seen at the
limiting flux densityf , which is in the Euclidean geometry
(neglecting expansion and curvature),

D∗ =

√
L∗

4πf
, (16)

or, in terms of magnitudes,

D∗ = 100.2(m0−M∗)−5h−1Mpc, (17)

wherem0 is the apparent limiting magnitude of the sam-
ple. The scaling relation in Eq. (15) can be deduced from
the Limber equation (14) assuming that distribution of galax-
ies is homogeneous on average and thereforeN ∝ D3

∗.

Peebles (1993) has shown that the analysis of the deep cata-
logs of galaxies on the basis of the scaling law (Eq. 15) argues
strongly against an unbounded self-similar fractal distribution
of galaxies. In the 1970’s and early 1980’s a number of cat-
alogs going to a variety of magnitude limits were available
and analysed by Peebles and his collaborators. Because of the
way the galaxy luminosity function works, most of the galax-
ies in a catalog fall within a relatively narrow range of distance
that depends on the limiting magnitude of the catalog: cata-
logs reaching to fainter magnitudes are probing the Universe
at greater distances.

As the distance increases, the angular scale subtended by
a given physical distance decreases. Hence, if the Universe
is homogeneous, the two-point angular correlation function
of one catalog should look like a rescaled version of the two
point angular correlation function of a deeper catalog (see
Eq. 15), i.e., for catalogs with varying characteristic distance
w ∝ D−1

∗ at a given angular separationθD∗; or, in other
words, if we calculate the angular correlation function on two
samples, with characteristic depthsD∗ andD′

∗, Eq. 15 im-
plies thatw′((D∗/D

′
∗)θ) = (D∗/D

′
∗)w(θ). The scaling rela-

tionship can be predicted precisely, though for catalogs that
probe to very great depths it is necessary to be careful of
K-corrections and geometric effects due to the cosmological
model (Colombo and Bonometto, 2001).

The earliest catalogs available were the de Vaucouleurs
catalog of Bright Galaxies, the Zwicky catalog, the Shane–
Wirtanen catalog and the Jagellonian Field. Matching their
correlation functions provided the first direct evidence for
large scale cosmic homogeneity (Groth and Peebles, 1977,
1986). The scaling relation has been confirmed with more
recent catalogs, in particular, the APM galaxy survey has po-
vided one of the strongest observational evidences supporting
this law (Baugh, 1996; Maddoxet al., 1996; Maddoxet al.,
1990b).

Now we can do much better since we have bigger and better
catalogs with partial or complete redshift information. Such
catalogs can be divided into magnitude slices and the same test
performed on the two point angular correlation function of the
slices. The result (Connollyet al., 2002) reproduced in Fig. 9
is as good a vindication of the homogeneity of the Universe as
one could wish for. More data will be forthcoming from the
2dF and SDSS surveys.

The scaling properties of the correlation function are usu-
ally shown in the form of the correlation integral. For a point
distribution the integral expresses the number of neighbors,
on average, that an object has within a sphere of radiusr. It is
given by

N(< r) = n

∫ r

0

4πs2(1 + ξ(s))ds (18)

The distribution is said to follow fractal scaling if withina
large range of scales the behavior ofN(< r) can be well fitted
to a power law

N(< r) ∝ rD2 , (19)

or, alternatively

1 + ξ(r) ∝ rD2−3. (20)
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FIG. 9 The angular correlation function from the SDSS as a func-
tion of magnitude from Connollyet al.(2002). The correlation func-
tion is determined for the magnitude intervals18 < r∗ < 19,
19 < r∗ < 20, 20 < r∗ < 21 and21 < r∗ < 22. The fits to
these data, over angular scales of 1’ to 30’, are shown by the solid
lines.

whereD2 is the so-called correlation dimension. The scal-
ing range has to be long enough to talk about fractal be-
havior. However, the term has been used very often for de-
scribing scaling behaviors within rather limited scale ranges
(Avnir et al., 1998). In Sect. V.B.4 we show recent determi-
nations ofD2 for several galaxy samples at different scale
ranges.

2. Estimators

The two-point correlation functionξ(r) can be estimated
in several ways from a given galaxy sample. For a dis-
cussion of them see, for example, Kerscheret al. (2000);
Martı́nez and Saar (2002); Pons-Borderı́aet al. (1999). At
small distances, nearly all the estimators provide very similar
performance, however at large distances, their performance
is not equivalent any more and some of them could be bi-
ased. Considering the galaxy distribution as a point process,
the two-point correlation function at a given distancer is
estimated by counting and averaging the number of neigh-
bors each galaxy has at a given scale. It is clear that the
boundaries of the sample have to be considered, because as
no galaxies are observed beyond the boundaries, the number
of neighbors is systematically underestimated at larger dis-
tances. If we do not make any assumption regarding the kind
of point process that we are dealing with, the only solution is
to use the so-called minus–estimators, the kind of estimators
favored by Piertonero and co-workers (Sylos Labiniet al.,

1
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FIG. 10 The correlation function1 + ξ(r) for different samples
calculated with different estimators. We can see that the small scale
fractal regime is followed by a gradual transition to homogeneity.

1998): The averages of the number of neighbors at a given
distance are taken omitting those galaxies lying closer to the
border thanr. At large scales only a small fraction of the
galaxies in the sample enters in the estimation, increasing
the variance. To make full use of the surveyed galaxies, the
estimator has to incorporate an edge-correction. The most
widely used estimators in cosmology are the Davis and Pee-
bles estimator (Davis and Peebles, 1983), the Hamilton esti-
mator (Hamilton, 1993b), and the Landy and Szalay estimator
(Landy and Szalay, 1993). Here we provide their formulae
when applied to a complete galaxy sample in a given volume
with N objects. A Poisson catalog, a binomial process with
Nrd points, has to be generated within the same boundaries.

ξ̂DP(r) =
Nrd

N

DD(r)

DR(r)
− 1, (21)

ξ̂HAM(r) =
DD(r) · RR(r)

[DR(r)]2
− 1, (22)

ξ̂LS(r) = 1 +

(
Nrd

N

)2
DD(r)

RR(r)
− 2

Nrd

N

DR(r)

RR(r)
. (23)

whereDD(r) is the number of pairs of galaxies with sepa-
ration within the interval[r − dr/2, r + dr/2, DR(r) is the
number of pairs between a galaxy and a point of the Pois-
son catalog, andRR(r) is the number of pairs with separation
in the same interval in the Poisson catalog. At large scales
the performance of the Hamilton and Landy and Szalay es-
timators has been proved to be better (Kerscheret al., 2000;
Pons-Borderı́aet al., 1999).
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3. Recent determinations of the correlation function

Earlier estimates of the pairwise galaxy correlation function
were obtained from shallow samples, and one could suspect
that they were not finding the true correlation function. The
first sample deep enough to get close to solving that prob-
lem was the Las Campanas Redshift Survey (LCRS). The
two-point correlation function for LCRS was determined by
Tuckeret al. (1997) and by Jinget al. (1998) (see Fig. 10).
Jingel al. get slightly smaller values for the correlation length
(r0 = 5.1h−1Mpc) than Tuckeret al. (r0 = 6.3h−1Mpc).
When making comparisons, it is necessary to take care that
the length scales have been interpreted in the same underlying
cosmological model. Older papers tend to setΛ = 0 whereas
more recent papers are often phrased in terms of a flat-Λ plus
cold dark matter cosmology.

Analyzing data from the first batch of the SSDS,
Zehaviet al. (2002) analyse 29300 galaxies covering a 690
square degree region of sky, made up of a number of long
narrow segments (2.5 - 5 degrees). They arrive at an average
real-space correlation function of

ξ(r) =

(
r

6.1 ± 0.2h−1Mpc

)−1.75±0.03

(24)

for 0.1h−1 Mpc < r < 16 h−1 Mpc. This comes close to
the LCRS result of Tuckeret al. (1997). More recently, the
same group (Zehaviet al., 2003) has updated the result, using
a more complete sample with 118,149 galaxies (see Fig. 11),
and the best power-law fit is

ξ(r) =

(
r

5.77h−1Mpc

)−1.80

(25)

This is a remarkable scaling law covering some 3 orders of
magnitude in distance. The smallest scale measured (100h−1

kpc) is barely larger than a typical galaxy. Interestingly,this
lower scale is set, in the Zehaviet al. (2002) analysis, by the
requirement that, at the outer limit of the survey (correspond-
ing to a radial velocity of 39,000 km s−1), pairs of galaxies
should be no closer than can be reached by two neighboring
fibers on the multifiber system. There would be some inter-
est in looking at nearer galaxies and tracing the correlation
function to even smaller scales to see whether the old and re-
markable extrapolation of Gott and Turner (1979)6 is valid in
this newer data set (see also Infanteet al.(2002)). The largest
distance (16h−1 Mpc) is larger than the size of a great cluster.
It should be emphasized that this is a real space correlation
function: the finger-of-god effects have been filtered.

There is a substantial luminosity effect seen in the scale
length. The absolute magnitudeM⋆ of the “knee” of the

6 Gott and Turner estimated the small-scale end of the correlation function
down to a scale of 30h−1 kpc from the distribution of projected distances
between isolated galaxy pairs (double galaxies). As strange as it may seem,
this correlation function fitted neatly the general galaxy correlation func-
tion.

FIG. 11 The (projected) real space two point-correlation function
of the SSDS data from Zehaviet al. (2003). The two straight lines
show different fits corresponding to different weighting schemes

Schechter galaxy luminosity function (Schechter, 1976) is
taken as a reference point (being a “typical” galaxy luminos-
ity, whatever that means). For galaxies with absolute magni-
tudes centered onM⋆ − 1.5 the scale length isr0 ≈ 7.4h−1

Mpc. For samples centered onM⋆ the scale length isr0 ≈
6.3h−1 Mpc. And for samples centered onM⋆ + 1.5 the
scale length isr0 ≈ 4.7h−1 Mpc. The slope for these sam-
ples is essentially the same. A similar strong dependence of
the correlation function on the color, morphology, and red-
shift of galaxies was found before, in the Canadian Network
for Observational Cosmology Field Galaxy Redshift Survey
(CNOC2) by Shepherdet al. (2001).

The angular correlation function for the SDSS
(Connollyet al., 2002) is independent of redshift distor-
tions and agrees well with the value inferred from the redshift
survey. This encourages one to believe that the redshift
corrections are being handled effectively.

However, the latest careful analysis of the (almost) full
2dF survey (Hawkinset al., 2003) gives the correlation length
r0 = 5.05h−1Mpc, substantially smaller than the SDSS re-
sult. Hawkinset al. (2003) ascribe this to the different galaxy
content of the two surveys: the SDSS is a red-magnitude se-
lected survey and the 2dFGRS is a blue magnitude selected
survey.

4. Correlation dimension

Recently, many authors have measured the correlation di-
mension of the galaxy distribution at different scales us-
ing all available redshift catalogs. Wuet al. (1999) and
Kurokawaet al.(2001) summarized these results in a table. A
more completed and updated version of a similar table, includ-
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FIG. 12 The correlation length as a function of the sample depth
for the CfA-II catalog, from Martı́nezet al. (2001). The observed
plateauargues against the fractal interpretation of the galaxy distri-
bution.

ing more references and new catalogs is presented here (see
Table I). The estimates of the correlation dimension have been
performed using different methods depending on the authors’
preferences. It is worthwhile to mention the elegant technique
introduced by Amendola and Palladino (1999) based on radial
cells that maximizes the scale at which the minus-estimator
can be applied. The table shows unambiguously that the cor-
relation dimension is a scale dependent quantity, increasing
gradually from valuesD2 ≃ 2 for scales less than20−30h−1

Mpc (and even larger values ofD2 in IRAS based redshift
surveys) to values approachingD2 ≃ 3 for larger scales.

5. Correlation length as a function of sample depth

The first indication that correlation length might depend on
the sample depth was found in the CfA-I data (Einastoet al.,
1986). The correlation length increased, when deeper sam-
ples were chosen. Although the authors explained the ef-
fect by the specific geometry of the mass distribution in shal-
low samples, this paper motivated the early campaign to ex-
plain the galaxy distribution as fractals (Calzettiet al., 1988;
Pietronero, 1987), because for a fractalr0 increases pro-
portionally with the sample depth (Coleman and Pietronero,
1992; Guzzo, 1997). The Ruffini group realized from the be-
ginning that fractal scaling cannot extend to large scales and
started to look for crossover to homogeneity (Calzettiet al.,
1991), but the Pietronero group has continued the fractal war
until now, fighting for an all-fractal universe. Their standis
summarized in Sylos Labiniet al. (1998).

The deep samples now at our disposal have solved this
problem once and for all — the galaxy correlation functions
may depend on their intrinsic properties (luminosity, mor-
phology, etc.), but not on the sample size (Kerscher, 2003;
Martı́nezet al., 2001). As an example, Fig. 12 shows the re-
sults of a recent study.

C. Galaxy-galaxy and cluster-cluster correlations

Having re-discovered the power of the two-point correla-
tion function as a tool for measuring clustering, it was ev-
ident that the Princeton group would go on to analyze ev-
ery available catalog of extragalactic objects they could lay
their hands on. One of these catalogs was the Abell catalog
of rich galaxy clusters identified on the Palomar Sky Survey
(Hauser and Peebles, 1973). The technique used was power
spectrum analysis since it was felt this would give a better
method of dealing with the incomplete sky coverage.

It came as somewhat of a surprise to discover (a) that these
Abell clusters were themselves clustered and (b) that, on a
given scale, they were more clustered than the galaxies. The
former was a surprise because serious doubts had previously
been expressed about the reality of superclustering. Here was
direct evidence that clusters were likely to be found in pairs
and even in groups. The latter was a surprise because it had
been (naively) expected that clusters identified from a set of
points would necessarily have the same correlation function
as the set itself. The galaxy clusters were themselves clustered
on scales where the galaxy-galaxy correlation was so small as
to be immeasurable.

Both the galaxy and cluster correlation functions are ap-
proximately power lawsξ(r) = (r/r0)

−γ with the same ex-
ponentγ ≈ 1.8, but the correlation amplitudes for clusters are
much larger than those for galaxies.

There is a simple reason why the cluster-cluster correla-
tion function might have an amplitude exceeding the galaxy-
galaxy correlation function amplitude: it arises because of the
way clusters are identified as regions where groups of points
have a substantially higher than average density. Such regions
contain most of the close pairs that go into defining the value
of the galaxy-galaxy correlation function. Moreover, elim-
inating the points which are not in such clusters biases the
expected number of pairs that would have been found had
this been a Poisson distribution containing the same number
of points. The boost in the value of the correlation function
achieved from such censorship depends directly on the vol-
ume of space occupied by these clusters.

This entirely obvious point was made in a preprint by
Jones and Jones (1985): the paper was never published. As
with many useful ideas, it became common knowledge and
moved into the realm of folklore.

There remained some important questions:

a: Does the Abell catalog provide a sufficiently good sam-
ple for this purpose: is it free from systematic biases
that may prejudice the result? Abell identified clusters
by eye, a procedure which would lack the objectivity of
an automatic plate scanning machine.

b: If in the cluster sample we reject the least impressive
ones, would this change the correlation function? This
corresponds to selection by cluster richness.

c: How would changing the selection threshold affect the
correlation function? This is not quite the same as se-
lecting by cluster richness: less rich clusters are still
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TABLE I The correlation dimension estimated on different redshift surveys at different scale ranges.

Reference Sample Range of scales (h−1 Mpc) D2

Martı́nez and Jones, 1990 CfA-I 3-10 1.15 − 1.40
Lemson and Sanders, 1991 CfA-I 1 − 30 2
Domı́nguez-Tenreiroet al., 1994 CfA-I 1.5 − 25 2
Kurokawaet al., 1999 CfA-II 7 − 27 1.89 ± 0.06
Guzzoet al., 1991 Perseus-Pisces 1 − 3.5 1.25 ± 0.10

Perseus-Pisces 3.5 − 27 2.21 ± 0.06
Perseus-Pisces 27 − 70 ≃ 3

Martı́nezet al., 1998 Perseus-Pisces 1 − 20 1.8 − 2.3
Martı́nez and Coles, 1994 QDOT 1 − 10 2.25

QDOT 10 − 50 2.77
Martı́nezet al., 1998 Stromlo-APM 30 − 60 2.7 − 2.9
Hatton, 1999 Stromlo-APM 12 − 55 2.76
Amendola and Palladino, 1999 Las Campanas ≤ 20 − 30 2

Las Campanas > 30 → 3
Kurokawaet al., 2001 Las Campanas 5 − 32 1.96 ± 0.05

Las Campanas 32 − 63 ≃ 3
Pan and Coles, 2000 PSCz < 10 2.16

PSCz 10 − 30 2.71
PSCz 30 − 400 2.99

included, though they would appear as smaller objects
on increasing the discrimination threshold.

d: If clusters were selected other than by virtue of their
contrast with the background, eg: from identifying clus-
ters in an X-Ray survey, would we still see enhanced
clustering?

e: What does the galaxy-cluster cross correlation tell us?

It was well known that there were systematic biases in the
Abell Catalog. The subsample of low richness clusters was
incomplete, and the more distant clusters were systematically
richer than than nearby counterparts. This was not in it-
self enough to remove the “discrepancy” between the galaxy-
galaxy correlation function and the cluster-cluster correlation
function, but it might prejudice conclusion about richnessde-
pendence of the discrepancy.

It was not until 1992 that a sufficiently good alternative to
the Abell Catalog became available: this was the APM clus-
ter catalog (Daltonet al., 1992, 1997) derived from the Cam-
bridge APM Galaxy Survey (Automatic Plate Measuring Ma-
chine) of UK Schmidt Telescope plates. Now we await results
from the large 2dF and SDSS redshift catalogs which have al-
ready provided detailed information about the galaxy-galaxy
correlation function.

1. Analysis of recent catalogs

Currently the best data on galaxy cluster clustering comes
from redshift surveys of clusters identified in machine gener-
ated galaxy catalogs and of clusters observed in X-Ray sur-
veys. The 2dF and SDSS surveys will undoubtedly settle this
matter once and for all since they contain a large number of
clusters that can be selected on the basis of redshift. However,

it is already apparent (as in the Shepherdet al.(2001) study of
the CNOC2 sample, for Zehaviet al.(2002) study of the Early
SDSS Data, and for Madgwicket al. (2003); Norberget al.
(2001) correlation analysis of the 2dFGRS) that talking about
thegalaxy-galaxycorrelation function is somewhat of an over-
simplification in the first place: the galaxy-galaxy correlation
depends strongly on the absolute magnitude, galaxy colour
and galaxy spectral type. Galaxies are clearly not unbiased
tracers of the underlying mass distribution.

In automated cluster searching, clusters are generally dis-
covered via a nearest-neighbour, friends-of-friends, type of
analysis. They are discovered by virtue of their central con-
centration and so catalogs contain clusters that are defined
in terms of a “distance to your nearest neighbour” threshold
length. If the threshold length is increased the catalog con-
tains more clusters: the number of poorer, less centrally dense,
clusters increases. It is not a priori obvious how the mean
density of galaxies within a cluster so found relates to its cen-
tral density: there will clearly be a correlation. It might well
be that selecting clusters by virtue of their mean galaxy den-
sity rather than their peak density would yield different cata-
logs and lead to different conclusions about the systematics of
cluster-cluster clustering.

2. Theoretical expectations

It is easier to build theoretical (analytic) models based on
selection by mean cluster density, ie: clusters selected via a
density threshold, than it is to build models based on clusters
selected by peak density. The latter requires an understanding
of how the cluster dynamics works to produce the density pro-
file of the galaxy distribution. This may contribute to some of
the confusion that exists when looking for trends in the clus-
tering of clusters.
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The earlier theoretical models (Bahcall and West, 1992;
Jones and Jones, 1985; Kaiser, 1984) for the clustering of
clusters were based on threshold selection. The same is
true of more recent hierarchical models based on multi-
fractal models for the distribution of galaxies (Martı́nezet al.,
1990; Paredeset al., 1995). Most of the conclusions about
superclustering in which the clusters are defined via the
peak density excursion comes fromN -body simulations
of various sizes and sophistication (Bahcall and Cen, 1992;
Colberget al., 1998; Croft and Efstathiou, 1994).

Since clusters found in X-ray surveys are found by virtue
of their gas temperature, that is total potential, these surveys
should agree rather well with the conclusions based onN -
body experiments.

3. Richness dependence of the correlation length

The seminal paper on the effect of cluster richness
on the cluster–cluster correlation function was that of
Szalay and Schramm (1985). They suggested that the scaling
length for clustering should itself depend on the cluster den-
sity. Which cluster density, peak or mean, was never stated.

The formula for the cluster two-point correlation function
ξ(r; ν) is usually written as (Kaiser, 1984):

ξ(r; ν) =
ν2

σ2
ξ(r), (26)

whereν is the height of the peaks in units of the rms errorσ
of the galaxy density field, andξ(r) is the correlation function
of the galaxy field7.

The empirical determination of the the cluster–cluster
correlation function,ξcc(r), is much more uncertain than
the galaxy–galaxy correlation function,ξgg(r). The selec-
tion effects associated with the cluster identification method
(Ekeet al., 1996) are the major source for this uncertainty.
The possible dependence of clustering properties on cluster
richness makes the issue still more difficult. Nevertheless
ξcc(r) is usually fitted to a power law

ξcc =

(
r

rc

)γc

. (27)

Eq. 26 holds ifγc = γ, whereγ is the exponent of the
power-law galaxy–galaxy correlation function. As already
mentioned, this seems to be the case, see for example in
Fig. 13, the remarkable agreement between the slopes of the
correlation function of the REFLEX cluster catalog and the
Las Campanas galaxy redshift survey (Borgani and Guzzo,
2001; Guzzo, 2002). Nevertheless, depending on the an-
alyzed cluster sample and cluster identification procedure,
the scatter of the reported values for the slope of the cor-
relation function is very high withγc = 1.6 to 2.5. For

7 As the correlation functions andσ are defined for the density contrast
δ = (ρ − ρ̄)/ρ̄, all quantities in (26) are dimensionless; there is no di-
mensionality conflict.

FIG. 13 The two-point correlation function for the X-ray selected
clusters from the REFLEX survey (circles) and for the Las Cam-
panas galaxy redshift survey (squares). The solid and dashed lines
are the expected results for an X-ray similar survey in a LCDM
model with different values for the cosmological parameters, from
Borgani and Guzzo (2001).

the correlation length the values go from13h−1 Mpc to
40h−1 Mpc (Bahcall and West, 1992; Borgani and Guzzo,
2001; Daltonet al., 1994; Nicholet al., 1992; Postmanet al.,
1992). Fig. 14 illustrates this variability displaying thediffer-
ences between the correlation function of the Abell and APM
cluster samples.

Rich clusters have many members and are rare, there-
fore the distance between thendc = n

−1/3
c is larger.

Bahcall and West (1992) derived a linear relation between the
cluster correlation lengthrc and the mean intercluster separa-
tion dc, rc = 0.4dc from power-law fits (constrained to have
a fixed value ofγc = 1.8) to correlation functions calculated
on cluster samples with different richness. Fig. 15 shows that
this relation is not confirmed by the new data. In fact, at large
values ofdc the relation must level off, and a weaker depen-
dence ofrc versusdc agrees better with the observations, for
examplerc = 2.6

√
dc as shown in the figure (Bahcallet al.,

2003).
Sincerc andγc are not independent, the slope is usually

constrained to a fixed valueγc = 1.8. Dependence ofγc on
cluster richness has been proposed (Martı́nezet al., 1995), al-
though this dependence is better parametrized by the correla-
tion dimension — the exponent of the power law fitting the
correlation integralN(r) = ArD2 (see Eq. 16). Multiscal-
ing is the term used for scaling laws in whichD2 displays a
slowly varying behavior with the density threshold that char-
acterizes the richness of clusters. The higher the threshold, the
richer the clusters, and the smaller the value ofD2. Within the
multiscaling framework, the relationr0 versusdc gets a more



26

FIG. 14 The two-point correlation functions for the Abell clusters
and two subsamples of the APM survey. The best power-law fits are
shown in the plot, from Postman (1999).

FIG. 15 The correlation length of different cluster samplesas a func-
tion of the intercluster distance. The solid line shows the relation
rc = 2.6

√
dc that fits well the observations and the LCDM model,

from Bahcallet al. (2003).

complicated form flattening for large values ofdc as the ob-
servations confirm (Martı́nezet al., 1995).

D. The pairwise velocity dispersion

The pairwise velocity dispersion of galaxies is a measure of
the temperature of the “gas” of galaxies. By energy conserva-
tion, the kinetic energy of this gas has to be balanced by its
gravitational energy, which depends mainly on the mean mass
density of the Universe. Thus, measuring the pairwise veloc-
ity dispersion gives us a handle on the density. This is, how-
ever, more easily said than done since we measure only the

radial component of the velocity, and that is biased by larger
density inhomogeneities than a linear theory can handle.

The following short argument shows how the velocity dis-
persion relates to the fluctuations in the density field. The
non-Hubble component of a galaxy velocity through the Uni-
verse, (itspeculiarvelocity), is due to the acceleration caused
by clumps in the matter distribution. This is easy to estimate
during the phase of linear evolution of cosmic structure since
linear perturbation theory applies.

A particle that has experienced a peculiar accelerationgp

for a timet would have acquired a peculiar velocityvp ∼ gpt.
If this acceleration is due to a mass fluctuationδM at distance
r, we have

gp = GδM/r2 = (4π/3)Gδρr = 0.5Ω0H0vH (28)

which leads to

vp/vH ≃ (1/3)f(Ω)δ, f(Ω) = (3/2)H0t ≃ Ω0.6. (29)

For a more general approximation including the cosmologi-
cal constant see Lahavet al. (1991). As one can see the ratio
of the peculiar to Hubble velocity is the quantity that givesa
direct measure of the amplitude of primordial density fluctu-
ations on a given scale for a given value ofΩ. If we have a
scaling law for the density fluctuations we should also see a
scaling law in the peculiar velocity field.

A more detailed calculation, still using linear theory, gives
a direct relation between therms amplitude of the peculiar
velocity and the power spectrum of primordial density fluctu-
ations (Strauss and Willick, 1995):

〈vp(R)2〉 =
H2

0f
2

2π2

∫
P(k)W̃ 2(kR)dk (30)

whereW̃ (kR) is the Fourier transform of a spherical window
function of radiusR, W (R). This equation also works quite
well for rather highδ, well beyond the linear regime. The
main problem then becomes dealing with the redshift distor-
tion of the observed velocity field.

This equation, however, contains information only about
the rms magnitude ofvp on a given scale. More informa-
tion about peculiar motions in different cosmological scenar-
ios can be obtained from other types of the velocity correlation
functions that can be estimated from data sets.

As direct data on peculiar velocities of galaxies are hard
to obtain, the pairwise galaxy velocity dispersion is measured
from ordinary redshift surveys by modelling its effect on the
redshift space correlation function. This modelling is notvery
certain, as it depends on the choice both of the adopted mean
streaming velocity model and of the model for the pairwise
velocity distribution itself. The latter is usually modelled as
an exponential distribution (Peebles, 1980).

The first determination of the pairwise velocity disper-
sionσ2

12 was made by Davis and Peebles (1983), who found
σ12 ≈ 340 km s−1. Subsequent determination from the IRAS
data (Fisher, 1995; Fisheret al., 1994) gave a similar value
(σ12 ≈ 317 kms−1). These values were much lower than
those predicted for the Standard Cold Dark Matter (SCDM)
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model (σ12 ≈ 1000 kms−1), and served as an argument for
discarding the model.

Later determinations have given larger values for this dis-
persion: the estimates of Jinget al. (1998); Marzkeet al.
(1995); Zehaviet al. (2002) all converge at the valueσ12 ≈
550–600km s−1; not enough for the SCDM model, but in
concordance with the present standard, theΛCDM model.

In the stable clustering model the pairwise velocity disper-
sion should scale with pair distance asr0.2; this scaling has
not been observed. Also, it is well known that the value of
σ12 is sensitive to the presence of rich clusters in the sample.
Daviset al. (1997) and Landyet al. (1998) propose alterna-
tive schemes for estimating the pairwise velocity dispersion,
which again lead to small values ofσ12.

The galaxy velocity field is also rather inhomogeneous; a
well-known fact is the extreme coldness of the flow in our
neighbourhood, out to5h−1Mpc, whereσ12 = 60 km s−1

(Schlegelet al., 1994).

E. Light does not trace mass

It has long been realized that there is a difference between
the distribution of light in the Universe and the distribution
of mass. The first clues came with the apparent systematic
increase of mass-to-light ratios with scale determined from
galaxies, binary galaxies, groups and clusters of galaxies:
this was later made more explicit by Einastoet al. (1974),
Joeveer and Einasto (1978) and Ostrikeret al. (1974). It was
also known that galaxy morphology is related to the clustering
environment (Abell, 1958; Davis and Geller, 1976; Dressler,
1980; Einastoet al., 1980; Guzzoet al., 1997; Hubble, 1936;
Zwicky, 1937).

The recognition that clustering depends on galaxy
luminosity is more recent (Benoistet al., 1999;
Domı́nguez-Tenreiro and Martı́nez, 1989; Hamilton, 1988;
Kerscher, 2003; Lovedayet al., 1995; Martı́nezet al., 1993;
White et al., 1988; Willmeret al., 1998).

It is not difficult to understand why this should be so. We
may be even surprised that the results were in any way sur-
prising! There was early work of Bahcall and Soneira (1983);
Bardeenet al. (1986); Melott and Fry (1986). However, it
has not been easy to model these luminosity— and type-
dependent phenomena since we have only the barest under-
standing of the galaxy formation process and it is probably
fair to say that our knowledge of what causes galaxies to have
vastly different morphologies is still rather incomplete.

The recent advances in augmentingN -body simu-
lations with semi-analytic models and computational
hydrodynamics is promising, though at a relatively
early stage (Bensonet al., 2000; Blantonet al., 1999;
Cen and Ostriker, 1992; Colı́net al., 1999; Katzet al., 1992;
Kauffmannet al., 1999; Pearceet al., 1999; Whiteet al.,
2001; Yoshikawaet al., 2001). Modelling the formation of
individual galaxies shows just how many physical processes
must be taken into account, quite apart from trying to fold in
our ignorance of the star formation process (and that is what
gives rise to the luminosity). A brave attempt is exemplified

by the paper of Sommer-Larsenet al. (2003).

1. Mass distribution and galaxy distribution: biasing

The concept of biasing was introduced by Kaiser (1984)
in order to explain the observed relation between the correla-
tion functions of galaxies and galaxy clusters. Using the high-
peak approximation to a Gaussian density field, he obtained a
formula (26) showing that the two correlation functions were
proportional.

The same idea was later applied to galaxy distributions: as
different types of galaxies have different clustering properties,
they cannot all follow directly the overall density field. Thus
we normalize the correlations by writing

σ2
gal = b2σ2

total, (31)

(note thatσ2 = ξ(0)), and callb the bias factor. As baryonic
matter comprises about four per cent of the total matter plus
energy content of the universe, we can also say that the above
relation connects the galaxy and dark matter distributions.

Bias cannot be measured directly, and indirect observa-
tional determinations of bias values have not yet converged
to a single value for a given type of galaxies. Moreover,
Dekel and Lahav (1999) showed that bias is, in general, non-
linear and stochastic. And later determinations have found
that bias is also scale-dependent (Hamiltonet al., 2000). Such
bias can easily destroy scaling relations that could be inherent
in the matter distribution.

2. Mass and light fluctuations

An alternative measure of the scale dependence of cluster-
ing is to plot the variance of the mass or light density fluc-
tuations on a variety of scales. This is little more than what
Carpenter had done in the 1920’s, and was first formalized by
Peebles (1965) in his remarkable paper on galaxy formation.8

It is relatively easy to calculate a density fluctuation spectrum:
sample the density field in windows of different sizes, for each
window size calculate the mean and variance of the contents
of the window and plot the result. This works equally well in
two or three dimensions. Some important technical questions
arise: what to do at the boundaries and what the shape and
profile of the window should be. By the profile it is meant
what weight is attached to an object falling at a given location
in the window. The “top hat” profile counts a weight of one if
the object is in the window and zero outside: this is the sim-
plest choice, though not a particularly good one. Fuzzy edged

8 Several things are remarkable about Peebles’ 1965 paper. Itwas Peebles’
first paper on galaxy formation and its submission to the Astrophysical
Journal preceded the the announcement of the discovery of the microwave
background. In that paper we see the entire roadmap for the following
decades of galaxy formation theory, albeit in terms of initial isothermal
fluctuations.
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windows are to be preferred since they reduce the effects of
shot noise.

This process is analogous to two other methods of ana-
lyzing a density field: counts in cells and wavelet analysis.
Counts in cells statistics do precisely what has just been de-
scribed, using various coverings of the data set, and are most
often hard-edged. The wavelet analysis does the same, but the
choice of analyzing wavelet determines how “hard” the sam-
pling volume is. Simple Haar wavelets are a bad choice since
they too are hard-edged, but there are many fine alternatives.
This an an area which requires more research since wavelets
are particularly good at sniffing out scaling relationships.

The density fluctuation spectrum is in some sense a half-
way house towards the power spectrum: the variance of the
mass fluctuations are referred to a physical variable, mass
scale, rather than thek-space wavenumber (which is itself an
inverse length scale). The problem with the mass spectrum is
that its amplitudes are correlated and depend on the adopted
mass profile filter; the conventional power spectrum (spectral
density) has independent amplitudes as it will be explainedin
Sect. VI.C.

VI. FURTHER CLUSTERING MEASURES

A. Higher order correlation functions

The two-point correlation function is not a unique descrip-
tor of clustering, it is merely the first of an infinite hierarchy of
such descriptors describing the galaxy distribution of galaxies
takenN at a time. Two quite different distributions can have
the same two-point correlation function. In particular, the fact
that a point distribution generated by any random walk (e.g.,
as a Lévy flight as proposed by Mandelbrot (1975) has the
correct two-point correlation function does not mean much
unless other statistical measures of clustering are tested.

The present day galaxy distribution is manifestly not a
Gaussian random process: there is, for example, no symmetry
about the mean density. This fact alone tells us that there is
more to galaxy clustering than the two-point correlation func-
tion.

So what kind of descriptors should we look for? General-
izations of the two-point functions to 3-, 4- and higher order
functions are certainly possible, but they are difficult to calcu-
late and not particularly edifying. However, they do the jobof
providing some of the needed extra information and through
such constructs as the BBGKY hierarchy9 they do relate to
the underlying physics of the clustering process. We shall de-
scribe the observed scaling of the 3-point correlation function
below.

One alternative is to go for different clustering models: any-
thing but correlation functions. These may have the virtue of

9 The BBGKY hierarchy, (after Bogolyubov, Born, Green, Kirkwood and
Yvon), is an infinite chain of equations adapted from plasma physics
(Ichimaru, 1992) to describe self-gravitating non-linearclustering (see for
example Fall and Severne (1976), Peebles (1980), and Saslaw(2000).)

providing immediate gratification in terms of visualization of
the process, but they are often difficult to relate to any kindof
dynamical process.

If we knew all higher order correlation functions we would
have a complete description of the galaxy clustering process.
However, calculating an estimate of a two point function from
a sample ofN galaxies requires taking all pairs from the sam-
ple of N , while calculating a three point functions requires
taking all triples fromN . The amount of computation esca-
lates rapidly and restrictions have to be imposed on what is
actually being calculated.

Nevertheless, calculating restrictedN -point functions may
be useful: these functions may be related to one another and
have interesting scale dependence. Gaztañaga (1992) has cal-
culated restrictedN -point functions and showed that these
have power law behavior over the range of scales where they
can be determined.

B. Three-point correlation functions

The simplest high-order correlation function is the 3-point
correlation functionζ(x1,x2,x3). It appears to be simply re-
lated to the two-point function through a Kirkwood-like rela-
tionship (see Peebles (1980)):

ζ(x1,x2,x3) = ζ(r12, r23, r31) = (32)

= Q [ξ(r12ξ(r23) + ξ(r23)ξ(r31) + ξ(r31)ξ(r12)] ,

whereQ ≈ 1 is a constant, and the first equality is due
to the usual assumption of homogeneity and isotropy. This
scaling law is called “the hierarchical model” in cosmol-
ogy, and it agrees rather well with observations. The full
Kirkwood law(Ichimaru, 1992) would require an additional
term on the right-hand side of Eq. (32), proportional to
ξ(r12)ξ(r23)ξ(r31).

As observations show (Meiksinet al., 1992; Peebles, 1980,
1993), there is no intrinsic 3-point term, either Kirkwood type
or more general. If this term were present the 3-point function
would be enormous at small scales. Therefore it makes no
contribution. The absence of such a 3-point term is probably
a consequence of the fact that gravity is a two-body interaction
and is the only force that plays a role in the clustering process.

C. The power spectrum

The power spectrumP (k) is the description of clustering in
terms of wavenumbersk that separates the effects of different
scales. IfF (k) is the Fourier transform of a random field, then

P(k) = E
[
F (k)F (k)

]
(33)

whereE denotes the statistical expectation value.
The Fourier modes of a Gaussian random field (our basic

model for the matter distribution in the universe at early times)
are independent, and the only function that defines the field is
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the power spectrum. As the initial fluctuations from the infla-
tion period are described naturally in terms of Fourier modes,
the power spectrum is the best descriptor of the matter distri-
bution for these times.

Inflationary models predict a power-law power spectrum,
P (k) ∼ kn (see Peebles and Ratra (2003) for a recent re-
view), with the most popular exponentn = 1. This sim-
ple scaling is, however, broken, once the wavelength of a
mode gets smaller than the horizon; interactions between mat-
ter, radiation and gravity deform the power spectrum in a
computable, but complex manner (Eisenstein and Hu, 1998,
1999).

Nevertheless, if we restrict ourselves to a smaller scale in-
terval (say, two orders of magnitude), the power spectrum re-
mains close to a power law. For the scales of the observed
structure the exponent of this power law is negative, ranging
fromn = −1 for larger scales ton ≥ −3 for galaxy scales.

If we combine a scale-free power spectrumP ∼ kn with
a scale-free expansion lawa(t) ∼ tα we should get a per-
fect scaling regime for evolution of structure. Unfortunately,
this is not true, as there are two completely different regimes
of evolution of gravitating structures: the linear regime,when
every Fourier mode grows at the same rate, and the nonlinear
regime, when we can assume that objects are virialized and
their physical structure does not change. The latter assump-
tion is called “stable clustering” (Peebles, 1974b).

The linear regime is characterized by small density ampli-
tudes and large scales (small wavenumbers), the stable clus-
tering regime has large density amplitudes and occurs at small
scales (large wavenumbers). The scaling solution for the cor-
relation function in the stable clustering regime was foundby
Peebles (1974b):ξ(r) ∼ r−γ , whereγ = (9 + 3n)/(5 + n).
The first attempt to get a solution that would interpolate be-
tween the two regimes was made by Hamiltonet al. (1991).
For that they rescaled the distancesr, assuming no shell cross-
ing during evolution of objects, and found an empirical rela-
tion between the nonlinear and linear correlation functions,
usingN -body models. This is known as the HKLM scaling
solution. Peacock and Dodds (1996) found a similar relation
for power spectra. These results have been used frequently for
likelihood search in large volumes of cosmological parame-
ter space, which could not be covered by time-consumingN -
body modelling.

However, nowadays it seems that the stable clustering hy-
pothesis does not describe well either the observed struc-
ture, or present-day numerical simulations, mostly because of
merging of objects in the later stages of evolution of structure.
A scaling solution in terms of a nonlinearity wavenumber that
does not assume stable clustering is described by Smithet al.
(2003). Let us define the nonlinearity wavenumberkNL by

σ2(kNL, a) ∼
∫ kNL

0

P (k, a) k2dk = 1;

it separates the linear regimek < kNL from the nonlinear
regimek > kNL. One then expects the scaling solution to
have the form

P (k, a) = F (k/kNL).

As an example, for the Einstein-de Sitter cosmological model
a(t) ∼ t2/3, the scale-free power spectrum can be writ-
ten asP (k, a) = a2kn, and the nonlinearity wavenumber
kNL ∼ a−2/(n+3). Numerical experiments confirm that scal-
ing solutions exist.

The latest real-space power spectrum of the SDSS sur-
vey (Tegmarket al., 2004) shows clearly curvature, departing
from a single power-law, providing, as the authors say, “an-
other nail into the coffin of the fractal universe hypothesis”.

D. The bispectrum

The power spectrum (Eq. 33) is a quadratic descriptor of a
random field: it contains information about the amplitudes of
the Fourier components, but not about any phase relationships
that might have evolved through nonlinear processes. The
power spectrum characterizes fully a Gaussian field. Since
the present-day high-amplitude fluctuating density field isnot
Gaussian (there cannot be any region with negative density),
the power spectrum by itself is provides only a partial descrip-
tion. There are several ways of providing further information
in Fourier space, one of which is to look at higher order cor-
relations among Fourier components.

The next order descriptors are cubic, the three-point cor-
relation function and its Fourier counterpart, the bispectrum.
The bispectrum is the third moment of the Fourier amplitudes
of a random field, depending on three wavenumbers. If we
denote the Fourier amplitudes of a random field byF (k), the
bispectrum of the field is defined as

B(k1,k2,k3) = E [F (k1)F (k2)F (k3)] ,

where E denotes the statistical expectation value. For
homogeneous random fields the bispectrum is non-zero
only for closed triangles of vectorsk1,k2,k3 (see, e.g.,
Martı́nez and Saar (2002)). Consequently, for real-valuedho-
mogeneous random fields the bispectrum can be calculated by

B(k1,k2) = E
[
F (k1)F (k2)F (k1 + k2)

]
,

where the overline denotes conjugation. In the signal process-
ing world the bispectrum is known as the bicoherence spec-
trum and it is used to measure the phase coherence among
triples of spectral components that arises as a consequenceof
nonlinear wave coupling.

The hierarchical ansatz that we wrote for the three-point
correlation function can be written also for the bi-spectrum:

B(k1,k2,k3) = Q [P (k1)P (k2) + P (k1)P (k3)+

+ P (k2)P (k3)] .

A similar expression is predicted by perturbation theory
(Fry, 1984b), but with different coefficients for every term.

It is not easy to determine the bi-spectrum from observa-
tions, as its argument space is large (the set of all triangles),
and it is strongly modified by galaxy bias. The estimates so
far have confirmed that the bispectrum follows approximately
the predictions of the perturbation theory (Bernardeauet al.,
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2002). As it depends on the bias parameters, it can be used
to estimate galaxy bias. An example is provided by a recent
study (Verdeet al., 2002) that found that the bi-spectrum of
the 2dFGRS galaxies is compatible with no bias; these galax-
ies seem to faithfully trace the total matter distribution.

E. Fractal descriptors of clustering

None of the previous descriptors is motivated by the re-
quirement that the galaxy distribution should, in some sense,
be scale free, which might be expected on the grounds that the
gravitational force which drives the clustering is scale free.
What one would like to do is to generate a set of scaling in-
dices that describes, say, the scaling of the moments of the
galaxy counts distribution with cell size.

This was in a sense achieved by Gaztañaga (1992, 1994)
when he determined the scaling laws of restrictedN -point
correlation functions. However, one might argue that the scal-
ing of some high order correlation function has less immediate
intuitive appeal than the scaling of the moments of cell counts.

There is a formalism for describing moments of cell counts
that is commonly used when describing fractal point sets
that was adopted as a clustering descriptor by Martı́nezet al.
(1990). If it is possible to determine a set of such scaling in-
dices we can turn the argument around and say that, over the
range of scales where scaling is observed, the galaxy cluster-
ing can be represented by a fractal of a given type.

One should be aware that having a power law correlation
function is not necessarily an indication of scale invariance!
Conversely, the fractal description implies no particularun-
derlying physical process: it is merely a statement of how
moments of counts in cells behave as a function of cell size.

It is an interesting question of physics to formulate the
physical process that might generate this distribution of scal-
ing indices. This has been attempted by Jones (1999) for a
simple nonlinear gravitational clustering model.

1. A cautionary word

There is a considerable difference between using the con-
cept of fractal measure to describe a statistical process insome
particular regime and saying “this distribution is such-and-
such a fractal”. There has been a set of papers observing
scaling of a low order correlation function and jumping to
the conclusions that (a) this scaling law holds at all scales
(Sylos Labiniet al., 1998) and (b) this scaling law must be
a consequence of some exotic phenomenon (Bak and Chen,
2001).

In the first case scaling laws can only be expected to hold
over scales where nonlinear gravitational clustering has been
at work. In the linear regime we merely see a reflection
of the initial conditions: these have been revealed to us by
the COBE experiment and by other microwave background
anisotropy measurements. Indeed, it is a prediction of grav-
itational clustering theory that there should be a break in the
scaling laws that reflect the transition between the linear and

nonlinear regimes. We expect to see this as the transition to
homogeneity that must occur on large scales.

There is no way out of this: the COBE results tell us that
there will be large scales where the Universe is almost homo-
geneous.

In the second case there is absolutely no indication that any-
thing more exotic than the force of gravitation is involved in
the growth of clustering. On the contrary, the manifest suc-
cesses of gravitationalN -body experiments testify to the ade-
quacy of gravity. We are not observing a critical phenomenon,
nor are we on the verge of some marginal instability.

2. Structure from counts in cells

The first analyses of galaxy sky maps were done by divid-
ing the sky into cells and counting the cell occupancy. As
mentioned earlier, Bok (1934) and Mowbray (1938) estab-
lished the non-uniformity of the galaxy distribution by count-
ing galaxies in cells, and later Rubin (1954), Limber (1954),
and Totsuji and Kihara (1969) used the Lick catalog published
as cell counts in1◦ cells. Peebles used the unpublished higher
resolution data from the original notes of Shane and Wirta-
nen. Today, cell counts still provide an important mechanism
for analysing point distributions since they are easier to deal
with than the raw, unbinned, data.

3. Scaling properties of counts in cells

Whether we evolve a model numerically or make some an-
alytic approximation it is necessary to characterize the clus-
tering that develops in a quantitative manner. Conventionally,
this is done by presenting the two-point correlation function
ξ(r) for the mass distribution. However, by itself this does
not fully characterize the distribution of points. An important
alternative is to look at the distribution of counts in cellsas a
function of cell size.

The relationship between the probabilityPN (V ) of finding
N galaxies in a sample volumeV and the correlation func-
tions of all orders was given by White (1979). The expres-
sion is not of any real use unless all correlation functions are
known, or if there is a known relationship between them. Fry
(1984a) and Balian and Schaeffer (1989a) computed the prop-
erties of the counts-in-cells distributionPN (V ) on the hypoth-
esis that the correlation functions of all orders form a particu-
lar scaling hierarchy in which theqth order correlation func-
tion ξ(q) based on aq-agon of pointsri scales as

ξ(q)(r1, . . . , rq) = λγ(q−1)ξ(q)(λr1, . . . , λrq). (34)

The hierarchy is described by a single scaling indexγ. The
data available at the time, the CfA survey, appeared to support
both the form ofPN (V ) and this scaling hypothesis.

The special case ofP0(V ) is the “Void Probability Func-
tion” (VPF), that is the probability of a volumeV containing
zero galaxies. One can construct the probability distribution
for having a void of a given sizeV in a distribution of galaxies
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with given correlation properties (Fallet al., 1976). It is given
by White (1979)

P0(n0V ) = e−n0V a (35)

with

a = 1 +
∞∑

i=2

(−n0)
i−1

∫
widV1 . . . dVi−1. (36)

Heren0 is the mean space density of galaxies (or clusters),
andwi is thei-point correlation function of(i−1) coordinates
and is determined on linear scales by (among other things) the
power spectrum of the primordial density fluctuations. For
purely Gaussian fluctuations the sum ina is cut off beyond
the second term. However, gravitational evolution destroys
the Gaussian character of fluctuations and we are thus forced
to make anansatzregarding the relationship between second
and higher order correlation functions either through BBGKY
hierarchies (Fry, 1984b) or by pure guess.

White (1979) shows the relation betweenP0(V ) and the
cell count probabilitiesPN (V ). Different clustering mod-
els have been proposed based on particular choices for
the counts in cells (Borgani, 1993; Coles and Jones, 1991;
Saslaw, 2000). A particular —and rather popular— way of
analyzing the statistical properties of point sets is through
the possible scaling of the moments of the counts in cells
as it is explained in next section. Alternatively, one can
consider the scaling of moments of counts of neighbors
(Martı́nez and Coles, 1994).

4. Quantifying structure using multifractals

Given a model for the development of galaxy clustering we
might like to predict the resulting distribution of cell counts
since this provides a straightforward way of confronting the
model with data.

Denote byp(X ;L) the probability that some quantityx
takes on the valueX when measured in a cell of sizeL. The
distributionp can be characterized by its moments:

mq(L) =
∑

cells

p(X ;L)Xq (37)

If for some monotonic functionD(q) the moments scale with
cell sizeL as

∑

cells

p(X ;L)Xq ∝ L(q−1)D(q) (38)

the point distribution is said to have scaling properties charac-
terized by dimensionsD(q). The exponent is written in this
way since the caseq = 1 corresponds to the total number of
particles in the sample volume, which is obviously indepen-
dent of the cell size. The caseq = 2 is related to the variance
of the cell counts and to the two-point correlation function.

Eq. 38 does not describe arbitrary point distributions, butit
does describe a large and important set of such distributions
that have the property of multifractal scaling(Borgani, 1995).

It has been argued that the observed galaxy distribution and
the distribution of particles in an evolvedN -Body simulation
exhibit multifractal scaling.

There is a slightly different way of getting at the scaling ex-
ponentsD(q): via thepartition functionZ(q, r). Z(q, r) is re-
lated to theqth statistical moment of the distribution of points
as viewed in cells of sizer. Suppose the sample is drawn
from a probability distributionp(n; r) for finding n galaxies
in a randomly chosen cell of scaler. Theqth moment of the
cell occupancy is defined as

mq =

∞∑

n=0

p(n; r)nq (39)

The partition function is then defined as

Z(q, r) =
Nr

N q
mq. (40)

If ni(r) denotes the occupancy of theith cell in a partition of
the sample space intoNr cells of scaler, the sample estimate
for the partition function is

Z̄(q, r) =

Nr∑

i=1

[
ni(r)

N

]q

(41)

whereN is the total number of points (
∑
ni(r)). Note that the

ordering of the cells is not important and so the informationon
the relationship between neighbouring cells appears through
ther-dependence ofZ(q, r).

The situation of interest is where, for all values ofq,Z(q, r)
is found to scale as a power law inr:

Z(q, r) ∝ r(q−1)D(q) ∝ rτ(q), (42)

whereτ(q) is the scaling index of the partition function; see,
e.g., Martı́nezet al.(1990). The functionD(q) defined in this
way is a measure of some generalised dimension of orderq for
the distribution. This is simply a restatement of Eq. 38. Since
Eq. 40 tell usZ ∝ mq, Eq. 37 and Eq. 39 are essentially the
same.
D(q) is the logarithmic slope of the moment generating

function and of the partition function:

D(q) =
1

(q − 1)

d logmq(r)

d log r
(43)

=
1

(q − 1)

d logZ(q, r)

d log r
, q 6= 1 (44)

In computingD(q) for a sample we would therefore expect to
be able to see a reasonably straight line of data points in plot
of eithermq orZ(q, r) againstr. Several aspects of finite-size
data sample mitigate against this.

It should be noted that, technically, Eq. (42) needs be valid
only in the limit r → 0. This limit is impossible to take in the
case of a discrete sample which is dominated by shot noise
at distances much smaller than the mean particle separation.
We can only ask for scaling over some well observed range.
Likewise, we are unable to reliably compute (41) for large
q since at large values ofq the sum is dominated by whatever
happens to be the single largest cluster of points in the sample.



32

5. Intermittency

An important feature of many statistical distributions is the
phenomenon known asintermittency. Mathematically this de-
scribes a situation where the higher moments of thespatial
distribution of some quantity dominate over the lower mo-
ments in a special way: there is an anomalous ratio between
successive statistical moments as compared with a Gaussian
process. The physical manifestation of this is that the quantity
becomes spatially localised.

It is important to realize that, although we traditionally
characterize the galaxy distribution via its two-point and
three-point correlation functions, these have little or nothing
to do with the visual appearance of the clustering pattern:
voids, walls and filaments. These macroscopic features are
manifestations of the fact that the higher order moments of
the density distribution are dominant: the statistical distribu-
tion of galaxies is intermittent.

Intermittency can be quantified through a simple non-
dimensional function involving higher order statistical mo-
ments of the distribution. Consider some random function of
positionψ(x) having a non-zero mean and a statistical dis-
tribution whose moments〈ψq〉 are known . Theintermittency
exponentµq is defined in terms of the scaling properties of the
moments by

〈ψq〉
〈ψ〉q ∼

(
L

l

)µq

, (45)

wherel is some fiducial length scale. Thespatial intermit-
tency pattern is characterized by theq dependence of this ratio
of moments. It is well known that a quadraticq− dependence
of µq corresponds to a lognormal distribution ofψ (eg. Jones
et al., 1993).

Notice that〈ψq〉 is simply the moment generating function
for the processψ(x), and so the property of intermittency is a
feature of the underlying statistics.

The assumption that the individual moments scale as per
Eq. (38) guarantees the existence ofµq and in this case we
have

µq = (q − 1)D(q). (46)

Since the quantity〈ψq〉 for q = 1 has no scale dependence
(it is the mean value for the field), Eqs. (45) and (46) pro-
vide the scaling law of the moments in the case of multifractal
scaling:

〈ψq〉 ∝ l(q−1)D(q), (47)

µq is the standard notation for the intermittency exponent.µq

is also calledτ(q) in the multifractal literature; as in Eq. (42).

6. Multifractality

People are generally familiar with the notion of simple scal-
ing in which a function of one variable is independent of the
scale of the variable. A power law is the prototypical example:

if n(r) ∝ rα then rescalingr → s = λr recovers the same
power law behavior,n(r) ∝ sα. Only the amplitude and scale
of the function have changed, the shape is the same.

This kind of scaling can be expressed mathematically in
a way that is particularly relevant to the current discussion.
Suppose thatp(X,L) is the probability of measuring a value
X for some property of a system when the sample volume has
been binned into cells of sizeL. Then the propertyX is said
to exhibit “simple or finite scaling” when for some constants
β andν

p(X,L) = L−βg

(
X

Lν

)
. (48)

for some functiong(x). In the jargon of fractals we say that
the quantityX is distributed on a fractal with a single scaling
index.

Following Kadanoffet al. (1989) we can define a more
complicated kind of scaling,multifractal scaling, in which we
have

log p(X,L)

log
L

L0

= −f




log
X

X0

log
L

L0


 (49)

HereX0 andL0 can be thought of as physical units in which
the quantitiesX andL are to be measured.

It is, at first glance, not easy to comprehend what this equa-
tion is telling us about how the the distribution ofX looks!.
Define alocal scaling indexα by the equation

α =
log

X

X0

log
L

L0

. (50)

Sinceα depends on the realization of the value ofX in a cell
of scaleL, α is a possibly random, function of position. This
is why it is referred to as alocal scaling index. With this, the
probability of finding a valueX in a cell of sizeL is just

p(X,L) = p(X0, L0)

(
L

L0

)−f(α)

. (51)

We have power law scaling with cell size, but the scaling index
α is an arbitrary function of the quantityX and the cell size
L.

These two forms Eq. (48) and Eq. (49) of scaling agree only
wheng(x) is a power law andf(x) is linear.

If we look only at points such thatα in Eq. (51) has some
specific value, the distributionp(X,L) has the form (48): the
set of points withα = constant is a simple fractal of dimension
f(α). Since the set consists of a range of values ofα it can
be called amultifractal, a set of intertwined simple fractals
having different dimensions (see Fig. 16).

Note, however, this cautionary tale. A set of points dis-
tributed in power-law clusters is not necessarily a multifractal.
It is only a multifractal if the scaling indicesα are themselves
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FIG. 16 A multifractal mass distribution over a square of side L0. The distribution has been generated following a multiplicative cascade
process (Martı́nezet al., 1990). The gray scale represents the quantity of mass (X) in each pixel. Successive enlargements of two different
regions of the original plot illustrate the inhomogeneity of the mass distribution.

constant on homogeneous fractal set. Thus not all point distri-
butions are multifractals, even if they are distributed in power
law clusters. A modified version of the scaling indices for-
malism, the “weighted scaling indices”, has been recently in-
troduced (Räthet al., 2002). This method allows us to statisti-
cally quantify the local morphological properties of the galaxy
distribution.

It can be shown that the descriptions of a point set via its
statistical moments (38) or via the distribution of its scal-
ing indices (51) are totally equivalent. The functionsf(α)
andτ(q) are related to one another via a Legendre transform
(Joneset al., 1992):

τ(q) = αq − f(α), α(q) =
dτ

dq
.

VII. CLUSTERING MODELS

A. Cosmological simulations

1. Aarseth

The simplest way to explain the observed clustering is to
do nonlinear numerical simulations of the galaxy clustering
process. Although such simulations provide no deep expla-
nations for what is going on, the ability to reproduce cosmic
clustering simply by using a distribution of particles moving
under their mutual gravitational interactions is quite striking.
N -body models have served to disprove several popular hy-

potheses on the evolution of large-scale structure, and mo-
tivated to introduce new assumptions. The downfall of the
“Standard Cold Dark Matter Model” (SCDM) started withN -
body models that gave top-heavy large-scale structure and too
large pairwise velocity dispersion compared to the observa-
tions. Another example is the present controversy over cuspy
centers of dark halos, which were found in high-resolutionN -
body simulations, but which are not observed. This motivated
intensive study of Warm Dark Matter models.

The origin ofN -body experiments as we know them today



34

is the work of Sverre Aarseth at Cambridge England (Aarseth,
1978). Aarseth was a student of Fred Hoyle whose vision-
ary insight foresaw as long ago as 1965 the role that com-
puters would play in astronomical research. Aarseth not only
developed series ofN -body codes tailor-made for different
problems, he made these codes available to all and never even
asked to be named as a collaborator.

The particle-particle codes developed by Aarseth were orig-
inally aimed at simulating problems in stellar dynamics. The
particles were point masses and integrating of tight binaries
was through two-body regularization. This was adapted to the
cosmological problem by making the particles soft rather than
point-like, and so dropping the need for the time-consuming
calculation of binary encounters. The first papers using this
modified code (Aarsethet al., 1979; Gottet al., 1979) used
a mere 1000 equal mass particles and simple Poisson initial
conditions. Yet they were able to reproduce a power-law cor-
relation function for the clustering of these points.

2. Subsequent developments

During the 1970’s the application ofN -body codes to
the problem of gravitational clustering mushroomed. Faster
computers and improved numerical techniques drove particle
numbers up. Following on from that work there has been a
gradual growth in the number of particles used in simulations:
30,000 by the 1980s (Efstathiouet al., 1985), 1,000,000 by
Bertschinger and Gelb (1991) in the 1990s (see also the re-
view Bertschinger (1998)) and Couchmanet al. (1995), and
now more than 1000,000,000 by the “Virgo Consortium”
(Evrardet al., 2002).

TheN -body models cover a wide range of cosmic param-
eters and have enough particles to be used in trying to dis-
criminate the clustering properties of the different models.
We show in Fig. 17 a recent109-point lightcone simulation
of the “Virgo Consortium”, a deep wedge 40h−1Mpc thick
and 3.5h−1Gpc deep, extending toz = 4.8 (the universe was
then about one eleventh of its present age). The upper sec-
tor of the “tie” shows a picture that we hope to get from the
SDSS survey, a wider wedge reachingz = 0.25. Progressing
in time from the largest redshift until present, we see how the
structure gradually emerges. This simulation is describedin
Evrardet al. (2002).

3. Confronting with reality

Sometimes we might get the impression thatN -Body sim-
ulations are better than the real thing, as in the game of ‘Bet-
ter Than Life’ played by some of the characters in the BBC
TV programRed Dwarf. In the early 1970’s people were en-
thusiastic about a mere 1000 particles (which reproduced the
correct two-point correlation function so “it had to be right”).
They got even more enthusiastic with a million particles in the
1990’s and now it is indeed better than life, especially with
reality enhancing graphics, and ready-to-play in your Power-
Point presentation movies.
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FIG. 17 A deep simulated wedge of the Universe. Figure by Gus
Evrard and Andrzej Kudlicki, courtesy of the “Virgo Consortium”;
details in text.
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Is this enthusiasm justified?N -Body simulations are cer-
tainly a success story, and they certainly make a huge contri-
bution to our understanding of cosmology. The models are
nevertheless extremely limited simply because they lack any
real gasdynamics, and star formation which must be impor-
tant or other things that we know little about (such as mag-
netic fields, which one hopes are not important). There are
some salutary lessons, such as the effects of discreteness in
pureN -Body models (Splinteret al. (1998)), but there is lit-
tle or no response to such points from theN -Body community
at large. So maybe we should not worry and just bask in what
is after all better than life.

Up until now, most comparisons between the results of nu-
merical experiments and the data have been made simply in
terms of the galaxy clustering correlation function. Even this
is fraught with difficulty since the observed data concerns the
distribution of light whereas the numerical models most read-
ily yield the clustering properties of the gravitating matter,
most of which may well be dark and invisible. The key ingre-
dient that has to be added is star formation, and it is perhaps
true to say that attempts at doing this have so far been simple
heuristic first steps.

Another popular model result, the mass function (distribu-
tion of masses) of rich galaxy clusters, depends less on star
formation problems, but knowledge of formation of galaxies
and clusters is certainly necessary to compare the simulated
and observed mass functions.

Some measures, such as the distribution of velocity disper-
sion of galaxies and the distribution of halo masses are inde-
pendent of the mass-to-light problem, but it is only recently
that the large scale redshift surveys and surveys of real grav-
itational lenses have begun to yield the kind of data that is
required.

4. Scaling in dark matter halos

N -body simulations have revealed fascinating scaling prob-
lems of their own, mostly for smaller scales than those de-
scribed in this review. As the initial power spectrum of pertur-
bations is almost a power law for comoving scales less than
10h−1Mpc, and cold dark matter and gravitation do not bring
in additional scales, the evolution of structure on these scales,
and the final structure of objects should be similar.

As a proof of this conjecture,N -body simulations show that
dark matter halos have well-defined universal density profiles.
There is slight disagreement between the practitioners on the
exact form of this profile, but the most popular density profile
by far is that found by Navarroet al. (1996) (the NFW pro-
file):

ρ(r)/ρc =
δc

y(1 + y)2
, y = r/rs, (52)

whereρc is the critical cosmological density,δc a character-
istic density contrast, andrs is a scale radius. The masses
of N -body halos are usually defined as that contained within
the “virial radius” r200, the radius of a sphere of mean den-
sity contrast 200. Then the only parameter describing the

NFW profile for a halo of given mass is the concentration ratio
c = r200/rs.

There have been many studies with differing conclusions
on the exact properties of dark halo profiles; we shall refer the
reader to the latest accurate analysis (Navarroet al., 2004).
The main difficulty is in eliminating a multitude of possible
numerical artifacts, but nobody seems to doubt that universal
profiles exist. Concentration ratios depend on the mass of a
halo, but this seems to be the main difference.

In connection with observations, the main problem has been
the existence of a density cusp in the center of a halo, and
the value for the logarithmic slope. As this demands probing
the very central regions of galaxy clusters and galaxies, the
problem is still open.

5. Scaling in galaxy properties

While the notion of the universal density profile arose
from N -body simulations, other scaling laws for cluster-
and galaxy-sized objects have observational origin. The
best established law is called the Fundamental Plane
(FP). This scaling law was discovered simultaneously by
Djorgovski and Davis (1987) and Dressleret al. (1987). It is
rather complex, meaning that elliptical and S0 (early-type)
galaxies form a plane in the 3-space of(logL, log rc, log σ),
whereL is the total luminosity of the galaxy,rc is its charac-
teristic radius andσ2 its stellar velocity dispersion. (AsL and
rc can be combined to give〈I〉c, the mean surface brightness
of the galaxy, the latter is frequently chosen as one of the three
variables.) These properties of elliptical galaxies are tightly
correlated, and are thought to describe the process of theirfor-
mation. Similar correlations have been discovered for galaxy
clusters (Lanzoniet al., 2004). Their existence demands spe-
cial scaling for the mass-luminosity ratio of cluster galaxies
with the mass of the cluster.

As the fundamental plane relation contains the size of
a galaxy, it can be used for estimating the distance to a
galaxy. Having a distance estimate, we can disentangle the
proper velocity of a galaxy from that of the Hubble flow.
Dressleret al. (1987) (“the Seven Samurai”) used the newly
discovered fundamental plane relation to derive for the first
time the nearby large-scale galaxy velocity field. In this way
the “Great Attractor”, a large supercluster complex partlyhid-
den by the Milky Way, was predicted by Liljeet al. (1986)
from a relatively local sample of galaxies and discovered by
Lynden-Bellet al. (1988) using a larger sample of elliptical
galaxies. A recent example of a similar project is the NFP
Survey (NOAO Fundamental Plane Survey), a survey of 100
rich X-ray selected clusters within200h−1, where the funda-
mental plane of early-type cluster galaxies is used to deter-
mine cluster distances and, therefore, large scale clusterflows
(Nelanet al. (2003)).

When talking about scaling laws at galaxy and clus-
ter scales, one cannot bypass the well-known Tully-
Fisher (Tully and Fisher, 1977) and Faber-Jackson
(Faber and Jackson, 1976) scalings, which declare that
the luminosities (or masses) of galaxies are tightly correlated
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with their velocity spread. These scalings can be written as:

L ∼ V a
max, Tully-Fisher, spiral galaxies,

L ∼ σa, Faber-Jackson, elliptical galaxies,

where Vmax is the maximum rotation velocity of a spiral
galaxy, andσ2 is the stellar velocity dispersion of an ellipti-
cal galaxy (in fact, the fundamental plane relation previously
explained is a refinement of the Faber-Jackson relation). The
power-law exponenta ≈ 4, which can be easily explained, if
there are no dark matter halos around galaxies, and is difficult
to explain for the CDM paradigm. This difficulty has been
of strong support for the MOND theory (Milgrom, 1983).
This theory substitutes the Newtonian theory in the limit of
small accelerations by an empirical formula, which explains
the flat rotating curves of galaxies without invoking the no-
tion of dark matter, and explains naturally the Tully-Fisher
scaling. MOND does not fit into the present picture of funda-
mental physics, as the CDM assumption does, but it has found
a number of followers. A critical (but well-meant) assessment
of MOND can be found in a recent review by Binney (2003).

B. Statistical models

The earliest models of galaxy clustering were based on
Charlier’s simple notion that the system of galaxies formed
some kind of simple hierarchy. There was little or no obser-
vational basis for such models. Later on, in the 1950’s when
galaxy clusters were seen as objects in their own right, the
clustering process was seen as aggregates of points (the clus-
ters) scattered randomly in an otherwise uniform background.

It was not until the systematic analysis of galaxy catalogs
and the discovery of that the two-point clustering correlation
function is a power law that the distribution of galaxies was
seen as being a consequence of gravitational aggregation on
all scales. Galaxy clustering was a general phenomenon and
rich galaxy clusters were seen as something rather rare and
special, but nevertheless a part of the overall clustering pro-
cess.

1. Neyman-Scott processes

One of the most important of the early attempts to model
the galaxy clustering process came from the Berkeley statis-
ticians Neyman and Scott (1952). They sought to model the
distribution of galaxy clusters as a random spatial superpo-
sition of groups of galaxies of varying size. The individual
groups were to have their galaxies distributed in a Gaussian
density distribution and they found evidence of superclusters
(Neymanet al., 1953).

Whereas the model in that early form had limited applica-
tion for cosmology, the Neyman-Scott process became a dis-
cipline in its own right. It remains to be seen whether a gen-
eralization of these processes might be resurrected for present
day clustering studies. A recent program in a similar vein is
called the halo model; we shall describe it below.

2. Simple fractal models

There has for a long time been a strong interest in the the-
ory of random processes which has had a strong impact on
many fields of physics (see for example the collection of clas-
sic papers by Wax (1954)). Among the simplest of random
processes is the so-called “Random Walk” in which a particle
continually moves a random distance in a random direction
subject to a set of simple rules. The collection of points at
which the particle stops before moving on has a distribution
that can often be calculated.

Many random walks result in distributions of points that
are clustered. The character of the clustering depends on the
conditions of the walk. It did not take long before someone
suggested that the galaxy distribution could be modeled by a
random walk (Fournier d’Albe, 1907; Mandelbrot, 1975).

What was of interest in these random walk models is that
they could be characterized by a single parameter: a power
law index that related to the mean density profile of the point
distribution.

It should be noted that these simple fractal models have lit-
tle direct interest in cosmology: they are merely particularly
simple examples of clustering processes among many. In par-
ticular they do not show the transition to cosmic homogeneity
on large scales and have no relevant dynamical content.

That is not to say that one cannot construct relevant fractal
models. By ’relevant’ we mean that the model should at least
be consistent with or derived from some dynamical theory for
the clustering: anything else is merely descriptive. Some rel-
evant ones are described below.

3. More complex clustering models

It was clear at an early stage that the two-point correlation
function for galaxy clustering was by itself an incomplete de-
scriptor of the galaxy distribution: quite different pointdistri-
butions can have the same two-point correlation function.

The obvious step was to compute 3-point and higher order
correlation functions and to seek a more complete descrip-
tion of the clustering that way. The key discovery was that
the higher order functions could all be expressed as sums of
products of two-point correlation functions alone. This lead
to a quest to build clustering hierarchies that embodied these
important scaling properties.

It was evident at the outset that such models would have
to be more sophisticated than the simple fractal hierarchy of
Mandelbrot. The first such model was the clustering hierar-
chy (a bounded fractal) of Soneira and Peebles (1978) . This
model produced a galaxy distribution looking remarkably like
the observed galaxy distribution.

The observation that the galaxy distribution was a cluster-
ing hierarchy in which all orders of correlation function could
be related to the basic two-point function could be described
in another way. Instead of using just one power law index, as
in a simple fractal, to describe the clustering process, it might
be possible to use a distribution of power laws. This gave
rise to the multifractal model of Joneset al. (1988) in which
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FIG. 18 The scaling of the two-point correlation function isshown
for different subsamples of a Voronoi vertices model. The subsam-
ples have been selected according to given “richness” criterium that
mimic that of the real galaxy cluters, from van de Weygaert (2003).

the distribution could be generated by a set of simple scaling
laws.

4. Voronoi tesselations

The Voronoi tessellation, and the related Delaunay tessella-
tion, provide well-known tools for investigations into cluster-
ing in point processes. The construction of such a tessellation
starts from a set of seed points distributed randomly accord-
ing to some rule (often Poisson distributed). A set of walls is
constructed around each point defining a closed polyhedron.
Every point in the polyhedron has the original seed point as
its nearest point among the set of all seeds.

The polyhedron effectively defines a volume of influence
for each seed point. The vertices of these polyhedra define a
set of points that is also randomly distributed, but in a way that
is quite different from the distribution of the original seeds.

These tessellations were introduced into astronomy by
Icke and van de Weygaert (1987) as a model for the galaxy
clustering process. Detailed description of two- dimensional
Voronoi tessellations can be found in Ripley (1981). The best
sources of information on 3-dimensional tessellations in gen-
eral and in cosmology are van de Weygaert (1991, 2002).

What is remarkable is that the two point correlation func-
tion for the Voronoi Vertices generated from Poisson dis-
tributed seeds is a power law that is close to the observed
power law of the two-point galaxy correlation function (see
Fig. 18). This tessellation thereby provides a possible model
for the observed galaxy distribution.

Galaxies appear to form on filaments and sheets that sur-

round void regions. If in the Voronoi model we regard
the original seeds as the centers of expansion of cosmic
voids, this model becomes a dynamically plausible non-
linear model for the formation large-scale structure forma-
tion (van de Weygaert and Icke, 1989). The resulting galaxy
distribution has many interesting features that seem to ac-
cord with the distribution of galaxies in redshift surveys
(Goldwirthet al., 1995).

5. Lognormal models and the like

A rather simplistic yet effective model was presented by
Coles and Jones (1991) who postulated that the originally
Gaussian density field would evolve into a log-normally dis-
tributed density field. The motivation for this was simply
that the hydrodynamic continuity equation implied thatlog ρ
would be normally distributed if the velocity field remained
Gaussian. The counts in cells of various size forN -body
models and for catalogs of galaxies are indeed approximately
log-normal for a variety of cell volumes.

Clearly, the contours where the density equaled the mean
would remain fixed: there is no dynamics in such a model.
Such a naive approach could never reproduce the structure we
see today.

There are several relatively simple generalizations of
the lognormal distribution, notably the Poisson lognor-
mal (Borgani, 1993) and the negative binomial distribution
(Betancort-Rijo, 2000; Elizalde and Gaztañaga, 1992).

6. Saslaw-Sheth models

A novel set of distribution functions was introduced by
Saslaw and Sheth (1993) and Sheth and Saslaw (1996) de-
rived from a thermodynamic description of the clustering pro-
cess. The distribution functions describe the probabilitythat a
randomly chosen sample volume contains preciselyN galax-
ies. There is only one free parameter in terms of which the
count distribution for arbitrary values of the volume can be
fitted. The resulting fit is quite remarkable for bothN -body
experiments and for the data sets that have been analysed
(Saslaw and Crane, 1991).

The distribution function has some interesting scaling prop-
erties that are discussed in Saslaw (2000).

Given the quality of the fit to the data, this is clearly a model
in which the underlying physical motivation deserves more
attention.

7. Balian and Shaeffer

An alternative approach is to create a model for
the evolution some statistically important quantities.
Balian and Schaeffer (1989a) selected the Void Probability
Function: the probability that a volumeV chosen at random
would contain no points (galaxies). This can be generalized
to discuss the probability distributions of volumes containing
1, 2 orN galaxies.
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Balian and Shaeffer were able to express many of the de-
tails of the clustering hierarchy in terms of the Void Prob-
ability function, in particular they found a bifractal behav-
ior for the galaxy distribution (Balian and Schaeffer, 1989b).
Scaling of voids as a test of fractality has been studied by
Gaite and Manrubia (2002).

The mass (luminosity) function was also derived from sim-
ilar scaling arguments by Bernardeau and Schaeffer (1991),
who found the scaling between the galaxy and cluster lumi-
nosity functions to support the theory of Balian and Schaeffer
(1989b).

Vergassolaet al. (1994) attacked the problem of gravita-
tional evolution of hierarchical (fractal) initial conditions.
They choose the adhesion approximation to describe the
gravitational dynamics and demonstrated (with much greater
rigour than usual in cosmological papers) that the mass func-
tion has two scaling regimes, defined by the scaling exponent
of the initial velocity field. This is the only paper that explic-
itly describes the evolution of structure on all, even infinitesi-
mally small scales.

C. Dynamical models

1. Stable clustering models

The earliest attempt to explain the apparent power law na-
ture of the two point galaxy correlation function was due to
Peebles (1974a,b) and to Gott and Rees (1975). These mod-
els were based on the simple idea that a succession of scales
would collapse out of the expanding background and then set-
tle into some kind of virial equilibrium. The input data for
the model was a power law spectrum of primordial imhomo-
geneities and the output was a power law correlation function
on those scales that had achieved virial equilibrium. There
would, according to this model, be another power law on
larger scales that had not yet achieved virial equilibrium.

For a primordial spectrum of the formP(k) ∝ k−n the
slope of the two-point galaxy correlation function would be
γ = (3n + 9)/(n + 5), which forn = 0 gave a respectable
γ = 1.8, whilen = 1 gave an almost respectableγ = 2.

The apparent success of such an elementary model gave
great impetus to the field: we saw something we had some
hope of understanding. However, there were several funda-
mental flaws in the underlying assumptions, not the least of
which was that the observed clustering power law extended to
such large scales that virial equilibrium was out of the ques-
tion. There were also complications arising out of the use of
spherical collapse models for calculating densities.

Addressing these problems gave rise to a plethora of papers
on this subject, too numerous to detail here. A fine modern
attempt at this is Sheth and Tormen (1999). The subject has
since evolved into some of the more sophisticated models for
the evolution of large scale structure that are discussed later
(e.g. Sheth and van de Weygaert (2004)).

2. BBGKY hierarchy

Cosmic structure grows by the action of gravitational forces
on finite amplitude initial density fluctuations with a given
power spectrum. We see these fluctuations in the COBE
anisotropy maps and we believe they are Gaussian. This
means that the initial conditions are described as a random
process with a given two-point correlation function. Thereare
no other higher order correlations: these must grow as a con-
sequence of dynamical processes.

Given that, it is natural to try to model the initial
growth of the clustering via a BBGKY hierarchy of equa-
tions which describe the growth of the higher order cor-
relation functions. The first attempt in this direction
was made by Fall and Severne (1976) though the paper by
Davis and Peebles (1977) has certainly been more influential.
The full BBGKY theory of structure formation in cosmology
is described in Peebles (1980) and in a series of papers by
Fry (Fry, 1982, 1984a). Fry (1985) predicted the 1-point den-
sity distribution function in the BBGKY theory. He also de-
veloped the perturbation theory of structure formation (Fry,
1984b), which has become popular again (see the recent re-
view by Bernardeauet al. (2002)).

In the perturbative approach, the main question is how
many orders of perturbation theory are required to give sen-
sible results in the nonlinear regime.

3. Pancake and adhesion models

Very early in the study of clustering, Zel’dovich (1970) pre-
sented a remarkably simple, yet effective, model for the evo-
lution of galaxy clustering. In that model, the gravitational
potential in which the galaxies moved was considered to be
known at all times in terms of the initial conditions. The par-
ticles (galaxies) then moved kinematically in this field without
modifying it. They were in effect test particles with no self-
gravity. The equations of motion were arranged so as to give
the correct initial, small amplitude, linear approximation re-
sult.

The Zel’dovich model provided a first glimpse of the pos-
sible growth of large scale cosmic structure and led to the
prediction that the galaxy distribution would consist of nar-
row filaments of galaxies surrounding large voids. Nothing
of the sort had been observed at the time, but striking con-
firmation was later achieved by the CfA-II Slice sample of
de Lapparentet al. (1986) whose redshift survey revealed for
the first time remarkable structures of the kind predicted by
Zel’dovich.

In order to make further progress it was necessary to cure
one problem with the Zel’dovich model: the filaments formed
at one specific instance and then dissolved. The dissolutionof
the filaments happened because there was nothing to bind the
particles to the filaments: after the particles entered a filament,
they left. The cure was simple: make the particles sticky. This
gave rise to a new series of models, referred to a “adhesion
models” (Gurbatovet al., 1989a; Kofmanet al., 1992). They
were based around the three dimensional Burgers equation.
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In these models structure formed and once it formed it stayed
put: the lack of self gravity within these models prevented
taking them any further.

It was, however, possible to compute the scaling indices
for various physical quantities in the adhesion model. This
was achieved by Jones (1999) using path integrals to solve the
relevant version of the Burgers equation.

4. Renormalization group

Peebles (1985) first recognized that power law clustering
might be described by a renormalization group approach in
which each part of the Universe behaves as a rescaled version
of the large part of the Universe in which it is embedded. This
allows for a recursive method of generating cosmic structure,
the outcome of which is a power law correlation function that
is consistent with the dynamics of the clustering process.

Peebles (1985) used this approach for numerical simula-
tions of the evolution of structure, hoping that the renormal-
ization approach would complement the usualN -body meth-
ods, improving the usually insufficient spatial resolutionand
helping to get rid of the transients caused by imperfect ini-
tial conditions. The first numerical renormalization modelhad
only 1000 particles and suffered from serious shot noise.

This was later repeated on a much larger scale by
Couchman and Peebles (1998). As before, they found that the
renormalization solution produces a stable correlation func-
tion. However, the spatial structures generated by the renor-
malization algorithm differed from those obtained by the con-
ventional test simulation. The relative velocity dispersion was
smaller, and the mass distribution of groups was different.As
a rule, the renormalization solution described small scales bet-
ter, and the conventional solution was a better descriptionof
the large-scale structure. As both approaches, the conven-
tional and the renormalization procedures, suffer from nu-
merical difficulties, the question of a true simulation remains
open.

5. The halo model and PThalo model

The early statistical model (Neyman and Scott, 1952)
for the galaxy distribution assumed Poissonian distribution
of clusters of galaxies. This model was resurrected by
Scherrer and Bertschinger (1991) and has found wide pop-
ularity in recent years (see the review by Cooray and Sheth
(2002)). In its present incarnation, the halo model describes
nonlinear structures as virialized dark matter halos of different
mass, placing them in space according to the linear large-scale
density field that is completely described by the initial power
spectrum. Such substitution is shown in Fig. 19, where the
exact nonlinear model matter distribution is compared with
its halo model representation.

Once the model for dark matter distribution has been cre-
ated, the halos can be populated by galaxies, following dif-
ferent recipes. This approach has been surprisingly fruitful,
allowing calculation of the correlation functions and power

FIG. 19 The halo model. The simulated dark matter distribution
(left panel) and its halo model (right panel), from Cooray and Sheth
(2002).

spectra, prediction of gravitational lensing effects, etc. This
also tells us that low-order (or any-order) correlations cannot
be the final truth, as the two panels in Fig. 19 are manifestly
different.

The success of the (statistical) halo model motivated a
new dynamical model to describe the evolution of structure
(Scoccimarro and Sheth, 2002). The PTHalos formalism, as
it is called, creates the large-scale structure using a second
order Lagrangian perturbation theory (PT) to derive the posi-
tions and velocities of particles, and collects then particles into
virialized halos, just as in the halo model. As this approachis
much faster than the conventionalN -body simulations, it can
be used to sample large parameter spaces – a necessary re-
quirement for application of maximum likelihood methods.

6. More advanced models

Two analytic models in the spirit of the Press-Schechter
density patch model are particuarly noteworthy: the
“Peak Patch” model of Bond and Myers (Bond and Myers,
1996a,b,c) and the very recent “Void Hierarchy” model of
Sheth and van de Weygaert (2004).

Both of these models attempt to model the evolution of
structure by breaking down the structure into elements whose
individual evolution is understood in terms of a relativelysim-
ple model. The overall picture is then synthesized by combin-
ing these elements according to some recipe. This last syn-
thesis step is in both cases highly complex, but it is this last
step that extends these works far beyond other like-minded
approaches and that lends these models their high degree of
credibility.

The Peak Patch approach is to look at density enhance-
ments, while the Void Hierarchy approach focusses on the
density deficits that are likely to become voids or are em-
bedded in regions that will become overdensities. It some-
what surprising that Peak Patch did not stimulate further work
since, despite its complexity, it is obviously a good way to go
if one wishes to understand the evolution of denser structures.

The Void Hierarchy approach seems to be particularly
strong when it comes to explaining how large scale structure
has evolved: it views the evolution of large scale structureas
being dominated by a complex hierarchy of voids expanding
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to push matter around and so organize it into the observe large
scale structures. At any cosmic epoch the voids have a size
distribution which is well-peaked about a characteristic void
size which evolves self-similarly in time.

D. Hydrodynamic models for clustering

Let the physical position of a particle at some (Newtonian)
time t ber. It is useful to rescale this by the background scale
factora(t) and label the particle with its comoving coordinate

x =
1

a(t)
r (53)

relative to the uniform background. Formation of structure
means that viewed from a frame that is co-expanding with
the background, particles are moving and the values of their
coordinatesx are changing in time.

There is another coordinate system that can be used: the La-
grangian coordinateq of each particle.q can be taken to be
the value of the comoving coordinatex at some fiducial time,
usually att = 0 (the Big Bang) or a little later, and so re-
mains fixed for each particle. The transformation between the
Lagrangian coordinateq and the proper (Eulerian) coordinate
x is achieved via the equations of motion (see for example
Buchert (1992)).

In a homogeneous universe, the particle velocity in phys-
ical coordinates iṡr = Hr, whereH = ȧ/a is the Hubble
expansion rate. In this situation the comoving coordinatex of
a particle is fixed and there is no peculiar velocity relativeto
the co-expanding background coordinate system.

In an inhomogeneous universe, the displacement of the par-
ticles relative to the co-expanding background coordinatesys-
tem,x is time dependent. The velocity relative to these coor-
dinates is jusṫx, and this translates back to a physical “pecu-
liar” velocity v = aẋ. We can therefore write the total phys-
ical velocity of the particle (including the cosmic expansion)
as

V = v +Hr, v = aẋ,

where here the dot derivative is the simple time derivative
taken at a fixed place in the co-expanding frame.

1. Cosmological gas dynamics

As usual, we work in the standard comoving coordinates
{x} defined by rescaling the physical coordinates{r} by the
cosmic scale factora(t), as described above.

The motion of a particle is governed by the equations
of momentum conservation, the continuity equation and the
Poisson equation. Expressed relative to the comoving coordi-
nate frame and in terms of density fluctuationδ relative to the
mean densityρ0(t):

δ(x, t) =
ρ(x, t) − ρ0(t)

ρ0(t)
, (54)

these equations are (Munshi and Starobinsky (1994); Peebles
(1980)):

∂

∂t
(av) + (v.∇)v = −∂φ

∂x
, momentum conservation,

(55)

∂δ

∂t
+

1

a
∇.[(1 + δ)v] = 0, continuity, (56)

∂2φ

∂x2
= 4πGρ0a

2δ(x, t), Poisson. (57)

Hereφ(x, t) is the part of the gravitational potential field in-
duced by the fluctuating part of the matter densityρ(x, t) rel-
ative to the mean cosmic densitȳρ(t). G is the Newtonian
gravitational constant.

Note that here the source of the gravitational potential is the
same density fluctuations that drive the motion of the material
with velocityu(x).

2. The cosmic Bernoulli equation

It can be assumed throughout that the cosmic flow is ini-
tially irrotational; this is justified by the fact that rotational
modes decay during the initial growth of structure or from
CMB data. This assumption makes it possible to take the next
step of introducing a velocity potential that completely de-
scribes the fluid flow and then going on to get the first integral
of the momentum equation: the Bernoulli equation.

Introduce a velocity potentialV such that

v = −∇V/a, (58)

Recalling that the gradient operator is taken with respect to the
comovingx coordinates, we see thatV is the usual velocity
potential for the real flow fieldv. The first integral of the
momentum equation becomes

∂V
∂t

− 1

2a2
(∇V)2 = φ, (59)

This is referred to as the Bernoulli equation, though in fluid
mechanics we usually find an additional term: the enthalpy
w defined by∇w = (∇p)/ρ. This vanishes in the post-
recombination cosmological context by virtue of neglecting
pressure gradients.

As a matter of interest, for a general (non-potential) flow
we have an integral of the momentum equation that is a con-
stant only along flow streamlines. Different streamlines can
have different values for this constant. It is only in the case of
potential flow such as is supposed here that the constant must
be the same on all streamlines.

The Bernoulli equation (59) is a simple expression of the
way in which the velocity potential (described byV) is driven
by a gravitational potentialφ in a uniform expanding back-
ground (described by the expansion scale factora(t)). De-
spite its simplicity it has several drawbacks, the most serious
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of which is the fact that an additional equation (the Poisson
equation in the form (57)) or simplifying assumption is needed
to determine the spatially fluctuating gravitational potential
φ(x).

Another drawback of the Bernoulli equation as presented
here is that it describes a dissipationless flow: there is no vis-
cosity. Dissipation, be it viscosity or thermal energy transfer,
is an essential ingredient of any theory of galaxy formation
since there has to be a mechanism for allowing the growth of
extreme density contrasts. Galaxy formation is not an adia-
batic process!

A difficulty that presents itself with Eq. (59) is that the term
involving the spatial derivative of the velocity potential, ∇V
is multiplied by a function of timea(t). This can be removed
by a further transformation of the velocity potential:

U =
V
a2ȧ

(60)

Now, the potentialU is related to the comoving peculiar veloc-
ity field u by u = −aȧ∇U . In terms of this rescaled potential
the Bernoulli equation takes on a form that is more familiar in
hydrodynamics:

∂U
∂a

− 1

2
(∇U)2 =

3

2a
(Aφ − U). (61)

Here we have used the scale factora ∝ t2/3 as the time
variable, and noted thatA = −(3ȧa2)−1 = constant in
an Einstein–de Sitter Universe (Kofman and Shandarin, 1990,
1988) (NB.: in these papers the velocity potential has the op-
posite sign from ours).

3. Zel’dovich approximation

The Zel’dovich approximation (Shandarin and Zel’dovich
(1989); Zel’dovich (1970)) to the cosmic fluid flow was
a remarkable first try at describing the appearance of the
large scale structure of the Universe in terms of struc-
tures referred to as “pancakes” and “filaments” that surround
“voids”. Indeed, one might say that through this approxi-
mation Zel’dovich predicted the existence of the structures
mapped later by de Lapparentet al. (1986).

The Zel’dovich approximation is recovered from the last
variant of the Bernoulli equation above (61) by settingAφ =
−U . This latter relationship replaces the Poisson equation in
that approximation.

While predicting the qualitative features of large scale
structure, the Zel’dovich approximation had a number of
shortcomings, notable among which was the fact that particles
passed through the pancakes rather than getting stopped there
and accumulating into substructures (galaxies and groups).

The last decade has seen a host of improvements
to the basic prescription which are nicely reviewed by
Buchert (1996); Susperregi and Buchert (1997) and by
Sahni and Coles (1995). These improvements largely fall into
three categories: “adhesion” schemes in which particle or-
bits are prevented from crossing by introducing an artificial

viscosity, various “fixup” schemes in which simplifying as-
sumptions are made about the gravitational potential or the
power spectrum and “nonlinear” schemes in which the basic
Zel’dovich approximation is taken to a higher order. We defer
the discussion of the “adhesion approach” to the next section.

4. Super-Zel’dovich approximations

Several recipes have been given for improving on the
Zel’dovich approximation in its original nondissipative form
without introducing anad hocartificial viscosity. In these
approximations, the Poisson equation is replaced with some
ansatzregarding the gravitational potential: it can be set, for
example, equal to a constant, or equal to the velocity potential.

Matarreseet al. (1992); Melottet al. (1994a) introduced a
variant called the “Frozen Flow Approximation” (FFA) in
which the peculiar velocity field at any point fixed in the back-
ground is frozen at its original value: the flow is “steady” in
the comoving frame. (The initial peculiar velocity field is cho-
sen self-consistently with the fluctuating potential and the ini-
tial density field).

In another approach Bagla and Padmanabhan (1994, 1995)
and Brainerdet al. (1993) assume that the fluctuating part of
the gravitational potential at a point expanding with the back-
ground remains constant (as it does in linear theory). This is
referred to as the “Frozen Potential Approximation” (FPA) or
“Linearly Evolving Potential” (LEP). The motivation for this
as a nonlinear extension arises from some special cases where
nonlinear calculations have been done and fromN -body sim-
ulations in which the potential is seen not to change much in
comparison with other quantities.

Munshi and Starobinsky (1994) point out that the standard
Zel’dovich approximation is equivalent to the assumption that
V = φt, while the Frozen Flow approximation isV = φ0t and
the Frozen (or Linear) Potential approximation isΦ = φ0.
In any case, this last equation provides an equation for the
velocity potential given a model for the gravitational potential.

More recently, we have seen the “Truncated” Zel’dovich
Approximation (Coleset al., 1993; Melottet al., 1994b),
the “Optimized” Zel’dovich Approximation (Melottet al.,
1994c) and the “Completed” Zel’dovich Approximation
(Betancort-Rijo and López-Corredoira, 2000) . These corre-
late remarkably well with fullN -body simulations.

5. Nonlinear enhancements

Various authors have presented nonlinear versions
of the Zel’dovich approximation. Gramann (1993);
Susperregi and Buchert (1997) used a second order ex-
tension, while Buchert (1994) presented a perturbation
scheme that is correct to third order in small quantities.

E. Nonlinear dynamic models

The Zel’dovich approximation and its fixups are La-
grangian descriptions of the cosmic fluid flow. Their impor-
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tance lies in the fact that they capture the gross elements ofthe
nonlinear clustering while their weakness lies in their side-
stepping any real gravitational forces. Consequently, they
have been used mainly as short-cut simulators of the evolu-
tion of large scale structure. Little analytic work has been
done using these approaches.

It is the Lagrangian nature of those equations that makes
it difficult to perform analytic calculations that might lead to
an understanding of how, say, the two-point correlation func-
tion evolves with time. In order to make progress on an an-
alytic front it is necessary to cast the equations into analyti-
cally tractable Eulerian forms. The basis for this was provided
by the important “adhesion approximation” of Gurbatovet al.
(1989b), though in the form presented there it was only ever
used for numerical simulations.

1. Adhesion Approximations

The paper by Gurbatovet al. (1989b) provided a version of
the Zel’dovich approximation in which particle shell-crossing
was inhibited: the material was stopped as it approached the
pancakes by an artificial viscosity introduced on a fairly ad
hoc basis into the equations. The underlying equation in this
approximation turns out to be the three dimensional Burg-
ers Equation, and so the approach has the virtues of being
simple to use and very easy to compute (see for example
Weinberg and Gunn (1990)).

The adhesion approximation is in a sense a linear approx-
imation: it is allowed to evolve into the nonlinear regime in
the expectation that its behavior will mimic the nonlinear be-
havior. This shortcoming has recently been tackled by Menci
(2002).

Just as the simple Zel’dovich approximation tends to diffuse
the pancakes, the adhesion approximation ensures that asymp-
totically they are infinitely thin, and that the particle velocity
perpendicular to these surfaces is zero. The slowing down of
the particles as they approach the pancakes, the notion of “vis-
cosity” in dark matter, and the lack of a full treatment of the
gravitational field fluctuations leaves open some questionsas
to just how good the approximation is for studying, say, large
scale cosmic flow fields.

It is remarkable how much can be done within the frame-
work of the adhesion model. Babul and Starkman (1992) had
introduced structure functions based on the moments of in-
ertia of the local particle distribution, to describe the local
shape of the matter distribution. They showed this to be a
useful descriptor of the topology of the galaxy distribution.
The evolution of these structure functions was studied ana-
lytically by Sathyaprakashet al. (1996). They analyzed the
emergence of large scale filamentary and pancake-like struc-
tures and showed how this might lead to a large scale coher-
ence in the galaxy distribution. Sahniet al. (1994) discussed
the evolution of voids using the adhesion approximation. In
their model, ever larger voids emerge at successive epochs,
eventually leaving the largest voids. According to this model,
voids contain some internal filamentary and pancake-like sub-
structures that dissolve as the voids get older.

2. The Random Heat Equation

The random heat equation was introduced into the subject
of cosmic structure evolution by Jones (1999). The Bernoulli
equation (59), modified by introducing viscosity (see Jones
(1999)), can be linearised by means of the Hopf-Cole transfor-
mation of variables in which we replace the velocity potential
V with a logarithmic velocity potentialψ:

V = −2ν lnψ (62)

If the gravitational potential is rescaled with the viscosity:

φ(x) = 2νǫ(x), (63)

Equation (59) with the viscosity term reduces to

∂ψ

∂t
=

1

a2
ν
∂2ψ

∂x2
+ ǫ(x)ψ. (64)

Again, it is worth stressing thatν can depend on time, but we
see that invoking a time dependence inν means that the new
potentialǫ(x) gains an explicit time dependence.

This time dependence can be masked so as to give the ran-
dom heat equation in its standard form:

∂ψ

∂t
= ν

∂2ψ

∂x2
+ ǫ(x)ψ. (65)

It is now to be understood that eitherν or ǫ (or both) may con-
tain an explicit time dependence through a multiplying factor.

The renormalised potential fieldǫ(x) is considered as given
and the task is to find the potentialψ. This equation is famil-
iar in slightly different forms in a variety of fields of physics
where it has a variety of names: the Anderson Model, the
Landau-Ginzburg equation, and with a complex time it is sim-
ply the Schrodinger Equation of quantum mechanics. We may
hope to benefit from the vast knowledge that already exists
about this equation.

If we take the limitν → 0 and use the definitionV =
−2ν lnψ, we are led straight back to the familiar looking dy-
namical equation

∂(av)

∂t
= ∇φ,

telling us that the gravitational potential drives the fluctuating
velocity field. Despite the circuitous route used in deriving the
random heat equation, it still remains very close to the funda-
mental physical process that drives the growth of the large
scale structure.

3. The Solution of the RH equation

We can formally solve random heat equation following
the discussion of Brax (1992) (but see also Zel’dovichet al.
(1985, 1987)). The solution is expressed in terms of path in-
tegrals as was first given by Feynman and Kac:

ψ(x, t) =

∫
K(x, t,x0, 0)ψ(x0, 0)dx0,
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where the propagatorK is

K(x1, t,x0, 0) =

∫
x(t)=x1

x(0)=x0

eS(x(τ),τ)D[x(τ)] (66)

and

S(x(τ), τ) = −
∫ τ

0

[
1

4ν

∣∣∣∣
dx(τ ′)

dτ ′

∣∣∣∣
2

− ǫ(x(τ ′), τ ′)

]
dτ ′

is the action. This is just the “free particle” action with an
additional contribution to the action from the potentialǫ(x, t)
evaluated at appropriate places along the various paths that
contribute to the solution (Brax (1992)). The integrand is just
the Lagrangian for a particle moving in a potentialǫ(x, t).

What is important here is that the potentialǫ(x, t) con-
tributes to the sum over all paths through an exponential. Thus
the additive contributions from each part of the relevant paths
results in a multiplicative contribution to the final solution. It
is this which creates the lognormal distribution inψ(x, t) if
the potentialǫ(x, t) in normally distributed.

4. Statistical Moments

Zel’dovichet al. (1985, 1987) explain the solutionψ(x, t)
in straightforward terms. They point out that, of all the
paths that contribute to the integral, one might expect the
dominant contribution to come from those paths that pass
rapidly through high maxima of this potential. However, there
are rarer paths (optimal trajectories) that are traversed more
quickly and so probe a greater volume that can encounter still
larger (and rarer) maxima of the potential. These latter paths
in fact make the main contribution to the integral. This is pre-
sented rigorously by Gärtner and Molchanov (1992).

The outcome of the discussion is that the moments of the
distribution ofψ scale as

〈ψq〉 ∝ exp((qǭ+
1

2
q2σ2)t) (67)

whereǭ andσ are the mean and variance of the processǫ. This
gives intermittency indices

µq ∝ (q2 − q) (68)

(Brax, 1992), where the constant of proportionality is deter-
mined by the dimensional characteristics of the random pro-
cessǫ(x). Thus the solution of the random heat equation
is lognormally distributed for a Gaussian fluctuating gravita-
tional potential.

In view of the Hopf-Cole transformation, the velocity po-
tential is in fact the logarithm of the pseudo-potentialψ:
V = −2ν lnψ. Sinceψ is lognormally distributed, it fol-
lows thatV is normally distributed and we can compute its
rms error as

σV ∝ σφt
1

2 (69)

Remember that the variance of the gravitational potential fluc-
tuationsσ2

φ may itself have a time dependence. This is one of
the things that was assumed as given and which in the single-
component model is given by the approximation used to elim-
inate the Poisson equation.

5. The Schrodinger Equation

Starting with the coupled Klein-Gordon and Einstein field
equations, Widrow and Kaiser (1993) produced an ansatz for
replacing the Euler and continuity equations of hydrodynam-
ics with a Schrodinger equation in the form

iH∂Ψ

∂t
= −H2

2m

∂2Ψ

∂x2
+mφ(x)Ψ. (70)

(see also Speigel (1980)).H here is taken to be an adjustable
parameter controlling spatial resolution. In this model the
gravitational potential and density fields are given by

∂2φ

∂x2
= 4πGΨΨ∗, ρ = |Ψ2| (71)

Widrow and Kaiser (1993) see this as a means for doing nu-
merical simulations of the evolution of large scale structure
(they use a Schrodinger solver based on an implicit finite dif-
ferencing method called Cayley’s Scheme).

The Schrodinger equation forΨ can be solved analytically
by identical procedures to those described above for solving
the random heat equation, the difference being that the poten-
tial Ψ being solved is complex.Ψ is directly related to the
density field. This route is advocated by Coles (2002) in his
very clear discussion of models for the origin of spatial in-
termittency. Coles and Spencer (2003) have taken this further
and shown how to add effects of gas pressure corresponding
to a polytropic equation of state. They present this as a useful
approach for modeling the growth of fluctuations in the mildly
nonlinear regime, which is somewhat short of the ambition of
the original Jones (1999) program.

6. General Comments

The relative merits of the random heat equation and the
Schrodinger equation approach are yet to be assessed. They
are derived from quite different premises: one pretends to be a
derivation from the basic equations while the other is an ansatz
based on interpreting quantum mechanics as a fluid process.
Each has a level of arbitrariness: one involves an unknown
(unphysical) viscosity that is allowed to tend to zero, while the
other involves a tuning parameter, the effective Planck Con-
stantH that can probably be allowed to become vanishingly
small without changing any results.

In condensed matter physics generalizations of both equa-
tions have played important roles as the basis of analytic mod-
els for a diversity of physical phenomena. They appear to of-
fer an important jumping off point for further research based
on well established techniques.

More recently, Matarrese and Mohayaee (2002) have pre-
sented a modification of the adhesion model that they call
the forced adhesion model. This is based on theforced Burg-
ers equation, which they transform into a random heat equa-
tion and solve using path integrals. It should be noted that
this approach is in fact quite different from that of Jones
(1999): Matarrese and Moyahaee use different variables and
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they claim to model the self-gravity of the system, thereby
avoiding Jones’ external field approximation.

Menci (2002), in an approach rather similar to Matarrese
and Moyahaee, also avoids the external field assumption. This
is done by generalizing the simplistic gravitational termsof
the classical adhesion model to a form that, it is claimed, ex-
tends the validity of the gravitational field terms. Despitethe
greater complexity, a solution can be achieved via path inte-
grals.

The main shortcoming of the Jones (1999) model is indeed
the assumption of an externally specified random gravitational
potential field, though it is not clear that the proposed alterna-
tives are much better. In the Jones model the intention had
been to write two equations: one collisionless representing
dark matter and providing the main contribution to the grav-
itational potential and the other collisional, representing the
baryonic (dissipative) component. That program was never
completed.

VIII. CONCLUDING REMARKS

A. About scaling

As we have demonstrated above, there are many scaling
laws, which connect cosmological observables. The main rea-
sons for that are the scale-free nature of gravitation and the
(hopefully) scale-free initial perturbations.

The gravity scaling could, in principle, extend into very
small scales, if we had only dark matter in the universe. In
the real world the existence of baryons limits the scaling range
from below by typical galaxy masses.

The scaling range starts from satellite galaxy distances, sev-
eral tens of kpc, and it may extend up to cluster sizes, 10
Mpc; two-three decades is a considerable range. The scal-
ing laws at supercluster distances and larger are determined
by the physics of initial fluctuations.

The first scaling law characterizing the distribution of
galaxies is the power-law behavior of the two-point correla-
tion function at small scales:ξ(r) ∝ r−γ . Other authors try
to fit the quantity1 + ξ(r) to a power law∝ rD2−3. Obvi-
ously the previous two power laws can only hold simultane-
ously within the strong clustering regime, whereξ(r) ≫ 1
and, therefore –only at those scales– the equalityγ = 3 −D2

holds. At intermediate scales (3 < r < 20 h−1 Mpc) the cor-
relation dimensionD2 is∼ 2, increasing at larger scales up to
D2 ≃ 3, indicating an unambiguous transition to homogene-
ity. Moreover the statistical analysis of the galaxy catalogs
permits to conclude that, within the fractal regime, the scal-
ing is better described in terms of multifractal inhomogeneous
measures rather than using homogeneous self-similar scaling
laws.

Scaling of the galaxy correlation lengthr0 with the sample
size,r0 ∝ Rs, is a strong prediction for a fractal distribution.
Nevertheless, this behavior is clearly ruled out by the present
available redshift catalogs of galaxies. The scaling ofr0 for
different kind of objects –from galaxies to clusters including
clusters with different richness– has been expressed as a linear

dependence ofr0 with the intercluster distancedc. This law,
however, does not hold for large values ofdc.

One successful scaling law found in the distribution of
galaxies is the scaling of the angular two-point correlation
function with the sample depth. In this case however, the
scaling argues against an unbounded fractal view of the dis-
tribution of galaxies, supporting large-scale homogeneity.

Finally, the hierarchical scaling hypothesis of theq-order
correlation function needs further confirmation from the still
under construction deep and wide redshift surveys.

We have attempted here to provide an overview of the math-
ematical and statistical techniques that might be used to char-
acterize the large scale structure of the universe in coordinate
space, velocity space, or both, with, we hope, enough refer-
ence to actual applications and results to indicate the power
of the various techniques and where they are likely to fail. Of
these methods, the ones that have been used most often and so
are needed for reading the current literature are the two-point
correlation function (Sect. V.B), the power spectrum (Sect.
VI.C), counts-in-cells and the void probability function (Sect.
VI.E.3), and fractal and multifractal measures (Sect. VI.E.4).
Those that we believe have the most potential for the future
analysis of the very large redshift data bases currently becom-
ing available are the Fourier methods (Sect. VI.C and Sect.
VI.D), although surely the reliable determination of the two-
point correlation function at large scales is still very impor-
tant for understanding the large-scale structute (Durreret al.,
2003).

Most of the techniques can be applied equally well to real
data (in two or three dimensions) or to the results of numerical
simulations of how structure ought to form in universes with
various cosmological parameters, kinds of dark matter, and
so forth (also in three dimensions or two-dimensional projec-
tions).

B. Future data gathering

It may well be that the 2dF and SDSS surveys are the last
great redshift surveys for some time to come. They have
yielded a phenomenal amount of new information which we
have hardly had time to fully digest. It is not clear what extra
information another million redshifts might yield: long term
funding issues may prevent us from ever seeing that. How-
ever, the future may well lie in the direction of deeper surveys
probing those times when the galaxies themselves were form-
ing and the large scale structure was coming into existence.

A number of such surveys are currently under way:
2MASS, COMBO17, GOODS, DEEP2, CADIS, and the re-
cently funded ALHAMBRA. With these we will be able to
confront our models with real data, but only provided we can
filter out the effects of galaxy evolution which will affect sam-
ple selection and data interpretation (particularly if there are
luminosity dependent effects).
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C. Understanding structure

We have tried and tested a number of descriptors of the
galaxy distribution with varying amounts of success. The task
has been helped by ever-growing data sets, but it is neverthe-
less becoming clear that a somewhat different approach may
be required if we are to improve substantially on what we un-
derstand now.

What different approaches might we take? Our visual im-
pression of large scale structure is that it is dominated by
voids, filaments and clusters. This suggests that instead of
looking at sample-wide statistical measures such as correla-
tion functions, we might try to isolate the very features that
strike us visually and examine them as individual structures.
Much effort has already been devoted to isolating “clusters” of
galaxies, but there are currently few, if any, methods available
for isolating either voids or filaments.

Wavelet analysis and its generalizations such as Beamlets
and Ridgelets may prove useful in identifying these structures
(Donohoet al., 2002). Other nonlinear analysis methodolo-
gies exist but have not been tried in this context. The fact that
galaxies (or points in a simulation) provide a sparse Poisson
sample of the underlying data complicates the application of
what might otherwise be standard methods.

The power of having a clear mathematical descriptor lies in
being able to unambiguously identify and study specific ob-
jects. This in turn provides a tools for confronting simulations
with data.

D. About simulations

Ever since the first simulations by Aarseth, Gott and Turner
we have gazed upon and admired simulations looking “as
good as the real thing”. We were impressed by the gravita-
tional growth of clustering and we were impressed by the fact
that the two-point correlation function exhibited a power law
of approximately the right slope.

Subsequent developments explored the dependency of the
results on initial conditions and extended significantly the
range of length scales over which we could apply our value-
judgements. There has also been a clearer discrimination be-
tween dark matter (the stuff of simulations) and the luminous
matter (the stuff we observe). To this has been added ex-
ceptional computer graphics to render the simulations as “ob-
served samples”. They look as good as the real thing.

Several caveats apply. First, simulations provide three
space and three velocity coordinates for each mass point at
each time. Data provide two (angular) space coordinates and
a redshift, which is made up of two terms, one proportional
to the third spatial coordinate (distance) and one represent-
ing motion of the point (galaxy or cluster) relative to uniform
cosmic expansion. These can be separated only within some
model of what real (rather thanN -body) clusters ought to be
doing in the way of a Virial theorem or some other way of
parcelling out potential and kinetic energy among the mass
points.

Second, between the simulations of what the (mostly dark)

matter is doing and data on what luminous galaxies are do-
ing lies all of what one might call gaseous astrophysics (or
even gastrophysics). The intermediate territory includesin-
flow of baryons into the potential wells, star formation and
wind energy input, supernovae (which add both kinetic en-
ergy and heavy elements, which change how gas cools and
condenses), galactic winds, on-going infall into the wells, sys-
tematic gas flow within galaxies, shocking of baryons plus
heating and/or triggered star formation when halos interact,
collide, and merge, energy input from black hole accretion,
and so forth. Most of these currently defy real calculation and
are represented by parameters and proportionalities. Thusthe
statement that some particular set of cosmological parameters,
initial conditions, and prescriptions for star formation evolve
forward in time to “fit the data” is not equivalent to being able
to say that this is the way nature did it.

E. Where we stand on theory

The evolution of cosmic structure is a complex nonlinear
process driven mainly by the force of gravity. The simplicity
of the underlying driving mechanism, Newtonian attraction,
and the fact that we see simple power law scaling, leads us
to believe that the process of how large scale cosmic structure
is organized can be understood. What is missing is a clear
methodology for this, and it is certain that we shall to borrow
tools and methods from other branches of physics. This is of
course easier said than done since the driving force, gravity,
has infinite range and is always attractive.

Two approaches look promising at this time. There is the
numerical Renormalization group simulations of Peebles and
Couchman. Then there are the analytic models: the Void Hi-
erarchy models of Sheth and van de Weygaert and the Peak
Patch model of Bond and Myers. The Random Heat Equa-
tion model of Jones and the Schrodinger Equation approach
of Widrow and Kaiser remain to be fully evaluated.

F. And finally ...

We have good reason to believe that our data samples are
now good enough to unequivocally allow an unambiguous de-
scription of the clustering of galaxies in the Universe. This de-
scription is entirely consistent with the view of the Universe
as a whole that has emerged from the theoretical and observa-
tional research of the 20th. century. There are many details
to fill in and there is much left to understand. The details will
come with future observational projects and the understand-
ing will come with further exploitation of cross-disciplinary
physics. It is the existence of scaling laws in the galaxy distri-
bution that provides us with a ray of hope that it is possible to
do more than merely models the growth of cosmic structure:
we may be able to understand it.

Arguably the single greatest surprise is how relatively well
even rather simple models appear to reproduce the hard-won
data.
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Budavári, T., A. J. Connolly, A. S. Szalay, I. Szapudi, I. Csabai,
R. Scranton, N. A. Bahcall, J. Brinkmann, D. J. Eisenstein, J. A.
Frieman, M. Fukugita, J. E. Gunn,et al., 2003, Astrophys. J.595,
59.

Burbidge, G., 1968, Astrophys. J. Lett.154, L41.
Burbidge, G., and E. M. Burbidge, 1967,Quasi-stellar Objects

(W.H. Freeman, San Francisco).
Calzetti, D., M. Giavalisco, and R. Ruffini, 1988, Astron. Astrophys.

198, 1.
Calzetti, D., M. Giavalisco, R. Ruffini, S. Taraglio, and N. A. Bah-

call, 1991, Astron. Astrophys.245, 1.
Carbone, V., and S. Savaglio, 1996, Mon. Not. R. Astr. Soc.282,

868.
Carlberg, R. G., H. K. C. Yee, S. L. Morris, H. Lin, P. B. Hall, D. Pat-

ton, M. Sawicki, and C. W. Shepherd, 2000, Astrophys. J.542, 57.
Carpenter, E. F., 1931, Publ. Astron. Soc. Pacific43, 247.
Carpenter, E. F., 1938, Astrophys. J.88, 344.
Cen, R., and J. P. Ostriker, 1992, Astrophys. J. Lett.399, L113.
Charlier, C. V. L., 1908, Ark. Mat. Astron. Fys.4, 1.
Charlier, C. V. L., 1922, Ark. Mat. Astron. Fys.16, 1.
Chincarini, G. L., R. Giovanelli, and M. P. Haynes, 1983, Astrophys.



47

J.269, 13.
Christensen, L. L., 1996,Compound Redshift Catalogues and their

Application to Redshift Distortions of the Two-Point Correla-
tion Function.Master’s thesis (University of Copenhagen, Copen-
hagen).

Christianson, G. E., 1995,Edwin Hubble. Mariner of Nebulae(The
University of Chicago Press, Chicago).

Coil, A. L., and DEEP2 Team, 2003, American Astronomical Soci-
ety Meeting203.

Colberg, J. M., S. D. M. White, A. Jenkins, F. R. Pearce, C. S. Frenk,
P. A. Thomas, R. Hutchings, H. M. P. Couchman, J. A. Peacock,
G. P. Efstathiou, and A. H. Nelson, 1998, inThe Evolving Uni-
verse(Kluwer Academic Publishers, Dordrecht), volume 231 of
Astrophysics and Space Science Library, p. 389.

Coleman, P. H., and L. Pietronero, 1992, Phys. Rep.213, 311.
Coles, P., 2002, Mon. Not. R. Astr. Soc.330, 421.
Coles, P., and B. J. T. Jones, 1991, Mon. Not. R. Astr. Soc.248, 1.
Coles, P., A. L. Melott, and S. F. Shandarin, 1993, Mon. Not. R. Astr.

Soc.260, 765.
Coles, P., and K. Spencer, 2003, Mon. Not. R. Astr. Soc.342, 176.
Colı́n, P., A. A. Klypin, A. V. Kravtsov, and A. M. Khokhlov, 1999,

Astrophys. J.523, 32.
Colombo, L. P. L., and S. A. Bonometto, 2001, Astrophys. J.549,

702.
Connolly, A. J., R. Scranton, D. Johnston, S. Dodelson, D. J.Eisen-

stein, J. A. Frieman, J. E. Gunn, L. Hui, B. Jain, S. Kent, J. Love-
day, R. C. Nichol,et al., 2002, Astrophys. J.579, 42.

Cooray, A., and R. Sheth, 2002, Phys. Rep.372, 1.
Couchman, H. M. P., and P. J. E. Peebles, 1998, Astrophys. J.497,

499.
Couchman, H. M. P., P. A. Thomas, and F. R. Pearce, 1995, Astro-

phys. J.452, 797.
Cress, C. M., D. J. Helfand, R. H. Becker, M. D. Gregg, and R. L.

White, 1996, Astrophys. J.473, 7.
Croft, R. A. C., and G. Efstathiou, 1994, Mon. Not. R. Astr. Soc.

267, 390.
Croft, R. A. C., D. H. Weinberg, M. Bolte, S. Burles, L. Hernquist,

N. Katz, D. Kirkman, and D. Tytler, 2002, Astrophys. J.581, 20.
da Costa, L. N., P. S. Pellegrini, M. Davis, A. Meiksin, W. L. W.

Sargent, and J. L. Tonry, 1991, Astrophys. J. Suppl. Ser.75, 935.
da Costa, L. N., C. N. A. Willmer, P. S. Pellegrini, O. L. Chaves,
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2000, Mon. Not. R. Astr. Soc.317, 55.

Scaramella, R., L. Guzzo, G. Zamorani, E. Zucca, C. Balkowski,
A. Blanchard, A. Cappi, V. Cayatte, G. Chincarini, C. Collins,
A. Fiorani, D. Maccagni,et al., 1998, Astron. Astrophys.334,
404.

Schechter, P., 1976, Astrophys. J.203, 297.
Scherrer, R. J., and E. Bertschinger, 1991, Astrophys. J.381, 349.
Schlegel, D., M. Davis, F. Summers, and J. A. Holtzman, 1994,As-

trophys. J.427, 527.
Schlegel, D. J., D. P. Finkbeiner, and M. Davis, 1998, Astrophys. J.

500, 525.
Schmoldt, I. M., V. Saar, P. Saha, E. Branchini, G. P. Efstathiou, C. S.

Frenk, O. Keeble, S. Maddox, R. McMahon, S. Oliver, M. Rowan-
Robinson, W. Saunders,et al., 1999, Astronom. J.118, 1146.

Scoccimarro, R. ., and R. K. Sheth, 2002, Mon. Not. R. Astr. Soc.
329, 629.

Scott, E. L., 1962, inIAU Symp. 15: Problems of Extra-Galactic
Research, volume 15, p. 269.

Shandarin, S. F., and Y. B. Zel’dovich, 1989, Rev. Mod. Phys.61,
185.



51

Shane, C. D., and C. A. Wirtanen, 1954, Astronom. J.59, 285.
Shane, C. D., and C. A. Wirtanen, 1967, Publ. Lick Obs.22, 1.
Shapley, H., 1932, Bull HCO880.
Shectman, S. A., S. D. Landy, A. Oemler, D. L. Tucker, H. Lin, R. P.

Kirshner, and P. L. Schechter, 1996, Astrophys. J.470, 172.
Shepherd, C. W., R. G. Carlberg, H. K. C. Yee, S. L. Morris, H. Lin,

M. Sawicki, P. B. Hall, and D. R. Patton, 2001, Astrophys. J.560,
72.

Sheth, R. K., and W. C. Saslaw, 1996, Astrophys. J.470, 78.
Sheth, R. K., and G. Tormen, 1999, Mon. Not. R. Astr. Soc.308,

119.
Sheth, R. K., and R. van de Weygaert, 2004, Mon. Not. R. Astr. Soc.

350, 517.
Silk, J., 1967, Nature215, 1155.
Smith, R. E., J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk,

F. R. Pearce, P. A. Thomas, G. Efstathiou, and H. M. P. Couchman,
2003, Mon. Not. R. Astr. Soc.341, 1311.

Smoot, G. F., C. L. Bennett, A. Kogut, E. L. Wright, J. Aymon, N. W.
Boggess, E. S. Cheng, G. de Amici, S. Gulkis, M. G. Hauser,
G. Hinshaw, P. D. Jackson,et al., 1992, Astrophys. J. Lett.396,
L1.
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