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B.1 Introduction

The objective of these lectures is to provide a practical introduction to strong
gravitational lensing including the data, the theory, and the application of
strong lensing to other areas of astrophysics. This is Part 2 of the complete
Saas Fee lectures on gravitational lensing. Part 1 (Schneider 2004) provides
a basic introduction, Part 2 (Kochanek 2004) examines strong gravitational
lenses, Part 3 (Schneider 2004) explores cluster lensing and weak lensing,
and Part 4 (Wambsganss 2004) examines microlensing.1 The complete lec-
tures provide an updated summary of the field from Schneider, Ehlers &
Falco (1992). There are also many earlier (and shorter!) reviews of strong
lensing (e.g. Blandford & Kochanek 1987a, Blandford & Narayan 1992, Refs-
dal & Surdej 1994, Wambsganss 1998, Narayan & Bartelmann 1999, Courbin,
Saha & Schechter 2002, Claeskens & Surdej 2002).

It is not my objective in this lecture to provide a historical review, care-
fully outlining the genealogy of every development in gravitational lensing,
but to focus on current research topics. Part 1 of these lectures summarizes
the history of lensing and introduces most of the basic equations of lensing.
The present discussion is divided into 9 sections. We start in §B.2 with an
introduction to the observational data. In §B.3 we outline the basic principles
of strong lenses, building on the general theory of lensing from Part 1. In §B.4
we discuss modeling gravitational lenses and the determination of the mass
distribution of lens galaxies. In §B.5 we discuss time delays and the Hubble
constant. In §B.6 we discuss gravitational lens statistics and the cosmological
model. In §B.7 we discuss the differences between galaxies and clusters as
lenses. In §B.8 we discuss the effects of substructure or satellites on gravita-
tional lenses. In §B.9 we discuss the optical properties of lens galaxies and in
§B.10 we discuss extended sources and quasar host galaxies. Finally in §B.11
we discuss the future of strong gravitational lensing.

It will be clear to readers already familiar with the field that these are
my lectures on strong lensing rather than an attempt to achieve a mythical

1 For astro-ph users, the lectures should be referenced as: Kochanek, C.S., Schnei-
der, P., Wambsganss, J., 2004, Gravitational Lensing: Strong, Weak & Micro,
Proceedings of the 33rd Saas-Fee Advanced Course, G. Meylan, P. Jetzer & P.
North, eds. (Springer-Verlag: Berlin).
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consensus. I have tried to make clear what matters (and what does not), what
lensing can do (and cannot do) for astrophysics, where the field is serving the
community well (and poorly), and where non-experts have understood the
consequences (or have failed to do so). Doing so requires having definite
opinions with which other researchers may well disagree. We will operate
on the assumption that anyone who disagrees sufficiently violently will have
an opportunity to wreak a horrible revenge at a later date by spending six
months doing their own set of lectures.

• B.1 Introduction 1
• B.2 An Introduction to the Data 3
• B.3 Basic Principles 8

1. Some Nomenclature 10
2. Circular Lenses 12
3. Non-Circular Lenses 24

• B.4 The Mass Distributions of Galaxies 34
1. Common Models for the Monopole 38
2. The Effective Single Screen Lens 42
3. Constraining the Monopole 43
4. The Angular Structure of Lenses 49
5. Constraining Angular Structure 53
6. Model Fitting and the Mass Distribution of Lenses 56
7. Non-Parametric Models 62
8. Statistical Constraints on Mass Distributions 65
9. Stellar Dynamics and Lensing 72

• B.5 Time Delays 77
1. A General Theory of Time Delays 79
2. Time Delay Lenses in Groups or Clusters 82
3. Observing Time Delays and Time Delay Lenses 84
4. Results: The Hubble Constant and Dark Matter 88
5. The Future of Time Delay Measurements 95

• B.6 Gravitational Lens Statistics 96
1. The Mechanics of Surveys 96
2. The Lens Population 100
3. Cross Sections 106
4. Optical Depth 108
5. Spiral Galaxy Lenses 110
6. Magnification Bias 111
7. Cosmology With Lens Statistics 119
8. The Current State 120

• B.7 What Happened to The Cluster Lenses? 124
1. The Effects of Halo Structure and the Power Spectrum 132
2. Binary Quasars 133

• B.8 The Role of Substructure 135
1. Low Mass Dark Halos 145



B Strong Gravitational Lensing 3

• B.9 The Optical Properties of Lens Galaxies 147
1. The Interstellar Medium of Lens Galaxies 153

• B.10 Extended Sources and Quasar Host Galaxies 158
1. An Analytic Model for Einstein Rings 159
2. Numerical Models of Extended Lensed Sources 163
3. Lensed Quasar Host Galaxies 167

• B.11 Does Strong Lensing Have A Future? 170

B.2 An Introduction to the Data

There are now 82 candidates for multiple image lenses besides those found
in rich clusters. Of these candidates, there is little doubt about 74 of them.
The ambiguous candidates consist of faint galaxies with nearby arcs and no
spectroscopic data. Indeed, the absence of complete spectroscopic informa-
tion is the bane of most astrophysical applications of lenses. Less than half
(38) of the good candidates have both source and lens redshifts – 43 have
lens redshifts, 64 have source redshifts, and 5 have neither redshift. Much
of this problem could be eliminated in about 5 clear nights of 8m time,
but no TAC seems willing to devote the effort even though lens redshifts
probably provide more cosmological information per redshift than any other
sparsely distributed source. Of these 74 lenses, 10 have had their central ve-
locity dispersions measured and 10 have measured time delays. A reasonably
complete summary of the lens data is available at the CASTLES WWW
site http://cfa-www.harvard.edu/castles/, although lack of manpower means
that it is updated only episodically.

Fig. B.1 shows the distribution of the lenses in image separation and
source redshift. The separations of the images range from 0.′′35 to 15.′′9 (us-
ing either half the image separations or the mean distance of the images
from the lens). The observed distribution combines both the true separation
distribution and selection effects. For example, in simple statistical models
using standard models for galaxy properties we would expect to find that the
logarithmic separation distribution dN/d ln∆θ is nearly constant at small
separations (i.e. dN/d∆θ ∝ ∆θ, §B.6), while the raw, observed distribution
shows a cutoff due to the finite resolution of lens surveys (typically 0.′′25 to
1.′′0 depending on the survey). The cutoff at larger separations is real, and it
is a consequence of the vastly higher lensing efficiency of galaxies relative to
clusters created by the cooling of the baryons in galaxies (see §B.7).

Fig. B.2 shows the distribution in image separation and lens galaxy red-
shift. There is no obvious trend in the typical separation with redshift, as
might be expected if there were rapid evolution in the typical masses of
galaxies. Unfortunately, there is also an observational bias to measure the
redshifts of large separation lenses, where the lens galaxies tend to be brighter
and less confused with the images, which makes quantitative interpretation
of any trends in separation with redshift difficult. There is probably also a

http://cfa-www.harvard.edu/castles/
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bias against finding large separation, low lens redshift systems because the
flux from the lens galaxy will more easily mask the flux from the source. We
examine the correlations between image separations and lens magnitudes in
§B.9.

In almost all cases the lenses have geometries that are “standard” for
models in which the angular structure of the gravitational potential is domi-
nated by the quadrupole moments of the density distribution, either because
the lens is ellipsoidal or because the lens sits in a strong external (tidal)
shear field. Of the 60 lenses where a compact component (quasar or radio
core) is clearly identifiable, 36 are doubles, 2 are triples, 20 are quads, 1 has
five images and 1 has six images. The doubles and quads are the standard
geometries produced by standard lenses with nearly singular central surface
densities. Examples of these basic patterns are shown in Figs. B.3 and B.4.

In a two-image lens like HE1104–1805 (Wisotzki et al. 1993), the images
usually lie at markedly different distances from the lens galaxy because the
source must be offset from the lens center to avoid producing four images. The
quads show three generic patterns depending on the location of the source
relative to the lens center and the caustics. There are cruciform quads like
HE0435–1223 (Wisotzki et al. 2002), where the images form a cross pattern
bracketing the lens. These are created when the source lies almost directly
behind the lens. There are fold-dominated quads like PG1115+080 (Wey-
mann et al. 1980), where the source is close to a fold caustic and we observe
a close pair of highly magnified images. Finally, there are cusp-dominated
quads like RXJ1131–1231 (Sluse et al. 2003), where the source is close to a
cusp caustic and we observe a close triple of highly magnified images. These
are all generic patterns expected from caustic theory, as we discuss in Part 1
and §B.3. We will discuss the relative numbers of doubles and quads in §B.6.

The lenses with non-standard geometries all have differing origins. One
triple, APM08279+5255 (Irwin et al. 1998, Ibata et al. 1999, Muñoz, Kochanek
& Keeton 2001), is probably an example of a disk or exposed cusp lens (see
§B.3), while the other, PMNJ1632–0033 (Winn et al. 2002a, Winn, Rusin
& Kochanek 2004), appears to be a classical three image lens with the
third image in the core of the lens (Fig. B.5). The system with five im-
ages, PMNJ0134–0931 (Winn et al. 2002c, Keeton & Winn 2003, Winn et
al. 2003), is due to having two lens galaxies, while the system with six images,
B1359+154 (Myers et al. 1999, Rusin et al. 2001), is a consequence of hav-
ing three lens galaxies inside the Einstein ring. Many lenses have luminous
satellites that are required in any successful lens model, such as the satellites
known as “Object X” in MG0414+0534 (Hewitt et al. 1992, Schechter &
Moore 1993) and object D in MG2016+112 (Lawrence et al. 1984 ) shown in
Fig. B.6. These satellite galaxies can be crucial parts of lens models, although
there has been no systematic study of their properties in the lens sample.

If the structure of the source is more complicated, then the resulting im-
age geometries become more complicated. For example, the source of the
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Fig. B.1. The distribution of lens galaxies in separation ∆θ and source redshift zs.
The solid histogram shows the distribution in separation for all the lenses while the
dashed histogram shows the distribution of those with unmeasured source redshifts.
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Fig. B.2. The distribution of lens galaxies in separation ∆θ and lens redshift zl.
The solid histogram shows the distribution in separation for all the lenses while the
dashed histogram shows the distribution of those with unmeasured lens redshifts.
There are no obvious correlations between lens redshift zl and separation ∆θ, but
the strong selection bias that small separation lenses are less likely to have measured
redshifts makes this difficult to interpret. There may also be a deficit of low redshift,
large separation lenses, which may be a selection bias created by the difficulty of
finding quasar lenses embedded in bright galaxies.
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Fig. B.3. Standard image geometries. (Top) The two-image lens HE1104–1805. G
is the lens galaxy and A and B are the quasar images. We also see arc images of
the quasar host galaxy underneath the quasar images. (Bottom) The four-image
lens PG1115+080 showing the bright A1 and A2 images created by a fold caustic.
(Top, next page) The four-image lens RXJ1131–1231 showing the bright A, B and C
images created by a cusp caustic. (Bottom, next page) The four-image lens HE0435–
1223, showing the cruciform geometry created by a source near the center of the
lens. For each lens we took the CASTLES H-band image, subtracted the bright
quasars and then added them back as Gaussians with roughly the same FWHM as
the real PSF. This removes the complex diffraction pattern of the HST PSF and
makes it easier to see low surface brightness features.
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Fig. B.4. Standard image geometries continued. See the caption for Fig. B.3.
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Fig. B.5. PMN1632–0033 is the only known lens with a “classical” third image
in the core of the lens galaxy. The center of the lens galaxy is close to the faint
C image. Images A, B and C have identical radio spectra except for the longest
wavelength flux of C, which can be explained by absorption in the core of the lens
galaxy. Time delay measurements would be required to make the case absolutely
secure. A central black hole in the lens galaxy might produce an additional image
with a flux about 10% that of image C. (Winn et al. 2004)

radio lens B1933+503 (Sykes et al. 1998) consists of a radio core and two ra-
dio lobes, leading to 10 observable images because the core and one lobe are
quadruply imaged and the other lobe is doubly imaged (Fig. B.7). If instead
of discrete emission peaks there is a continuous surface brightness distribu-
tion, then we observe arcs or rings surrounding the lens galaxy. Fig. B.8
shows examples of Einstein rings for the case of MG1131+0456 (Hewitt et
al. 1988) in both the radio (Chen & Hewitt 1993) and the infrared (Kochanek
et al. 2000). The radio ring is formed from an extended radio jet, while the
infared ring is formed from the host galaxy of the radio source. We also chose
most of the examples in Figs. B.3 and B.4 to show prominent arcs and rings
formed by lensing the host galaxy of the source quasar. We discuss arcs and
rings in §B.10.

B.3 Basic Principles

Most gravitational lenses have the standard configurations we illustrated in
§B.2. These configurations are easily understood in terms of the caustic struc-
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Fig. B.6. H-band images of two lenses with small companions that are crucial for
successful models. The upper image shows “Object X” in MG0414+0534, and the
lower image shows component D of MG2016+112. MG2016+112 has the additional
confusion that only A and B are images of the quasar (Koopmans et al. 2002).
Image C is some combination of emission from the quasar jet (it is an extended
X-ray source, Chartas et al. 2001) and the quasar host galaxy. Object D is known
to be at the same redshift as the primary lens galaxy G (Koopmans & Treu 2002).
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Fig. B.7. A Merlin map of B1933+503 showing the 10 observed images of the three
component source (Marlow et al. 1999). The flat radio spectrum core is lensed into
images 1, 3, 4 and 6. One radio lobe is lensed into images 1a and 8, while the other
is lensed into images 2, 7 and 5. Image 2 is really two images merging on a fold.

tures generic to simple lens models. In this section we illustrate the origin of
these basic geometries using simple mathematical examples. We build on the
general outline of lensing theory from Part 1.

B.3.1 Some Nomenclature

Throughout this lecture we use comoving angular diameter distances (also
known as proper motion distances) rather than the more familiar angular
diameter distances because almost every equation in gravitational lensing
becomes simpler. The distance between two redshifts i and j is

Dij =
rH

|Ωk|1/2
sinn

[

∫ j

i

|Ωk|1/2dz

[(1 + z)2(1 + ΩMz) − z(2 + z)ΩΛ]
1/2

]

(B.1)

where ΩM , ΩΛ and Ωk = 1 − ΩM − ΩΛ are the present day matter density,
cosmological constant and “curvature” density respectively, rH = c/H0 is
the Hubble radius, and the function sinn(x) becomes sinh(x), x or sin(x)
for open (Ωk > 0), flat (Ωk = 0) and closed (Ωk < 0) models (Carroll,



B Strong Gravitational Lensing 11

Fig. B.8. The radio (top) and H-band (bottom) rings in MG11131+0456. The
radio map was made at 8 GHz by Chen & Hewitt (1993), while the H-band image
is from Kochanek et al. (2000). The radio source D is probably another example
of a central odd image, but the evidence is not as firm as that for PMN1632–0033.
Note the perturbing satellite galaxies (G9 and G15) in the H-band image.
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Press & Turner 1992). We use Dd, Ds and Dds for the distances from the
observer to the lens, from the observer to the source and from the lens to the
source. These distances are trivially related to the angular diameter distances,
Dang

ij = Dij/(1 + zj), and luminosity distances, Dlum
ij = Dij(1 + zj). In

a flat universe, one can simply add comoving angular diameter distances
(Ds = Dd + Dds), which is not true of angular diameter distances. The
comoving volume element is

dV =
4πD2

ddDd
(

1 + Ωkr−2
H D2

d

)1/2
→ 4πD2

ddDd (B.2)

for flat universes. We denote angles on the lens plane by θ = θ(cos χ, sin χ)
and angles on the source plane by β. Physical lengths on the lens plane are
ξ = Dang

d θ. The lensing potential, denoted by Ψ(θ), satisfies the Poisson
equation ∇2Ψ = 2κ where κ = Σ/Σc is the surface density Σ in units of the
critical surface density Σc = c2(1 + zl)Ds/(4πGDdDds). For a more detailed
review of the basic physics, see Part 1.

B.3.2 Circular Lenses

While one of the most important lessons about modeling gravitational lenses
in the real world is that you can never (EVER!)2 safely neglect the angular
structure of the gravitational potential, it is still worth starting with circular
lens models. They provide a basic introduction to many of the elements which
are essential to realistic models without the need for numerical calculation.
In a circular lens, the effective lens potential (Part 1) is a function only of
the distance from the lens center θ = |θ|. Rays are radially deflected by the
angle

α(θ) =
2

θ

∫ θ

0

θdθκ(θ) =
4GM(< ξ)

c2ξ

Dds

Ds
(B.3)

where we recall from Part 1 that κ(θ) = Σ(θ)/Σc is the surface density
in units of the critical surface density, Dds and Ds are the lens-source and
observer-source comoving distances and ξ = Dang

d θ is the proper distance
from the lens. The bend angle is simply twice the Schwarzschild radius of the
enclosed mass, 4GM(< ξ)/c2, divided by the impact parameter ξ and scaled
by the distance ratio Dds/Ds.

The lens equation (see Part 1) becomes

β = θ [1 − α(θ)/θ] = θ [1 − 〈κ(θ)〉] (B.4)

where

〈κ(θ)〉 =
2

θ2

∫ θ

0

θdθκ(θ) = α(θ)/θ (B.5)

2 AND I MEAN EVER! DON’T EVEN THINK OF IT!
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is the average surface density interior to θ in units of the critical density. Note
that there must be a region with 〈κ〉 > 1 to have solutions on both sides of
the lens center. Because of the circular symmetry, all images will lie on a line
passing through the source and the lens center.

The inverse magnification tensor (or Hessian, see Part 1) also has a simple
form, with

M−1 =
dβ

dθ
= (1 − κ)

(

1 0
0 1

)

+ γ

(

cos 2χ sin 2χ
sin 2χ − cos 2χ

)

(B.6)

where θ = θ(cos χ, sinχ). The convergence (surface density) is

κ =
1

2

(

α

θ
+

dα

dθ

)

(B.7)

and the shear is

γ =
1

2

(

α

θ
− dα

dθ

)

= 〈κ〉 − κ. (B.8)

The eigenvectors of M−1 point in the radial and tangential directions, with a
radial eigenvalue of λ+ = 1−κ+γ = 1−dα/dθ and a tangential eigenvalue of
λ− = 1−κ−γ = 1−α/θ = 1−〈κ〉. If either one of these eigenvalues is zero, the
magnification diverges and we are on either the radial or tangential critical
curve. If we can resolve the images, we will see the images radially magnified
near the radial critical curve and tangentially magnified near the tangential
critical curve. For example, all the quasar host galaxies seen in Figs. B.3 and
B.4 lie close to the tangential critical line and are stretched tangentially to
form partial or complete Einstein rings. The signs of the eigenvalues λ± give
the parities of the images and the type of time delay extremum associated
with the images. If both eigenvalues are positive, the image is a minimum. If
both are negative, the image is a maximum. If one is positive and the other
negative, the image is a saddle point. The inverse of the total magnification
µ−1 = |M−1| is the product of the eigenvectors, so it is positive for minima
and maxima and negative for saddle points. The signs of the eigenvalues are
referred to as the partial parities of the images, while the sign of the total
magnification is referred to as the total parity.

It is useful to use simple examples to illustrate the behavior of circular
lenses for different density profiles. In most previous lensing reviews, the
examples are based on lenses with finite core radii. However, most currently
popular models of galaxies and clusters have central density cusps rather
than core radii, so we will depart from historical practice and focus on the
power-law lens (e.g. Evans & Wilkinson 1998). Suppose, in three dimensions,
that the lens has a density distribution ρ ∝ r−n. Such a lens will produce
deflections of

α(θ) = b

(

θ

b

)2−n

(B.9)
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as shown in Fig. B.9, with convergence and shear profiles

κ(θ) =
3 − n

2

(

θ

b

)1−n

and γ(θ) =
n − 1

2

(

θ

b

)1−n

. (B.10)

The power law lenses cover most of the simple, physically interesting models.
The point mass lens is the limit n → 3, with deflection α = b2/θ, convergence
κ = 0 (with a central singularity) and shear γ = b2/r2. The singular isother-
mal sphere (SIS) is the case with n = 2. It has a constant deflection α = b,
and equal convergence and shear κ = γ = b/2θ. A uniform critical sheet is
the limit n → 1 with α = θ, κ = 1 and γ = 0. Models with n → 3/2 have the
cusp exponent of the Moore (1998) halo model. The popular ρ ∝ 1/r NFW
(Navarro, Frenk & White 1996, see §B.4.1) density cusps are not quite the
same as the n → 1 case because the projected surface density of a ρ ∝ 1/r
cusp has κ ∝ ln θ rather than a constant. Nonetheless, the behavior of the
power law models as n → 1 will be very similar to the NFW model if the lens
is dominated by the central cusp. The central regions of galaxies probably
act like cusps with 1 <∼ n <∼ 2.

The tangential magnification eigenvalue of these models is

λ− = 1 − κ − γ = 1 − α

θ
= 1 − 〈κ〉 = 1 − (θ/b)1−n (B.11)

which is always equal to zero at θ = b ≡ θE . This circle defines the tangential
critical curve or Einstein (ring) radius of the lens. We normalized the models
in this fashion because the Einstein radius is usually the best-determined
parameter of any lens model, in the sense that all successful models will
find nearly the same Einstein radius (e.g. Kochanek 1991a, Wambsganss &
Paczynski 1994). The source position corresponding to the tangential critical
curve is the origin (β = 0), and the reason the magnification diverges is that
a point source at the origin is converted into a ring on the tangential critical
curve leading to a divergent ratio between the “areas” of the source and the
image. The other important point to notice is that the mean surface density
inside the tangential critical radius is 〈κ〉 ≡ 1 independent of the model.
This is true of any circular lens. With the addition of angular structure it
is not strictly true, but it is a very good approximation unless the mass
distribution is very flattened. The definition of b in terms of the properties of
the lens galaxy will depend on the particular profile. For example, in a point
mass lens (n → 3), b2 = (4GM/c2Dang

d )(Dds/Ds) where M is the mass, while
in an SIS lens (n = 2), b = 4π(σv/c)2Dds/Ds where σv is the (1D) velocity
dispersion of the lens. For the other profiles, b can be defined in terms of some
velocity dispersion or mass estimate for the lens, as we will discuss later in
§B.4.9 and §B.6. The radial magnification eigenvalue of these models is

λ+ = 1 − κ + γ = 1 − dα

dθ
= 1 − (2 − n)(θ/b)1−n (B.12)

which can be zero only if n < 2. If n < 2 the deflection goes to zero at the
origin and the lens has a radial critical curve at θ = b(2 − n)1/(n−1) < b
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Fig. B.9. The bending angles of the power law lens models. Profiles more centrally
concentrated (n > 2) than the SIS (n = 2), have divergent central deflections, while
profiles more extended (n < 2) than SIS have deflection profiles that become zero
at the center of the lens. The n = 1 model is not quite an NFW model because the
surface density is constant rather than logarithmic.

interior to the tangential critical curve. Models with n ≥ 2 have constant
(n = 2) or rising deflection profiles as we approach the lens center and have
negative derivatives dα/dθ at all radii.

A nice property of circular lenses is that they allow simple graphical
solutions of the lens equation for arbitrary deflection profiles. There are two
parts to the graphical solution – the first is to determine the radial positions
θi of the images given a source position β, and the second is to determine the
magnification by comparing the area of the images to the area of the source.
Recall first, that by symmetry, all the images must lie on a line passing
through the source and the lens. Let θ now be a signed radius that is positive
along this line on one side of the lens and negative on the other. The lens
equation (Eqn. B.4) along the line is simply

θ

|θ|α(|θ|) = θ − β (B.13)

where we have rearranged the terms to put the deflection on one side and
the image and source positions on the other. One side of the equation is the
bend angle (Fig. B.9), while the other side of the equation, θ−β, is simply a
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Fig. B.10. Graphical solutions for the point mass (n = 3) lens. The top panel
shows the graphical solution for the radial positions of the images, and the bottom
panel shows the graphical solution for the image structure. Note the strong radial
demagnification of image 2 produced by the falling deflection profile.
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Fig. B.11. Graphical solutions for the SIS (n = 2) lens when β < b and there are
two images.
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Fig. B.12. Graphical solutions for the SIS (n = 2) lens when β > b and there is
only one image.
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Fig. B.13. Graphical solutions for the Moore profile cusp (n = 3/2) lens when
β > b/4 and there is only one image.
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Fig. B.14. Graphical solutions for the Moore profile cusp (n = 3/2) lens when
β < b/4 and there are three images. At the top of the lower panel we illustrate
the geometric meaning of the image partial parities defined by the signs of the
magnification tensor eigenvalues (see text).
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line of unit slope passing through the source position β. The solutions to the
lens equation for any source position β are the radii θi where the line crosses
the curve.

For understanding any observed lens, it is always useful to first sketch
where the critical lines must lie. Recall from the discussion of caustics in
Part 1, that images are always created and destroyed on critical lines as the
source crosses a caustic, so the critical lines and caustics define the general
structure of the lens. All our power law models have a tangential critical
line at θ = b, which is the solution α(b) = b and corresponds to the source
position β = 0. The origin, as the projection of the critical curve onto the
source plane, is the tangential caustic (strictly speaking a degenerate pseudo-
caustic) corresponding to the critical line. A point source at the origin is
transformed into an Einstein ring of radius θE = b.

The second step of the graphical construction is to determine the angular
structure of the image. For simplicity, suppose the source is an arc with radial
width ∆β and angular width ∆χ. By symmetry, the angle subtended by an
image relative to the lens center must be the same as that subtended by the
source. For an image at θi and a source at β, the tangential extent of the
image is |θi|∆χ while that of the source is β∆χ. The tangential magnification
of the image is simply |θi|/β = (1−|α(θi)/θi|)−1 after making use of the lens
equation (Eqn. B.13), and this is identical to the tangential magnification
eigenvalue (Eqn. B.11). The thickness of the arc requires finding the image
radii for the inner and outer edges of the source, θi(β) and θi(β + ∆β). The
ratio of the thickness of the two arcs is the radial magnification,

θi(β + ∆β) − θi(β)

∆β
≃ dθ

dβ
=

(

1 − dα

dθ

)−1

, (B.14)

and this is simply the inverse of the radial eigenvalue of the magnification
matrix (Eqn. B.12) where we have taken the derivative of the lens equation
(Eqn. B.13) with respect to the source position to obtain the final result.
Thus, the tangential magnification simply reflects the fact that the angle
subtended by the source is the angle subtended by the image, while the radial
magnification depends on the slope of the deflection profile with declining
deflection profiles (dα/dθ < 0) demagnifying the source and rising profiles
magnifying the source.

In Fig. B.10 we illustrate this for the point mass lens (n → 3). From the
shape of the deflection profile, it is immediately obvious that there will be
only two images, one on each side of the lens. If we assume β > 0, the first
image is a minimum located at

θ1 =
1

2

(

β +
√

β2 + 4b2
)

(B.15)
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with θ1 > θE and positive magnification

µ1 =
1

4

(

β
√

β2 + 4b2
+

√

β2 + 4b2

β
+ 2

)

> 0, (B.16)

while the second image is a saddle point located at

θ2 =
1

2

(

β −
√

β2 + 4b2
)

(B.17)

with −θE < θ2 < 0 and negative magnification

µ2 = −1

4

(

β
√

β2 + 4b2
+

√

β2 + 4b2

β
− 2

)

< 0. (B.18)

As the source approaches the tangential caustic (β → 0) the magnifications of
both images diverge as β−1 and the image radii converge to θE . As the source
moves to infinity, the magnification of the first image approaches unity and its
position approaches that of the source, while the second image is demagnified
by the factor (1/2)(b/β) and converges to the position of the lens. The image
separation

∆θ = |θ1 − θ2| = 2b
√

1 + β2/4b2 ≥ 2b (B.19)

is always larger than the diameter of the Einstein ring and the total magni-
fication

|µ1| + |µ2| =
2b2 + β2

β
√

β2 + 4b2
≥ 1 (B.20)

is the characteristic light curve expected for isolated Galactic microlensing
events (see Part 4). The point mass lens has one peculiarity that makes it
different from extended density distributions like galaxies in that it has two
images independent of the impact parameter of the source and no radial
caustic. This is a characteristic of any density distribution with a divergent
central deflection (n > 2).

The SIS (n = 2) model is the “standard” lens model for galaxies. Figs. B.11
and B.12 show the geometric constructions for the images of an SIS lens. If
0 < β < b, then the SIS lens also produces two images (Fig. B.11). The first
image is a minimum located at

θ1 = β + b with θ1 > b and positive magnification µ1 = 1 + b/β (B.21)

and the second image is a saddle point located at

θ2 = β − b with −b < θ2 < 0 and negative magnification µ2 = 1 − b/β.
(B.22)

The image separation |θ1 − θ2| = 2b is constant, and the total magnification
|µ1| + |µ2| = 2b/β is a simple power law. The magnification produced by
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an SIS lens is purely tangential since the radial magnification is unity. If,
however, β > b, then there is only one image, corresponding to the minimum
located on the same side of the lens as the source (see Fig. B.12). This
boundary on the source plane at β = b between having two images at smaller
radii and only one image at larger radii is a radial (pseudo)-caustic that can be
thought of as being associated with a radial critical curve at the origin. It is a
pseudo-caustic because there are neither images nor a divergent magnification
associated with it.

Historically the next step is to introduce a core radius to have a model with
a true radial critical line and caustic (see Part 1, Blandford & Kochanek 1987b,
Kochanek & Blandford 1987, Kovner 1987a, Hinshaw & Krauss 1987, Krauss
& White 1992, Wallington & Narayan 1993, Kochanek 1996a). Instead we
will consider the still softer power law model with n = 3/2, which would
correspond to the central exponent of the “Moore” profile proposed for CDM
halos (Moore et al. 1998). As Fig. B.13 shows, there is only one solution for
|β| > b/4, a minimum located at

θ1 =
1

2

(

b + 2β +
√

b + 4β
)

(B.23)

and with θ1 > b assuming β is positive. The magnification expressions are too
complex to be of much use, but the magnification µ1 diverges at θ = b when
the source is on the tangential pseudo-caustic at β = 0. As Fig. B.14 shows,
we find two additional images once |β| < b/4. The first additional image is a
saddle point located at

θ2 =
1

2

(

−b + 2β −
√

b + 4β
)

(B.24)

with −b < θ2 < −b/4, which has a negative magnification that diverges at
both θ2 = −b (the tangential critical curve) and θ2 = −b/4. This latter radius
defines the radial critical curve where the magnification diverges because the
radial magnification eigenvalue 1− κ + γ = 1− dα/dθ = 0 at radius θ = b/4.
The third image is a maximum located at

θ3 =
1

2

(

−b + 2β +
√

b + 4β
)

(B.25)

with −b/4 < θ2 < 0 and a positive magnification that diverges on the radial
critical curve. As we move the source outward from the center we would see
images 2 and 3 approach each other, merging on the radial critical line where
they would have divergent magnifications, and then vanishing to leave only
image 1. We would see the same pattern if instead of softening the exponent
we had followed the traditional path and added a core radius to the SIS
model. With a finite core radius the central deflection profile would pass
through zero, and this would introduce a radial critical curve and a third
image which would be a maximum of the time delay surface.
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In Fig. B.14 we also illustrate the geometric meaning of the partial par-
ities (the signs of the magnification eigenvalues). A source structure (the L)
defines the reference shape. Image 1 is a minimum with positive partial par-
ities (++) defined by the signs of the tangential and radial eigenvalues. The
orientation of image 1 is the same as the source. Image 2 is a saddle point
with mixed partial parities (−+) because the tangential eigenvalue is negative
while the radial eigenvalue is positive. This means that the image is inverted
in the tangential direction relative to the source. Image 3 is a maximum with
negative partial parties (−−), so the image is inverted in both the radial and
tangential directions relative to the source. The total parity, the product of
the partial parities, is positive for maxima and minima so the orientation of
the image can be produced by rotating the source. The total parity of the
saddle point image is negative, so its orientation cannot be produced by a
rotation of the source.

B.3.3 Non-Circular Lenses

The tangential pseudo-caustic at the origin producing Einstein ring images is
unstable to the introduction of any angular structure into the gravitational
potential of the lens. There are two generic sources of angular perturbations.
The first source of angular perturbations is the ellipticity of the lens galaxy.
What counts here is the ellipticity of the gravitational potential rather than
of the surface density. For a lens with axis ratio q, ellipticity ǫ = 1 − q, or
eccentricity e = (1 − q2)1/2, the ellipticity of the potential is usually ǫΨ ∼
ǫ/3 – potentials are always rounder than densities. The second source of
angular perturbations is tidal perturbations from any nearby objects. This is
frequently called the “external shear” or the “tidal shear” because it can be
modeled as a linear shearing of the deflections. In all known lenses, quadrupole
perturbations (i.e. Ψ ∝ cos(2χ) where χ is the azimuthal angle) dominate –
higher order multipoles are certainly present and they can be quantitatively
important, but they are smaller. For example, in an ellipsoid the amplitude
of the cos 2mχ multipole scales as ǫm

Ψ (see §B.4.4 and §B.8).
Unfortunately, there is no example of a non-circular lens that can be solved

in full generality unless you view the nominally analytic solutions to quartic
equations as helpful. We can make the greatest progress for the case of an
SIS in an external (tidal) shear field. Tidal shear is due to perturbations from
nearby objects and its amplitude can be determined by Taylor expanding its
potential near the lens (see Part 1 and §B.4). Consider a lens with Einstein
radius θE perturbed by an object with effective lens potential Ψ a distance θp

away. For θE ≪ θp we can Taylor expand the potential of the nearby object
about the center of the primary lens, dropping the leading two terms.3 This
3 The first term, a constant, gives an equal contribution to the time delays of all

the images, so it is unobservable when all we can measure is relative delays.
The second term is a constant deflection, which is unobservable when all we can
measure is relative deflections.
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leaves, as the first term with observable consequences,

Ψ(θ) ≃ 1

2
θ · ∇∇Ψ · θ =

1

2
κpθ

2 − 1

2
γpθ

2 cos 2(χ − χp) (B.26)

where κp is the surface density of the perturber at the center of the lens
galaxy and γp > 0 is the tidal shear from the perturber. If the perturber is
an SIS with critical radius bp and distance θp from the primary lens, then
κp = γp = bp/2θp. With this normalization, the angle χp points toward the
perturber. For a circular lens, the shear γp = 〈κ〉 − κ can be expressed in
terms of the surface density of the perturber, and it is larger (smaller) than
the convergence if the density profile is steeper (shallower) than isothermal.

The effects of κp are observable only if we measure a time delay or have an
independent estimate of the mass of the lens galaxy, while the effects of the
shear are easily detected from the relative positions of the lensed images (see
Part 1). Consider, for example, one component of the lens equation including
an extra convergence,

β1 = θ1(1 − κp) − dΨ/dθ1 (B.27)

and then simply divide by 1 − κp to get

β1/(1 − κp) = θ1 − (dΨ/dθ1)/(1 − κp). (B.28)

The rescaling of the source position β1/(1 − κp) has no consequences since
the source position is not an observable quantity, while the rescaling of the
deflection is simply a change in the mass of the lens. This is known as the
“mass sheet degeneracy” because it corresponds to adding a constant sur-
face density sheet to the lens model (Falco, Gorenstein & Shapiro 1985, see
Part 1), and it is an important systematic problem for both strong lenses and
cluster lenses (see Part 3).

Thus, while the extra convergence can be important for the quantitative
understanding of time delays or lens galaxy masses, it is only the shear that
introduces qualitatively new behavior to the lens equations. The effective
potential of an SIS lens in an external shear is Ψ = bθ + (γ/2)θ2 cos 2χ
leading to the lens equations

β1 = θ1(1 − γ) − bθ1/|θ|
β2 = θ2(1 + γ) − bθ2/|θ| (B.29)

where for γ > 0 the perturber is due North (or South) of the lens. The inverse
magnification is

µ−1 = 1 − γ2 − b

θ
(1 − γ cos 2χ) (B.30)

where θ = (θ1, θ2) = θ(cosχ, sin χ).
The first step in any general analysis of a new lens potential is to locate

the critical lines and caustics. In this case we can easily solve µ−1 = 0 to find
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that the tangential critical line

θ = b
1 − γ cos 2χ

1 − γ2
(B.31)

is an ellipse whose axis ratio is determined by the amplitude of the shear γ
and whose major axis points toward the perturber. We call it the tangential
critical line because the associated magnifications are nearly tangential to the
direction to the lens galaxy and because it is a perturbation to the Einstein
ring of a circular lens. The tangential caustic, the image of the critical line on
the source plane, is a curve called an astroid (Fig.B.15, it is not a “diamond”
despite repeated use of the term in the literature). The parametric expression
for the astroid curve is

β1 = − 2bγ

1 + γ
cos3 χ = −β+ cos3 χ β2 = +

2bγ

1 − γ
sin3 χ = β− sin3 χ

(B.32)
where the parameter χ is the same as the angle appearing in the critical curve
(Eqn. B.31) and we have defined β± = 2bγ/(1 ± γ) for the locations of the
cusp tips on the axes. The astroid consists of 4 cusp caustics on the symmetry
axes of the lens connected by fold caustics with a major axis pointing toward
the perturber. Like the SIS model without any shear, the origin plays the
role of the radial critical line and there is a circular radial pseudo-caustic at
β = b.

As mentioned earlier, there is no useful general solution for the image
positions and magnifications. We can, however, solve the equations for a
source on one of the symmetry axes of the lens. For example, consider a
solution on the minor axis of the lens (β2 = 0 for γ > 0). There are two ways
of solving the lens equation to satisfy the criterion. One is to put the images
on the same axis (θ2 = 0) and the other is to place them on the arc defined
by 0 = 1 + γ − b/θ. The images with θ2 = 0 are simply the SIS solutions
corrected for the effects of the shear. Image 1 is defined by

θ1 =
β1 + b

1 − γ
with µ−1 =

(

1 − γ2
) β+ + β1

b + β1
(B.33)

and image 2 is defined by

θ1 =
β1 − b

1 − γ
with µ−1 =

(

1 − γ2
) β+ − β1

b − β1
(B.34)

Image 1 exists if β1 > −b, it is a saddle point for −b < β1 < −β+ and it
is a minimum for β1 > −β+. Image 2 has the reverse ordering. It exists for
β1 < b, it is a saddle point for β+ < β1 < b and it is a minimum for β1 < β+.
The magnifications of both images diverge when they are on the tangential
critical line (β1 = −β+ for image 1 and β1 = +β+ for image 2) and approach
zero as they move into the core of the lens (β1 → −b for image 1 and β1 → +b
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for image 2). These two images shift roles as the source moves through the
origin. The other two solutions are both saddle points, and they exist only if
the source lies inside the astroid (|β1| < β+ along the axis). The positions of
images 3 (+) and 4 (−) are

θ1 = −β1

2γ
θ2 = ± b

1 + γ

[

1 −
(

β1

β+

)2
]1/2

(B.35)

and they have equal magnifications

µ−1 = −2γ(1 + γ)

[

1 −
(

β1

β+

)2
]

. (B.36)

The magnifications of the images diverge when the source reaches the cusp
tip (|β1| = β+) and the image lies on the tangential critical curve.

Thus, if we start with a source at the origin we can follow the changes
in the image structure (see Fig. B.15, B.16). With the source at the origin
we see 4 images on the symmetry axes with reasonably high magnifications,
∑ |µi| = (2/γ)/(1 − γ2) ∼ 10. It is a generic result that the least magnified
four-image system is found for an on-axis source, and this configuration has
a total magnification of order the inverse of the ellipticity of the gravita-
tional potential. As we move the source toward the tip of the cusp (β → β+,
Fig. B.15), image 1 simply moves out along the symmetry axis with slowly
dropping magnification, while images 2, 3 and 4 move toward a merger on the
tangential critical curve at θ = (−β+, 0). Their magnifications steadily rise
and then diverge when the source reaches the cusp. If we move the source
further outward we find only images 1 and 2 with 1 moving outward and
2 moving inward toward the origin. As it approaches the origin, image 2
becomes demagnified and vanishes when β → b. Had we done the same cal-
culation on the major axis (Fig. B.16), there is a qualitative difference. As
we moved image 1 outward along the β2 axis, image 3 and 4 would merge
with image 1 when the source reaches the tip of the cusp at β2 = β− rather
than with image 2.

Unfortunately once we move the source off a symmetry axis, there is no
simple solution. It is possible to find the locations of the remaining images
given that two images have merged on the critical line, and this is useful for
determining the mean magnifications of the lensed images, a point we will
return to when we discuss lens statistics in §B.6. Here we simply illustrate
(Fig. B.17) the behavior of the images when we move the source radially
outward from the origin away from the symmetry axes. Rather than three
images merging on the tangential critical line as the source approaches the
tip of a cusp, we see two images merging as the source approaches the fold
caustic of the astroid. This difference, two images merging versus three images
merging, is a generic difference between folds and cusps as discussed in Part 1.
All images in these four-image configurations are restricted to an annulus of
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width ∼ γb around the critical line, so the mean magnification of all four
image configurations is also of order γ−1 (see Finch et al. 2002).

There is one more possibility for the caustic structure of the lens if the ex-
ternal shear is large enough. For 1/3 < |γ| < 1, the tip of the astroid caustic
extends outside the radial caustic, as shown if Fig. B.18. This allows a new im-
age geometry, known as the cusp or disk geometry, where we see three images
straddling the major axis of a very flattened potential. It is associated with
the caustic region inside the astroid caustic but outside the radial caustic.
This configuration appears to be rare for lenses produced by galaxies, with
APM08279+5255 as the only likely candidate, but relatively more common
in clusters. The difference is that clusters tend to have shallower density pro-
files than galaxies, which shrinks the radial caustics relative to the tangential
caustics to allow more cross section for this image configuration and lower
ellipticity thresholds before it becomes possible (Oguri & Keeton 2004 most
recently, but also see Kochanek & Blandford 1987, Kovner 1987a, Wallington
& Narayan 1993).

In general, it is far more difficult to analyze ellipsoidal lenses, in part
because few ellipsoidal lenses have analytic expressions for their deflections.
The exception is the isothermal ellipsoid (Kassiola & Kovner 1993, Kormann,
Schneider & Bartelmann 1994, Keeton & Kochanek 1998), including a core
radius s, which is both analytically tractable and generally viewed as the
most likely average mass distribution for gravitational lenses. The surface
density of the isothermal ellipsoid

κ =
1

2

b

ω
where ω2 = q2(θ2

1 + s2) + θ2
2 (B.37)

depends on the axis ratio q and the core radius s. For q = 1 − ǫ < 1 the
major axis is the θ1 axis and s is the major axis core radius. The deflections
produced by this lens are remarkably simple,

α1 =
b

√

1 − q2
tan−1

[

θ1

√

1 − q2

ω + s

]

and α2 =
b

√

1 − q2
tanh−1

[

θ2

√

1 − q2

ω + q2s

]

.

(B.38)
The effective lens potential is cumbersome but analytic,

Ψ = θ · α − bs ln
[

(ω + s)2 + (1 − q2)θ2
1

]1/2
, (B.39)

the magnification is simple

µ−1 = 1 − b

ω
− b2s

ω [(ω + s)2 + (1 − q2)θ2
1]

(B.40)

and becomes even simpler in the limit of a singular isothermal ellipsoid (SIE)
with s = 0 where µ−1 → 1−b/ω. In this case, contours of surface density κ are
also contours of the magnification, and the tangential critical line is the κ =
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Fig. B.15. Example of a minor axis cusp on the source (top) and image (bottom)
planes. When the source is inside both the radial and tangential caustics (triangles)
there are four images. As the source moves toward the cusp, three of the images
head towards a merger on the critical line and become highly magnified to leave only
one image once the source crosses the cusp and lies between the two caustics (open
squares). In a minor axis cusp, the image surviving the cusp merger is a saddle
point interior to the critical line. As the source approaches the radial caustic, one
image approaches the center of the lens and then vanishes as the it crosses the
caustic to leave only one image (pentagons).
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Fig. B.16. Example of a major axis cusp on the source (top) and image (bottom)
planes. When the source is inside both the radial and tangential caustics (triangles)
there are four images. As the source moves toward the cusp, three of the images
head towards a merger on the critical line and become highly magnified to leave
only one image once the source crosses the cusp and lies between the two caustics
(open squares). In a major axis cusp, the image surviving the cusp merger is the
minimum corresponding to the image we would see in the absence of a lens. As
the source approaches the radial caustic, one image approaches the center of the
lens and then vanishes as the source crosses the caustic to leave only one image
(pentagons).
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Fig. B.17. Example of a fold merger on the source (top) and image (bottom)
planes. When the source is inside both the radial and tangential caustics (filled
squares) there are four images. As the source crosses the tangential caustic, two
images merge, become highly magnified and then vanish, leaving only two images
(triangles) when the source is outside the tangential caustic but inside the radial
caustic. As the source approaches the radial caustic, one image moves into the
center of the lens and then vanishes when the source crosses the radial caustic to
leave only one image when the source is outside both caustics (open squares).
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Fig. B.18. Example of a cusp or disk image geometry on the source (top) and
image (bottom) planes. The shear is high enough to make the tangential caustic
extend outside the radial caustic. For a source inside both caustics (triangles) we
see a standard four-image geometry as in Fig. B.16. However, for a source outside
the radial caustic but inside the tangential caustic (squares) we have three images
all on one side of the lens. This is known as the cusp geometry because it is always
associated with cusps, and the disk geometry because flattened disks are the only
natural way to produce them. Once the source is outside the cusp tip (pentagon),
a single image remains.
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1/2 isodensity contour just as for the SIS model. The critical radius scale b can
be related to the circular velocity in the plane of the galaxy relatively easily.
For an isothermal sphere we have that bSIS = 4π(σv/c)2Dds/Ds where the
circular velocity is vc =

√
2σv. For the projection of a three-dimensional (3D)

oblate ellipsoid of axis ratio q3 and inclination i, so that q2 = q2
3 cos2 i+sin2 i,

the deflection scale is b = bSIS(e3/ sin−1 e3) where e3 =
√

1 − q2
3 is the

eccentricity of 3D mass distribution. In the limit that q3 → 0 the model
becomes a Mestel (1963) disk, the infinitely thin disk producing a flat rotation
curve, and b = 2bSIS/π (see §B.4.9 and Keeton, Kochanek & Seljak 1997,
Keeton & Kochanek 1998, Chae 2003). At least for the case of a face-on disk,
at fixed circular velocity you get a smaller Einstein radius as you make the
3D distribution flatter because a thin disk requires less mass to produce the
same circular velocity.

We can generate several other useful models from the isothermal ellip-
soids. For example, steeper ellipsoidal density distributions can be derived
by differentiating with respect to s2. The most useful of these is the first
derivative with κ ∝ ω−3/2 which is related to the Kuzmin (1956) disk (see
Kassiola & Kovner 1993, Keeton & Kochanek 1998). It is also easy to gener-
ate models with flat inner rotation curves and truncated halos by taking the
difference of two isothermal ellipsoids. In particular if κ(s) is an isothermal
ellipsoid with core radius s, the model

κ = κ(s) − κ(a) (B.41)

with a > s has a central core region with a rising rotation curve for θ <∼
s, a flat rotation curve for s <∼ θ <∼ a and a dropping rotation curve for
θ >∼ a. In the singular limit (s → 0), it becomes the “pseudo-Jaffe model”
corresponding to a 3D density distribution ρ ∝ (r2 + s2)−1(r2 + a2)−1 whose
name derives from the fact that it is very similar the Jaffe model with ρ ∝
r−2(r + a)−2 (Kneib et al. 1996, Keeton & Kochanek 1998). We will discuss
other common lens models in §B.4.1.

The last simple analytic models we mention are the generalized singular
isothermal potentials of the form Ψ = θF (χ) with surface density κ(θ, χ) =
(1/2)(F (χ) + F ′′(χ))/θ. Both the SIS and SIE are examples of this model.
The generalized isothermal sphere has a number of useful analytic properties.
For example, the magnification contours are isodensity contours

µ−1 = 1 − 1

θ
[F (χ) + F ′′(χ)] = 1 − 2κ(θ, χ) (B.42)

with the tangential critical line being the contour with κ = 1/2, and the
time delays between images depend only on the distances from the images
to the lens center (see Witt, Mao & Keeton 2000, Kochanek, Keeton &
McLeod 2001, Wucknitz 2002, Evans & Witt 2003).
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B.4 The Mass Distributions of Galaxies

Contrary to popular belief, the modeling of gravitational lenses to deter-
mine the mass distribution of a lens is not a “black art.” It is, however, an
area in which the lensing community has communicated results badly. There
are two main problems. First, many modeling results seem almost deliber-
ately obfuscatory as to what models were actually used, what data were fit
and what was actually constrained. Not only do many lens papers insist on
taking well known density distributions from the dynamical literature and
assigning them new names simply because they have been projected into two
dimensions, but they then assign them a plethora of bizarre acronyms. Some-
times the model used is not actually the one named, for example using tidally
truncated halos but calling them isothermal models. Second, there is a steady
confusion between the parameters of models and the aspects of the mass dis-
tribution that have actually been constrained. Models with apparently very
different parameters may be in perfect accord as to the properties of the
mass distribution that are actually relevant to what is observed. Discussions
of non-parametric mass models then confuse the issue further by conflating
differences in parameters with differences in what is actually constrained to
argue for non-parametric models when in fact they also are simply matching
the same basic properties with lots of extra noise from the additional and
uninteresting degrees of freedom. In short, the problem with lens modeling is
not that it is a “black art,” but that the practitioners try to make it seem to
be a “black art” (presumably so that people will believe they need wizards).
The most important point to take from this section is that any idiot can
model a lens and interpret it properly with a little thinking about what it is
that lenses constrain.

There are two issues to think about in estimating the mass distributions
of gravitational lenses. The first issue is how to model the mass distribution
with a basic choice between parametric and non-parametric models. In §B.4.1
we summarize the most commonly used radial mass distributions for lens
models. Ellipsoidal versions of these profiles combined with an external (tidal)
shear are usually used to describe the angular structure, but there has been
recent interest in deviations from ellipsoidal distributions which we discuss
in §B.4.4 and §B.8. In §B.4.7 we summarize the most common approaches
for non-parametric models of the mass distribution. Since this is my review,
I will argue that the parametric models are all that is needed to model lenses
and that they provide a better basis for understanding the results than non-
parametric models (but the reader should be warned that if Prasenjit Saha
was writing this you would probably get a different opinion).

The second issue is to determine the aspects of the lens data that actually
constrain the mass distribution. Among the things that can be measured for a
lens are the relative positions of the components (the astrometric constraints),
the relative fluxes of the images, the time delays between the images, the dy-
namical properties of the lens galaxy, and the microlensing of the images. Of
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these, the most important constraints are the positions. We can usually mea-
sure the relative positions of the lensed components very accurately (5 mas
or better) compared to the arc second scales of the component separations.
Obviously the accuracy diminishes when components are faint, and the usual
worst case is having very bright lensed quasars that make it difficult to detect
the lens galaxy. As we discuss in §B.8, substructure and/or satellites of the
lens galaxy set a lower limit of order 1–5 mas with which it is safe to impose
astrometric constraints independent of the measurement accuracy. When the
source is extended, the resulting arcs and rings discussed in §B.10 provide
additional constraints. These are essentially astrometric in nature, but are
considerably more difficult to use than multiply imaged point sources. Our
general discussion of how lenses constrain the radial (§B.4.3) and angular
structure (§B.4.4) focus on the use of astrometric constraints, and in §B.4.6
we discuss the practical details of fitting image positions in some detail.

The flux ratios of the images are one of the most easily measured con-
straints, but are cannot be imposed stringently enough to constrain radial
density profiles because of systematic uncertainties. Flux ratios measured at a
single epoch are affected by time variability in the source (§B.5), microlens-
ing by the stars in the lens galaxy in the optical continuum (see Part 4),
magnification perturbations from substructure at all wavelengths (see §B.8),
absorption by the ISM of the lens (dust in the optical, free-free in the radio)
and scatter broadening in the radio (see §B.8 and §B.9). Most applications of
flux ratios have focused on using them to probe these perturbing effects rather
than for studying the mean mass distribution of the lens. Where radio sources
have small scale VLBI structures, the changes in the relative astrometry of
the components can constrain the components of the relative magnification
tensors without needing to use any flux information (e.g. Garrett et al. 1994,
Rusin et al. 2002).

Two types of measurements, time delays (§B.5) and microlensing by the
stars or other compact objects in the lens galaxy (Part 4) constrain the surface
density near the lensed images. Microlensing also constrains the fraction of
that surface density that can be in the form of stars. To date, time delays have
primarily been used to estimate the Hubble constant rather than the surface
density, but if we view the Hubble constant as a known quantity, consider
only time delay ratios, or simply want to compare surface densities between
lenses, then time delays can be used to constrain the mass distribution. We
discuss time delays separately because of their close association with attempts
to measure the Hubble constant. Using microlensing variability to constrain
the mass distribution is presently more theory than practice due to a lack
of microlensing light curves for almost all lenses. However, the light curves
of the one well monitored lens, Q2337+0305, appear to require a surface
density composed mainly of stars as we would expect for a lens where we see
the images deep in the bulge of a nearby spiral galaxy (Kochanek 2004). We
will not discuss this approach further in Part 2.
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Any independent measurement of the mass of a component will also help
to constrain the structure of the lenses. At present this primarily means
making stellar dynamical measurements of the lens galaxy and comparing
the dynamical mass estimates to those from the lens geometry. We discuss
this in detail in §B.4.9. For lenses associated with clusters, X-ray, weak lens-
ing or cluster velocity dispersion measurements can provide estimates of the
cluster mass. While this has been done in a few systems (e.g. X-rays, Morgan
et al. 2001, Chartas et al. 2002; weak lensing, Fischer et al. 1997; velocity
dispersions, Angonin-Willaime, Soucail & Vanderriest 1994), the precision of
these mass estimates is not high enough to give strong constraints on lens
models. X-ray observations are probably more important for locating the po-
sitions of groups and clusters relative to the lens than for estimating their
masses.

The most useful way of thinking about lensing constraints on mass dis-
tributions is in terms of multipole expansions (e.g. Kochanek 1991a, Trotter,
Winn & Hewitt 2000, Evans & Witt 2003, Kochanek & Dalal 2004). An ar-
bitrary surface density κ(θ) can be decomposed into multipole components,

κ(θ) = κ0(θ) +
∞
∑

m=1

[κcm(θ) cos(mχ) + κsm(θ) sin(mχ)] (B.43)

where the individual components are angular averages over the surface den-
sity

κ0(θ) =
1

2π

∫ 2π

0

dχκ(θ), and

(

κcm(θ)

κsm(θ)

)

=
1

π

∫ 2π

0

dχ

(

κ(θ)cos(mχ)

κ(θ) sin(mχ)

)

.

(B.44)
The first three terms are the monopole (κ0), the dipole (m = 1) and the
quadrupole (m = 2) of the lens. The Poisson equation ∇2Ψ = 2κ is separable
in polar coordinates, so a multipole decomposition of the effective potential

Ψ(θ) = Ψ0(θ) +
∞
∑

m=1

[Ψcm(θ) cos(mχ) + Ψsm(θ) sin(mχ)] (B.45)

will have terms that depend only on the corresponding multipole of the sur-
face density, ∇2Ψcm(θ) cos(mχ) = 2κcm(θ) cos(mχ). The monopole of the
potential is simply

Ψ0(θ) = 2 log(θ)

∫ θ

0

uduκ0(u) + 2

∫ ∞

θ

udu log(u)κ(u) (B.46)

and its derivative is the bend angle for a circular lens,

α0(θ) =
dΨ0

dθ
=

2

θ

∫ θ

0

uduκ0(u), (B.47)
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just as we derived earlier (Eqn. B.3). The higher order multipoles are no more
complicated, with
(

Ψcm(θ)

Ψsm(θ)

)

= − 1

mθm

∫ θ

0

u1+mdu

(

κcm(u)

κsm(u)

)

− θm

m

∫ ∞

θ

u1−mdu

(

κcm(u)

κsm(u)

)

.

(B.48)
The angular multipoles are always composed of two parts. There is an in-
terior pole Ψcm,int(θ) due to the multipole surface density interior to θ (the
integral from 0 < u < θ) and an exterior pole Ψcm,ext(θ) due to the multipole
surface density exterior to θ (the integral from θ < u < ∞). The higher order
multipoles produce deflections in both the radial

αcm,rad =
d

dθ
[Ψcm cos(mχ)] =

dΨcm

dθ
cos(mχ) (B.49)

and tangential

αcm,tan =
1

θ

d

dχ
[Ψcm cos(mχ)] = −m

θ
Ψcm sin(mχ) (B.50)

directions, where the radial deflection depends on the derivative of Ψcm and
the tangential deflection depends only on Ψcm. This may seem rather formal,
but the multipole expansion provides the basis for understanding which as-
pects of mass distributions will matter for lens models. Obviously it is the
lowest order angular multipoles which are most important. The most common
angular term added to lens models is the external shear

Ψ2,ext =
1

2
γcθ

2 cos 2(χ − χγ) +
1

2
γsθ

2 sin 2(χ − χγ) (B.51)

with dimensionless amplitudes γc and γs and axis χγ . The external (tidal)
shear and any accompanying mean convergence are the lowest order per-
turbations from any object near the lens that have measurable effects on a
gravitational lens (see Eqn. B.26). While models usually consider only exter-
nal (tidal) shears where these coefficients are constants, in reality γc, γs and
χγ are functions of radius (i.e. Eqn. B.48). Along with the external shear,
there is an internal shear

Ψ2,int =
1

2
Γc

〈θ〉4
θ2

cos 2(χ − χΓ ) +
1

2
Γs

〈θ〉4
θ2

sin 2(χ − χΓ ). (B.52)

due to the quadrupole moment of the mass interior to a given radius. We
introduce the mean radius of the lensed images 〈θ〉 to make Γc and Γs di-
mensionless with magnitudes that can be easily compared to the external
shear amplitudes γc and γs. Arguably the critical radius of the lens is a bet-
ter physical choice, but the mean image radius will be close to the critical
radius and using it avoids any trivial covariances between the internal shear
strength and the monopole mass. Usually the internal quadrupole is added
as part of an ellipsoidal model for the central lens galaxy, but it is useful in
analytic studies to consider it separately.
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B.4.1 Common Models for the Monopole

Most attention in modeling lenses focuses on the monopole or radial mass
distribution of the lenses. Unfortunately, much of the lensing literature uses
an almost impenetrable array of ghastly non-standard acronyms to describe
the mass models even though many of them are identical to well-known fam-
ilies of density distributions used in stellar dynamics. Here we summarize
the radial mass distributions which are most commonly used and will keep
reappearing in the remainder of Part 2.

The simplest possible choice for the mass distribution is to simply trace
the light. The standard model for early-type galaxies or the bulges of spiral
galaxies is the de Vaucouleurs (1948) profile with surface density

Σ(R) = Ie exp
[

−7.67
[

(R/Re)
1/4 − 1

]]

, (B.53)

where the effective radius Re encompasses half the total mass (or light) of
the profile. Although the central density of a de Vaucouleurs model is finite,
it actually acts like a rather cuspy density distribution and will generally fit
the early-type lens data with no risk of producing a detectable central image
(e.g. Lehár et al. 2000, Keeton 2003a). The simplest model for a disk galaxy
is an exponential disk,

Σ(R) = I0 exp [−R/Rd] (B.54)

where Rd is the disk scale length. An exponential disk by itself is rarely a
viable lens model because it has so little density contrast between the center
and the typical radii of images that detectable central images are almost
always predicted but not observed. Some additional component, either a de
Vaucouleurs bulge or a cuspy dark matter halo, is always required. This
makes spiral galaxy lens models difficult because they generically require
two stellar components (a bulge and a disk) and a dark matter halo, while
the photometric data are rarely good enough to constrain the two stellar
components (e.g. Maller, Flores & Primack 1997, Koopmans et al. 1998,
Maller et al. 2000, Trott & Webster 2002, Winn, Hall & Schechter 2003).
Since spiral lenses are already relatively rare, and spiral lens galaxies with
good photometry are rarer still, less attention has been given to these systems.
The de Vaucouleurs and exponential disk models are examples of Sersic (1968)
profiles

Σ(R) = I0 exp
[

−bn

[

(R/Re(n))
1/n
]]

(B.55)

where the effective radius Re(n) is defined to encompass half the light and n =
4 is a de Vaucouleurs model and n = 1 is an exponential disk. These profiles
have not been used as yet for the study of lenses except for some quasar host
galaxy models (§B.10). The de Vaucouleurs model can be approximated (or
the reverse) by the Hernquist (1990) model with the 3D density distribution

ρ(r) =
M

πr

a

(a + r)3
(B.56)
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and a ≃ 0.55Re if matched to a de Vaucouleurs model. For lensing purposes,
the Hernquist model has one major problem. Its ρ ∝ 1/r central density cusp
is shallower than the effective cusp of a de Vaucouleurs model, so Hernquist
models tend to predict detectable central images even when the matching de
Vaucouleurs model would not. As a result, the Hernquist model is more often
used as a surrogate for dynamical normalization of the de Vaucouleurs model
than as an actual lens model (see below).

Theoretical models for lenses started with simple, softened power laws of
the form

κ(R) ∝
(

R2 + s2
)−(n−1)/2 → R1−n (B.57)

in the limit where there is no core radius. We are using these simple power
law lenses in all our examples (see §B.3). These models include many well
known stellar dynamical models such as the singular isothermal sphere (SIS,
n = 2, s = 0), the modified Hubble profile (n = 3) and the Plummer model
(n = 5). Since we only see the projected mass, these power laws are also
related to common models for infinitely thin disks. The Mestel (1963) disk
(n = 2, s = 0) is the disk that produces a flat rotation curve, and the Kuzmin
(1956) disk (n = 3) can be used to mimic the rising and then falling rotation
curve of an exponential disk. The softened power-law models have generally
fallen out of favor other than as simple models for some of the visible compo-
nents of lenses because the strong evidence for stellar and dark matter cusps
makes models with core radii physically unrealistic. While ellipsoidal versions
of these models are not available in useful form, there are fast series expan-
sion methods for numerical models (Chae, Khersonsky & Turnshek 1998,
Barkana 1998).

Most “modern” discussions of galaxy density distributions are based on
sub-cases of the density distribution

ρ(r) ∝ 1

rn

1

(aα + rα)
(m−n)/α

, (B.58)

which has a central density cusp with ρ ∝ r−n, asymptotically declines as
ρ ∝ r−m and has a break in the profile near r ≃ a whose shape depends on α
(e.g. Zhao 1997). The most common cases are the Hernquist model (n = 1,
m = 4, α = 1) mentioned above, the Jaffe (1983) model (n = 2, m = 4,
α = 1), the NFW (Navarro, Frenk & White 1996) model (n = 1, m = 3,
α = 1) and the Moore (1998) model (n = 3/2, m = 3, α = 1). We can
view the power-law models either as the limit n → 0 and α = 2, or we could
generalize the r−n term to (r2 +s2)−n/2 and consider only regions with r and
s ≪ a. Projections of these models are similar to surface density distributions
of the form

κ(R) ∝ 1

Rn−1

1

(aα + Rα)(m−n)/α
(B.59)

(although the definition of the break radius a changes) with the exception of
the limit n → 1 where the projection of a 3D density cusp ρ ∝ 1/r produces
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surface density terms κ ∝ lnR that cannot be reproduced by the broken
surface density power law. This surface density model is sometimes called
the Nuker law (e.g. Byun et al. 1996). A particularly useful case for lensing is
the pseudo-Jaffe model with n = 2, m = 4 and α = 2 (where the normal Jaffe
model has α = 1) as the only example of a broken power law with simple
analytic deflections even when ellipsoidal because the density distribution is
the difference between two isothermal ellipsoids (see Eqn. B.41). These cuspy
models also allow fast approximate solutions for their ellipsoidal counterparts
(see Chae 2002).

The most theoretically important of these cusped profiles is the NFW
profile (Navarro et al. 1996) because it is the standard model for dark matter
halos. Since it is such a common model, it is worth discussing it in a little more
detail, particularly its peculiar normalization. The NFW profile is normalized
by the mass Mvir inside the virial radius rvir , with

ρNFW (r) =
Mvir

4πf(c)

1

r(r + a)2
and MNFW (< r) =

f(r/rvir)

f(c)
(B.60)

where f(c) = ln(1 + c) − c/(1 + c) and the concentration c = rvir/a ∼ 5
for clusters and c ∼ 10 for galaxies. The concentration is a function of mass
whose scaling is determined from N-body simulations. A typical scaling for
a halo at redshift z in an ΩM = 0.3 flat cosmological models is (Bullock et
al. 2001)

c(M) =
9

1 + z

(

Mvir

8 × 1012hM⊙

)−0.14

(B.61)

with a dispersion in log c of σlog(c) ≃ 0.18 dex. Because gravitational lens-
ing is very sensitive to the central density of the lens, including the scatter
in the concentration is quantitatively important for lensing by NFW halos
(Keeton 2001b). The virial mass and radius are related and determined by
the overdensity ∆vir(z) required for a halo to collapse given the cosmological
model and the redshift. This can be approximated by

Mvir =
4π

3
∆vir(z)ρu(z)r3

vir ≃ 0.23 × 1012h

(

(1 + z)rvir

100h−1kpc

)3(
ΩM∆vir

200

)

M⊙

(B.62)
where ρu(z) = 3H2

0ΩM (1+z)3/8πG is the mean matter density when the halo
forms and ∆vir ≃ (18π2+82x−39x2)/Ω(z) with x = Ω−1 is the overdensity
needed for a halo to collapse. There are differences in normalizations between
authors and with changes in the central cusp exponent γ, but models of this
type are what we presently expect for the structure of dark matter halos
around galaxies.

For most lenses, HST imaging allows us to measure the spatial distribution
of the stars, thereby providing us with a model for the distribution of stellar
mass with only the stellar mass-to-light ratio as a parameter. For present pur-
poses, gradients in the stellar mass-to-light ratio are unimportant compared
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to the uncertainties arising from the dark matter. Unless we are prepared to
abandon the entire paradigm for modern cosmology, the luminous galaxy is
embedded in a dark matter halo and we must decide how to model the over-
all mass distribution. The most common approach, as suggested by the rich
variety of mass profiles we introduced in §B.4.1, is to assume a parametric
form for the total mass distribution rather than attempting to decompose it
into luminous and dark components. The alternative is to try to embed the
stellar component in a dark matter halo. Operationally, doing so is trivial –
the lens is simply modeled as the sum of two mass components. However,
there are theoretical models for how CDM halos should be combined with
the stellar component.

Most non-gravitational lensing applications focus on embedding disk galax-
ies in halos because angular momentum conservation provides a means of
estimating a baryonic scale length (e.g. Mo, Mao & White 1998). The spin
parameter of the halo sets the angular momentum of the baryons, and the
final disk galaxy is defined by the exponential disk with the same angular
momentum. As the baryons become more centrally concentrated, they pull
the dark matter inwards as well through a process known as adiabatic con-
traction (Blumenthal et al. 1986). The advantage of this approach, which in
lensing has been used only by Kochanek & White (2001), is that it allows a
full ab initio calculation of lens statistical properties when combined with a
model for the cooling of the baryons (see §B.7). It has the major disadvantage
that most lens galaxies are early-type galaxies rather than spirals, and that
there is no analog of the spin parameter and angular momentum conservation
to set the scale length of the stellar component in a model for an early-type
galaxy.

Models of early-type galaxies embedded in CDM halos have to start with
an empirical estimate of the stellar effective radius. In models of individual
lenses this is a measured property of the lens galaxy (e.g. Rusin et al. 2003,
2004, Koopmans & Treu 2002, Kochanek 2003a). Statistical models must
use a model for the scaling of the effective radius with luminosity or other
observable parameters of early-type galaxies (e.g. Keeton 2001b). From the
luminosity, a mass-to-light ratio is used to estimate the stellar mass. If all
baryons have cooled and been turned into stars, then the stellar mass provides
the total baryonic mass of the halo, otherwise the stellar mass sets a lower
bound on the baryonic mass. Combining the baryonic mass with an estimate
of the baryonic mass fraction yields the total halo mass to be fed into the
model for the CDM halo.

In general, there is no convincing evidence favoring either approach – for
the regions over which the mass distributions are constrained by the data,
both approaches will agree on the overall mass distribution. However, there
can be broad degeneracies in how the total mass distribution is decomposed
into luminous and dark components (see §B.4.6).
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Fig. B.19. Dependence of the shear generated by other objects along the line of
sight for both linear (light lines) and non-linear (heavy lines) power spectra. (a)
Shows the logarithmic contribution to the rms effective shear for a source at redshift
zs = 3 as a function of wave vector k. (b) Shows the dependence on σ8 for a fixed
power spectrum shape ΩMh = 0.25. (c) Shows the dependence on the shape ΩMh
with σ8 = 0.6 for ΩM = 1 and σ8 = 1.0 for ΩM < 1. (d) Shows the variation in the
shear with source redshift for the models in (c) with ΩMh = 0.25.

B.4.2 The Effective Single Screen Lens

Throughout these notes we will treat lenses as if all the lens components
lay at a single redshift (“the single screen approximation”). The lens equa-
tions for handling multiple deflection screens (e.g. Blandford & Narayan 1986,
Kovner 1987b, Barkana 1996) are known but little used except for numerical
studies (e.g. Kochanek & Apostolakis 1998, Moller & Blain 2001) in large
part because few lenses require multiple lens galaxies at different redshifts
with the exception of B2114+022 (Chae, Mao & Augusto 2001). In fact, we
are not being as cavalier in making this approximation as it may seem.
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The vast majority of strong lenses consist of a single lens galaxy perturbed
by other objects. We can divide these objects into those near the primary
lens, where a single screen is clearly appropriate, and those distributed along
the line of site for which a single screen may be inappropriate. Because the
correlation function is so strong on small scales, the perturbations are domi-
nated by objects within a correlation length of the lens galaxy (e.g. Keeton,
Kochanek & Seljak 1997, Holder & Schechter 2003). The key to the relative
safety of the single screen model is that weak perturbations from objects
along the line of site, in the sense that in a multi-screen lens model they
could be treated as a convergence and a shear, can be reduced to a single
“effective” lens plane in which the true amplitudes of the convergence and
shear are rescaled by distance ratios to convert them from their true redshifts
to the redshift of the single screen (Kovner 1987b, Barkana 1996). The lens
equation on the effective single screen takes the form

β = (I + FOS)θ − (I + FLS)α [(I + FOL)θ] (B.63)

where FOS , FLS and FOL describe the shear and convergence due to pertur-
bations between the observer and the source, the lens and the source and the
observer and the lens respectively. For statistical calculations this can be sim-
plified still further by making the coordinate transformation θ′ = (I +FOL)θ
and β′ = (I + FLS)β) to leave a lens equation,

β′ = (I + Fe)θ′ − α [θ′] , (B.64)

identical to a single screen lens in an effective convergence and shear of
Fe = FOL + FLS − FOS (to linear order). In practice it will usually be safe
to neglect the differences between Eqns. B.63 and B.64 because the shearing
terms affecting the deflections in Eqn B.63 are easily mimicked by modest
changes in the ellipticity and orientation of the primary lens. The rms am-
plitudes of these perturbations depend on the cosmological model and the
amplitude of the non-linear power spectrum, but the general scaling is that

the perturbations grow as D
3/2
s with source redshift, and increase for larger

σ8 and ΩM as shown in Fig. B.19 from Keeton et al. (1997). The importance
of these effects is very similar to concerns about the effects of lenses along
the line of sight on the brightness of high redshift supernova being used to
estimate the cosmological model (e.g. Dalal et al. 2003).

B.4.3 Constraining the Monopole

The most frustrating aspect of lens modeling is that it is very difficult to
constrain the monopole. If we take a simple lens and fit it with any of the
parametric models from §B.4.1, it will be possible to obtain a good fit pro-
vided the central surface density of the model is high enough to avoid the
formation of a central image. As usual, it is simplest to begin understanding
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the problem with a circular, two-image lens whose images lie at radii θA and
θB from the lens center (Fig. B.20). The lens equation (B.4) constrains the
deflections so that the two images correspond to the same source position,

β = θA − α(θA) = −θB + α(θB), (B.65)

where the sign changes appear because the images are on opposite sides of the
lens. Recall that for the power-law lens model, α(θ) = bn−1θ2−n (Eqn. B.9),
so we can easily solve the constraint equation to determine the Einstein radius
of the lens,

b =

[

θA + θB

θ2−n
A + θ2−n

B

]1/(n−1)

(B.66)

in terms of the image positions. In the limit of an SIS (n = 2) the Einstein
radius is the arithmetic mean, b = (θA + θB)/2, and in the limit of a point
source (n → 3), it is the geometric mean, b = (θAθB)1/2, of the image radii.
More generally, for any deflection profile α(θ) = bf(θ), the two images simply
determine the mass scale b = (θA + θB)/(f(θA) + f(θB)).

There are two important lessons here. First, the location of the tangential
critical line is determined fairly accurately independent of the mass profile.
We may only be able to determine the mass scale, but it is the most accurate
measurement of galaxy masses available to astronomy. The dependence of
the mass inside the Einstein radius on the shape of the deflection profile is
weak, with fractional differences between profiles being of order (δθ/〈θ〉)2/8
where δθ = θA − θB and 〈θ〉 = (θA + θB)/2 (i.e. if the images have similar
radii, the difference beween the arthmetic and geometric mean is small).
Second, it is going to be very difficult to determine radial mass distributions.
In this example there is a perfect degeneracy between the exact location of
the tangential critical line b and the exponent n. In theory, this is broken by
the flux ratio of the images. However, a simple two-image lens has too few
constraints even with perfectly measured flux ratios because a realistic lens
model must also include some freedom in the angular structure of the lens.
For a simple four-image lens, there begin to be enough constraints but the
images all have similar radii, making the flux ratios relatively insensitive to
changes in the monopole. Combined with the systematic uncertainties in flux
ratios, they are not useful for this purpose.

This example also leads to the major misapprehension about lens models
and radial mass distributions, in that the constraints appear to lead to a
degeneracy related to the global structure of the potential (i.e. the exponent
n). This is not correct. The degeneracy is a purely local one that depends only
on the structure of the lens in the annulus defined by the images, θB < θ < θA,
as shown in Fig. B.20. To see this we will rewrite the expression for the bend
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Fig. B.20. A schematic diagram of a two-image lens. The lens galaxy lies at the
origin with two images A and B at radii θA and θB from the lens center. The images
define an annulus of average radius 〈θ〉 = (θA + θB)/2 and width δθ = θA − θB,
and they subtend an angle ∆χAB relative to the lens center. For a circular lens
∆χAB = 180◦ by symmetry.

angle (Eqn. B.3) as

α(θ) =
2

θ

[

∫ θB

0

uduκ(u) +

∫ θ

θB

uduκ(u)

]

=
1

θ

[

b2
B + (θ2 − θ2

B)〈κ〉(θ, θB)
]

(B.67)

where b2
B = 2

∫ θB

0 uduκ(u) is the Einstein radius of the total mass interior to
image B, and

〈κ〉(θ, θB) =
2

θ2 − θ2
B

∫ θ

θB

uduκ(u) (B.68)

is the mean surface density in the annulus θB < u < θ. If we now solve the
constraint Eqn. B.65 again, we find that

b2
B = θAθB − 〈κ〉ABθB(θA − θB) (B.69)

where 〈κ〉AB = 〈κ〉(θA, θB) is the mean density in the annulus θB < θ < θA

between the images. Thus, there is a degeneracy between the total mass
interior to image B and the mean surface density (mass) between the two
images. There is no dependence on the distribution of the mass interior to
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Fig. B.21. Softened power law and cusped model fits to the images produced by
an SIS lens with Einstein radius b = 1.′′0 and two source components located 0.′′1
and 0.′′5 from the lens center. In the top panel, the contours show the regions with
astrometric fit residuals per image of 0.′′003 and 0.′′010. Models with m = 3 cusps
so closely overly the m = 4 models that their error contours were not plotted.
The bottom panel shows the deflection profiles of the best models at half-integer
increments in the exponent n. The SIS model has a constant deflection, and the
power-law and cusp models approach it in a sequence of slowly falling deflection
profiles. All models agree with the SIS Einstein radius at r = 1.′′0. The positions of
the images are indicated by the vertical bars.
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θB, the distribution of mass between the two images, or on either the amount
or distribution of mass exterior to θA. This is Gauss’ law for gravitational
lens models.

If we normalize the mass scale at any point in the interior of the annulus
then the result will appear to depend on the distribution of the mass simply
because the mass must be artificially divided. For example, suppose we model
the surface density locally as a power law κ ∝ θ1−n with a mean surface
density 〈κ〉 in the annulus θB < θ < θA between the images. The mass inside
the mean image radius 〈θ〉 is

b2
〈θ〉 = θAθB (1 − κ0) + (B.70)

δθ2〈κ〉
[

n

4
+

(

δθ

〈θ〉

)2
(4 − n)(2 − n)(1 − n)

192
+ O

(

(

δθ

〈θ〉

)4
)]

where we have expanded the result in the ratio δθ/〈θ〉 (in fact, the result
as shown is exact for n = 2/3, 1, 2, 4 and 5). We included in this result an
additional, global convergence κ0 so that we can contrast the local degen-
eracies due to the distribution of matter between the images with the global
degeneracies produced by a infinite mass sheet. The leading term θAθB is
the Einstein radius expected for a point mass lens (Eqn. B.65). While the
total enclosed mass (θAθB) is fixed, the mass associated with the lens galaxy
b2
〈θ〉 must be modified in the presence of a global convergence by the usual

1 − κ0 factor created by the mass sheet degeneracy (Falco, Gorenstein &
Shapiro 1985). The structure of the lens in the annulus leads to fractional
corrections to the mass of order (δθ/〈θ〉)2 that are proportional to n〈κ〉 to
lowest order.

Only if you have additional images inside the annulus can you begin to
constrain the structure of the density in the annulus. The constraint is not,
unfortunately, a simple constraint on the density. Suppose that we see an
additional (pair) of images on the Einstein ring at θ0, with θB < θ0 < θA

This case is simpler than the general case because it divides our annulus into
two sub-annuli (from θB to θ0 and from θ0 to θA) rather than three. Since
we put the extra image on the Einstein ring, we know that the mean surface
density interior to θ0 is unity (Eqn. B.11). The A and B images then constrain
a ratio

1 − 〈κ〉B0

1 − 〈κ〉A0
=

θB

θA

θ2
A − θ2

0

θ2
0 − θ2

B

≃ θA − θ0

θ0 − θB

[

1 − θA − θB

2θ0
· · ·
]

(B.71)

of the average surface densities between the Einstein ring and image B (〈κ〉B0)
and the Einstein ring and image A (〈κ〉A0). Since a physical distribution must
have 0 < 〈κ〉A0 < 〈κ〉B0, the surface density in the inner sub-annulus must
satisfy

θA + θB

θA

θ2
0 − θAθB

θ2
0 − θ2

B

< 〈κ〉B0 < 1 (B.72)
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where the lower (upper) bound is found when the density in the outer sub-
annulus is zero (when 〈κ〉B0 = 〈κ〉A0). The term θ2

0 − θAθB is the difference
between the measured critical radius θ0 and the critical radius implied by
the other two images for a lens with no density in the annulus (e.g. a point
mass), (θAθB)1/2. Suppose we actually have images formed by an SIS, so
θA = θ0(1 + x) and θB = θ0(1 − x) with 0 < x = β/θ0 < 1, then the lower
bound on the density in the inner sub-annulus is

〈κ〉B0 >
2x

(2 − x)(1 + x)
(B.73)

and the fractional uncertainly in the surface density is unity for images near
the Einstein ring (x → 0) and then steadily diminishes as the A and B
images are more asymmetric. If you want to constrain the monopole, the
more asymmetric the configuration the better. This rule becomes still more
important with the introduction of angular structure.

Fig. B.21 illustrates these issues. We arbitrarily picked a model consisting
of an SIS lens with two sources. One source is close to the origin and produces
images at θA = 1.′′1 and θB = 0.′′9. The other source is farther from the origin
with images at θA = 1.′′5 and θB = 0.′′5. We then modeled the lens with either
a softened power law (Eqn. B.57) or a three-dimensional cusp (Eqn. B.58).
We did not worry about the formation of additional images when the core
radius becomes too large or the central cusp is too shallow – this would rule
out models with very large core radii or shallow central cusps. If there were
only a single source, either of these models can fit the data for any values
of the parameters. Once, however, there are two sources, most of parameter
space is ruled out except for degenerate tracks that look very different for
the two mass models. Along these tracks, the models satisfy the additional
constraint on the surface density given by Eqn. B.71. The first point to make
about Fig. B.21 is the importance of carefully defining parameters. The input
SIS model has very different parameters for the two mass models – while the
exponent n = 2 is the same in both cases, the SIS model is the limit s → 0
for the core radius in the softened power law, but it is the limit a → ∞ for
the break radius in the cusp model. Similarly, models with an inner cusp
n = 0 will closely resemble power law models whose exponent n matches the
outer exponent m of the cuspy models. Our frequent failure to explain these
similarities is one reason why lens modeling seems so confusing. The second
point to make about Fig. B.21 is that the deflection profiles implied by these
models are fairly similar over the annulus bounded by the images. Outside the
annulus, particularly at smaller radii, they start to show very large fractional
differences. Only if we were to add a third set of multiple images or measure a
time delay with a known value of H0 would the parameter degeneracy begin
to be broken.

These general results show that studies of how lenses constrain the monopole
need the ability to simultaneously vary the mass scale, the surface density
of the annulus and possibly the slope of the density profile in the annulus to
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have the full range of freedom permitted by the data. Most parametric stud-
ies constraining the monopole have had two parameters, adjusting the mass
scale and a correlated combination of the surface density and slope (e.g.
Kochanek 1995a, Impey et al. 1998, Chae, Turnshek & Khersonsky 1998,
Barkana et al. 1999, Chae 1999, Cohn et al. 2001, Muñoz et al. 2001, Wuck-
nitz et al. 2004), although there are exceptions using models with additional
degrees of freedom (e.g. Bernstein & Fischer 1999, Keeton et al. 2000, Trott
& Webster 2002, Winn, Rusin & Kochanek 2003). This limitation is probably
not a major handicap, because realistic density profiles show a rather limited
range of local logarithmic slopes.

B.4.4 The Angular Structure of Lenses

Assuming you have identified all the halos needed to model a particular lens,
there are three sources of angular structure in the potential. The first source
is the shape of the luminous lens galaxy, the second source is the dark matter
in the halo of the lens, and the third source is perturbations from nearby
objects or objects along the line of sight. Of these, the only one which is
easily normalized is the contribution from the stars in the lens galaxy, since
it must be tightly connected to the monopole deflection of the stars. The
observed axis ratios of early-type galaxies show a deficit of round galaxies,
a plateau for axis ratios from q ∼ 0.9 to q ∼ 0.5 and then a sharp decline
beyond q ∼ 0.5 (e.g. Khairul & Ryden 2002). Not surprisingly, the true el-
liptical galaxies are rounder than the lenticular (S0) galaxies even if both
are grouped together as early-type galaxies. In three dimensions, the stellar
distributions are probably close to oblate with very modest triaxialities (e.g.
Franx et al. 1991). Theoretical models of galaxy formation predict elliptic-
ities and triaxialities larger than observed for luminous galaxies and show
that the shapes of the dark matter halos are significantly modified by the
cooling baryons (Dubinski 1992, 1994, Warren et al. 1992, Kazantzidis et
al. 2004). Local estimates of the shape of dark matter halos are very limited
(e.g. Olling & Merrifield 2001, Buote et al. 2002). Stellar isophotes also show
deviations from perfect ellipses (e.g. Bender et al. 1989, Rest et al. 2001) and
the deviations of simulated halos from ellipses have a similar amplitude (Heyl
et al. 1994, Burkert & Naab 2003).

It is worth considering two examples to understand the relative impor-
tance of the higher order multipoles of a lens. The first is the singular isother-
mal ellipsoid (SIE) introduced in §B.3 (Eqns. B.38-B.40). Let the major axis
of the model lie on the θ1 axis, in which case only the cos(mχ) multipoles
with m = 2, 4, · · · are non-zero. All non-zero poles also have the same radial
dependence, with κcm = Am/θ and Ψcm = −2Amθ/(m2−1). The ratio of the
internal to the external multipole depends only on the index of the multipole,
Ψcm,int/Ψcm,ext = (m− 1)/(m + 1). Note, in particular, that the quadrupole
moment of an SIE is dominated by the matter outside any given radius, with
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Fig. B.22. Behavior of the angular multipoles for the de Vaucouleurs (solid), SIE
(dashed) and NFW (dotted) models with axis ratios of either q = 0.75 (Top) or
q = 0.5 (Bottom) as a function of radius from the lens center in units of the lens
major axis scale Rmajor. For each axis ratio, the lower panel shows the ratio of the
maximum angular deflections produced by the quadrupole (m = 2) and the m = 4
pole relative to the deflection produced by the monopole (m = 0). The upper panel
shows the fraction of the quadrupole generated by the mass interior to each radius.
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an internal quadrupole fraction of

fint =
Ψc2,int

Ψc2
=

1

4
. (B.74)

For lenses dominated by dark matter halos that have roughly flat global rota-
tion curves, most of the quadrupole moment is generated outside the Einstein
ring of the lens (i.e. by the halo!). This will hold provided any halo trun-
cation radius is large compared to the Einstein ring radius. The tangential
deflection is larger than the radial deflection, with |αcm,rad/αcm,tan| = 1/m.
The final question is the relative amplitudes between the poles. The ratio of
the angular deflection from the m = 2 quadrupole to the radial deflection of
the monopole is

αc2,tan

α0,rad
≃ ǫ

3

[

1 +
1

2
ǫ +

9

32
ǫ2 · · ·

]

(B.75)

while the ratio for the m = 4 quadrupole is

αc4,tan

α0,rad
≃ ǫ2

20

[

1 + ǫ +
19

24
ǫ2 · · ·

]

(B.76)

where the axis ratio of the ellipsoid is q = 1− ǫ. Each higher order multipole
has an amplitude Ψm ∝ ǫm/2 to leading order.

The relative importance of the higher order poles can be assessed by
computing the deflections for a typical lens with the monopole deflection
(essentially the Einstein radius) fixed to be one arc second. Using the leading
order scaling of the power-series, but setting the numerical value to be exact
for an axis ratio q = 1/2, the angular deflection from the quadrupole is 0.′′46ǫ
and that from the m = 4 pole is 0.′′09ǫ2, while the radial deflections will be
smaller by a factors of 2 and 4 respectively. Since typical astrometric errors
are of order 0.′′005, the quadrupole is quantitatively important for essentially
any ellipticity while the m = 4 pole becomes quantitatively important only
for q <∼ 0.75 (and the m = 6 pole becomes quantitatively important for
q <∼ 0.50).

In Fig. B.22 we compare the SIE to ellipsoidal de Vaucouleurs and NFW
models. Unlike the SIE, these models are not scale free, so the multipoles
depend on the distance from the lens center in units of the major axis scale
length of the lens, Rmajor. The behavior of the de Vaucouleurs model will be
typical of any ellipsoidal mass distribution that is more centrally concentrated
than an SIE. Although the de Vaucouleurs model produces angular deflections
similar to those of an SIE on small scales (for the same axis ratio), these
are beginning to decay rapidly at the radii where we see lensed images (1–
2Rmajor) because most of the mass is interior to the image positions and the
amplitudes of the higher order multipoles decay faster with radius than the
monopole (see Eqn. B.48). Similarly, as more of the mass lies at smaller radii,
the quadrupole becomes dominated by the internal quadrupole. The NFW
model has a somewhat different behavior because on small scales it is less
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centrally concentrated than an SIE (a ρ ∝ 1/r central density cusp rather
than ∝ 1/r2). It produces a somewhat bigger quadrupole for a given axis
ratio, and an even larger fraction of that quadrupole is generated on large
scales. In a “standard” dark matter halo model, the region with θ < Rmajor

is also where we see the lensed images. On larger scales, the NFW profile is
more centrally concentrated than the SIE, so the quadrupole begins to decay
and becomes dominated by the internal component.

It is unlikely that mass distributions are true ellipsoids producing only
even poles (m = 2, 4, · · ·) with no twisting of the axes with radius. For
model fits we need to consider the likely amplitude of these deviations and
the ability of standard terms to absorb and mask their presence. It is clear
from Fig. B.22 that the amplitude of any additional terms must be of order
the m = 4 deflections expected for an ellipsoid for them to be important.
Here we illustrate the issues with the first few possible terms.

A dipole moment (m = 1) corresponds to making the galaxy lopsided with
more mass on one side of the lens center than the other. Lopsidedness is not
rare in disk galaxies (∼30% at large radii, Zaritsky & Rix 1997), but is little
discussed (and hence presumably small) for early-type galaxies. Certainly in
the CASTLES photometry of lens galaxies we never see significant dipole
residuals. It is difficult (impossible) to have an equilibrium system supported
by random stellar motions with a dipole moment because the resulting forces
will tend to eliminate the dipole. Similar considerations make it difficult to
have a dark matter halo offset from the luminous galaxy. Only disks, which are
supported by ordered rather than random motion, permit relatively long-lived
lopsided structures. Where a small dipole exists, it will have little effect on
the lens models unless the position of the lens galaxy is imposed as a stringent
constraint. The reason is that a dipole adds terms to the effective potential
of the form θ1G(θ) whose leading terms are degenerate with a change in the
unknown source position.

Perturbations to the quadrupole (relative to an ellipsoid) arise from vari-
ations in the ellipticity or axis ratio with radius. Since realistic lens models
require an independent external shear simply to model the local environ-
ment, it will generally be very difficult to detect these types of perturbations
or for these types of perturbations to significantly modify any conclusions.
In essence, the amplitude and orientation of the external shear can capture
most of their effects. Their actual amplitude is easily derived from pertur-
bation theory. For example, if there is an isophote twist of ∆χ between the
region inside the Einstein ring and outside the Einstein ring, the fractional
perturbations to the quadrupole will be of order ∆χ, or approximately ǫ∆χ/3
of the monopole – independent of the ability of the external shear to mimic
the twist, the actual amplitude of the perturbation is approaching the typical
measurement precision unless the twist is very large. Only in Q0957+561 have
models found reasonably clear evidence for an effect arising from isophotal
twists and ellipticity gradients, but both distortions are unusually large in
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this system (Keeton et al. 2000). In general, in the CASTLES photometry of
lens galaxies, deviations from simple ellipsoidal models are rare.

Locally we observe that the isophotes of elliptical galaxies are not perfect
ellipses (e.g. Bender et al. 1989, Rest et al. 2001) and simulated halos show
deviations of similar amplitude (Heyl et al. 1994, Burkert & Naab 2003).
For lensing calculations it is useful to characterize these perturbations by a
contribution to the lens potential and surface density of

Ψ =
ǫm

m
θ cosm(χ − χm) and κm =

ǫm

θ

1 − m2

m
cosm(χ − χm) (B.77)

respectively where the amplitude of the term is related to the usual isophote
parameter am = ǫm|1 − m2|/mb for a lens with Einstein radius b. A typical
early-type galaxy might have |a4| ∼ 0.01, so their fractional effect on the
deflections, |ǫ4|/b ∼ |a4|/4 ∼ 0.003, will be comparable to the astrometric
measurement accuracy.

B.4.5 Constraining Angular Structure

The angular structure of lenses is usually simply viewed as an obstacle to
understanding the monopole. This is a serious mistake. The reason angular
structure is generally ignored is that the ability to accurately constrain the
angular structure of the gravitational field is nearly unique to gravitational
lensing. Since we have not emphasized the ability of lenses to measure angular
structure and other methods cannot do so very accurately, there has been
little theoretical work on the angular structure of galaxies with dark matter.
Both theoretical studies of halos and modelers of gravitational lenses need to
pay more attention to the angular structure of the gravitational potential.

We start by analyzing a simple two-image lens using our non-parametric
model of the monopole (Eqn. B.67) in an external shear (Eqn. B.51). The two
images are located at θA = θA(cosχA, sin χA), and θB = θB(cos χB, sinχB)
as illustrated in Fig. B.20. To illustrate the similarities and differences be-
tween shear and convergence, we will also include a global convergence κ0

in the model. This corresponds to adding a term to the lens potential of the
form (1/2)κ0θ

2. The model now has five parameters – two shear components,
the mass and surface density of the monopole model and the additional global
convergence. We have only two astrometric constraints, and so can solve for
only two of the five parameters. Since the enclosed mass is always an inter-
esting parameter, we can only solve for one of the two shear components. In
general, we will find that the amplitude of γc depends on the amplitude of γs.
There is, however, a special choice of the shear axis, χγ = (χA +χB)/2+π/4,
such that the shear parameters become independent of each other. This allows
us to determine the “invariant” shear associated with the images,

γ1 =
(1 − κ0 − 〈κ〉AB) (θ2

A − θ2
B) sin(χA − χB)

∆θ2
(B.78)
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where ∆θ = |θA − θB| is the image separation. The monopole mass and the
other shear component are degenerate,

b2
B + γ2θAθB = (B.79)

(1 − κ0)
[

∆θ2(θ2
A + θ2

B) − (θ2
A − θ2

B)2
]

− 〈κ〉AB

(

θ2
A − θ2

B

) (

∆θ2 − θ2
A + θ2

B

)

2∆θ2
.

Several points are worth noting. First, the amplitude of the invariant shear γ1

has the same degeneracy with the (local) surface density between the images
〈κ〉AB as it does with a global convergence κ0. More centrally concentrated
mass distributions with lower 〈κ〉AB require higher external shears to fit
the same data. Second, the other component γ2 introduces an uncertainty
into the enclosed mass, with a series of somewhat messy trade offs between
b2
B, γ2, 〈κ〉AB and κ0. As a practical matter, the shear does not lead to an

astronomically significant uncertainty in the mass, since γ2 <∼ 0.1 in all but
the most extreme situations.

The external shear is only one component of the quadrupole. There is also
an internal shear due to the mass interior to the images (Eqn. B.52). The in-
ternal and external shears differ in their “handedness”. For the same angular
deflection (dΨ/dχ) they have opposite signs for the radial deflection (dΨ/dθ).
The solution for two images is much the same as for an external shear. There
is an invariant shear component, whose amplitude scales with 1−κ0−〈κ〉AB

but whose orientation differs from that of the external shear solution. The
monopole mass b2

B is degenerate with the γ2 shear component and the κ0

and 〈κ〉AB surface densities. The actual expressions are too complex to be
illuminating.

Fig. B.23 illustrates how the invariant shears combine to determine the
overall structure of the quadrupole for the lens PG1115+080. For each image
pair there is a line of permitted shears because of the degeneracy between the
enclosed mass and the second shear component. The invariant shear compo-
nent is the shear at the point where the line passes closest to the origin. If
the quadrupole model is correct, the lines for all the image pairs will cross
at a point, while if it is incorrect they will not. PG1115+080 is clearly go-
ing to be well modeled if the quadrupole is dominated by an external shear
and poorly modeled if it is dominated by an internal shear. This provides a
simple geometric argument for why full models of PG1115+080 are always
dominated by an external shear (e.g. Impey et al. 1998). A failure of the
curves to cross in both cases is primarily evidence for a mixture of external
and internal quadrupoles or the presence of other multipoles rather than for
a problem in the monopole mass distribution. In Fig. B.23 we used an SIS for
the monopole. For a point mass monopole, the figure looks almost the same
provided we expand the scale – the invariant shear scales as 1 − 〈κ〉AB so in
going from a SIS with 1 − 〈κ〉AB ≃ 1/2 to a point mass with 1 − 〈κ〉AB = 1
the shear will double.

This scaling of the quadrupole with the surface density of the monopole
provides an as yet unused approach to studying the monopole. Since the mass
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Fig. B.23. The invariant shears for the lens PG1115+080 modeled using either
an external (top) or an internal (bottom) quadrupole and an SIS monopole. Each
possible image pair among the A1, A2, B and C images, constrains the quadrupole
to lie on the labeled line. The amplitude and orientation of each invariant shear
is given by the point where the corresponding line passes closest to the origin.
Models of PG1115+080 show that the quadrupole is dominated by external (tidal)
shear. Here we see that for the external quadrupole (top), the lines nearly cross at
a point, so the data are consistent with an almost pure external shear. For an inter-
nal quadrupole (bottom), the A2B and A2C image pairs require shear parameters
completely inconsistent with the other images.
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enclosed by the Einstein radius is nearly constant, the more centrally con-
centrated constant mass-to-light (M/L) ratio models must have lower surface
mass densities near the images than the SIE model. As a result, they will re-
quire quadrupole amplitudes that are nearly twice those of models like the
SIS with nearly flat rotation curves. Since the typical SIE model of a lens
has an ellipticity that is comparable to the typical ellipticities of the visi-
ble galaxies, the more centrally concentrated monopole of a constant M/L
model requires an ellipticity much larger than the observed ellipticity of the
lens galaxy. The need to include an external tidal shear to represent the envi-
ronment allows these models to produce acceptable fits, but the amplitudes
of the required external shears are inconsistent with expectations from weak
lensing (Part 3).

B.4.6 Model Fitting and the Mass Distribution of Lenses

Having outlined (in perhaps excruciating detail) how lenses constrain the
mass distribution, we turn to the problem of actually fitting data. These days
the simplest approach for a casual user is simply to down load a modeling
package, in particular the lensmodel package (Keeton 2001a) at http://cfa-www.harvard.edu/castles/,
read the manual, try some experiments, and then apply it intelligently (i.e.
read the previous sections about what you can extract and what you can-
not!). Please publish results with a complete description of the models and
the constraints using standard astronomical nomenclature.

In most cases we are interested in the problem of fitting the positions
θi of i = 1 · · ·n images where the image positions have been measured with
accuracy σi. We may also know the positions and properties of one or more
lens galaxies. Time delay ratios also constrain lens models but sufficiently ac-
curate ratios are presently available for only one lens (B1608+656, Fassnacht
et al. 2002), fitting them is already included in most packages, and they add
no new conceptual difficulties. Flux ratios constrain the lens model, but we
are so uncertain of their systematic uncertainties due to extinction in the
ISM of the lens galaxy, microlensing (Part 4) and the effects of substructure
(see §B.8) that we can never impose them with the accuracy needed to add
a significant constraint on the model.

The basic issue with lens modeling is whether or not to invert the lens
equations (“source plane” or “image plane” modeling). The lens equation
supplies the source position

βi = θi − α(θi, p) (B.80)

predicted by the observed image positions θi and the current model parame-
ters p. Particularly for parametric models it is easy to project the images on
to the source plane and then minimize the difference between the projected

http://cfa-www.harvard.edu/castles/
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source positions. This can be done with a χ2 fit statistic of the form

χ2
src =

∑

i

(

β − βi

σi

)2

(B.81)

where we treat the source position β as a model parameter. The astrometric
uncertainties σi are typically a few milli-arcseconds. Moreover, where VLBI
observations give significantly smaller uncertainties, they should be increased
to approximately 0.′′001–0.′′005 because low mass substructures in the lens
galaxy can produce systematic errors on this order (see §B.8). You can im-
pose astrometric constraints to no greater accuracy than the largest deflection
scales produced by lens components you are not including in your models. The
advantage of χ2

src is that it is fast and has excellent convergence properties.
The disadvantages are that it is wrong, cannot be used to compute parameter
uncertainties, and may lead to a model producing additional images that are
not actually observed.

The reason it is wrong and cannot be used to compute parameter errors
is that the uncertainty σi in the image positions does not have any meaning
on the source plane. This is easily understood if we Taylor expand the lens
equation near the projected source point βi corresponding to an image

β − βi = M−1
i (θ − θi) (B.82)

where M−1
i is the inverse magnification tensor at the observed location of the

image. In the frame where the tensor is diagonal, we have that ∆β± = λ±∆θ±
so a positional error ∆β± on the source plane corresponds to a positional error
λ−1
± ∆β± on the image plane. Since the observed lensed images are almost

always magnified (usually λ+ = 1 + κ + γ ∼ 1 and 0.5 > |λ− = 1 + κ − γ| <
0.05) there is always one direction in which small errors on the source plane
are significantly magnified when projected back onto the image plane. Hence,
if you find solutions with χ2

src ∼ Ndof where Ndof is the number of degrees
of freedom, you will have source plane uncertainties ∆β <∼ σi. However, the
actual errors on the image plane are µ = |M | larger, so the χ2 on the image
plane is ∼ µ2Ndof and you in fact have a terrible fit.

If you assume that in any interesting model you are close to having a
good solution, then this Taylor expansion provides a means of using the
easily computed source plane positions to still get a quantitatively accurate
fitting statistic,

χ2
int =

∑

i

(β − βi) · M2
i · (β − βi)

σ2
i

, (B.83)

in which the magnification tensor Mi is used to correct the error in the
source position to an error in the image position. This procedure will be
approximately correct provided the observed and model image positions are
close enough for the Taylor expansion to be valid. Finally, there is the exact
statistic where for the model source position β you numerically solve the
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Fig. B.24. (Top) Goodness of fit χ2 for cuspy models of B1933+503 as a function
of the inner density exponent γ (ρ ∝ r−γ) and the profile break radius a. Models
with cusps significantly shallower or steeper than isothermal are ruled out, and
acceptable models near isothermal must have break radii outside the region with
the lensed images.

Fig. B.25. (Bottom) The monopole deflections of the B1933+503 models for the
range of permitted cusp exponents γ. The points show the radii of the lensed im-
ages, and the models only constrain the shape of the monopole in this region. The
monopole deflection is closely related to the square of the rotation curve. Note the
similarity to Fig. B.21.
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lens equation to find the exact image positions θi(β) and then compute the
goodness of fit on the image plane

χ2
img =

∑

i

(

θi(β) − θi

σi

)2

. (B.84)

This will be exact even if the Taylor expansion of χ2
int is breaking down, and

if you find all solutions to the lens equations you can verify that the model
predicts no additional visible images. Unfortunately, using the exact χ2

img is
also a much slower numerical procedure.

As we discussed earlier, even though lens models provide the most accu-
rate mass normalizations in astronomy, they can constrain the mass distri-
bution only if the source is more complex than a single compact component.
Here we only show examples where there are multiple point-like components,
deferring discussions of models with extended source structure to §B.10. The
most spectacular example of a multi-component source is B1933+503 (Sykes
et al. 1998, see Fig. B.7) where a source consisting of a radio core and two
radio lobes has 10 lensed images because the core and one lobe are quadru-
ply imaged and the other lobe is doubly imaged. Since we have many images
spread over roughly a factor of two in radius, this lens should constrain the ra-
dial mass distribution just as in our discussion for §B.4.3. Muñoz et al. (2001,
also see Cohn et al. 2001 for softened power law models) fitted this system
with cuspy models (Eqn. 55 with α = 2 and m = 4), varying the inner density
slope n = γ (ρ ∝ r−n) and the break radius a. Fig. B.24 shows the resulting
χ2 as a function of the parameters and Fig. B.25 illustrates the range of the
acceptable monopole mass distributions – both are very similar to Fig. B.21.
The best fit is for γ = 1.85 with an allowed range of 1.6 < γ < 2.0 that com-
pletely excludes the shallow γ = 1 cusps of the Hernquist and NFW profiles
and is marginally consistent with the γ = 2 cusp of the SIS model. A second
example, which illustrates how the distribution of mass well outside the re-
gion with images has little effect on the models, are the Winn et al. (2003)
models of the three-image lens PMNJ1632–0033 shown in Fig. B.26. In these
models the outer slope η, with ρ ∝ r−η asymptotically, of the density was
also explored but has little effect on the results. Unless the break radius of
the profile is interior to the B image, the mass profile is required to be close
to isothermal 1.89 < β < 1.93.

Unfortunately, systems like B1933+503 and PMNJ1632–0033 are a small
minority of lens systems. For most lenses, obtaining information on the radial
density profile requires some other information such as a dynamical mea-
surement (§B.4.9), a time delay measurement (§B.5) or a lensed extended
component of the source (§B.10). Even for these systems, it is important to
remember that the actual constraints on the density structure really only
apply over the range of radii spanned by the lensed images – the mass inte-
rior to the images is constrained but its distribution is not, while the mass
exterior to the images is completely unconstrained. This is not strictly true
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η = 3

η = 4η = 2

Fig. B.26. Allowed parameters for cuspy models of PMNJ1632–0033 assuming
that image C is a true third image. Each panel shows the constraints on the inner
density cusp β (ρ ∝ r−β) and the break radius rb for three different asymptotic
density slopes ρ ∝ r−η. A Hernquist model has β = 1 and η = 4, an NFW model
has β = 1 and η = 3, and a pseudo-Jaffe model has β = 2 and η = 4. Unless the
break radius is place interior to the B image, it is restricted to be close to isothermal
(β = 2).

when we include the angular structure of the gravitational field and the mass
distribution is quasi-ellipsoidal.

It is also important to keep some problems with parametric models in
mind. First, models that lack the degrees of freedom needed to describe the
actual mass distribution can be seriously in error. Second, models with too
many degrees of freedom can be nonsense. We can illustrate these two lim-
iting problems with the sad history of Q0957+561 for the first problem and
attempts to explain anomalous flux ratios (see §B.8) with complex angular
structures in the density distribution for the dark matter for the second.

Q0957+561, the first lens discovered (Walsh, Carswell & Weymann 1979)
and the first lens with a well measured time delay (see §B.5, Schild & Thom-
son 1970, Kundić et al. 1997 and references therein), is an ideal lens for
demonstrating the trouble you can get into using parametric models with-
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out careful thought. The lens consists of a cluster and its brightest clus-
ter galaxy with two lensed images of a radio source bracketing the galaxy.
VLBI observations (e.g. Garrett et al. 1994) resolve the two images into thin,
multi-component jets with very accurately measured positions (uncertain-
ties as small as 0.1 mas, corresponding to deflections produced by a mass
scale ∼ 10−8 of the primary lens!). Models developed along two lines. One
line focused on models in which the cluster was represented as an external
shear (e.g. Grogin & Narayan 1996, Chartas et al. 1998, Barkana et al. 1999,
Chae 1999) while the other explored more complex models for the cluster
(see Kochanek 1991b, Bernstein, Tyson & Kochanek 1993, Bernstein & Fis-
cher 1999) and argued that external shear models had too few parameters
to represent the mass distribution given the accuracy of the constraints. The
latter view was born out by the morphology of the lensed host galaxy (Keeton
et al. 2000) and direct X-ray observations of the cluster (Chartas et al. 2002)
which showed that the lens galaxy was within about one Einstein radius of
the cluster center where a tidal shear approximation fails catastrophically.
The origin of the problem is that as a two-image lens, Q0957+561 is criti-
cally short of constraints unless the fine details of the VLBI jet structures
are included in the models. Many studies imposed these constraints to the
limit of the measurements while not including all possible terms in the poten-
tial which could produce a deflection on that scale (i.e. the precision should
have been restricted to milli-arcseconds rather than micro-arcseconds). Mod-
els would adjust the positions and masses of the cluster and the lens galaxy
in order to reproduce the small scale astrometric details of the VLBI jets
without including less massive components of the mass distribution (e.g. the
ellipticity gradient and isophote twist of the lens galaxy, Keeton et al. 2000)
that also affect the VLBI jet structure on these angular scales. Lens models
must contain all reasonable structures producing deflections comparable to
the scale of the measurement errors.

We are in the middle of an experiment exploring the second problem –
if you include small scale structures but lack the constraints needed to mea-
sure them, their masses easily become unreasonable unless constrained by
common sense, physical priors or additional data. Lately this has become an
issue in studies (Evans & Witt 2003, Kochanek & Dalal 2004, Quadri, Moller
& Natarajan 2003, Kawano et al. 2004) of whether the flux ratio anoma-
lies in gravitational lenses could be due to complex angular structure in the
lens galaxy rather than CDM substructure or satellites in the lens galaxy (see
§B.8). The problem, as we discuss in the next section on non-parametric mod-
els (§B.4.7), is that lens modeling with large numbers of parameters is closely
related to solving linear equations with more variables than constraints – as
the matrix inversion necessary to finding a solution becomes singular, the
parameters of the mass distribution show wild, large amplitude fluctuations
even as the fit to the constraints becomes perfect. Thus, a model including
enough unconstrained parameters is guaranteed to “solve” the anomalous
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flux ratio problem even if it should not. For example, Evans & Witt (2003)
could match the flux ratios of Q2237+0305 even though for this lens we know
from the time variability of the flux ratios that the flux ratio anomalies are
created by microlensing rather than complex angular structures in the lens
model (see Part 4).

If only the four compact images are modeled, then the flux ratio anoma-
lies can be greatly reduced or eliminated in almost all lenses at the price of
introducing deviations from an ellipsoidal density distribution far larger than
expected (see §B.4.4). In some cases, however, you can test these solutions be-
cause the lens has extra constraints beyond the four compact images. We illus-
trate this in Fig. B.27. By adding large amplitude cos 3θ and cos 4θ perturba-
tions to the surface density model for B1933+503, Kochanek & Dalal (2004)
could reproduce the observed image flux ratios if they fit only the four com-
pact sources. However, after adding the constraints from the other lensed
components, the solution is driven back to being nearly ellipsoidal and the
flux ratios cannot be fit. In every case, Kochanek & Dalal (2004) found that
the extra constraints drove the solution back toward an ellipsoidal density
distribution. In short, a sufficiently complex model can fit underconstrained
data, but that does not mean it makes any sense to do so.

B.4.7 Non-Parametric Models

The basic idea behind non-parametric mass models is that the effective lens
potential and the deflection equations are linear “functions” of the surface
density. The surface density can be decomposed into multipoles (Kochanek 1991a,
Trotter, Winn & Hewitt 2000, Evans & Witt 2003), pixels (see Saha &
Williams 1997, 2004, Williams & Saha 2000), or any other form in which
the surface density is represented as a linear combination of density func-
tionals multiplied by unknown coefficients κ. In any such model, the lens
equation for image i takes the form

β = θi − Aiκ (B.85)

where Ai is the matrix that gives the deflection at the position of image i
in terms of the coefficients of the surface density decomposition κ. For a
lens with i = 1 · · ·n images of the same source, such a system can be solved
exactly if there are enough degrees of freedom in the description of the surface
density. For simplicity, consider a two-image lens so that we can eliminate
the source position by hand, leaving the system of equations

θ1 − θ2 = (A1 − A2)κ, (B.86)

which is easily solved by simply taking the inverse of the matrix A1 − A2 to
find that

κ = (A1 − A2)
−1 (θ1 − θ2) . (B.87)
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Fig. B.27. Surface density contours for models of B1933+503 including misaligned
a3 and a4 multipoles (thin lines). The model in the top panel is constrained only by
the 4 compact images (images 1, 3, 4 and 6, filled squares). The model in the bottom
panel is also constrained by the other images in the lens (the two-image system 1a/8,
open squares; the four-image system 2a/2b/5/7 filled triangles; and the two-image
system comprising parts of 5/7, open triangles) The tangential critical line of the
model (heavy solid curve) must pass between the merging images 2a/2b, but fails
to do so in the first model (top panel).
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Sadly, life is not that simple because as soon as the density decomposition has
more degrees of freedom than there are constraints, the inverse (A1 − A2)

−1

of the deflection operators is singular.
The solution to this problem is to instead consider the problem as a more

general minimization problem with a χ2 statistic for the constraints and some
form of regularization to restrict the results to plausible surface densities. One
possibility is linear regularization, in which you minimize the function

F = χ2 + λκ · H · κ (B.88)

where the χ2 measures the goodness of fit to the lens constraints, H is a
weight matrix and λ is a Lagrange multiplier. The Lagrange multiplier con-
trols the relative importance given to fitting the lens constraints (minimizing
the χ2) versus producing a smooth density distribution (minimizing κ ·H ·κ).
The simplest smoothing function is to minimize the variance of the surface
density (H = I, the identity matrix), or, equivalently, ignore H and use the
singular value decomposition for inverting a singular matrix. By using more
complicated matrices you can minimize derivatives of the density (gradients,
curvature etc.). Solutions are found by adjusting the multiplier λ until the
goodness of fit satisfies χ2 ≃ Ndof where Ndof is the number of degrees
of freedom. Another solution is to use linear programming methods to im-
pose constraints such as positive surface densities, negative density gradients
from the lens center or density symmetries (Saha & Williams 1997, 2004,
Williams & Saha 2000). Time delays, which are also linear functions of the
surface density, are easily included. Flux ratios are more challenging because
magnifications are quadratic rather than linear functions of the surface den-
sity except for the special case of the generalized singular isothermal models
where Ψ = bθF (χ) (Eqn. B.42, Witt, Mao & Keeton 2000, Kochanek et
al. 2001, Evans & Witt 2001). The best developed, publicly available non-
parametric models are those by Saha & Williams (2004). These are available
at http://ankh-morpork.maths.qmc.ac.uk/∼saha/astron/lens/.

Personally, I am not a fan of the non-parametric models, because almost
all the additional degrees of freedom they include are irrelevant to the prob-
lem. As I have tried to outline in the preceding sections, there is no real
ambiguity about the aspects of gravitational potentials either constrained or
unconstrained by lens models. Provided the parametric models capture these
degrees of freedom and you do not get carried away with the precision of the
fits, you can ignore deviations of the cos(16χ) term of the surface density
from that expected for an ellipsoidal model. Similarly for the monopole pro-
file, the distribution of mass interior and exterior to the images is irrelevant
and for the most part only the mean surface density between the images
has any physical effect. Nothing is gained by allowing arbitrary, fine-grained
distributions.

There are also specific physical and mathematical problems with non-
parametric models just as there are for parametric models. First, the trick of

http://ankh-morpork.maths.qmc.ac.uk/~saha/astron/lens/
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linearization only works if the lens equations are solved on the source plane.
As we discussed when we introduced model fitting (§B.4.6), this makes it im-
possible to properly compute error bars on any parameters. The equations be-
come non-linear if they include either the magnification tensor (Eqn. B.83) or
use the true image plane fit statistic (Eqn. B.84), and this greatly reduces the
attractiveness of these methods. Second, in many cases the non-parametric
models are not constrained to avoid creating extra images not seen in the
observations – the models reproduce the observed images exactly, but come
with no guarantee that they are not producing 3 other images somewhere else.
Third, it is very difficult to guarantee that the resulting models are physical.
For example, consider a simple spherical lens constrained to have positive
surface density. For the implied three-dimensional density to also be positive
definite, the surface density must decline monotonically from the center of
the lens. This constraint is usually applied by the Saha & Williams (2004)
method. For the distribution function of the stars making up the galaxy to
be positive definite, the three dimensional density must also decline mono-
tonically – this implies a constraint on the second derivative of the surface
density which is not imposed by any of these methods. For the distribution
to be dynamically stable it must satisfy a criterion on the derivative of the
distribution function with respect to the orbital energy, and this implies a
criterion on the third derivative of the surface density which is also not im-
posed (see Binney & Tremaine 1987). Worse yet, for a non-spherical system
we cannot even write down the constraints on the surface density required
for the model to correspond to a stable galaxy with a positive definite dis-
tribution function. In short, most non-parametric models will be unphysical
– they overestimate the degrees of freedom in the mass distribution. The
critique being made, parametric models have a role because they define the
outer limits of what is possible by avoiding the strong physical priors implicit
in parametric models of galaxies.

B.4.8 Statistical Constraints on Mass Distributions

Where individual lenses may fail to constrain the mass distribution, ensembles
of lenses may succeed. There are two basic ideas behind statistical constraints
on mass distributions. The first idea is that models of individual lenses should
be weighted by the likelihood of the observed configuration given the model
parameters. The second idea is that the statistical properties of lens samples
should be homogeneous.

An example of weighting models by the likelihood is the limit on the slopes
of central density cusps from the observed absence of central images. Rusin
& Ma (2001) considered 6 CLASS (see §B.6) survey radio doubles and com-
puted the probability pi(n) that lens i would have a detectable third image in
the core of the lens assuming power law mass densities Σ ∝ R1−n and includ-
ing a model for the observational sensitivities and the magnification bias (see
§B.6.6) of the survey. They were only interested in the range n < 2, because
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0739

0218

P

Fig. B.28. Limits on the central density exponent for power-law density profiles
ρ ∝ r−n = r−1−β from the absence of detectable central images in a sample of
6 CLASS survey radio doubles (Rusin & Ma 2001). The lighter curves show the
limits for the individual lenses with the weakest constraint from B0739+366 and the
strongest from B0218+357, and the heavy solid curve shows the joint probability
P .

as discussed in §B.3, density cusps with n ≥ 2 never have central images.
For most of the lenses they considered, it was possible to find models of the
6 lenses that lacked detectable central images over a broad range of density
exponents. However, the shallower the cusp, the smaller the probability pi(n)
of producing a lens without a visible central image. For any single lens, pi(n)
varies too little to set a useful bound on the exponent, but the joint proba-
bility of the entire sample having no central images, P = Πi(1−pi(n)), leads
to a strong (one-sided) limit that n > 1.78 at 95% confidence (see Fig. B.28).
In practice, Keeton (2003a) demonstrated that the central stellar densities
are sufficiently high to avoid the formation of visible central images in almost
all lenses given the dynamic ranges of existing radio observations (i.e. stel-
lar density distributions are sufficiently cuspy), and central black holes can
also assist in suppressing the central image (Mao, Witt & Koopmans 2001).
However, the basic idea behind the Rusin & Ma (2001) analysis is important
and underutilized.

An example of requiring the lenses to be homogeneous is the estimate
of the misalignment between the major axis of the luminous lens galaxy
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Fig. B.29. (Top) The integral distribution of misalignment angles ∆χLM between
the major axes of the lens galaxy and an ellipsoidal lens model (solid curve with
points for each lens). If the two angles were completely uncorrelated, the distribution
would follow the dashed line. If the two angles were perfectly correlated they would
follow the solid curve because of the measurement uncertainties in the two angles.

Fig. B.30. (Bottom) Logarithmic contours of the probability for matching the dis-
tribution of misalignment angles as a function of the rms misalignment σθ between
the mass and the light and the typical tidal shear γrms. Theoretically we expect
tidal shears γrms ≃ 0.06. The solid contours are spaced by 0.5 dex and the dashed
contours are spaced by 0.1 dex relative to the maximum likelihood contour. The
differences between dashed contours are not statistically significant, while those
between solid contours are statistically significant.
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Fig. B.31. The internal shear fraction fint for the four-image lenses. Each system
was fitted by an SIS combined with an internal shear and an external shear and
fint = |Γ |/(|Γ |+ |γ|) is the fraction of the quadrupole amplitude due to the internal
shear. An SIE has fint = 1/4 (see Fig B.22). Most of the quads have fint <∼
1/4 as expected for an SIE in an additional external (tidal) shear field. Objects
with very low fint (e.g. HE0435–1223, RXJ0911+0551, B1422+231) have nearby
galaxies or clusters generating anomalously large external shears, while objects with
anomalously high fint (B1608+656, HE0230–2130, MG0414+0534) tend to have
additional lens components like the second lens galaxy of B1608+656. For some
systems either the imaging data (e.g. B0128+437) or the models (e.g. B2045+265)
do not allow a clear qualitative explanation.

and the overall mass distribution by Kochanek (2002b). Fig. B.29 shows the
misalignment angle ∆χLM = |χL − χM | between the major axis χL of the
lens galaxy and the major axis χM of an ellipsoidal mass model for the lens.
The particular mass model is unimportant because any single component
model of a four-image lens will give a nearly identical value for χM (e.g.
Kochanek 1991a, Wambsganss & Paczynski 1994). The distribution of the
misalignment angle ∆χLM is not consistent with the mass and the light being
either perfectly correlated or uncorrelated. This is not surprising, because a
simple ellipsoidal model determines the position angle of the mean quadrupole
moment near the Einstein ring, which is a combination of the quadrupole
moment of the lens galaxy, the halo of the lens galaxy, and the local tidal
shear (see §B.4.4). Even if the lens galaxy and the halo were perfectly aligned,
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Fig. B.32. The structure of lens galaxies in self-similar models. The top row shows
the permitted region for the slope of the inner dark matter cusp (ρ ∝ r−n) and
the projected fraction of the mass fCDM inside 2Re composed of dark matter. The
results are shown for three ratios Rb/Re between the break radius Rb of the dark
matter profile and the effective radius Re of the luminous galaxy. The solid (dashed)
contours show the 68% and 95% confidence levels for two (one) parameter. Note
that the estimates of n and fCDM depend little on the location of the break radius
relative to the effective radius. The bottom row shows all the mass profiles lying
within the (two parameter) 68% confidence region normalized to a fixed projected
mass inside 2Re. For comparison we show the mass enclosed by a de Vaucouleurs
model (dotted line) and an SIS (offset dashed line). While the allowed models
exhibit a wide range of dark matter abundances, slopes and break radii, they all
have roughly isothermal total mass profiles over the radial range spanned by the
lensed images.

we would still find that the orientation of the mean quadrupole would differ
from that of the light because of the effects of the tidal shears. We can model
this by estimating the probability of reproducing the observed misalignment
distribution in terms of the strength of the local tidal shear γrms and the
dispersion in σχ in the angle between the major axis of the mass distribution
and the light, as shown in Fig. B.30. The observed mismatch can either
be produced by having a typical tidal shear of γrms ≃ 0.05 or by having a
typical misalignment between mass and light of σχ ≃ 20◦. We know, however,
that the typical tidal shear cannot be zero because it can be estimated from
the statistics of galaxies (e.g. Keeton, Kochanek & Seljak 1997, Holder &
Schechter 2003). Keeton et al. (1997) obtained γrms ≃ 0.05, in which case
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mass must align with light and we obtain an upper limit of σχ <∼ 10◦. Holder
& Schechter (2003) argue for a much higher rms shear of γrms = 0.15 based
on N-body simulations, which is too high to be consistent with the observed
alignment of mass models and the luminous galaxy. One possible explanation
(based on the results of White, Hernquist & Springel 2001) is that Holder &
Schechter (2003) included parts of the lens galaxy’s own halo in their estimate
of the external shear. Alternatively, if lens galaxies are more compact than
the SIE model used by Kochanek (2002b), then the lower surface density
〈κ〉 raises the required shear (since γ ∝ (1 − 〈κ〉), Eqn. B.78). However,
mass distributions similar to constant mass-to-light ratio models of the lenses
would be required, which would be inconsistent with shear estimates from
simulations in which galaxy masses are dominated by extended dark matter
halos.

The trade-off between central concentration and shear leads to the the
interesting question of where the quadrupole structure of lenses originates.
As we discussed in §B.4.4, we can break up the quadrupole of the mass distri-
bution into the internal quadrupole due to the matter interior to the Einstein
ring (Eqn. B.52) and the exterior quadrupole due to the matter outside the
Einstein ring (Eqn. B.51). While the internal quadrupole is due only to the
lens galaxy, the external quadrupole is a mixture of the quadrupole from
the parts of the galaxy outside the Einstein ring (i.e. the dark matter halo)
and the tidal shear from the environment. An important fact to remember
is that for an isothermal ellipsoid, only fint = 25% of the quadrupole is due
to mass inside the Einstein ring (see Fig. B.22, §B.4.4)! Turner, Keeton &
Kochanek (2004) explored this by fitting all the available four-image lenses
with an SIS monopole combined with an internal and an external quadrupole.
They then computed the fraction of the quadrupole fint associated with the
mass interior to the Einstein ring to find the distribution shown in Fig. B.31.
Most four-image lenses seem to be dominated by the external quadrupole,
with internal quadrupole fractions below the fint = 0.25 fraction expected for
an isothermal ellipsoid. Lenses clearly in environments with very large tidal
shears (e.g. RXJ0911+0551 which is near massive cluster, Bade et al. 1997,
Kneib et al. 2000, Morgan et al. 2001 or HE0435–1223 which is near a large
galaxy, Wisotzki et al. 2002, see Fig. B.4) show much smaller internal shear
fractions. B1608+656 (Myers et al. 1995, Fassnacht et al. 1999), which has
two lens galaxies inside the Einstein ring, shows a significantly higher inter-
nal quadrupole fraction. Combined with the close correlation of mass model
alignments with the luminous galaxies, this seems to argue for significant
dark matter halos aligned with the luminous galaxy, but the final step of
quantitatively assembling all the pieces has yet to be done.

Statistical analyses can also be used to estimate the radial density dis-
tribution from samples of lenses which individually cannot. The existence
of the fundamental plane (see §B.9) strongly suggests that the structure
of early-type galaxies is fairly homogeneous – in particular it is consistent
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with galaxies having self-similar mass distributions in the sense that the halo
structure can be scaled from the structure of the visible galaxy. As a par-
ticular example based on our theoretical expectations, Rusin, Kochanek &
Keeton (2003) and Rusin & Kochanek (2004) modeled the visible galaxy with
a Hernquist (Eqn. B.56) model scaled to match the observed effective radius
of the lens galaxy, Re, and then added a cuspy dark matter halo (Eqn. B.59
with a variable inner cusp η, α = 2 and m = 3) where the inner density cusp
(ρ ∝ r−η), the halo break radius rb and the dark matter fraction fCDM inside
2Re were kept as variables. The assumption of self-similarity enters by keep-
ing the ratio rb/Re constant, the dark matter fraction fCDM constant, and
then scaling the mass-to-light ratio of the stars Υ ∝ Lx with the luminosity.4

We recover the fundamental plane in this model when x ≃ 0.25. Putting all
the pieces together, the projected mass inside radius R is

M(< R) = Υ∗L∗

(

L(0)

L∗

)1+x [

g(R/Re) + g(2)
fCDM

1 − fCDM
mCDM (R/Re)

]

(B.89)
where Υ∗ is the mass-to-light ratio of the stars in an L∗ galaxy, log L(0) =
log L(z) − e(z) is the luminosity of the lens galaxy evolved to redshift zero
(where we discuss estimates of the evolution rate e(z) in §B.9), g(x) is the
fraction of the light inside dimensionless radius x = R/Re (g(1) = 1/2)
and mCDM (x) is the dimensionless dark matter mass inside radius x with
mCDM (2) = 1 so that the CDM mass fraction inside x = 2 is fCDM .

As we discussed earlier in §B.4.6, few lenses have sufficient constraints to
estimate all the parameters in such a complex model. However, the assump-
tion of self-similarity allows the average profile to be constrained statistically
(Rusin et al. 2003, 2004). Suppose we saw lensed images generated by the
same galaxy at a range of different source and lens redshifts. Each observed
lens only reliably measures an aperture mass Map(R < REin) = πΣcR

2
Ein

where REin is the Einstein radius. But the physical scale REin varies with
redshift, so the ensemble of the lenses traces out the overall mass profile.
Clearly we do not have ensembles of lenses generated by identical galaxies,
but the assumption of self-similarity allows us to use the same idea for lenses
with a range of luminosities and scale lengths. For 22 lenses with redshifts and
accurate photometry we compared the measured aperture masses to the pre-
dicted aperture masses (the procedure for two-image lenses is a little more
complicated, see Rusin et al. 2003) to estimate all the model parameters.
Fig. B.32 shows the results for the parameters associated with the dark mat-
ter halo. In the limit that fCDM → 1 we find that the mass distribution is
consistent with a simple SIS model (the limit fCDM → 1 and n → 2) almost
independent of the break radius location. There is a slight trend with break
radius because as the break to the steep ρ ∝ r−3 outer profile gets closer

4 They could also have allowed the CDM fraction to vary as fCDM ∝ Ly , but these
led to degenerate models where only the combination x + y was constrained.
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to the region with the lensed images the inner cusp can be shallower while
keeping the overall profile over the region with images close to isothermal.
As we reduce fCDM and add mass to the stars, the inner cusp becomes shal-
lower, such that for a NFW (n = 1) cusp the dark matter fraction inside 2Re

is ∼ 40%. It is interesting to note, however, that the total mass distribution
(light + dark) changes little over the full range of allowed parameters (bottom
panels of Fig. B.32) – lensing constrains the global mass distribution not how
it is divided into luminous and dark subcomponents. Note the resemblance
of the statistical results to the results for detailed models of B1933+503 in
Fig. B.25.

B.4.9 Stellar Dynamics and Lensing

Stellar dynamical analyses of gravitational lenses have reached the level of
studies of local galaxies approximately 15–20 years ago. The analyses are
based on the spherical Jeans equations (see Binney & Tremaine 1987) with
simple models of the orbital anisotropy and generally ignore both deviations
from sphericity and higher order moments of the velocity distributions. The
spherical Jeans equation

1

ν

dνσ2
r

dr
+

2β(r)

r
σ2

r = −GM(r)

r2
(B.90)

relates the radial velocity dispersion σr = 〈v2
r 〉1/2, the isotropy parameter

β(r) = 1 − σ2
θ/σ2

r characterizing the ratio of the tangential dispersion to
the radial dispersion, the luminosity density of the stars ν(r) and the mass
distribution M(r). A well known result from dynamics is that you cannot
infer the mass distribution M(r) without constraining the isotropy β(r) (e.g.
Binney & Mamon 1982). Models with β = 0 are called isotropic models (i.e.
σr = σθ), while models with β → 1 are dominated by radial orbits (σθ → 0)
and models with β → −∞ are dominated by tangential orbits (σr → 0) .
These 3D components of the velocity dispersion must then be projected to
measure the line-of-sight velocity dispersion 〈v2

los〉1/2,

Σ(R)〈v2
los〉(R) = 2

∫ ∞

0

dzν

[
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r2
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θ
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= 2

∫ ∞
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dzνσ2
r

[

1 − R2

r2
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]

(B.91)
where Σ(R) = 2

∫∞

0 dzν(r) is the projected surface brightness and z is the
coordinate along the line of sight.

Modern observations of local galaxies break the degeneracy between mass
and isotropy by measuring higher order moments (〈vn

los〉) of the line-of-sight
velocity distribution (LOSVD) because the shape of the LOSVD is affected
by the isotropy of the orbits. Because the velocity dispersions are measured
starting from a Gaussian fit to the LOSVD, the higher order moments are
described by the amplitudes hn of a decomposition of the LOSVD into Gauss-
Hermite polynomials (e.g. van der Marel & Franx 1993). In general, the rms
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velocity (i.e. combining dispersion and rotation) and higher order moment
profiles of early-type galaxies are fairly self-similar, with nearly flat rms ve-
locity profiles, modest values of h4 ≃ 0.01 ± 0.03 and slightly radial orbits
〈β〉 ≃ 0.1–0.2 (e.g. Romanowsky & Kochanek 1999, Gerhard et al. 2001).

Stellar dynamics is used for two purposes in lensing studies. The first is
to provide a mass normalization for lens models used in studies of lens statis-
tics. We will discuss this in §B.6. The second is to use comparisons between
a mass estimated from the geometry of a lens and the velocity dispersion
of the lens galaxy to constrain the mass distribution (e.g. Romanowsky &
Kochanek 1999, Trott & Webster 2002, Koopmans & Treu 2002, 2003, Treu
& Koopmans 2002a, 2002b, Koopmans et al. 2003). It is important to un-
derstand that the systematic uncertainties in combining lensing and stellar
dynamics to determine mass distributions are different from using either in
isolation. For local galaxies we measure a velocity dispersion profile. The nor-
malization of the profile sets the mass scale and the changes in the profile
(and any higher order moments) with radius constrains the mass distribu-
tion. To lowest order, a simple scaling error in the velocity measurements
will lead to errors in the mass scale rather than in the mass distribution.
For lens galaxies, it is the comparison between the velocity dispersion and
the mass determined by the geometry of the images that constrains the mass
distribution. Thus, estimates of the mass distribution are directly affected by
any calibration errors in the velocity dispersions.

We can understand the differences with a simple thought experiment. Sup-
pose we have a mass distribution M = M0(R/R0)

x in projection and we have
mass estimates M1 at R1 and M2 at R2. Combining them we can solve for
the exponent describing the mass distribution, x = ln(M1/M2)/ ln(R1/R2).
In a dynamical observation the mass estimate is some sort of virial estimator
M ∝ σ2

vR/G while in a lensing measurement it is a direct measurement of M .
Standard velocity dispersion measurements start from the best fit Gaussian
line width σ̂ and then subtract an intrinsic line width σc due to the instrument
and the intrinsic line width of the star in quadrature to estimate the portion
of the line width due to the motions of the stars. Thus σ2

v = f2(σ̂2 − σ2
c )

where f ≃ 1 is a scale factor to account for deviations from spherical sym-
metry and non-Gaussian line of sight velocity distributions (LOSVDs). In
a purely dynamical study, uncertainties in f and σc produce bigger frac-
tional errors in the absolute mass scale M0 than in the exponent x. For
example, given measurements σ1 and σ2 at radii R1 and R2, the exponent,
x = 1 + ln(σ2

1/σ2
2)/ ln(R1/R2), depends only on velocity dispersion ratios in

which calibration errors tend to cancel. This is obvious for the scale factor
f , which cancels exactly if it does not vary with radius. Since studies of lens
dynamics use a comparison between a dynamical mass and a lensing mass to
estimate the mass distribution, the results are more sensitive to calibration
problems because these cancellations no longer occur. If we combine a ve-
locity dispersion measurement σ1 with a lensing mass measurement M2 our
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estimate of the exponent becomes x = ln(σ2
1R1/GM2)/ ln(R1/R2) and the

uncertainties are linear in the scale factor f rather than canceling. An error
analysis for the effects of σc is messier, but you again find that the sensitivity
in the mixed lensing and dynamics constraint to errors in σc is greater than
in a purely dynamical study.

Velocity dispersions have now been measured for 10 lenses (0047–2808
Koopmans & Treu 2003; CFRS03.1077 Treu & Koopmans 2004; Q0957+561
Falco et al. 1997, Tonry & Franx 1999; PG1115+080 Tonry 1998); HST14176+5226
Ohyama et al. 2002, Gebhardt et al. 2003, Treu & Koopmans 2004; HST15433+5352
Treu & Koopmans 2004; MG1549+3047 Lehár et al. 1996; B1608+656 Koop-
mans et al. 2003; MG2016+112 Koopmans & Treu 2002; Q2237+0305 Foltz
et al. 1992). With the exception of Romanowsky & Kochanek (1999), who
fitted for the distribution function of the lens, the analyses of the data have
used the spherical Jeans equations with parameterized models for the isotropy
β(r). They include the uncertainties in σc about as well as any other dynam-
ical study, although it is worth bearing in mind that this is tricky because we
lack nearby stars with the appropriate metallicity and the problem of match-
ing the spectral resolution for the galaxy and the template stars lacks direct
checks of the success of the procedure. A useful rule of thumb to remember is
that repeat measurements of velocity dispersions by different groups almost
always show larger scatter than is consistent with the reported uncertain-
ties. For example, the three velocity dispersion measurements for the lens
HST14176+5226 (224 ± 15 km/s by Ohyama et al. 2002, 202 ± 9 km/s by
Gebhardt et al. 2003, and 230 ± 14 km/s by Treu & Koopmans 2004) are
mutually consistent only if the uncertainties are broadened by 30%.

In Fig. B.33 we summarize the dynamical constraints for 9 of these sys-
tems using the self-similar mass distribution from Rusin & Kochanek (2004,
Eqn. B.89). This model is very similar to that used by Treu & Koopmans (2004).
For most of the lenses, the region producing a good fit to the combined lens-
ing and dynamical data overlaps the same region preferred by the Rusin &
Kochanek (2004) self-similar models, shows the same general parameter de-
generacy and is consistent with a simple SIS mass distribution (fcdm → 1 and
n = 2). This is particularly true of 0047–2808, HST15433+5352, B1608+656,
MG2016+112 and CFRS03.1077. Only Q2237+0305, where the lens is the
bulge of a nearby spiral and we might not expect this mass model to be
applicable, shows a very different trend (e.g. see the models of Trott &
Webster 2002). PG1115+080 and to a lesser extent MG1549+3047 might
have steeper than isothermal mass distributions (falling rotation curves)
and the possibility of being consistent with a constant mass-to-light ratio
model (Treu & Koopmans 2002a). HST14176+5226 and to a lesser extent
HST15433+5352 could have shallower than isothermal mass distribution (ris-
ing rotation curves). Along the degeneracy direction for each lens we will find
similar mass distributions with very different decompositions into luminous
and dark matter, just as in Fig. B.32. The problem raised by this panorama
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Fig. B.33. Constraints from lens velocity dispersion measurements on the self-
similar mass distributions of Eqn. B.89 and Fig. B.32. The dotted contours show
the 68% and 95% confidence limits from the self-similar models for Rb/Re = 50.
The shaded regions show the models allowed (68% confidence) by the formal ve-
locity dispersion measurement errors, and the heavy solid lines show contours of
the velocity dispersion in km/s. We used the low Gebhardt et al. (2003) veloc-
ity dispersion for HST14176+5226 because it has the smallest formal error. These
models assumed isotropic orbits, thereby underestimating the full uncertainties in
the stellar dynamical models.
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is whether it shows that the halo structure is largely homogeneous with some
measurement outliers, or that the structure of early-type is heterogeneous
with important implications for understanding time delays (§B.5) and galaxy
evolution (§B.9).

My own view tends toward the first interpretation – that the dynamical
data supports the homogeneity of early-type galaxy structure. The permitted
bands in Fig. B.33 show the 68% confidence regions given the formal mea-
surement errors and the simple, spherical, isotropic Jeans equation models
– this means that the true 68% confidence regions are significantly larger.
We have already argued that the formal errors on dynamical measurements
tend to be underestimates. For example, the need for HST14176+5226 to
have a rising rotation curve would be considerably reduced if we used the
higher velocity dispersion measurements from Ohyama et al. (2002) or Treu
& Koopmans (2004) or if we broadened the uncertainties by the 30% needed
to make the three estimates statistically consistent. Moreover, the existing
analyses have also neglected the systematic uncertainties arising from the
scaling factor f . There are two important issues that make f 6= 1. The first
issue is that standard velocity dispersion measurements are the width of the
best fit Gaussian model for the LOSVD, and this is not the same as the mean
square velocity (〈v2

los〉1/2) appearing in the Jeans equations used to analyze
the data unless the LOSVD is also a Gaussian. Stellar dynamics has adopted
the dimensionless coefficients hn of a Gauss-Hermite polynomial series to
model the deviations of the LOSVD from Gaussian, and a typical early-type
galaxy has |h4| <∼ 0.03 (e.g. Romanowsky & Kochanek 1999). This leads to a
systematic difference between the measured dispersions and the mean square
velocity of 〈v2

los〉1/2 ≃ σ(1 +
√

6h4) (e.g. van der Marel & Franx 1993)), so
|f − 1| ∼ 7% for |h4| ≃ 0.03. Only the Romanowsky & Kochanek 1999) mod-
els of Q0957+561 and PG1115+080 have properly included this uncertainty.
In fact, Romanowsky & Kochanek (1999) demonstrated that there were stel-
lar distribution functions in which the mass distribution of PG1115+080 is
both isothermal and agrees with the measured velocity dispersion. While it
is debatable whether these models allowed too much freedom, it is certainly
true that models using the Jeans equations and ignoring the LOSVD have
too little freedom and will overestimate the constraints.

The second issue is that lens galaxies are not spheres. Unfortunately there
are few simple analytic results for oblate or triaxial systems like early-type
galaxies in which the ellipticity is largely due to anisotropies in the velocity
dispersion tensor rather than rotation. For the system as a whole, the tensor
virial theorem provides a simple global relationship between the major and
minor axis velocity dispersions

σmajor

σminor
≃ 1 +

1

5
e2 +

9

70
e4 + · · · (B.92)

for an oblate ellipsoid of axis ratio q and eccentricity e = (1 − q2)1/2 (e.g.
Binney & Tremaine 1987). The velocity dispersion viewed along the major
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axis is larger than that on the minor, and the correction can be quite large
since a typical galaxy with q = 0.7 will have a ratio σmajor/σminor ≃ 1.16
that is much larger than typical measurement uncertainties. If galaxies are
oblate, this provides no help for the case of PG1115+080 because making
the line-of-sight dispersion too high requires a prolate galaxy. However, it is
a very simple means of shifting HST14176+5226. Crudely, if we start with
the low 209 km/s velocity dispersion and assume that the lens is an q = 0.7
galaxy viewed pole on, then σmajor/σminor ≃ 1.14 and the corrections for the
shape are large enough to make HST14176+5226 consistent with the other
systems.

A final caveat is that neglecting necessary degrees of freedom in your
lens model can bias inferences from the stellar dynamics of lenses just as
it can in pure lens modeling. For example, Sand et al. (2002, 2003) used a
comparison of lensed arcs in clusters to velocity dispersion measurements of
the central cluster galaxy to argue that the cluster dark matter distribution
could not have the ρ ∝ 1/r cusp of the NFW model for CDM halos. However,
Bartelmann & Meneghetti (2003) and Dalal & Keeton (2003) show that the
data are consistent with an NFW cusp if the lens models include a proper
treatment of the non-spherical nature of the clusters. This has not been an
issue in the stellar dynamics of strong lenses where the lens models used to
determine the mass scale have always included the effects of ellipticity and
shear, but it is well worth remembering.

B.5 Time Delays

Nothing compares to the measurement of the Hubble constant in bringing
out the worst in astronomers. As we discussed in the previous section on
lens modeling, many discussions of lens models seem obfuscatory rather than
illuminating, and the tendency in this direction increases when the models
are used to estimate H0. In this section we discuss the relationship between
time delay measurements, lens models and H0. All results in the literature
are consistent with this discussion, although it may take you several days
and a series of e-mails to confirm it for any particular paper. The basic idea
is simple. We see images at extrema of the virtual time delay surface (e.g.
Blandford & Narayan 1986, Part 1) so the propagation time from the source
to the observer differs for each image. The differences in propagation times,
known as time delays, are proportional to H−1

0 because the distances be-
tween the observer, the lens and the source depend on the Hubble constant
(Refsdal 1964). When the source varies, the variations appear in the images
separated by the time delays and the delays are measured by cross-correlating
the light curves. There are recent reviews of time delays and the Hubble con-
stant by Courbin, Saha & Schechter (2002) and Kochanek & Schechter (2004).
Portions of this section are adapted from Kochanek & Schechter (2004) since
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we were completing that review at about the same time as we presented these
lectures.

To begin the discussion we start with our standard simple model, the
circular power law lens from §B.3. As a circular lens, we see two images
at radii θA and θB from the lens center and we will assume that θA > θB

(Fig. B.20). Image A is a minimum, so source variability will appear in image
A first and then with a time delay ∆t in the saddle point image B. We can
easily fit this data with an SIS lens model since (see Eqn. B.21 and B.22) to
find that θA = β + b and θB = b − β where b = (θA + θB)/2 is the critical
(Einstein) radius of the lens and β = (θA − θB)/2 is the source position. The
light travel time for each image relative to a fiducial unperturbed ray is (see
Part 1)

τ(θ) =
DdDs

cDds

[

1

2
(θ − β)2 − Ψ(θ)

]

(B.93)

where the effective potential Ψ = bθ for the SIS lens. Remember that the
distances are comoving angular diameter distances rather than the more fa-
miliar angular diameter distances and this leads to the vanishing of the extra
1 + zl factor that appears in the numerator if you insist on using angular di-
ameter distances. The propagation time scales as H−1

0 ≃ 10h−1 Gyr because
of the H−1

0 scalings of the distances. After substituting our lens model, and
differencing the delays for the two images, we find that

∆tSIS = τB − τA =
1

2

DdDs

cDds

(

θ2
A − θ2

B

)

. (B.94)

The typical deflection angle b ∼ 3 × 10−6 radians (so R2
A ∼ 10−11) converts

the 10h−1 Gyr propagation time into a time delay of months or years that
can be measured by a graduate student. Naively, this result suggests that
the problem of interpreting time delays to measure H0 is a trivial problem in
astrometry.

We can check this assumption by using our general power-law models
from §B.3 instead of an SIS. The power-law models correspond to density
distributions ρ ∝ r−n, surface densities κ ∝ R1−n and circular velocities
vc ∝ r(2−n)/2 of which the SIS model is the special case with n = 2. These
models have effective potentials

Ψ(θ) =
b2

3 − n

(

θ

b

)3−n

. (B.95)

As we discussed in the §B.4.1 we can fit our simple, circular two-image lens
with any of these models to determine b(n) and β(n) (Eqn. B.66), which we
can then substitute into the expression for the propagation time to find that
the time delay between the images is

∆t(n) = (n − 1)∆tSIS

[

1 − (2 − n)2

12

(

δθ

〈θ〉

)2

+ · · ·
]

(B.96)
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where we have expanded the result as a series in the ratio between the mean
radius of the images 〈θ〉 = (θA+θB)/2 and the thickness of the radial annulus
separating them δθ = θA − θB. While the expansion assumes that δθ/〈θ〉 ∼
β/b is small, we can usually ignore higher order terms even when δθ/〈θ〉 is of
order unity. We now see that the time delay depends critically on the density
profile, with more centrally concentrated mass distributions (larger values of
n) producing longer time delays or implying larger Hubble constants for a
fixed time delay.

The other idealization of the SIS model, the assumption of a circular
lens, turns out to be less critical. A very nice analytic example is to con-
sider a singular isothermal model with arbitrary angular structure in which
κ = bF (χ)/2θ where F (χ) is an arbitrary function of the azimuthal angle.
The singular isothermal ellipsoid (Eqn. B.37) is an example of this class of po-
tential. For this model family, ∆t = ∆tSIS independent of the actual angular
structure F (χ) (Witt, Mao & Keeton 2000).

B.5.1 A General Theory of Time Delays

Just as for estimating mass distributions (§B.4), the aspect of modeling time
delays that creates the greatest suspicion is the need to model the gravita-
tional potential of the lens. Just as for mass distributions, this problem is
largely of our own making, arising from poor communication, understand-
ing and competition between groups. Here we will use simple mathematical
expansions to show exactly what properties of the potential determine time
delays. Any models which have these generic properties have all the degrees
of freedom needed to properly interpret time delays. This does not, unfortu-
nately, avoid the problem of degeneracies between the mass models and the
Hubble constant.

The key to understanding time delays comes from Gorenstein, Falco &
Shapiro (1988, Kochanek 2002a, see also Saha 2000) who showed that the time
delay in a circular lens depends only on the image positions and the surface
density κ(θ) in the annulus between the images. The two lensed images at
radii θA > θB define an annulus bounded by their radii, with an interior
region for θ < θB and an exterior region for θ > θA (Fig. B.20). As we
discussed in §B.4.1, the mass in the interior region is implicit in the image
positions and constrained by the astrometry. From Gauss’ law we know that
the distribution of the mass in the interior and the amount or distribution of
mass in the exterior region is irrelevant (see §B.4.3). A useful approximation is
to assume that the surface density in the annulus can be locally approximated
by a power law, κ(θ) ∝ θ1−n for θB < θ < θA, with a mean surface density
in the annulus of 〈κ〉 = 〈Σ〉/Σc. The time delay between the images is then
(Kochanek 2002a)

∆t = 2∆tSIS

[

1 − 〈κ〉 − 1 − n〈κ〉
12

(

δθ

〈θ〉

)2

+ O

(

(

δθ

〈θ〉

)4
)]

(B.97)
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Fig. B.34. (Top) The PG1115+080 time delays scaled by the astrometric factor
θ2

i − θ2

j appearing in ∆tSIS (Eqn. B.94) as a function of the leading angular depen-
dence of the time delay (sin2 ∆χij/2) (Eqn. B.98). The light solid curve and the
dashed curves show the dependence for the best fit internal shear fraction fint and
its 68% confidence limits. A true external shear fint = 0 is shown by the heavy
solid curve inside the confidence limits, and the scaling for an SIE (fint = 1/4) is
shown by the horizontal line. (Bottom) The χ2 goodness of fit for the internal shear
fraction fint from the time delay ratios is shown by the curve with the 68% confi-
dence region bracketed by the vertical lines. The estimate of fint from the image
astrometry is shown by the point with an error bar.
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where 〈θ〉 = (θA + θB)/2 and δθ = θA − θB as before. Thus, the time delay is
largely determined by the average surface density 〈κ〉 in the annulus with only
modest corrections from the local shape of the surface density distribution
even when δθ/〈θ〉 ∼ 1. This second order expansion is exact for an SIS lens
(〈κ〉 = 1/2, n = 2), and it reproduces the time delay of a point mass lens
(〈κ〉 = 0) to better than 1% even when δθ/〈θ〉 = 1. The local model also
explains the scalings of the global power-law models. A κ ∝ θ1−n global
power law has surface density 〈κ〉 = (3 − n)/2 near the Einstein ring, so the
leading term of the time delay is ∆t = 2∆SIS(1 − 〈κ〉) = (n − 1)∆tSIS just
as in Eqn. B.96.

The role of the angular structure of the lens is easily incorporated into
the expansion through the multipole expansion of §B.4. A quadrupole term
in the potential with dimensionless amplitude ǫΨ produces ray deflections of
order O(ǫΨ b) at the Einstein radius b of the lens. In a four-image lens, the
quadrupole deflections are comparable to the fractional thickness of the annu-
lus, ǫΨ ≃ δθ/〈θ〉, while in a two-image lens they are smaller. For an ellipsoidal
density distribution, the cos(2mχ) multipole amplitude is smaller than the
quadrupole amplitude by ǫ2m ∼ ǫm

Ψ
<∼ (δθ/〈θ〉)m. Hence, to lowest order in

the expansion we only need to include the internal and external quadrupoles
of the potential but not the changes of the quadrupoles in the annulus or any
higher order multipoles. Remember that what counts is the angular structure
of the potential rather than of the density, and that potentials are always
much rounder than densities with a typical scaling of m−2:m−1:1 between
the potential, deflections and surface density for the cosmχ multipoles (see
§B.4.4)

While the full expansion for independent internal and external quadrupoles
is too complex to be informative, the leading term for the case when the inter-
nal and external quadrupoles are aligned is informative. We have an internal
shear of amplitude Γ and an external shear of amplitude γ with χγ = χΓ as
defined in Eqns. B.51 and B.52. The leading term of the time delay is

∆t ≃ 2∆tSIS (1 − 〈κ〉) sin2 (∆χAB/2)

1 − 4fint cos2 (∆χAB/2)
(B.98)

where ∆χAB is the angle between the images (Fig. B.20) and fint = Γ/(Γ +
γ) is the internal quadrupole fraction we explored in Fig. B.31. We need
not worry about a singular denominator – successful models of the image
positions do not allow such configurations.

A two-image lens has too few astrometric constraints to fully constrain
a model with independent, misaligned internal and external quadrupoles.
Fortunately, when the lensed images lie on opposite sides of the lens galaxy
(∆χAB ≃ π + δ with |δ| ≪ 1), the time delay becomes insensitive to the
quadrupole structure. Provided the angular deflections are smaller than the
radial deflections (|δ|〈θ〉 <∼ δθ), the leading term of the time delay reduces
to the result for a circular lens, ∆t = 2∆tSIS(1 − 〈κ〉) if we minimize the
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total shear of the lens. In the minimum shear solution the shear converges to
the invariant shear (γ1) and the other shear component γ2 = 0 (see §B.4.5).
If, however, you allow the other shear component to be non-zero, then you
find that ∆t = 2∆tSIS(1 − 〈κ〉 − γ2) to lowest order – the second shear
component acts like a contribution to the convergence. In the absence of
any other constraints, this adds a modest additional uncertainty (5–10%) to
interpretations of time delays in two-image lenses. To first order its effects
should average out in an ensemble of lenses because the extra shear has no
preferred sign.

A four image lens has more astrometric constraints and can constrain
a model with independent, misaligned internal and external quadrupoles
– this was the basis of the Turner et al. (2004) summary of the internal
to total quadrupole ratios shown in Fig. B.31. If the external shear dom-
inates, then fint ≃ 0 and the leading term of the delay becomes ∆t =
2∆tSIS(1−〈κ〉) sin2 ∆χAB/2. If the model is isothermal, like the Ψ = θF (χ)
model we introduced in Eqn. B.42, then fint = 1/4 and we obtain the
Witt et al. (2000) result that the time delay is independent of the angle
between the images ∆t ≃ 2∆tSIS(1−〈κ〉). Thus, delay ratios in a four-image
lens are largely determined by the angular structure and provide a check
on the potential model. Unfortunately, the only lens with precisely mea-
sured delay ratios, B1608+656 (Fassnacht et al. 2002), also has two galax-
ies inside the Einstein ring and is a poor candidate for a simple multipole
treatment (although it is dominated by an internal quadrupole as expected,
see Fig. B.31). The delay ratios for PG1115+080 are less well measured
(Schechter et al. 1997, Barkana 1997, Chartas 2003), but should be domi-
nated by external shear since the estimate from the image astrometry is that
fint = 0.083 (0.055 < fint < 0.111 at 95% confidence). Fig. B.34 shows the
dependence of the PG1115+080 delays on the leading angular dependence of
the time delay (Eqn. B.98) after scaling out the standard astrometry factor
for the different radii of the images (Eqn. B.94). Formally, the estimate from
the time delays that fint = −0.02 (−0.09 < fint < 0.03 at 68% confidence) is
a little discrepant, but the two estimates agree at the 95% confidence level and
there are still some systematic uncertainties in the shorter optical delays of
PG1115+080. Changes in fint between lenses is the reason Saha (2004) found
significant scatter between time delays scaled only by ∆tSIS , since the time
delay lenses range from external shear dominated systems like PG1115+080
to internal shear dominated systems like B1608+656.

B.5.2 Time Delay Lenses in Groups or Clusters

Most galaxies are not isolated, and many early-type lens galaxies are mem-
bers of groups or clusters, so we need to consider the effects of the local
environment on the time delays. Weak perturbations are easily understood
since they will simply be additional contributions to the surface density (κc)
and the external shear/quadrupole (γc) we discussed in §B.4. In general the
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effects of the external shear γc are minimal because they either have little
effect on the delays (two-image lenses) or are tightly constrained by either
the astrometry or delay ratios (four-image lenses or systems with lensed host
galaxies see §B.10). The problems arise from either the degeneracies asso-
ciated with the surface density κc or the need for a complete, complicated
cluster model.

The problem with κc is the infamous mass-sheet degeneracy (Part 1, Falco,
Gorenstein & Shapiro 1985). If we have a model predicting a time delay
∆t0 and add a sheet of constant surface density κc, then the time delay is
changed to (1 − κc)∆t0 without changing the image positions, flux ratios,
or time delay ratios. Its effects can be understood from §B.5.1 as a contri-
bution to the annular surface density with 〈κ〉 = κc and η = 1. Its only
observable effect other than that on the time delays is a reduction in the
mass of the lens galaxy that could be detected given an independent esti-
mate of the lens galaxy’s mass such as a velocity dispersion (e.g. §B.4.9 see
Romanowsky & Kochanek 1998 for an attempt to to this for Q0957+561).
It can also be done given an independent estimate of the properties of the
group or cluster using weak lensing (e.g. Fischer et al. 1997 in Q0957+561),
cluster galaxy velocity dispersions (e.g., Angonin-Willaime, Soucail, & Van-
derriest 1994 for Q0957+561, Hjorth et al. 2002 for RXJ0911+0551) or X-ray
temperatures/luminosities (e.g., Morgan et al. 2001 for RXJ0911+0551 or
Chartas et al. 2002 for Q0957+561). The accuracy of these methods is un-
certain at present because each suffers from its own systematic uncertainties,
and they probably cannot supply the 10% or higher precision measurements
of κc needed to strongly constrain models. When the convergence is due to
an object like a cluster, there is a strong correlation between the conver-
gence κc and the shear γc that is controlled by the density distribution of the
cluster (for an isothermal model κc = γc). When the lens is in the outskirts
of a cluster, as in RXJ0911+0551, it is probably reasonable to assume that
κc ≤ γc, as most mass distributions are more centrally concentrated than
isothermal (see Eqn. B.8). Neglecting the extra surface density coming from
nearby objects (galaxies, groups, clusters) leads to an overestimate of the
Hubble constant, because these objects all have κc > 0. For most time delay
systems this correction is probably <∼ 10%.

If the cluster or any member galaxies are sufficiently close, then we cannot
ignore the higher-order perturbations in the expansion of Eqn. (B.26). This is
certainly true for Q0957+561 (as discussed in §B.4.6) where the lens galaxy is
the brightest cluster galaxy and located very close to the center of the cluster.
It is easy to gauge when they become important by simply comparing the
deflections produced by any higher order moments of the cluster beyond the
quadrupole with the uncertainties being used for the image positions. For a
cluster of critical radius bc at distance θc from a lens of Einstein radius b, these
perturbations are of order bc(b/θc)

2 ∼ bγc(b/θc). Because the astrometric
precision of the measurements is so high, these higher order terms can be
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Table B.1. Time Delay Measurements

System Nim ∆t (days) Astrometry Model Ref.

HE1104–1805 2 161 ± 7 + “simple” 1
PG1115+080 4 25 ± 2 + “simple” 2
SBS1520+530 2 130 ± 3 + “simple” 3
B1600+434 2 51 ± 2 +/− “simple” 4
HE2149–2745 2 103 ± 12 + “simple” 5

RXJ0911+0551 4 146 ± 4 + cluster/satellite 6
Q0957+561 2 417 ± 3 + cluster 7
B1608+656 4 77 ± 2 +/− satellite 8

B0218+357 2 10.5 ± 0.2 − “simple” 9
PKS1830–211 2 26 ± 4 − “simple” 10

B1422+231 4 (8 ± 3) + “simple” 11

Nim is the number of images. ∆t is the longest of the measured delays and its 1σ
error; delays in parenthesis require further confirmation. The “Astrometry” column
indicates the quality of the astrometric data for the system: + (good), +/− (some
problems), − (serious problems). The “Model” column indicates the type of model
needed to interpret the delays. “Simple” lenses can be modeled as a single primary
lens galaxy in a perturbing tidal field. More complex models are needed if there is
a satellite galaxy inside the Einstein ring (“satellite”) of the primary lens galaxy,
or if the primary lens belongs to a cluster. References: (1) Ofek & Maoz 2003,
Wyrzykowski et al. 2003; (2) Barkana 1997, based on Schechter et al. 1997; (3)
Burud et al. 2002b; (4) Burud et al. 2000, also Koopmans et al. 2000; (5) Burud et
al. 2002a; (6) Hjorth et al. 2002; (7) Kundić et al. 1997, also Schild & Thomson 1997
and Haarsma et al. 1999; (8) Fassnacht et al. 2002; (9) Biggs et al. 1999, also Cohen
et al. 2000; (10) Lovell et al. 1998; (11) Patnaik & Narasimha 2001.

relatively easy to detect. For example, models of PG1115+080 (e.g. Impey
et al. 1998) find that using a group potential near the optical centroid of the
nearby galaxies produces a better fit than simply using an external shear. In
this case the higher order terms are fairly small and affect the results little,
but results become very misleading if they are important but ignored.

B.5.3 Observing Time Delays and Time Delay Lenses

The first time delay measurement, for the gravitational lens Q0957+561,
was reported in 1984 (Florentin-Nielsen 1984). Unfortunately, a controversy
then developed between a short delay (≃ 1.1 years, Schild & Cholfin 1986;
Vanderriest et al. 1989) and a long delay (≃ 1.5 years, Press, Rybicki, &
Hewitt 1992a, 1992b), which was finally settled in favor of the short delay only
after 5 more years of effort (Kundić et al. 1997; also Schild & Thomson 1997
and Haarsma et al. 1999). Factors contributing to the intervening difficulties
included the small amplitude of the variations, systematic effects, which, with
hindsight, appear to be due to microlensing and scheduling difficulties (both
technical and sociological).
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Fig. B.35. VLA monitoring data for the four-image lens B1608+656. The top
panel shows (from top to bottom) the normalized light curves for the B (filled
squares), A (open diamonds), C (filled triangles) and D (open circles) images as a
function of the mean Julian day. The bottom panel shows the composite light curve
for the first monitoring season after cross correlating the light curves to determine
the time delays (∆tAB = 31.5±1.5, ∆tCB = 36.0±1.5 and ∆tDB = 77.0±1.5 days)
and the flux ratios. (From Fassnacht et al. 2002.)
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While the long-running controversy over Q0957+561 led to poor publicity
for the measurement of time delays, it allowed the community to come to an
understanding of the systematic problems in measuring time delays, and to
develop a broad range of methods for reliably determining time delays from
typical data. Only the sociological problem of conducting large monitoring
projects remains as an impediment to the measurement of time delays in
large numbers. Even these are slowly being overcome, with the result that
the last five years have seen the publication of time delays in 11 systems (see
Table B.5.2).

The basic procedures for measuring a time delay are simple. A monitoring
campaign must produce light curves for the individual lensed images that are
well sampled compared to the time delays. During this period, the source
quasar in the lens must have measurable brightness fluctuations on time
scales shorter than the monitoring period. The resulting light curves are
cross correlated by one or more methods to measure the delays and their
uncertainties (e.g., Press et al. 1992a 1992b; Beskin & Oknyanskij 1995; Pelt
et al. 1996; references in Table 1.1). Care must be taken because there can
be sources of uncorrelated variability between the images due to systematic
errors in the photometry and real effects such as microlensing of the individual
images (e.g., Koopmans et al. 2000; Burud et al.2002b; Schechter et al. 2003).
Figure B.35 shows an example, the beautiful light curves from the radio
lens B1608+656 by Fassnacht et al. (2002), where the variations of all four
lensed images have been traced for over three years. One of the 11 systems,
B1422+231, is limited by systematic uncertainties in the delay measurements.

We want to have uncertainties in the time delay measurements that are
unimportant for the estimates of H0. For the present, uncertainties of order
3%–5% are adequate (so improved delays are still needed for PG1115+080,
HE2149–2745, and PKS1830–211). In a four-image lens we can measure three
independent time delays, and the dimensionless ratios of these delays pro-
vide additional constraints on the lens models (see §B.5.1). These ratios are
well measured in B1608+656 (Fassnacht et al. 2002), poorly measured in
PG1115+080 (Barkana 1997; Schechter et al. 1997; Chartas 2003) and un-
measured in either RXJ0911+0551 or B1422+231. Using the time delay lenses
as very precise probes of H0, dark matter and cosmology will eventually re-
quire still smaller delay uncertainties (∼ 1%). Once a delay is known to 5%,
it is relatively easy to reduce the uncertainties further because we can accu-
rately predict when flux variations will appear in the other images and the
lens will need to be monitored more intensively.

The expression for the time delay in an SIS lens (Eqn. B.94) reveals the
other data that are necessary to interpret time delays. First, the source and
lens redshifts are needed to compute the distance factors that set the scale
of the time delays. Fortunately, we know both redshifts for all 11 systems in
Table B.5.2 even though missing redshifts are a problem for the lens sample
as a whole (see §B.2). The dependence of the distances Dd, Ds and Dds on
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the cosmological model is unimportant until our total uncertainties approach
5%. Second, we require accurate relative positions for the images and the lens
galaxy. These uncertainties are always dominated by the position of the lens
galaxy relative to the images. For most of the lenses in Table B.5.2, observa-
tions with radio interferometers (VLA, Merlin, VLBA) and HST have mea-
sured the relative positions of the images and lenses to accuracies <∼ 0.′′005.
Sufficiently deep HST images can obtain the necessary data for almost any
lens, but dust in the lens galaxy (as seen in B1600+434 and B1608+656)
can limit the accuracy of the measurement even in a very deep image. For
B0218+357 and PKS1830–211, however, the position of the lens galaxy rel-
ative to the images is not known to sufficient precision or determined only
from models (see Biggs et al. 1999, Léhar et al. 2000; Courbin et al. 2002;
Winn et al. 2002b, Wucknitz, Biggs & Browne 2004, York et al. 2004).

We can also divide the systems by the complexity of the required lens
model. We define eight of the lenses as “simple,” in the sense that the avail-
able data suggests that a model consisting of a single primary lens in a
perturbing shear (tidal gravity) field should be an adequate representation
of the gravitational potential. In some of these cases, an external potential
representing a nearby galaxy or parent group will improve the fits, but the
differences between the tidal model and the more complicated perturbing
potential are small (see §B.5.2). If we neglect the convergence produced by
the group, then H0 may be overestimated. We include the quotation marks
because the classification is based on an impression of the systems from the
available data and models. Remember also that there are convergence fluc-
tuations along the line of sight that add a low level of cosmic variance to
the time delays of individual lenses (§B.4.2 and Fig. B.19). While we cannot
guarantee that a system is simple, we can easily recognize two complications
that will require more complex models.

The first complication is that some primary lenses have less massive satel-
lite galaxies inside or near their Einstein rings. This includes two of the time
delay lenses, RXJ0911+0551 and B1608+656. RXJ0911+0551 could simply
be a projection effect, since neither lens galaxy shows irregular isophotes.
Here the implication for models may simply be the need to include all the
parameters (mass, position, ellipticity · · ·) required to describe the second lens
galaxy, and with more parameters we would expect greater uncertainties in
H0. In B1608+656, however, the lens galaxies show the disturbed isophotes of
dusty galaxies possibly undergoing a disruptive interaction. How one should
model such a system is unclear. If there was once dark matter associated with
each of the galaxies, how is it distributed now? Is it still associated with the
individual galaxies? Has it settled into an equilibrium configuration? While
B1608+656 can be well fit with standard lens models (Fassnacht et al. 2002,
Koopmans et al. 2003), these complications have yet to be explored in detail.

The second complication occurs when the primary lens is a member of
a more massive (X-ray) cluster, as in the time delay lenses RXJ0911+0551
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(Morgan et al. 2001) and Q0957+561 (Chartas et al. 2002). The cluster model
is critical to interpreting these systems (see §B.5.2). The cluster surface den-
sity at the position of the lens (κc >∼ 0.2) leads to large corrections to the
time delay estimates and the higher-order perturbations are crucial to ob-
taining a good model. For example, models in which the Q0957+561 cluster
was treated simply as an external shear were grossly incorrect (see §B.4.6,
Keeton et al. 2000). In addition to the uncertainties in the cluster model it-
self, we must also decide how to include and model the other cluster galaxies
near the primary lens. Thus, lenses in clusters have many reasonable degrees
of freedom beyond those of the “simple” lenses.

B.5.4 Results: The Hubble Constant and Dark Matter

With our understanding of the theory and observations of the lenses we
will now explore their implications for H0. We focus on the “simple” lenses
PG1115+080, SBS1520+530, B1600+434, and HE2149–2745. We only com-
ment on the interpretation of the HE1104–1805 delay because the measure-
ment is too recent to have been interpreted carefully. We will briefly discuss
the more complicated systems B0218+357, RXJ0911+0551, Q0957+561, and
B1608+656, and we will not discuss the systems with problematic time delays
or astrometry.

The most common, simple, realistic model of a lens consists of a singular
isothermal ellipsoid (SIE) in an external (tidal) shear field (see §B.4). The
model has 7 parameters (the lens position, mass, ellipticity, major axis ori-
entation for the SIE, and the shear amplitude and orientation). It has many
degrees of freedom associated with the angular structure of the potential,
but the radial structure is fixed with 〈κ〉 ≃ 1/2. For comparison, a two-image
(four-image) lens supplies 5 (13) constraints on any model of the potential:
2 (6) from the relative positions of the images, 1 (3) from the flux ratios
of the images, 0 (2) from the inter-image time delay ratios, and 2 from the
lens position. With the addition of extra components (satellites/clusters) for
the more complex lenses, this basic model provides a good fit to all the time
delay lenses except Q0957+561. Although a naive counting of the degrees
of freedom (Ndof = −2 and 6, respectively) suggests that estimates of H0

would be under constrained for two-image lenses and over constrained for
four-image lenses, the uncertainties are actually dominated by those of the
time delay measurements and the astrometry in both cases. This is what we
expect from §B.5.1 — the model has no degrees of freedom that change 〈κ〉
or η, so there will be little contribution to the uncertainties in H0 from the
model for the potential.

If we use a model that includes parameters to control the radial density
profile (i.e., 〈κ〉), for example by adding a halo truncation radius a to the SIS
profile [the pseudo-Jaffe model, ρ ∝ r−2(r2 + a2)−1; e.g., Impey et al. 1998;
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Burud et al. 2002a],5 then we find the expected correlation between a and
H0 — as we make the halo more concentrated (smaller a), the estimate of H0

rises from the value for the SIS profile (〈κ〉 = 1/2 as a → ∞) to the value for
a point mass (〈κ〉 = 0 as a → 0), with the fastest changes occurring when a is
similar to the Einstein radius of the lens. We show an example of such a model
for PG1115+080 in Figure B.36. This case is somewhat more complicated
than a pure pseudo-Jaffe model because there is an additional contribution
to the surface density from the group to which the lens galaxy belongs. As
long as the structure of the radial density profile is fixed (constant a), the
uncertainties are again dominated by the uncertainties in the time delay.
Unfortunately, the goodness of fit, χ2(a), shows too little dependence on a to
determine H0 uniquely. In general, two-image lenses have too few constraints,
and the extra constraints supplied by a four-image lens constrain the angular
structure rather than the radial structure of the potential. This basic problem
holds for all existing models of the current sample of time delay lenses.

The inability of the present time delay lenses to directly constrain the
radial density profile is the major problem for using them to determine H0.
Fortunately, it is a consequence of the available data on the current sam-
ple rather than a fundamental limitation. It is, however, a simple trade-off
– models with less dark matter (lower 〈κ〉, more centrally concentrated den-
sities) produce higher Hubble constants than those with more dark matter.
We do have some theoretical limits on the value of 〈κ〉. In particular, we can
be confident that the surface density is bounded by two limiting models. The
mass distribution should not be more compact than the luminosity distribu-
tion, so a constant mass-to-light ratio (M/L) model should set a lower limit
on 〈κ〉 >∼ 〈κ〉M/L ≃ 0.2, and an upper limit on estimates of H0. We are also
confident that the typical lens should not have a rising rotation curve at 1–2
optical effective radii from the center of the lens galaxy. Thus, the SIS model
is probably the least concentrated reasonable model, setting an upper bound
on 〈κ〉 <∼ 〈κ〉SIS = 1/2, and a lower limit on estimates of H0. Figure B.37
shows joint estimates of H0 from the four simple lenses for these two limiting
mass distributions (Kochanek 2003b). The results for the individual lenses
are mutually consistent and are unchanged by the new 0.149± 0.004 day de-
lay for the A1-A2 images in PG1115+080 (Chartas 2003). For galaxies with
isothermal profiles we find H0 = 48±3 km s−1 Mpc−1, and for galaxies with
constant M/L we find H0 = 71 ± 3 km s−1 Mpc−1. While our best prior
estimate for the mass distribution is the isothermal profile (see §B.4.6), the
lens galaxies would have to have constant M/L to match Key Project esti-
mate of H0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001) or the WMAP
estimate of H0 = 72±5 km s−1 Mpc−1 for a flat universe with a cosmological
constant (Spergel et al. 2003).

5 This is simply an example. The same behavior would be seen for any other
parametric model in which the radial density profile can be adjusted.
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Fig. B.36. H0 estimates for PG1115+080. The lens galaxy is modeled as an ellip-
soidal pseudo-Jaffe model, ρ ∝ r−2(r2 + a2)−1, and the nearby group is modeled as
an SIS. As the break radius a → ∞ the pseudo-Jaffe model becomes an SIS model,
and as the break radius a → 0 it becomes a point mass. The heavy solid curve
(hexact) shows the dependence of H0 on the break radius for the exact, nonlinear
fits of the model to the PG1115+080 data. The heavy dashed curve (hscaling) is the
value found using our simple theory (§B.5.1) of time delays. The agreement of the
exact and scaling solutions is typical. The light solid line shows the average surface
density 〈κ〉 in the annulus between the images, and the light dashed line shows the
inverse of the logarithmic slope η in the annulus (κ ∝ θ1−η). For an SIS model
we would have 〈κ〉 = 1/2 and η−1 = 1/2, as shown by the horizontal line. When
the break radius is large compared to the Einstein radius (indicated by the vertical
line), the surface density is slightly higher and the slope is slightly shallower than
for the SIS model because of the added surface density from the group. As we make
the lens galaxy more compact by reducing the break radius, the surface density
decreases and the slope becomes steeper, leading to a rise in H0. As the galaxy be-
comes very compact, the surface density near the Einstein ring is dominated by the
group rather than the galaxy, so the surface density approaches a constant and the
logarithmic slope approaches the value corresponding to a constant density sheet
(η = 1).
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Fig. B.37. H0 likelihood distributions. The curves show the joint likelihood func-
tions for H0 using the four simple lenses PG1115+080, SBS1520+530, B1600+434,
and HE2149–2745 and assuming either an SIS model (high 〈κ〉, flat rotation curve)
or a constant M/L model (low 〈κ〉, declining rotation curve). The heavy dashed
curves show the consequence of including the X-ray time delay for PG1115+080
from Chartas (2003) in the models. The light dashed curve shows a Gaussian model
for the Key Project result that H0 = 72 ± 8 km s−1 Mpc−1.

The difference between these two limits is entirely explained by the differ-
ences in 〈κ〉 and η between the SIS and constant M/L models. In fact, it is
possible to reduce the H0 estimates for each simple lens to an approximation
formula, H0 = A(1−〈κ〉)+B〈κ〉(η − 1). The coefficients, A and |B| ≈ A/10,
are derived from the image positions and the time delay using the simple
theory from §B.5.1. These approximations reproduce numerical results using
ellipsoidal lens models to accuracies of 3 km s−1 Mpc−1 (Kochanek 2002a).
For example, in Figure B.36 we also show the estimate of H0 computed
based on the simple theory of §B.5.1 and the annular surface density (〈κ〉)
and slope (η) of the numerical models. The agreement with the full numeri-
cal solutions is excellent, even though the numerical models include both the
ellipsoidal lens galaxy and a group. No matter what the mass distribution
is, the five lenses PG1115+080, SBS1520+530, B1600+434, PKS1830–211,6

and HE2149–2745 have very similar dark matter halos. For a fixed slope η,
the five systems are consistent with a common value for the surface density
of

〈κ〉 = 1 − 1.07h + 0.14(η − 1)(1 − h) ± 0.04 (B.99)

6 PKS1830–211 is included based on the Winn et al. (2002b) model of the HST

imaging data as a single lens galaxy. Courbin et al. (2002) prefer an interpretation
with multiple lens galaxies which would invalidate the analysis.
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where H0 = 100h km s−1 Mpc−1 and there is an upper limit of σκ <∼ 0.07
on the intrinsic scatter of 〈κ〉. Thus, time delay lenses provide a new window
into the structure and homogeneity of dark matter halos, regardless of the
actual value of H0.

There is an enormous range of parametric models that can illustrate how
the extent of the halo affects 〈κ〉 and hence H0 — the pseudo-Jaffe model
we used above is only one example. It is useful, however, to use a physically
motivated model where the lens galaxy is embedded in a standard NFW
(Navarro, Frenk, & White 1996) profile halo as we discussed at the end of
§B.4.1. The lens galaxy consists of the baryons that have cooled to form stars,
so the mass of the visible galaxy can be parameterized using the cold baryon
fraction fb,cold of the halo, and for these CDM halo models the value of 〈κ〉
is controlled by the cold baryon fraction (Kochanek 2003a). A constant M/L
model is the limit fb,cold → 1 (with 〈κ〉 ≃ 0.2, η ≃ 3). Since the baryonic
mass fraction of a CDM halo should not exceed the global fraction of fb ≃
0.17 ± 0.03 (e.g., Spergel et al. 2003), we cannot use constant M/L models
without also abandoning CDM. As we reduce fb,cold, we are adding mass to
an extended halo around the lens, leading to an increase in 〈κ〉 and a decrease
in η. For fb,cold ≃ 0.02 the model closely resembles the SIS model (〈κ〉 ≃ 1/2,
η ≃ 2). If we reduce fb,cold further, the mass distribution begins to approach
that of the NFW halo without any cold baryons. Figure B.38 shows how
〈κ〉 and H0 depend on fb,cold for PG1115+080, SBS1520+530, B1600+434
and HE2149–2745. When fb,cold ≃ 0.02, the CDM models have parameters
very similar to the SIS model, and we obtain a very similar estimate of
H0 = 52 ± 6 km s−1 Mpc−1 (95% confidence). If all baryons cool, and
fb,cold = fb, then we obtain H0 = 65 ± 6 km s−1 Mpc−1 (95% confidence),
which is still lower than the Key Project estimates.

We excluded the lenses requiring significantly more complicated models
with multiple lens galaxies or very strong perturbations from clusters. If we
have yet to reach a consensus on the mass distribution of relatively isolated
lenses, it seems premature to extend the discussion to still more complicated
systems. We can, however, show that the clusters lenses require significant
contributions to 〈κ〉 from the cluster in order to produce the same H0 as
the more isolated systems. As we discussed in §B.2 the three more complex
systems are RXJ0911+0551, Q0957+561 and B1608+656.

RXJ0911+0551 is very strongly perturbed by the nearby X-ray cluster
(Morgan et al. 2001; Hjorth et al. 2002). Kochanek (2003b) found H0 =
49 ± 5 km s−1 Mpc−1 if the primary lens and its satellite were isothermal
and H0 = 67±5 km s−1 Mpc−1 if they had constant mass-to-light ratios. The
higher value of H0 = 71± 4 km s−1 Mpc−1 obtained by Hjorth et al. (2002)
can be understood by combining §B.5.1 and §B.5.2 with the differences in the
models. In particular, Hjorth et al. (2002) truncated the halo of the primary
lens near the Einstein radius and used a lower mass cluster, both of which
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Fig. B.38. H0 in CDM halo models. The top panel shows 1−〈κ〉 for the “simple”
lenses (PG1115+080, SBS1520+530, B1600+434, and HE2149–2745) as a function
of the cold baryon fraction fb,cold. The solid (dashed) curves include (exclude) the
adiabatic compression of the dark matter by the baryons. The horizontal line shows
the value for an SIS potential. The bottom panel shows the resulting estimates of
H0, where the shaded envelope bracketing the curves is the 95% confidence region
for the combined lens sample. The horizontal band shows the Key Project estimate.
For larger fb,cold, the density 〈κ〉 decreases and the local slope η steepens, leading
to larger values of H0. The vertical bands in the two panels show the lower bound
on fb from local inventories and the upper bound from the CMB.
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lower 〈κ〉 and raise H0. The Hjorth et al. (2002) models also included many
more cluster galaxies assuming fixed masses and halo sizes.

Q0957+561 is a special case because the primary lens galaxy is the bright-
est cluster galaxy and it lies nearly at the cluster center (Keeton et al. 2000;
Chartas et al. 2002). As a result, the lens modeling problems are particularly
severe, and Keeton et al. (2000) found that all previous models (most recently,
Barkana et al. 1999; Bernstein & Fischer 1999; and Chae 1999, see §B.4.6)
were incompatible with the observed geometry of the lensed host galaxy.
While Keeton et al. (2000) found models consistent with the structure of the
lensed host, they covered a range of almost ±25% in their estimates of H0.
A satisfactory treatment of this lens remains elusive.

HE1104–1805 has the most recently measured time delay(Ofek & Maoz 2003,
Wyrzykowski et al. 2003). Given the ∆t = 161± 7 day delay, a standard SIE
model of this system predicts a very high H0 ≃ 90 km s−1 Mpc−1. The
geometry of this system and the fact that the inner image is brighter than
the outer image both suggest that HE1104–1805 lies in an anomalously high
tidal shear field, while the standard model includes a prior to keep the exter-
nal shear small. A prior is needed because a two-image lens supplies too few
constraints to determine both the ellipticity of the main lens and the exter-
nal shear simultaneously. Since the images and the lens in HE1104–1805 are
nearly collinear, the anomalous H0 estimate for the standard model may be
an example of the shear degeneracy we briefly mentioned in §B.5.1. At present
the model surveys needed to understand the new delay have not been made.
Observations of the geometry of the host galaxy Einstein ring will resolve
any ambiguities due to the shear in the near future (see §B.10).

The lens B1608+656 consists of two interacting galaxies, and, as we
discussed in §B.2, this leads to a greatly increased parameter space. Fass-
nacht et al. (2002) used SIE models for the two galaxies to find H0 =
61 − 65 km s−1 Mpc−1, depending on whether the lens galaxy positions
are taken from the H-band or I-band lens HST images (the statistical errors
are negligible). The position differences are probably created by extinction
effects from the dust in the lens galaxies. Like isothermal models of the “sim-
ple” lenses, the H0 estimate is below local values, but the disagreement is
smaller. These models correctly match the observed time delay ratios. Koop-
mans et al. (2003) obtain a still higher estimate of H0 = 75±7 km s−1 Mpc−1

largely because the lens galaxy positions shift after they include extinction
corrections. They use a foreground screen model to make the extinction cor-
rections, which is a better approximation than no extinction corrections, but
is unlikely allow precise correction in a system like B1608+656 where the
dust and stars are mixed and there is no simple relation between color excess
and optical depth (e.g. Witt, Thronson & Capuano 1992).

Despite recent progress both in modeling the VLBI structure (Wucknitz et
al. 2004) and obtaining deep images (York et al. 2004) it is unclear whether
B0218+357 has escaped its problems with astrometry and models. While
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York et al. (2004) have clearly measured the position of the lens galaxy,
the dependence of the position on the choice of the PSF model remains a
significant source of uncertainty for estimates of H0. Models of the system
using power law models find a slope very close to isothermal η = 2.04± 0.02
(ρ ∝ r−η). Unfortunately, these models have too few degrees of freedom
given the small astrometric uncertainties in the VLBI structures providing the
constraints (because the only angular structure in the model is the ellipsoidal
potential used for the main lens galaxy), and this makes the limits on the
power slope suspect (see §B.4.6). For example, while it is true that Lehár
et al. (2000) estimated that the environmental shear near B0218+357 was
small, even a γ = 0.01 external tidal shear produces deflections (3 milli-
arcseconds) that are large compared to the accuracy of the constraints used
for the models and so must be included for the models to be reliable. With
these caveats, B0218+357 (like the models of B1608+656 with significant
extinction corrections) support a nearly isothermal mass distribution with
H0 = 73 ± 8 km s−1 Mpc−1.

B.5.5 The Future of Time Delay Measurements

We understand the theory of time delays very well – the only important
variable in the lens structure is the average surface density 〈κ〉 of the lens
near the images for which the delay is measured. The angular structure of the
potential has an effect on the delays, but it is either small or well-constrained
by the observed image positions. Provided a lens does not lie in a cluster where
the cluster potential cannot be described by a simple expansion, any lens
model that includes the parameters needed to vary the average surface density
of the lens near the images and to change the ratio between the quadrupole
moment of the lens and the environment includes all the variables needed to
model time delays, to estimate the Hubble constant, and to understand the
systematic uncertainties in the results. Unfortunately, there is a tendency in
the literature to confuse rather than to illuminate this understanding, even
though all differences between estimates of the Hubble constant for the simple
time delay lenses can be understood on this basis.

The problem with time delays lies with the confusing state of the data.
The four simplest time delay lenses, PG1115+080, SBS1520+530, B1600+434
and HE2149–2745, can only match the currently preferred estimate of H0 ≃
72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001, Spergel et al. 2003) if they
have nearly constant M/L mass distributions. If they have the favored quasi-
isothermal mass distributions, then H0 ≃ 48±3 km s−1 Mpc−1. This leads to
a conundrum: why do simple lenses with time delay measurements have falling
rotation curves, while simple lenses with direct estimates of the mass profile
do not? This is further confused by B1608+656 and B0218+357, which due
to their observational complexity would be the last systems I would attempt
to understand, but in current analyses can be both isothermal and have high
H0. In resolving this problem it is not enough to search for a “Golden Lens.”
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There is no such thing! While chanting “My lens is better than your lens!”
may be satisfying, it contributes little to understanding the basic problem.

The difficulty at the moment is that systems I would view as problematic
(B0218+357 due to problems in astrometry or B1608+656 due to the inter-
acting lens galaxies) allow both mass distributions with flat rotation curves
and H0 = 72 km s−1 Mpc−1, while systems that should be simpler to in-
terpret (the simple lenses in Table B.5.2) do not. Yet the preponderance of
evidence on the mass distributions of lens galaxies suggests that they are
fairly homogeneous in structure and have roughly flat rotation curves (§B.4).
The simplest way to clarify this problem is to measure accurate time delays
for many more systems. At a fixed value of the Hubble constant we will ei-
ther find significant scatter in the surface densities near the images of simple
lenses or we will not.

B.6 Gravitational Lens Statistics

It is the opinion of the author that the statistics of lenses as a method for
determining the cosmological model has largely ceased to be interesting. How-
ever, it is important to understand the underlying physics because it deter-
mines the types of lenses we detect. While most recent analyses have found
cosmological results consistent with the concordance model (Chae et al. 2002,
Chae 2003, Davis, Huterer & Krauss 2003, Mitchell et al. 2004) there are still
large statistical uncertainties and some dangerous systematic assumptions.
More importantly, there is little prospect at present of lens statistics becom-
ing competitive with other methods. Gravitational lenses statistics arguably
begins with Press & Gunn (1973), although the “modern” era begins with the
introduction of magnification bias (Turner 1980), the basic statistics of nor-
mal galaxy lenses (Turner, Ostriker & Gott 1984), cross sections and optical
depths for more general lenses (Blandford & Kochanek 1987a, Kochanek &
Blandford 1987), explorations of the effects of general cosmologies (Fukugita
et al. 1990, Fukugita & Turner 1991) and lens structure (Maoz & Rix 1993,
Kochanek 1996a) and the development of the general methodology of inter-
preting observations (Kochanek 1993b, 1996a).

B.6.1 The Mechanics of Surveys

There are two basic approaches to searching for gravitational lenses depend-
ing on whether you start with a list of potentially lensed sources or a list of
potential lens galaxies. Of the two, only a search of sources for lensed sources
has a significant cosmological sensitivity – for a non-evolving population of
lenses in a flat cosmological model we will find in §B.6.3 that the number of
lensed sources scales with the volume between the observer and the source
D3

s . If you search potential lens galaxies for those which have actually lensed a
source, then the cosmological dependence enters only through distance ratios,
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Dds/Ds, and you require a precise knowledge of the source redshift distri-
bution. Thus, while lenses found in this manner are very useful for many
projects (mass distributions, galaxy evolution etc.), they are not very useful
for determining the cosmological model. This changes for the case of clus-
ter lenses where you may find multiple lensed sources at different redshifts
behind the same lens (e.g. Soucail, Kneib & Gorse 2004).

Most lenses have been found by searching for lensed sources because the
number of targets which must be surveyed is considerably smaller. This is
basically a statement about the relative surface densities of candidate sources
and lenses. The typical lens is a galaxy with an Einstein radius of approxi-
mately b ≃ 1.′′0 so it has a cross section of order πb2. If you search N lenses
with such a cross section for signs of a lensed source, you would expect to find
Nπb2Σsource lenses where Σsource is the surface density of detectable sources.
If you search N sources for a lens galaxy in front of them, you would expect
to find Nπb2Σlens lenses, where Σlens is the surface density of lens galaxies.
Since the surface density of massive galaxies is significantly higher than the
surface density of easily detectable higher redshift sources (Σlens ≫ Σsource),
you need examine fewer sources than lens galaxies to find the same number of
lensed systems. This is somewhat mitigated by the fact the surface density of
potential lens galaxies is high enough to allow you to examine many potential
lenses in a single observation, while the surface density of sources is usually
so low that they can be examined only one at a time.

For these reasons, we present a short synopsis of searches for sources be-
hind lenses and devote most of this section to the search for lenses in front
of sources. The first method for finding sources behind lenses is a simple
byproduct of redshift surveys. Redshift surveys take spectra of the central
regions of low redshift galaxies allowing the detection of spectral features
from any lensed images inside the aperture used for the spectrum. Thus, the
lens Q2237+0305 was found in the CfA redshift survey (Huchra et al. 1985)
and SDSS0903+5028 (Johnston et al. 2003) was found in the SDSS survey.
Theoretical estimates (Kochanek 1992b, Mortlock & Webster 2000c) suggest
that the discovery rate should one per 104–105 redshift measurements, but
this does not seem to be borne out by the number of systems discovered
in this age of massive redshift surveys (the origin of the lower rate in the
2dF survey is discussed by Mortlock & Webster 2001). Miralda-Escude &
Lehár (1992) proposed searching for lensed optical (emission line) rings, a
strategy successfully used by Warren et al. (1996) to find 0047–2808 and by
Ratnatunga, Griffiths & Ostrander (1999) to find lenses in the HST Medium
Deep Survey (MDS). There is also a hybrid approach whose main objective
is simply to find lenses with minimal follow up observations by looking for
high redshift radio lobes that have non-stellar optical counterparts (Lehár et
al. 2001). Since radio lobes have no intrinsic optical emission, a lobe super-
posed on a galaxy is an excellent lens candidate. The present limitation on
this method is the low angular resolution of the available all sky radio sur-
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Fig. B.39. Example of a local galaxy luminosity function. These are the K-band
luminosity functions for either all galaxies or by morphological type from Kochanek
et al. (2001). The curves show the best fit Schechter models for the luminosity
functions while the points with error bars show a non-parametric reconstruction.

veys (FIRST, NVSS) and the magnitude limits and star/galaxy separation
problems of the current all-sky optical catalogs. Nonetheless, several systems
have been discovered by this technique.

The majority of lens surveys, however, have focused on either optical
quasars or radio sources because they are source populations known to lie
at relatively high redshift (zs >∼ 1) and that are easily detected even when
there is an intervening lens galaxy. Surveys of optical quasars (Crampton,
McClure & Fletcher 1992, Yee, Fillipenko & Tang 1993, Maoz et al. 1993,
Surdej et al. 1993, Kochanek, Falco & Schild 1995) have the advantage that
the sources are bright, and the disadvantages that the bright sources can
mask the lens galaxy and that the selection process is modified by dust in
the lens galaxy and emission from the lens galaxy. We will discuss these effects
in §B.9. While many more lensed quasars have been discovered since these
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Fig. B.40. Schechter parameters α and M∗ for the 2MASS luminosity functions
shown in Fig. B.39. Note there is a significant correlations not only between α and
M∗ but also with the comoving density scale n∗ that should be included in lens
statistical calculations but generally are not.

efforts, none of the recent results have been presented as a survey. Surveys of
all radio sources (the MIT/Greenbank survey, Burke, Lehár & Conner 1992)
have the advantage that most lensed radio sources are produced by extended,
steep spectrum sources (see Kochanek & Lawrence 1990), and the disadvan-
tage that the complex intrinsic structures of extended radio sources make
the follow up observations difficult. Surveys of flat spectrum radio sources
(the CLASS survey, Browne et al. 2003, the PANELS survey, Winn, Hewitt
& Schechter 2001) have the advantage that the follow up observations are
relatively simple because most unlensed flat spectrum sources are (nearly)
point sources. There are disadvantages as well – because the source structure
is so simple, flat spectrum lenses tend to provide fewer constraints on mass
models than steep spectrum lenses. The radio sources tend to be optically
faint, making it difficult to determine their redshifts in many cases.

The second issue for any survey is to understand the method by which
the sources were originally identified. For example, it is important to know



100 C.S. Kochanek

whether the flux of a lensed source in the input catalog is the total flux
of all the images or only a part of the flux (e.g. the flux of the brightest
image). This will have a significant effect on the statistical corrections for
using a flux-limited catalog, a correction known in gravitational lensing as
the “magnification bias” (see §B.6.6). All large, published surveys were es-
sentially drawn from samples which would include the total flux of a lensed
system. It is also important to know whether the survey imposed any crite-
rion for the sources being point-like, since lensed sources are not, or any color
criterion that might be violated by lensed sources with bright lens galaxies
or significant extinction.

The third issue for any survey is to consider the desired selection function
of the observations. This is some combination of resolution, dynamic range
and field of view. These determine the range of lens separations that are de-
tectable, the nature of any background sources, and the cost of any follow up
observations. Any survey is a trade-off between completeness (what fraction
of all lenses in sample that can be discovered), false positives (how many
objects selected as lenses candidates that are not), and the cost of follow-up
observations. The exact strategy is not critical provided it is well-understood.
The primary advantages of the surveys of flat spectrum radio sources are the
relatively low false positive rates and follow up costs produced by using a
source population consisting almost entirely of point sources with no contam-
inating background population. This does not mean that the flat spectrum
surveys are free of false positives – core-jet sources can initially look like
asymmetric two-image lenses. On small angular scales (∆θ <∼ 3.′′0) the quasar
surveys share this advantage, but for wider separations there is contamination
from binary quasars (see §B.7.2) and Galactic stars (see Kochanek 1993a).

B.6.2 The Lens Population

The probability that a source has an intervening lens requires a model for
the distribution of the lens galaxies. In almost all cases these are based on
the luminosity function of local galaxies combined with the assumption that
the comoving density of galaxies does not evolve with redshift. Of course
luminosity is not mass, so a model for converting the luminosity of a local
galaxy into its deflection scale as a lens is a critical part of the process. For
our purposes, the distributions of galaxies in luminosity are well-described
by a Schechter (1976) function,

dn

dL
=

n∗

L∗

(

L

L∗

)α

exp (−L/L∗) . (B.100)

The Schechter function has three parameters: a characteristic luminosity L∗

(or absolute magnitude M∗), an exponent α describing the rise at low lumi-
nosity, and a comoving density scale n∗. All these parameters depend on the
type of galaxy being described and the wavelength of the observations. In
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(c) 

(d) 

Fig. B.41. K-band kinematic relations for 2MASS galaxies. The top panels show
the Faber-Jackson relation and the bottom panels show the Tully-Fisher relations
for 2MASS galaxies with velocity dispersions and circular velocities drawn from the
literature. The left hand panels show the individual galaxies, while the right hand
galaxies show the mean relations. Note the far larger scatter of the Faber-Jackson
relation compared to the Tully-Fisher relation.

general, lens calculations have divided the galaxy population into two broad
classes: late-type (spiral) galaxies and early-type (E/S0) galaxies. Over the
period lens statistics developed, most luminosity functions were measured
in the blue, where early and late-type galaxies showed similar character-
istic luminosities. The definition of a galaxy type is a slippery problem –
it may be defined by the morphology of the surface brightness (the tradi-
tional method), spectral classifications (the modern method since it is easy
to do in redshift surveys), colors (closely related to spectra but not identi-
cal), and stellar kinematics (ordered rotational motions versus random mo-
tions). Each approach has advantages and disadvantages, but it is important
to realize that the kinematic definition is the one most closely related to
gravitational lensing and the one never supplied by local surveys. Fig. B.39
shows an example of a luminosity function, in this case K-band infrared lu-
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(c) 

Fig. B.42. The resulting velocity functions from combining the K-band luminosity
functions (Fig. B.39) and kinematic relations (Fig. B.41) for early-type (top), late-
type (middle) and all (bottom) galaxies. The points show partially non-parametric
estimates of the velocity function based on the binned estimates in the right hand
panels of Fig. B.41 rather than power-law fits. Note that early-type galaxies domi-
nate for high circular velocity.

minosity function by Kochanek et al. (2001, also Cole et al. 2001) where
MK∗e = −23.53 ± 0.06 mag, n∗e = (0.45 ± 0.06) × 10−2h3 Mpc−3, and
αe = −0.87± 0.09 for galaxies which were morphologically early-type galax-
ies and MK∗l = −22.98±0.06 mag, n∗l = (1.01±0.13)×10−2h3 Mpc−3, and
αl = −0.92 ± 0.10 for galaxies which were morphologically late-type galax-
ies. Early-type galaxies are less common but brighter than late-type galaxies
at K-band. It is important to realize that the parameter estimates of the
Schechter function are correlated, as shown in Fig. B.40, and that it is dan-
gerous to simply extrapolate them to fainter luminosities than were actually
included in the survey

However, light is not mass, and it is mass which determines lensing prop-
erties. One approach would simply be to assign a mass-to-light ratio to the
galaxies and to the expected properties of the lenses. This was attempted
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only in Maoz & Rix (1993) who found that for normal stellar mass to light
ratios it was impossible to reproduce the data (although it is possible if you
adjust the mass-to-light ratio to fit the data, also see Kochanek 1996a). In-
stead, most studies convert the luminosity functions dn/dL into a velocity
functions dn/dv using the local kinematic properties of galaxies and then
relate the stellar kinematics to the properties of the lens model. As Fig. B.41
shows (for the same K-band magnitudes of our luminosity function example),
both early-type and late-type galaxies show correlations between luminosity
and velocity. For late-type galaxies there is a tight correlation known as the
Tully-Fisher (1977) relation between luminosity L and circular velocity vc

and for early-type galaxies there is a loose correlation known as the Faber-
Jackson (1976) relation between luminosity and central velocity dispersion
σv. Early-type galaxies do show a much tighter correlation known as the fun-
damental plane (Dressler et al. 1987, Djorgovski & Davis 1987) but it is a
three-variable correlation between the velocity dispersion, effective radius and
surface brightness (or luminosity) that we will discuss in §B.9. While there
is probably some effect of the FP correlation on lens statistics, it has yet
to be found. For lens calculations, the circular velocity of late-type galaxies
is usually converted into an equivalent (isotropic) velocity dispersion using
vc =

√
2σv. We can derive the kinematic relations for the same K-band-

selected galaxies used in the Kochanek et al. (2001) luminosity function,
finding the Faber-Jackson relation

Mk − 5 logh = (−23.83± 0.03)− 2.5(4.04 ± 0.18)(log vc − 2.5) (B.101)

and the Tully-Fisher relation

Mk − 5 log h = (−22.92 ± 0.02)− 2.5(3.96± 0.08)(log vc − 2.3). (B.102)

These correlations, when combined with the K-band luminosity function have
the advantage that the magnitude systems for the luminosity function and
the kinematic relations are identical, since magnitude conversions have caused
problems for a number of lens statistical studies using older photographic
luminosity functions and kinematic relations. For these relations, the char-
acteristic velocity dispersion of an L∗ early-type galaxy is σ∗e ≃ 209 km/s
while that of an L∗ late-type galaxy is σ∗l ≃ 143 km/s. These are fairly typ-
ical values even if derived from a completely independent set of photometric
data.

Both the Faber-Jackson and Tully-Fisher relations are power-law relations
between luminosity and velocity, L/L∗ ∝ (σv/σ∗)

γF J . This allows a simple
variable transformation to convert the luminosity function into a velocity
function,
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Fig. B.43. Stellar velocity dispersions vlos for a Hernquist distribution of stars in
an isothermal halo of dispersion σDM . The solid curves show the local value vlos

and the dashed curves show the mean interior to the radius 〈v2

los〉. Local velocity
dispersions are typically measured on scales similar to Re/8 where the stellar and
dark matter dispersions are nearly equal rather than matching the viral theorem
limit which would be reached in an infinite aperture. The upper, lower and middle
curves are for stars with isotropies of β = 0.2 (somewhat radial), β = 0 (isotropic)
and β = −0.2 (somewhat tangential).

There are three caveats to keep in mind about this variable change. First, we
have converted to the distribution in stellar velocities, not some underlying
velocity characterizing the dark matter distribution. Many early studies as-
sumed a fixed transformation between the characteristic velocity of the stars
and the lens model. In particular, Turner, Ostriker & Gott (1984) introduced
the assumption σdark = (3/2)1/2σstars for an isothermal mass model based on
the stellar dynamics (Jeans equation, Eqn. B.90 and §B.4.9) of a r−3 stellar
density distribution in a r−2 isothermal mass distribution. Kochanek (1993b,
1994) showed that this oversimplified the dynamics and that if you embed
a real stellar luminosity distribution in an isothermal mass distribution you
actually find that the central stellar velocity dispersion is close to the veloc-
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ity dispersion characterizing the dark matter halo. Fig. B.43 compares the
stellar velocity dispersion to the dark matter halo dispersion for a Hernquist
distribution of stars in an isothermal mass distribution. Such a normalization
calculation is required for any attempt to match the observed velocity func-
tions with a particular mass model for the lenses. Second, in an ideal world,
the luminosity function and the kinematic relations should be derived from
a consistent set of photometric data, while in practice they rarely are. As we
will see shortly, the cross section for lensing scales roughly as σ4

∗ , so small
errors in estimates of the characteristic velocity have enormous impacts on
the resulting cosmological results – a 5% velocity calibration error leads to a
20% error in the lens cross section. Since luminosity functions and kinematic
relations are rarely derived consistently (the exception is Sheth et al. 2003),
the resulting systematic errors creep into cosmological estimates. Finally, for
the early-type galaxies where the Faber-Jackson kinematic relation has sig-
nificant scatter, transforming the luminosity function using the mean relation
as we did in Eqn. B.103 while ignoring the scatter underestimates the number
of high velocity dispersion galaxies (Kochanek 1994, Sheth et al. 2003). This
leads to underestimates of both the image separations and the cross sections.
The fundamental lesson of all these issues is that the mass scale of the lenses
should be “self-calibrated” from the observed separation distribution of the
lenses rather than imposed using local observations (as we discuss below in
§B.6.7).

Most lens calculations have assumed that the comoving density of the
lenses does not evolve with redshift. For moderate redshift sources this only
requires little evolution for zl < 1 (mostly zl < 0.5), but for higher redshift
sources it is important to think about evolution as well. The exact degree of
evolution is the subject of some debate, but a standard theoretical prediction
for the change between now and redshift unity is shown in Fig. B.44 (see
Mitchell et al. 2004 and references therein). Because lower mass systems
merge to form higher mass systems as the universe evolves, low mass systems
are expected to be more abundant at higher redshifts while higher mass
systems become less abundant. For the σv ∼ σ∗ ∼ 200 km/s galaxies which
dominate lens statistics, the evolution in the number of galaxies is actually
quite modest out to redshift unity, so we would expect galaxy evolution to
have little effect on lens statistics. Higher mass systems evolve rapidly and are
far less abundant at redshift unity, but these systems will tend to be group
and cluster halos rather than galaxies and the failure of the baryons to cool
in these systems is of greater importance to their lensing effects than their
number evolution (see §B.7). There have been a number of studies examining
lens statistics with number evolution (e.g. Mao 1991, Mao & Kochanek 1994,
Rix et al. 1994) and several attempts to use the lens data to constrain the
evolution (Ofek, Rix & Maoz 2003, Chae & Mao 2003, Davis, Huterer &
Krauss 2003).
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Fig. B.44. The ratio of the velocity function of halos at z = 1 to that at z = 0
from Mitchell et al. (2004). The solid curve shows the expectation for an ΩΛ ≃ 0.78
flat cosmological model. The points show results from an N-body simulation with
ΩΛ ≃ 0.7 and the dashed curve shows the theoretical expectation. For comparison,
the dotted curve shows the evolution model used by Chae & Mao (2003).

B.6.3 Cross Sections

The basic quantity we need for any statistical analysis is the cross section
of the lens for producing the desired lensing effect (e.g. multiple images, two
images, bright images...). The simplest cross section is the multiple imaging
cross section of the SIS lens – the angular area on the source plane in which
a source will produce two lensed images. We know from Eqns. B.21 and
B.22 that the source must lie within Einstein radius b of the lens center to
produce multiple images, so the cross section is simply σSIS = πb2. Since the
Einstein radius b = 4π(σv/c)2Dls/Ds depends on the velocity dispersion and
redshift of the lens galaxy, we will need a model for the distribution of lenses
in redshift and velocity dispersion to estimate the optical depth for lensing.
If we are normalizing directly to stellar dynamical measurements of lenses,
then we will also need a dynamical model (e.g. the Jeans equations of §B.4.9)
to relate the observed stellar velocity dispersions to the characteristic dark
matter velocity dispersion σv appearing as a parameter of the SIS model. We
can also compute cross sections for obtaining different image morphologies.
For example, in Eqn. B.32 we calculated the caustic boundaries for the four-
image region of an SIS in an external shear γ. If we integrate to find the area
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inside the caustic we obtain the four-image cross section

σ4 =
3π

2

γ2b2

1 − γ2
, (B.104)

while (provided |γ| < 1/3) the two-image cross section is σ2 = σSIS − σ4 ≃
σSIS . If the shear is larger, then the tips of astroid caustic extend beyond
the radial (pseudo-)caustic and the lens has regions producing two images,
three images in the disk geometry (Fig. B.18), and four images with no simple
expression for the cross sections. There are no analytic results for the singular
isothermal ellipsoid (Eqn. B.37 with s = 0), but we can power expand the
cross section as a series in the ellipticity to find at lowest order that

σ4 =
π

6
b2ǫ2 (B.105)

for a lens with axis ratio q = 1− ǫ, while the total cross section is σSIS = πb2

(e.g. Kochanek 1996b, Finch et al. 2002). As a general rule, a lens of ellipticity
ǫ is roughly equivalent to a spherical lens in an external shear of γ ≃ ǫ/3.
According to the cross sections, the fraction of four-image lenses should be
of order σ4/σSIS ∼ γ2 ∼ (ǫ/3)2 ∼ 0.01 rather than the observed 30%. Most
of this difference is a consequence of the different magnification biases of the
two image multiplicities.

There is an important subtlety when studying lens statistics with models
covering a range of axis ratios, namely that the definition of the critical
radius b in (say) the SIE model (Eqn. B.37) depends on the axis ratio and
exactly what quantity you are holding fixed in your calculation (see Keeton,
Kochanek & Seljak 1997, Keeton & Kochanek 1998, Rusin & Tegmark 2001,
Chae 2003). For example, if we compare a singular isothermal sphere to a
face on Mestel disk with the same equatorial circular velocity, the Einstein
radius of the disk is 2/π smaller than the isothermal sphere because for
the same circular velocity a disk requires less mass than a sphere. Since we
usually count galaxies locally and translate these counts into a dynamical
variable, this means that lens models covering a range of ellipticities must be
normalized in terms of the same dynamical variables as were used to count
the galaxies.

Much early effort focused of the effects of adding a finite core radius
to these standard models (e.g. Blandford & Kochanek 1987b, Kochanek &
Blandford 1987, Kovner 1987a, Hinshaw & Krauss 1987, Krauss & White 1992,
Wallington & Narayan 1993, Kochanek 1996a). The core radius s leads to an
evolution of the caustic structures (see Part 1, Blandford & Narayan 1986)
with the ratio between the core radius and the critical radius s/b. Strong
lenses with s/b ≪ 1 act like singular models. Weak, or marginal, lenses
with s/b ∼ 1 have significantly reduced cross sections but higher average
magnifications such that the rising magnification bias roughly balances the
diminishing cross section to create a weaker than expected effect of core radii
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on the probability of finding a lens (see Kochanek 1996a). As the evidence
that lenses are effectively singular has mounted, interest in these models has
waned, and we will not discuss them further here. There is some interest in
these models as a probe of large separation lenses due to groups and clusters
where a finite core radius is replaced by effects of the shallow ρ ∝ r−1 NFW
density cusp, and we will consider this problem in §B.7 where we discuss large
separation lenses.

B.6.4 Optical Depth

The optical depth associated with a cross section is the fraction of the sky in
which you can place a source and see the effect. This simply requires adding
up the contributions from all the lens galaxies between the observer and the
redshift of the source. For the SIS lens we simply need to know the comoving
density of lenses per unit dark matter velocity dispersion dn/dσ (which may
be a function of redshift)

τSIS =

∫ zs

0

dV

dzl
dzl

∫ ∞

0

dn

dσv

σSIS

4π
dσv (B.106)

where dV/dzl is the comoving volume element per unit redshift (e.g. Turner,
Ostriker & Gott 1984). For a flat cosmology, which we adopt from here on, the
comoving volume element is simply dV = 4πD2

ddDd where Dd is the comoving
distance to the lens redshift (Eqn. B.2). As with most lens calculations, this
means that the expression simplifies if expressed in terms of the comoving
angular diameter distances,

τSIS =

∫ Ds

0

dDdD
2
d

(

Dds

Ds

)2 ∫ ∞

0

dn

dσv
16π2

(σv

c

)4

(B.107)

(Gott, Park & Lee 1989, Fukugita, Futamase & Kasai 1990). If the comoving
density of the lenses does not depend on redshift, the integrals separate to
give

τSIS =
8π2

15
D3

s

∫ ∞

0

dσv
dn

dσ v

(σv

c

)4

(B.108)

(Fukugita & Turner 1991). If we now assume that the galaxies can be de-
scribed by the combination of Schechter luminosity functions and kinematic
relations described in §B.6.2, then we can do the remaining integral to find
that

τSIS =
8π2

15
n∗

(σ∗

c

)4

D3
sΓ [1+α+6/γ] =

1

30
τ∗r

−3
H D3

sΓ [1+α+6/γ] (B.109)

where Γ [x] is a Gamma function, rH = c/H0 is the Hubble radius and the
optical depth scale is

τ∗ = 16π3n∗r
3
H

(σ∗

c

)4

= 0.026

(

n∗

10−2h3Mpc−3

)(

σ∗

200km s−1

)4

. (B.110)
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Thus, lens statistics are essentially a volume test of the cosmology (the D3
s),

predicated on knowing the comoving density of the lenses (n∗) and their
average mass (σ∗). The result does not depend on the Hubble constant –
all determinations of n∗ scale with the Hubble constant such that n∗D

3
s is

independent of H0.
Two other distributions, those in image separation and in lens redshift at

fixed image separation, are easily calculated for the SIS model and useful if
numerical for any other lens. The SIS image separation is ∆θ = 8π(σv/c)2Dds/Ds,
so

dτSIS

d∆θ
= 1

2D3
s∆̂θ

2
(Γ [1 + α − 2/γFJ , ξ] (B.111)

−2∆̂θΓ [1 + α − 4/γFJ , ξ] + ∆̂θ
2
Γ [1 + α − 6/γFJ , ξ]

)

where ξ = (∆θ/∆θ∗)
γF J/2 and

∆θ∗ = 8π
(σ∗

c

)2

= 2.′′3

(

σ∗

200km s−1

)2

(B.112)

is the maximum separation produced by an L∗ galaxy. The mean image
separation,

〈∆θ〉 =
∆θ∗
2

Γ [1 + α + 8/γ]

Γ [1 + α + 6/γ]1/2
, (B.113)

depends only on the properties of the lens galaxy and not on cosmology. If
the cosmological model is not flat, a very weak dependence on cosmology is
introduced (Kochanek 1993c). For a known separation ∆θ, the probability
distribution for the lens redshift becomes

dP

dzl
∝ D2

d

Ds

dDd

dzl
exp

[

−
(

∆θ

∆θ∗

Ds

Dds

)1/2
]

(B.114)

(we present the result only for Schechter function α = −1 and Faber-Jackson
γFJ = 4). The location of the exponential cut off introduced by the luminosity
function has a strong cosmological dependence, so the presence or absence
of lens galaxies at higher redshifts dominates the cosmological limits. The
structure of this function is quite different from the total optical depth, which
in a flat cosmology is a slowly varying function with a mean lens distance
equal to one-half the distance to the source. The mean redshift changes with
cosmology because of the changes in the distance-redshift relations, but the
effect is not as dramatic as the redshift distributions for lenses of known
separation.

We end this section by discussing the Keeton (2002) “heresy”. Keeton (2002)
pointed out that if you used a luminosity function derived at intermediate
redshift rather than locally, then the cosmological sensitivity of the optical
depth effectively vanishes when the median redshift of the lenses matches
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the median redshift of the galaxies used to derive the luminosity function.
The following simple thought experiment shows that this is true at one level.
Suppose there was only one kind of galaxy and we make a redshift survey and
count all the galaxies in a thin shell at redshift z, finding N galaxies between z
and z+∆z. The implied comoving density of the galaxies, n = N/(∆zdV/dz),
depends on the cosmological model with the same volume factor appearing
in the optical depth calculation (Eqn. B.106). To the extent that the redshift
ranges and weightings of the galaxy survey and a lens survey are similar,
the cosmological sensitivity of the optical depth vanishes because the volume
factor cancels and the optical depth depends only on the number of observed
galaxies N . This does not occur when we use a local luminosity function
because changes in cosmology have no effect on the local volume element.
The problem with the Keeton (2002) argument is that it basically says that
if we could use galaxy number counts to determine the cosmological model
then we would not need lensing to do so because the two are redundant. To
continue our thought experiment, we also have local estimates nlocal for the
density of galaxies, and as we vary the cosmology we would find that n and
nlocal agree only for a limited range of cosmological models and this would
restore the cosmological sensitivity. The problem is that the comparison of
near and distant measurements of the numbers of galaxies is tricky because
it depends on correctly matching the galaxies in the presence of galaxy evo-
lution and selection effects – in essence, you cannot use this argument to
eliminate the cosmological sensitivity of lens surveys unless you think you
understand galaxy evolution so well that you can use galaxy number counts
to determine the cosmological model, a program of research that has basically
been abandoned.

B.6.5 Spiral Galaxy Lenses

Discussions of lens statistics, or even lenses in general, focus on early-type
galaxies (E/S0). The reason is that spiral lenses are relatively rare. The
only morphologically obvious spirals are B0218+357 (Sc, York et al. 2004),
B1600+434 (S0/Sa, Jaunsen & Hjorth 1997), PKS1830–211 (Sb/Sc, Winn
et al. 2002b), PMNJ2004–1349 (Sb/Sc, Winn, Hall & Schechter 2003), and
Q2237–0305 (Sa, Huchra et al. 1985). Other small separation systems may
well be spiral galaxies, but we do not have direct evidence from imaging.
There are studies of individual spiral lenses or the statistics of spiral lenses
by Maller, Flores & Primack (1997), Keeton & Kochanek (1998), Koopmans
et al. (1998), Maller et al. (2000), Trott & Webster (2002), and Winn, Hall
& Schechter (2003).

The reason lens samples are dominated by early-type galaxies is that
the early-type galaxies are more massive even if slightly less numerous (e.g.
Fukugita & Turner 1991, see §B.6.2). The relative numbers of early-type and
late-type lenses should be the ratio of their optical depths, (nl/ne)(σl/σe)

4,
based on the comoving densities and characteristic velocity dispersions of
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the early and late-type galaxies. For example, in the Kochanek et al. (2001)
K-band luminosity function nl/ne ≃ 2.2 while the ratio of the characteristic
velocity dispersions is σ∗l/σ∗e = 0.68 giving an expected fraction of 32% spi-
ral. This is modestly higher than the values using other luminosity functions
(usually closer to 20%) or the observed fraction. Because the typical separa-
tion of the spiral lenses will also be smaller by a factor of (σ∗l/σ∗e)

2 = 0.46,
they will be much harder to resolve given the finite resolution of lens sur-
veys. Thus, survey selections functions discriminate more strongly against
late-type lenses than against early-type lenses. The higher prevalence of dust
in late-type lenses adds a further bias against them in optical surveys.

B.6.6 Magnification Bias

The optical depth calculation suggests that the likelihood of finding that
a zs ≃ 2 quasar is lensed is very small (τ ∼ 10−4) , while observational
surveys of bright quasars typically find that of order 1% of bright quasars are
lensed. The origin of the discrepancy is the effect known as “magnification
bias” (Turner 1980), which is really the correction needed to account for the
selection of survey targets from flux limited samples. Multiple imaging always
magnifies the source, so lensed sources are brighter than the population from
which they are drawn. For example, the mean magnification of all multiply
imaged systems is simply the area over which we observe the lensed images
divided by the area inside the caustic producing multiple images because
the magnification is the Jacobean relating area on the image and source
planes, d2β = |µ|−1d2θ. For example, an SIS lens with Einstein radius b
produces multiple images over a region of radius b on the source plane (i.e.
the cross section is πb2), and these images are observed over a region of
radius 2b on the image plane, so the mean multiple-image magnification is
〈µ〉 = (4πb2)/(πb2) = 4.

Since fainter sources are almost always more numerous than brighter
sources, magnification bias almost always increases your chances of find-
ing a lens. The simplest example is to imagine a lens which always pro-
duces the same magnification µ applied to a population with number counts
N(F ) with flux F . The number counts of the lensed population are then
Nlens(F ) = τµ−1N(F/µ), so the fraction lensed objects (at flux F ) is larger
than the number expected from the optical depth if fainter objects are more
numerous than the magnification times the density of brighter objects. Where
did the extra factor of magnification come from? It has to be there to con-
serve the total number of sources or equivalently the area on the source and
lens planes – you can always check your expression for the magnification bias
by computing the number counts of lenses and checking to make sure that
the total number of lenses equals the total number of sources if the optical
depth is unity.

Real lenses do not produce unique magnifications, so it is necessary to
work out the magnification probability distribution P (> µ) (the probability
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of a magnification larger than µ) or its differential dP/dµ and then convolve it
with the source counts. Equivalently we can define a magnification dependent
cross section, dσ/dµ = σdP/dµ where σ is the total cross section. We can do
this easily only for the SIS lens, where a source at β produces two images
with a total magnification of µ = 2/β with µ > 2 in the multiple image region
(Eqns B.21, B.22), to find that P (> µ) = (2/µ)2 and dP/dµ = 8/µ3. The
structure at low magnification depends on the lens model, but all sensible
lens models have P (> µ) ∝ µ−2 at high magnification because this is generic
to the statistics of fold caustics (Part 1, Blandford & Narayan 1986).

Usually people have defined a magnification bias factor B(F ) for sources
of flux F so that the probability p(F ) of finding a lens with flux F is related
to the optical depth by p(F ) = τB(F ). The magnification bias factor is

B(F ) = N(F )−1

∫

dµ

µ

dP

dµ
N

(

F

µ

)

(B.115)

for a source with flux F , or

B(m) = N(m)−1

∫

dµ
dP

dµ
N (m + 2.5 logµ) (B.116)

for a source of magnitude m. Note the vanishing of the extra 1/µ factor
when using logarithmic number counts N(m) for the sources rather than
the flux counts N(F ). Most standard models have magnification probability
distributions similar to the SIS model, with P (> µ) ≃ (µ0/µ)2 for µ > µ0, in
which case the magnification bias factor for sources with power law number
counts N(F ) = dN/dF ∝ F−α is

B(F ) =
2µα−1

0

3 − α
(B.117)

provided the number counts are sufficiently shallow (α < 3). For number
counts as a function of magnitude N(m) = dN/dm ∝ 10am (where a =
0.4(α − 1)) the bias factor is

B(F ) =
2µ2.5a

0

2.5a− 2
. (B.118)

The steeper the number counts and the brighter the source is relative to any
break between a steep slope and a shallow slope, the greater the magnification
bias. For radio sources a simple power law model suffices, with α ≃ 2.07±0.11
for the CLASS survey (Rusin & Tegmark 2001), leading to a magnification
bias factor of B ≃ 5. For quasars, however, the bright quasars have number
counts steeper than this critical slope, so the location of the break from the
steep slope of the bright quasars to the shallower slope for fainter quasars near
B ∼ 19 mag is critical to determining the magnification bias. Fig. B.45 shows
an example of a typical quasar number counts distribution as compared to
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several (old) models for the distribution of lensed quasars. The changes in the
magnification bias with magnitude are visible as the varying ratio between
the lensed and unlensed counts, with a much smaller ratio for bright quasars
(high magnification bias) than for faint quasars (low magnification bias) and
a smooth shift between the two limits as you approach the break in the slope
of the counts at B ∼ 19 mag.

For optically-selected lenses, magnification bias is “undone” by extinction
in the lens galaxy because extinction provides an effect that makes lensed
quasars dimmer than their unlensed counterparts. Since the quasar samples
were typically selected at blue wavelengths, the rest wavelength correspond-
ing to the quasar selection band at the redshift of the lens galaxy where it
encounters the dust is similar to the U-band. If we use a standard color excess
E(B−V ) for the amount of dust, then the images become fainter by of order
AUE(B − V ) magnitudes where AU ≃ 4.9. Thus, if lenses had an average
extinction of only E(B − V ) ≃ 0.05 mag, the net magnification of the lensed
images would be reduced by about 25%. If all lenses had the same demagnifi-
cation factor f < 1 then the modifications to the magnification bias would be
straight forward. For power-law number counts N(F ) ∝ F−α, the magnifica-
tion bias is reduced by the factor fα and a E(B −V ) = 0.05 extinction leads
to a 50% reduction in the magnification bias for objects with a slope α ≃ 2
(faint quasars) and to still larger reductions for bright quasars. Some exam-
ples of the changes with the addition of a simple mean extinction are shown
in the right panel of Fig. B.45, although the levels of extinction shown there
are larger than observed in typical lenses as we discuss in §B.9.1. Compar-
isons between the statistics of optically-selected and radio-selected samples
can be used to estimate the magnitude of the correction. The only such com-
parison found estimated extinctions consistent with the direct measurements
of §B.9.1 (Falco, Kochanek & Muñoz 1998). However, the ISM of real lenses
is presumably far more complicated, with a distribution of extinctions and
different extinctions for different images which may be a function of orienta-
tion and impact parameter relative to the lens galaxy, for which we have no
good theoretical model.

The flux of the lens galaxy also can modify the magnification bias for
faint quasars, although the actual sense of the effect is complex. The left
panel Fig. B.45 shows the effect of dropping lenses in which the lens galaxy
represents some fraction of the total flux of the lensed images. The correction
is unimportant for bright quasars because lens galaxies with B < 19 mag
are rare. In this picture, the flux from the lens galaxy leads to the loss of
lenses because the added flux from the lens galaxy makes the colors of faint
lensed quasars differ from those of unlensed quasars so they are never se-
lected as quasars to begin with. Alternatively, if one need not worry about
color contamination, then the lens galaxy increases the magnification bias by
supplying extra flux that makes lensed quasars brighter.
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Any other selection effect, such as the dynamic range allowed for flux
ratios between images as a function of their separation will also have an
effect on the magnification bias. Exactly how the effect enters depends on
the particular class of images being considered. For example, in the SIS
lens (or more generally for two-image lenses), a limitation on the detectable
flux ratio 0 < fmin < 1 sets a minimum detectable magnification µmin =
2(1 + fmin)/(1 − fmin) > µ0 = 2. Since most lens samples have significant
magnification bias, which means that most lenses are significantly magnified,
such flux limits have only modest effects. The other limit, which cannot be
captured in the SIS model, is that almost all bright images are merging pairs
on folds (or triplets on cusps) so the image separation decreases as the mag-
nification increases. The contrast between the merging images and any other
images also increases with increasing magnification – combined with limits
on the detectability of images, these lead to selection effects against highly
magnified images. This is also usually a modest effect – while magnification
bias is important, the statistics are dominated by modestly magnified systems
rather than very highly magnified images. In fact, there are have been few
attempts at complete studies of the complicated interactions between find-
ing quasars, finding lenses, selection effects and magnification bias. There is
an early general study by Kochanek (1991b) and a detailed practical appli-
cation of many of these issues to the SDSS survey by Pindor et al. (2003).
Unfortunately, Pindor et al. (2003) seem to arrive at a completeness estimate
from their selection model that is too high given the number of lenses they
found in practice. Some of this may be due to underestimating the luminosity
of lens galaxies, the effects of the lens galaxy or extinction on the selection
of quasars or the treatment of extended, multicomponent lenses compared
to normal quasars in the photometric pipeline. These difficulties, as well as
the larger size of the present radio-selected lens samples, are the reason that
almost all recent statistical studies have focused exclusively on radio lenses.

The standard magnification bias expressions (Eqns. B.115 and B.116) are
not always appropriate. They are correct for the statistics of lenses selected
from source populations for which the total flux of the source (including all
images of a lensed source) is defining F (or m). This is true of most existing
surveys – for example the CLASS radio survey sources were originally selected
from single dish observations with very poor resolution compared to typical
image separations (see Browne et al. 2003). If, however, the separation of the
images is large compared to the resolution of the observations and the fluxes
of the images are considered separately, then the bias must be computed
in terms of the bright image used to select sources to search for additional
images. This typically reduces the bias. More subtle effects can also appear.
For example, the SDSS survey selects quasar candidates based on the best
fit point-source magnitudes, which will tend to be an underestimate of the
flux of a resolved lens. Hence the magnification bias for lenses found in the
SDSS survey will be less than in the standard theory. Samples selected based
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Fig. B.45. Examples of selection effects on optically selected lens samples. The
heavy solid curves in the two panels shows a model for the magnitude distribution
of optically-selected quasars. The light curves labeled ΩM = 1 and λ0 = 1 show the
distribution of lensed quasars for flat cosmologies that are either pure matter or pure
cosmological constant. The change in the ratio between the lensed curves and the
unlensed curves illustrates the higher magnification bias for bright quasars where
the number count distribution is steeper than for faint quasars. In the left panel the
truncated curves show the effect of losing the lensed systems where the lens galaxy
is ∆m = 1, 2 or 3 magnitudes fainter than the quasars. Once surveys are searching
for lensed quasars with B >∼ 20 mag, the light from the lens galaxy becomes an
increasing problem, particularly since the systems with the brightest lens galaxies
will also have the largest image separations that would otherwise make them easily
detected. In the left panel we illustrate the effect of adding a net extinction of
AB = 1 or 2 mag from dust in the lens galaxies. These correspond to larger than
expected color excesses of E(B − V ) ≃ 0.2 and 0.4 mag respectively. Note how the
extinction “undoes” the magnification bias by shifting the lensed distributions to
fainter magnitudes.

on more than one frequency can have more complicated magnification biases
depending on the structure of the multidimensional number counts (Borgeest,
von Linde & Refsdal 1991, Wyithe, Winn & Rusin 2003). The exact behavior
is complex, but the magnification bias can be tremendously increased if the
fluxes in the bands are completely uncorrelated or tightly but nonlinearly
correlated. For example, if the luminosities in bands A and B are related by

tight, nonlinear correlation of the form LA ∝ L
1/2
B , then the lensed examples

of these objects will lie off the correlation. At present, there are too few deep,
wide-area multiwavelength catalogs to make good use of this idea, but this
is changing rapidly.

In general, the ellipticity of the lenses has little effect on the expected
number of lenses, allowing the use of circular lens models for statistical stud-
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Fig. B.46. Magnification contours on the image (left) and source (right) planes
for an SIS in an external shear. The heavy solid contours show the tangential
critical line (left) and its corresponding caustic (right). On the image plane (left),
the light curves are magnification contours. These are positive outside the critical
curve and negative inside the critical curve. The images found in a four-image lens
are all found in the region between the two dashed contours – when two images are
merging on the critical line, the other two images lie on these curves. On the source
plane the solid (dashed) curves show the projections of the positive (negative)
magnification contours onto the source plane. Note that the high magnification
regions are dominated by the four-image systems with the exception of the small
high magnification regions found just outside the tip of each cusp.

ies that are uninterested in the morphologies of the images (e.g. Keeton,
Kochanek & Seljak 1997, Rusin & Tegmark 2001, Chae 2003). However, the
effects of ellipticity are trivially observable in the relative numbers of two-
image and four-image lenses. We noted earlier that the expectation from the
cross section is that four-image lenses should represent order ǫ2Ψ ∼ γ2 ∼ 0.01
of lenses where ǫΨ is the ellipticity of the lens potential. Yet in §B.2 we saw
that four-image lenses represent roughly one third of the observed popula-
tion. The high abundance of four-image lenses is a consequence of the different
magnification biases of the two-image multiplicities – the four-image lenses
are more highly magnified than the two-image lenses so they have a larger
magnification bias factor.

Fig. B.46 shows the image magnification contours for an SIS lens in an
external shear on both the image and source planes. The highly magnified
regions are confined to lie near the critical line. If we Taylor expand the inverse
magnification radially, then µ−1 = ∆x|dµ−1/dx| where ∆x is the distance
from the critical line, so the magnification drops inversely with the distance
from the critical line. If we Taylor expand the lens equations, then we find
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Fig. B.47. The integral magnification probability distributions for a singular
isothermal ellipsoid with an axis ratio of q = 0.7 normalized by the total cross
section for finding two images. Note that the total four-image cross section is only
of order ǫ2Ψ ∼ (ǫ/3)2 ∼ 0.01 of the total, but that the minimum magnification for
the four-image systems (µmin ∼ 1/ǫ ∼ 10) is much larger than that for the two-
image systems (µmin ∼ 2 just as for an SIS). The entire four-image probability
distribution is well approximated by the P (> µ) ∝ µ−2 power law expected for
fold caustics, while the two-image probability distribution is steeper since highly
magnified images can only be created by the cusps. Figure courtesy of D. Rusin.

Doubles

Quads

Cusps

Fig. B.48. The expected number of two-image, four-image and three-image (disk
or cusp) lenses as a function of axis ratio f for the CLASS sample. From Rusin &
Tegmark (2001).
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that the change in source plane coordinates is related to the change in image
plane coordinates by ∆β = µ−1∆x ∝ µ−2. Thus, if L is the length of the
astroid curve, the probability of a magnification larger than µ scales as P (>
µ) ∝ µ−2L/|dµ−1/dx|. This applies only to the four image region, because the
only way to get a high magnification in the two-image region is for the source
to lie just outside the tip of a cusp. The algebra is overly complex to present,
but the generic result is that the region producing magnification µ extends
µ−2 from the cusp tip but has a width that scales as µ−1/2, leading to an
overall scaling that the asymptotic cross section declines as P (> µ) ∝ µ−7/2

rather than P (> µ) ∝ µ−2. This can all be done formally (see Blandford
& Narayan 1986) so that asymptotic cross sections can be derived for any
model (e.g. Kochanek & Blandford 1987, Finch et al. 2002), but a reasonable
approximation for the four-image region is to compute the magnification, µ0,
for the cruciform lens formed when the source is directly behind the lens and
then use the estimate that P (> µ) = (µ0/µ)2. Unfortunately, such simple
estimates are not feasible for the two-image region. These distributions are
relatively easy to compute numerically, as in the example shown in Fig. B.47.

Because the minimum magnification of a four-image lens increases µ0 ∝
γ−1 even as the cross section decreases as σ4 ∝ γ2, the expected number
of four-image lenses in a sample varies much more slowly with ellipticity
than expected from the cross section. The product σ4B(F ) ∝ γ2µα−1

0 , of
the four-image cross section, σ4, and the magnification bias, B(F ), scales
as γ3−α ∝ γ for the CLASS survey (α ≃ 2), which is a much more gentle
dependence on ellipticity than the quadratic variation expected from the
cross section. There is a limit, however, to the fraction of four-image lenses.
If the potential becomes too flat, the astroid caustic extends outside the radial
caustic (Fig. B.18), to produce three-image systems in the “disk” geometry
rather than additional four-image lenses. In the limit that the axis ratio
goes to zero (the lens becomes a line), only the disk geometry is produced.
The existence of a maximum four-image lens fraction, and its location at an
axis ratio inconsistent with the observed axis ratios of the dominant early-
type lenses has made it difficult to explain the observed fraction of four
image lenses (King & Browne 1996, Kochanek 1996b, Keeton, Kochanek &
Seljak 1997, Keeton & Kochanek 1998,Rusin & Tegmark 2001). Recently,
Cohn & Kochanek (2001) argued that satellite galaxies of the lenses provide
the explanation by somewhat boosting the fraction of four-image lenses while
at the same time explaining the existence of the more complex lenses like
B1359+154 (Myers et al. 1999, Rusin et al. 2001) and PMNJ0134–0931 (Winn
et al. 2002c, Keeton & Winn 2003) formed by having multiple lens galaxies
with more complex caustic structures. It is not, however, clear in the existing
data that four-image systems are more likely to have satellites to the lens
galaxy than two-image systems as one would expect for this explanation.

Gravitational lenses can produce highly magnified images without multi-
ple images only if they are highly elliptical or have a low central density.
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The SIS lens has a single-image magnification probability distribution of
τdP/dµ = 2πb2/(µ − 1)3 with µ < 2 compared to τdP/dµ = 2πb2/µ3 with
µ ≥ 2 for the multiply imaged region, so single images are never magnified
by more than a factor of 2. For galaxies, where we always expect high central
densities, the only way to get highly magnified single images is when the
astroid caustic extends outside the radial caustic (Fig. B.18). A source just
outside an exposed cusp tip can be highly magnified with a magnification
probability distribution dP/dµ ∝ µ−7/2. Such single image magnifications
have recently been a concern for the luminosity function of high redshift
quasars (e.g. Wyithe 2004, Keeton, Kuhlen & Haiman 2004) and will be the
high magnification tail of any magnification perturbations to supernova fluxes
(e.g. Dalal et al. 2003). As a general rule for galaxies, the probability of a
single image being magnified by more than a factor of two is comparable to
the probability of being multiply imaged.

B.6.7 Cosmology With Lens Statistics

The statistics of lenses, in the sense of the number of lenses expected in a sam-
ple of sources as a function of cosmology, is a volume test of the cosmological
model because the optical depth (at least for flat cosmologies) is proportional
to D3

s . However, the number of lenses also depends on the comoving density
and mass of the lenses (n∗, σ∗ and α in the simple SIS model). While n∗

could plausibly be estimated locally, the σ4
∗ dependence on the mass scale

makes it very difficult to use local estimates of galaxy kinematics or masses
to normalize the optical depth. The key step to eliminating this problem is
to note that there is an intimate relation between the cross section, the ob-
served image separations and the mass scale. While this will hold for any mass
model, the SIS model is the only simple analytic example. The mean image
separation for the lenses should be independent of the cosmological model
for flat cosmologies (and only weakly dependent on it otherwise). Thus, in
any lens sample you can eliminate the dependence on the mass scale by re-
placing it with the observed mean image separation, τSIS ∝ n∗〈∆θ〉2D3

s . Full
calculations must include corrections for angular selection effects. Most odd
results in lens cosmology arise in calculations that ignore the close coupling
between the image separations and the cross section.

In practice, real calculations are based on variations of the maximum
likelihood method introduced by Kochanek (1993b, 1996a). For each lens i
you compute the probability pi that it is lensed including magnification bias
and selection effects. The likelihood of the observations is then

lnL0 =
∑

lenses

ln pi +
∑

unlensed

ln(1 − pi) ≃
∑

lenses

ln pi −
∑

unlensed

pi (B.119)

where ln(1−pi) ≃ −pi provided pi ≪ 1. This simply encodes the likelihood of
finding the observed number of lenses given the individual probabilities that
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the objects are lensed. Without further information, this likelihood could
determine the limits on the cosmological model only to the extent we had
accurate prior estimates for n∗ and σ∗.

If we add, however, a term for the probability that each detected lens has
its observed separation (Eqn. B.112 plus any selection effects)

lnL = lnL0 +
∑

lensed

ln

(

pi(∆θi)

pi

)

, (B.120)

then the lens sample itself can normalize the typical mass scale of the lenses
(Kochanek 1993b). This has two advantages. First, it eliminates any system-
atic problems arising from the dynamical normalization of the lens model and
its relation to the luminosity function. Second, it forces the cosmological es-
timates from the lenses to be consistent with the observed image separations
– it makes no sense to produce cosmological limits that imply image separa-
tions inconsistent with the observations. In theory the precision exceeds that
of any local calibration very rapidly. The fractional spread of the separations
about the mean is ∼ 0.7, so the fractional uncertainty in the mean separation
scales as 0.7/N1/2 for a sample of N lenses. Since the cross section goes as
the square of the mean separation, the uncertainty in the mean cross section
1.4/N1/2 exceeds any plausible accuracy of a local normalization for σ∗ (10%
in σ∗, or 20% in 〈θ〉 ∝ σ2

∗ , or 40% in τ ∝ σ4
∗) with only N ≃ 10 lenses.

Any other measurable property of the lenses can be added to the like-
lihood, but the only other term that has been seriously investigated is the
probability of the observed lens redshift given the image separations and the
source redshift (Kochanek 1992a, 1996a, Helbig & Kayser 1996, Ofek, Rix &
Maoz 2003). In general, cosmologies with a large cosmological constant pre-
dict significantly higher lens redshifts than those without, and in theory this
is a very powerful test because of the exponential cutoff in Eqn. B.114. The
biggest problem in actually using the redshift test, in fact so big that it prob-
ably cannot be used at present, is the high incompleteness of the lens redshift
measurements (§B.2). There will be a general tendency, even at fixed separa-
tion, for the redshifts of the higher redshift lens galaxies to be the ones that
are unmeasured. Complete samples could be defined for a separation range,
usually by excluding small separation systems, but a complete analysis needs
to include the effects of groups and cluster boosting image separations be-
yond the splitting produced by an isolated galaxy. For example, how do we
include Q0957+561 with its separation of 6.′′2 that is largely due to the lens
galaxy but has significant contributions from the surrounding cluster?

B.6.8 The Current State

Recent analyses of lens statistics have focused exclusively on the CLASS flat
spectrum radio survey (Browne et al. 2003). Chae et al. (2002), Chae (2003)
and Mitchell et al. (2004) focus on estimating the cosmological model and find
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Fig. B.49. (Top) Likelihood functions for the cosmological model from Mitchell
et al. (2004) using the velocity function of galaxies measured from the SDSS sur-
vey and a sample of 12 CLASS lenses. The contours show the 68, 90, 95 and 99%
confidence intervals on the cosmological model. In the shaded regions the cosmo-
logical distances either become imaginary or there is no big bang. (Bottom) The
histogram shows the separation distribution of the 12 CLASS lenses used in the
analysis and the curve shows the distribution predicted by the maximum likelihood
model including selection effects.
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results in general agreement with estimates from Type Ia supernovae (e.g.
Riess et al. 2004). The general approach of both groups is to use variants
of the maximum likelihood methods described above in §B.6.7. Chae (2003)
uses an obsolete estimate of the galaxy luminosity function combined with
a Faber-Jackson relation and the variable transformation of Eqn. B.103 but
normalized the velocity scale using the observed distribution of lens separa-
tions. Mitchell et al. (2004) use the true velocity dispersion function from the
SDSS survey (Sheth et al. 2003) and incorporate a Press-Schechter (1974)
model for the evolution of the velocity function. Chae (2003) used ellip-
soidal galaxies, although this has little cosmological effect, while Mitchell
et al. (2004) considered only SIS models. Fig. B.49 shows the cosmological
limits from Mitchell et al. (2004), which are typical of the recent results .
There are also attempts to use lens statistics to constrain dark energy (e.g.
Chae et al. 2004, Kuhlen, Keeton & Madau 2004), but far larger, well-defined
samples are needed before the resulting constraints will become interesting.

Chae & Mao (2003), Davis, Huterer & Krauss (2003) and Ofek, Rix &
Maoz (2003) focused on galaxy properties and evolution in a fixed, con-
cordance cosmology rather than on determining the cosmological models.
Mitchell et al. (2004) compared models where the lenses evolved following
the predictions of CDM models in comparison to non-evolving models. Be-
cause lens statistical estimates are unlikely to complete with other means of
estimating the cosmological models, these are more promising applications of
gravitational lens statistics for the future. Attempts to estimate the evolution
of the lens population usually allow the n∗ and σ∗ parameters of the veloc-
ity function (Eqn. B.103) to evolve as power laws with redshift. Mitchell et
al. (2004, Fig. B.44) point out that CDM halo models make specific predic-
tions for the evolution of the velocity function that have a different structure
from simple power laws in redshift, but with the present data the differences
are probably unimportant. All these evolution studies came to the conclu-
sion that the number density of the σv ∼ σ∗ galaxies which dominate lens
statistics has changed little (<∼ ±50%) between the present day and redshift
unity.

I have three concerns about these analyses and their focus on the “com-
plete” CLASS lens samples. First, a basic problem with the CLASS survey
is that we lack direct measurements of the redshift distribution of the source
population forming the lenses (e.g Marlow et al. 2000, Muñoz et al. 2003).
In particular, Muñoz et al. (2003) note that the radio source population is
changing radically from nearly all quasars to mostly galaxies as you approach
the fluxes of the CLASS source population. This makes it dangerous to ex-
trapolate the source population redshifts from the brighter radio fluxes where
the redshift samples are nearly complete to the fainter samples where they
are not. The second problem is that no study has a satisfactory treatment
of the lenses with satellites or associated with clusters. All the analyses use
isolated lens models and then either include lenses with satellites but ignore
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the satellites or drop lenses with satellites and ignore the fact that they have
been dropped. The analysis by Cohn & Kochanek (2004) of lens statistics
with satellites shows that neither approach is satisfactory – dropping the
satellites biases the results to underestimate cross sections while including
them does the reverse. Cohn & Kochanek (2004) concluded that including
they systems with satellites probably has fewer biases than dropping them. A
similar problem probably arises from the effects of the group halos to which
many of the lenses belong (e.g. Keeton et al. 2000, Fassnacht & Lubin 2002).
My third concern is that the separations of the radio lenses seen to be sys-
tematically smaller than the optically selected lenses even though the optical
HST Snapshot survey (Maoz et al. 1993) had the greatest sensitivity to small
separation systems. It is possible that this is simply due to selection effects
in the optical samples, but I have seen no convincing scenario for producing
such a selection effect. We see no clear correlation of extinction with image
separation (see §B.9.1), emission from the lens galaxy is less important for
small separation systems than for large separation systems, and the selection
function due to the resolution of the observations is fairly simple to model.

On the other hand, the various lens samples may all consistent. One way
to compare the different data sets is to non-parametrically construct the ve-
locity function from the observed image separations of the samples. To do
this we assume an SIS lens model for the conversion from image separations
to circular velocities, and then adopt the standard non-parametric methods
used to construct luminosity functions from redshift surveys to construct the
velocity function from the image separations (Kochanek 2003c). The results
for the flat-spectrum lens surveys (CLASS, JVAS, PANELS), all radio sur-
veys and all radio surveys plus the quasar lenses are shown in Fig. B.50. We
normalized the estimates to the density at vc = 300 km/s to eliminate any
dependence on the cosmological model. The lens data can estimate the veloc-
ity function from roughly vc ∼ 100 km/s to 500 km/s. At lower velocities the
finite resolution of the observations makes the uncertainties in the density
explode, and at higher velocities the surveys have not searched large enough
angular regions around the lens galaxies. The shape of the velocity function
is consistent with local estimates (Fig. B.42) except in the highest circular
velocity bin where we begin to see the contribution from clusters we will con-
sider in §B.7. Fig. B.50 also makes it clear why constraints on the evolution of
the lenses are so weak – evolution estimates basically try to compare the low-
redshift separation distribution to the high redshift separation distribution,
and we simply do not have large enough lens samples to begin subdividing
them in redshift (to say nothing of dealing with unmeasured redshifts) and
still have small statistical uncertainties.
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Fig. B.50. Non-parametric reconstructions of the velocity function from the ob-
served separations of gravitational lenses assuming an SIS lens model. The velocity
functions are all normalized to the bin centered at 300 km/s. The filled squares use
only the lenses in the flat spectrum radio surveys, the triangles use all radio-selected
lenses and the pentagons include all radio lenses and all quasar lenses. The horizon-
tal error bars on the filled squares show the bin widths. The triangles and pentagons
are horizontally offset from the squares to make them more visible. The curves show
the velocity function estimated from the 2MASS sample from Fig. B.42. The hori-
zontal scale at the top of the figure shows the maximum separation produced by a
lens of the corresponding circular velocity. The mean separation produced by such
a lens will be one-half the maximum.

B.7 What Happened to The Cluster Lenses?

One would think from the number of conference proceeding covers featuring
HST images of cluster arcs that these are by far the most common type of lens.
In fact, this is an optical delusion created by the ease of finding the rich clus-
ters even though they are exponentially rare. The most common kind of lens
is the one produced by a typical massive galaxy – as we saw in in Fig. B.50.
For a comparison, Fig. B.51 shows several estimates of the velocity function
based on standard CDM mass functions and halo models (from Kochanek
& White 2001 and Kochanek 2003c, using the Sheth & Tormen 1999 mass
function combined with the NFW halo model from §B.4.1). We see for high
masses or circular velocities that the predicted distribution of halos agrees
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Fig. B.51. The expected circular velocity function dn/d log vc of CDM halos The
lowest dashed curve labeled NFW vvir shows the velocity function using the NFW
halo virial velocity vvir for the circular velocity (see §B.4.1). The middle dashed
curve labeled NFW vc,max shows the velocity function if the peak circular velocity
of the halo is used rather than the virial velocity. The upper dashed curve is a
model in which the baryons of halos with M <∼ 1013M⊙ cool, raising the central
density and circular velocity. The solid curve with the points shows the estimate of
the local velocity function of galaxies (Fig. B.42) and the solid curve extending to
higher velocities is an estimate of the local velocity function of groups and clusters.

with the observed distribution of clusters. At the velocities typical of galaxies,
the observed density of galaxies is nearly an order of magnitude higher than
expected for a CDM halo mass function. At very low velocities we expect
many more halos than we observe galaxies. The velocity function estimated
from the observed image separations matches that of galaxies with the begin-
nings of a tail extending onto the distribution of clusters at the high velocity
end (Fig. B.51). At low velocities the limited resolution of the present sur-
veys means that the current lens data does not probe the low velocity end
very well. In this section we discuss the difference between cluster and galaxy
lenses and explain the origin of the break between galaxies and clusters. In
§B.8 on CDM substructure we will discuss the divergence at low circular
velocities.
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Fig. B.52. Predicted image separation distributions assuming the structure of
halos does not change with halo mass. The heavy solid line shows the prediction
for pure NFW models while the light solid (dashed) curves shows the predictions
after 5% of the baryons have cooled into a disk (a disk plus a bulge with 10% of
the baryonic mass in the bulge). The curves labeled CLASS (for the CLASS survey
lenses) and all radio (for all radio selected lenses) show the observed distributions.

The standard halo mass function is roughly a power law with dn/dM ∼
M−1.8 combined with an exponential cutoff at the mass scale corresponding
to the largest clusters that could have formed at any epoch (e.g. the Sheth
& Tormen 1999 halo mass function). Typically these rich clusters have inter-
nal velocity dispersions above 1000 km/s and can produce image splittings of
∼ 30 arcsec. If halo structure was independent of mass, then we would expect
the separation distribution of gravitational lenses to show a similar structure
– a power law out to the mass scale of rich clusters followed by an exponen-
tial cutoff. In Fig. B.52 we compare the observed distribution of radio lenses
to that expected from the halo mass function assuming either NFW halos
or NFW halos in which the baryons, representing 5% of the halo mass, have
cooled and condensed into the centers of the halos (Kochanek & White 2001).
We would find similar curves if we used simple SIS models rather than these
more complex CDM-based models (Keeton 1998, Porciani & Madau 2000). In
practice, the most complete survey for multiply imaged sources, the CLASS
survey, found a largest separation of 4.′′5 (B2108+213) despite checking candi-
dates out to separations of 15.′′0 (Phillips et al. 2001). The largest lens found
in a search for multiply imaged sources has an image separation of roughly
15 arcsec (SDSS1004+4112, Inada et al. 2003). The overall separation distri-
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Fig. B.53. (Top) The rotation curve and (Bottom) the bending angle α(x) for a
1012M⊙ halo at zl = 0.5 with a concentration of c = 8 lensing a source at zs = 2.0.
The dashed curves show the results for the initial NFW halo, while the solid curves
show the results after allowing 5% of the mass to cool conserving angular momentum
(spin parameter λ = 0.04) and adiabatically compressing the dark matter. The three
solid curves show the effect of putting 0%, 10% or 20% of the baryonic mass into
a central bulge. Higher bulge masses raise the central circular velocity and steepen
the central deflection profile. The final disk scale length is rd. Compare these to the
bending angles of our simple models in Figs. B.10–B.14.



128 C.S. Kochanek

bution (see Fig. B.52) has a sharp cutoff on scales of 3 arcsec corresponding
to galaxies with velocity dispersions of ∼ 250 km/s. The principal searches
for wide separation lenses are Maoz et al. (1997), Ofek et al. (2001) and
Phillips et al. (2001), although most surveys searched for image separations
of at least 6.′′0. A large number of studies focused only on the properties
of lenses produced by CDM mass functions (e.g. Narayan & White 1988,
Wambsganss et al. 1995, 1998, Kochanek 1995b, Maoz et al. 1997, Flores &
Primack 1996, Mortlock & Webster 2000b, Li & Ostriker 2002, Keeton &
Madau 2001, Wyithe, Turner & Spergel 2001). We will not discuss these in
detail because such models cannot reproduce the observed separation dis-
tributions of lenses. Most recent analyses allow for changes in the density
distributions between galaxies and clusters.

Physically the important difference between galaxies and clusters is that
the baryons in the galaxies have cooled and condensed into the center of the
halo to form the visible galaxy. As the baryons cool, they also drag some of
the dark matter inward through a process known as adiabatic compression
(Blumenthal et al. 1986), although this is less important than the cooling. As
we show in Fig. B.53, standard dark matter halos are terrible lenses because
their central cusps (ρ ∝ r−γ and 1.5 ≥ γ ≥ 1) are too shallow. In this case,
a standard NFW halo with a total mass of 1012M⊙ and a concentration of
c = 8 (see Eqns. B.60–B.62) at a redshift of zl = 0.5 is unable to produce
multiple images of a source at redshift zs = 2 despite having an asymptotic
circular velocity of nearly 200 km/s. If we now assume that 5% of the mass is
in baryons starting with a typical halo angular momentum and then cooling
into a disk of radius rd while conserving angular momentum we see that the
rotation curve becomes flatter and the galaxy is now able to produce multiple
images. Putting some fraction of the mass into a still more compact, central
bulge make the lens even more supercritical and the bending angle diagram
begins to resemble that of an SIS lens (see Fig. B.11). Thus, the cooling
of the baryons converts a sub-critical dark matter halo into one capable of
producing multiple images.

The key point is that only intermediate mass halos contain baryons which
have cooled. High mass halos (groups and clusters) have cooling times longer
than the Hubble time so they have not had time too cool (e.g. Rees & Os-
triker 1977). Most low mass halos also probably resemble dark matter halos
more than galaxies with large quantities of cold baryons because they lost
their baryons due to heating from the UV background during the initial
period of star formation (e.g. Klypin et al. 1999 Bullock, Kravtsov & Wein-
berg 2000, see §B.8). Here we ignore the very low mass halos and consider
only the distinction between galaxies and groups/clusters. The fundamen-
tal realization in recent studies (e.g. Porciani & Madau 2000, Kochanek &
White 2001, Kuhlen, Keeton & Madau 2004, Li & Ostriker 2003) is that intro-
ducing a cooling mass scale Mc below which the baryons cool to form galaxies
and above which they do not supplies the explanation for the difference be-
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Fig. B.54. (Top) Predicted separation distributions as a function of the cooling
mass scale Mc in which 5% of the mass cools with 90% of the cooled material in
a disk and 10% in a bulge. The dashed curves show the distributions for Mc =
1012M⊙, 3 × 1012M⊙ and 1013M⊙, while the solid curves show the distributions
for Mc = 3 × 1013M⊙, 1014M⊙ and 3 × 1014M⊙. The heavy solid (dashed) curves
shows the observed distribution of the CLASS (all radio-selected) lenses.

Fig. B.55. (Bottom) The Kolmogorov-Smirnov probability, PKS , of fitting the ob-
served distribution of CLASS lenses as a function of the cooling mass scale Mc.
The heavy solid curves show the results when 5% of the mass cools without (with)
10% of that mass in a bulge. The heavy dashed curves show the results for models
where lower (1% and 2%) or higher (10% and 20%) halo mass fractions cool, where
the optimal cooling mass scale Mc decreases as the cold baryon fraction increases.
For comparison, the light dashed line shows the cooling time tcool in units of 10 Gyr
for the radius enclosing 50% of the baryonic mass in the standard model. The light
solid line shows the average formation epoch, 〈tform〉, also in units of 10 Gyr.



130 C.S. Kochanek

tween the observed separation distribution of lenses and naive estimates from
halo mass functions.

Once we recognize the necessity of introducing a distinction between clus-
ter and galaxy mass halos, we can use the observed distribution of lens sep-
arations to constrain the mass scale of the break and the physics of cooling.
Fig. B.54 shows the most common version of these studies, where separation
distributions are computed as a function of the cooling mass scale Mc. We
show the separation distributions for various cooling mass scales assuming
that 5% of the mass cools into a disk plus a bulge with 10% of the bary-
onic mass in the bulge for all halos with M < Mc. If the cooling mass is
either too low or too high we return to the models of Fig. B.52, while at
some intermediate mass scale we get the break in the separation distribu-
tion to match the observed angular scale. For these parameters, the optimal
cooling mass scale is Mc ≃ 1013M⊙ (Fig. B.55). This agrees reasonably well
with Porciani & Madau (2000) and Kuhlen, Keeton & Madau (2004) who
found a somewhat higher mass scale Mc ≃ 3× 1013M⊙ using SIS models for
galaxies. Cosmological hydrodynamic simulations by Pearce et al. (1999) also
found that approximately 50% of the baryons had cooled on mass scales near
1013M⊙. Note, however, that the mass scale needed to fit the data depends
on the assumed fraction of the mass in cold baryons. With fewer cold baryons
a halo becomes a less efficient lens producing smaller image separations so
Mc must increase to keep the break at the observed scale. If the cold baryon
fraction is too low (<∼ 1%), it becomes impossible to explain the data at all.
Crudely, the cooling mass scale depends exponentially on the cold baryon
fraction with log Mc/M⊙ ≃ 13.6 − (cold fraction)/0.15.

The mass scale of the break and the cold baryon fraction are not indepen-
dent parameters and should be derivable from the physics of the cooling gas.
In its full details this must include not only the cooling of the gas but also
reheating of the gas in galaxies due to feedback from star formation. Fig. B.55
also shows the dependence of the cooling time scale and the formation time
scale for halos of mass Mc. For this model (based on the semi-analytic models
of Cole et al. 2000), the cooling time becomes shorter than the age of the
halo very close to the mass scale required to explain the distribution of im-
age separations. These semi-analytic models suggest an alternate approach in
where the cooling mass scale need not be added as an ad hoc parameter. We
could instead follow the semi-analytic models and use the cooling function
to determine the relative cooling rates of halos with different masses. We
leave as the free parameter, the final cosmological density in cold baryons
Ωb,cool ≤ Ωb ≃ 0.04 (i.e. some baryons may never cool or cool and are re-
heated by feedback). Low Ωb,cool models have difficulty cooling, making them
equivalent to models with a high cooling mass scale. High Ωb,cool models cool
easily, making them equivalent to models with a high cooling mass scale.
Models with 0.015 <∼ Ωb,cool <∼ 0.025 agree with the observations. The re-
sult depends little on whether we add a bulge, fit the CLASS sample or all
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Fig. B.56. (Top) Predicted separation distributions as a function of the cos-
mological cold baryon density Ωb,cool. The dashed curves show the results for
Ωb,cool = 0.003, 0.006 and 0.009 (right to left at large separation) and the solid
curves show the results for Ωb,cool = 0.0012, 0.015, 0.018, 0.021, 0.024, 0.030, 0.045
and 0.060 (from left too right at large separation). The models have 10% of the cold
baryons in a bulge. The heavy solid (dashed) curves show the observed distribution
of CLASS (all radio) lenses.

Fig. B.57. (Bottom) The Kolmogorov-Smirnov probability, PKS , of fitting the ob-
served distribution of lenses as a function of the cold baryon density Ωb,cool. The
squares (triangles) indicate models with no bulge (10% of the cooled material in
a bulge), and the solid (dashed) lines correspond to fitting the CLASS (all radio)
lenses. For comparison, the horizontal error bar is the estimate by Fukugita, Hogan
& Peebles (1998) for the cold baryon (stars, remnants, cold gas) content of local
galaxies. The vertical line marks the total baryon content of the concordance model.
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radio lenses or adjust the cooling curve by a factor of two. Thus, the char-
acteristic scale of the gravitational lens separation distribution is a probe of
the cosmological baryon density Ωb and the fraction of those baryons that
cool in the typical massive galaxy. While it would be premature to use this
as a method for determining Ωb, it is interesting to note that our estimate
is significantly below current cosmological estimates that Ωb ≃ 0.04 which
would be consistent with feedback from star formation and other processes
preventing all baryons from cooling, but well above the estimates of the cold
baryon fraction in local galaxies (0.0045 <∼ Ωb,cool <∼ 0.0068, Fukugita, Hogan
& Peebles 1998). These are also the models generating the velocity function
estimate with baryonic cooling in Fig. B.51. The cooling of the baryons shifts
the more numerous low velocity halos to higher circular velocities so that
the models match the observed density of σv ≃ σ∗ galaxies. The models do
not correctly treat the break region because they allow “over-cooled” massive
groups, but then merge back onto the peak circular velocity distribution of
the CDM halos at higher velocities. Since the models allow all low mass halos
to cool, there is still a divergence at low circular velocities which is closely
related to the problem of CDM substructure we discuss in §B.8.

B.7.1 The Effects of Halo Structure and the Power Spectrum

Estimating the structure of clusters using gravitational lensing is primarily a
topic for Part 3, so we include only an abbreviated discussion of lensing by
clusters here. For a fixed cosmological model, two parameters largely control
the abundance of cluster lenses. First, the abundance of clusters varies nearly
exponentially with the standard normalization σ8 ≃ 1 of the power spectrum
on 8h−1 Mpc scales. Second, the cross sections of the individual clusters
depend strongly on the exponent of the central density cusp of the cluster.
There are recent studies of these issues by Li & Ostriker (2002, 2003), Huterer
& Ma (2004), Kuhlen, Keeton & Madau (2004), Oguri et al. (2004), and Oguri
& Keeton (2004).

We can understand the general effects of halo structure very easily from
our simple power law model in Eqn. B.9. In §B.3 we normalized the models
to have the same Einstein radius, but we now want to normalize them to
all have the same total mass interior to some much larger radius R0. This is
roughly what happens when we keep the virial mass and break radius of the
halo constant but vary the central density exponent ρ ∝ r−n. The deflection
profile becomes

α(θ) =
b2
0

R0

(

θ

R0

)2−n

(B.121)

where b0 ≪ R0 sets the mass interior to R0 and we recover our old example
if we let b = b0 = R0. The typical image separation is determined by the
tangential critical line at θt = R0(b0/R0)

2/(n−1), so more centrally concen-
trated lenses (larger n) produce larger image separations when b0/R0 ≪ 1.
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The radial caustic lies at βr = f(n)θt where f(n) is a not very interesting
function of the index n, so the cross section for multiple imaging σ ∝ β2

r ∝
R2

0(b0/R0)
4/(n−1) – for an SIS profile σ ∝ b4/R2

0, while the cross section for
a Moore profile (n = 3/2) σ ∝ b8/16R6

0 is significantly smaller. We cannot go
to the limit of an NFW profile (n = 1) because our power law model has a
constant surface density rather than a logarithmically divergent surface den-
sity in the limit as n → 1, but we can see that as the density profile becomes
shallower the multiple image cross section drops rapidly when the models
have constant mass inside a radius which is much larger than their Einstein
radius. As a result, the numbers of group or cluster lenses depends strongly
on the central exponent of the density distribution even when the mass func-
tion of halos is fixed. Magnification bias will weaken the dependence on the
density slope because the models with shallower slopes and smaller cross sec-
tions will generally have higher average magnifications. The one caveat to
these calculations is that many groups or clusters will have central galaxies,
and the higher surface density of the galaxy can make the central density
profile effectively steeper than the CDM halo in isolation.

B.7.2 Binary Quasars

Weedman et al. (1982) reported the discovery of the third “gravitational
lens”, Q2345+007, a pair of z = 2.15 quasars separated by 7.′′3. The optical
spectra of the two images are impressively similar (e.g. Small et al. 1997),
but repeated attempts to find a lens have failed in both the optical (e.g. Pello
et al. 1996) and with X-rays (Green et al. 2002). Q2345+007 is the founding
member of a class of objects seen in the optical as a pair of quasars with very
similar spectra, small velocity differences and separations 3.′′0 <∼ ∆θ <∼ 15.′′0.
The most recent compilation contained 15 examples (Mortlock, Webster &
Francis 1999). The incidence of these quasar pairs in surveys is roughly 2 per
1000 LBQS quasars (see Hewett et al. 1998) and 1 per 14000 CLASS radio
sources (Koopmans et al. 2000). The separations of these objects correspond
to either very massive galaxies or groups/clusters. Obvious lenses on these
scales, in the sense that we see the lens, are rare but have an incidence
consistent with theoretical expectations (see Fig. B.52). If, however, even a
small fraction of the objects like Q2345–007 are actually gravitational lenses,
then dark lenses outnumber normal groups and clusters and dominate the
halo population on mass scales above M >∼ 1013M⊙.

If the criterion of possessing a visible lens is dropped, so as to allow for
dark lenses, proving objects are lenses becomes difficult. There are two un-
ambiguous tests – measuring a time delay between the images, which is very
difficult given the the long time delays expected for lenses with such large sep-
arations, or using deep imaging to find that the host galaxies of the quasars
show the characteristic arcs or Einstein rings of lensed hosts (Figs. B.3, B.4).
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The latter test is feasible with HST7 and will be trivial with JWST. Spectral
comparisons have been the main area of debate. In the optical, many of the
pairs have alarmingly similar spectra if they are actually binary quasars (e.g.
Q2345+007 or Q1634+267, see Small et al. 1997) – indeed, some of these dark
lens candidates have more similar spectra than genuinely lensed quasars (see
Mortlock, Webster & Francis 1999). The clearest examples of dark lens can-
didates that have to be binary quasars are the cases in which only one quasar
is radio loud. These objects, such as PKS1145–071 (Djorgovski et al. 1987)
or MGC2214+3550 (Muñoz et al. 1998), represent 4 of the 15 candidates.
Similarly, the dramatic difference in the flux ratio between optical and X-ray
wavelengths of Q2345+007 is the strongest direct argument for this object
being a binary quasar (Green et al. 2002).

Two statistical arguments provide the strongest evidence that these ob-
jects must be binary quasars independent of any weighting of spectral simi-
larities. The first argument, due to Kochanek, Muñoz & Falco (1999), is that
the existence of binary quasars like MGC2214+3550 in which only one of the
quasars is radio loud predicts the incidence of pairs in which both are radio
quiet. We can label the quasar pairs as either O2R2, where both quasars are
seen in the optical (O) and the radio (R), O2R, where only one quasar is seen
in the radio, or O2 where neither quasar is seen in the radio. Lenses must
be either O2R2 or O2 pairs. Surveys of quasars find that only PR ≃ 10%
of quasars are radio sources with 3.6 cm fluxes above 1 mJy (e.g. Bischof &
Becker 2000). If all the quasar pairs were binary quasars and the probability
of being radio loud is independent of whether a quasar is in a binary, then
the relative number of O2, O2R and O2R2 binaries should be 1 to 2PR = 0.2
to P 2

R = 0.01. Given that we observed 4 O2R binaries we should observe
20 O2 binaries and 0.2 O2R2 binaries. This statistical pattern matches the
data, and Kochanek, Muñoz & Falco (1999) found that the most probable
solution was that all quasar pairs were binary quasars with an upper limit
of only 8% (68% confidence) on the fraction that could be dark lenses. With
the subsequent expansion of the quasar pair sample and the discovery of the
first O2R2 binary (B0827+525, Koopmans et al. 2000), these limits could be
improved.

The second statistical argument is that the dark lens candidates do not
have the statistical properties expected for lenses. Three aspects of the quasar
pairs make them unlikely to be lenses simply given the properties of grav-
itational lensing. First, there are no four-image dark lens candidates even
though a third of the normal lenses are quads. Second, many of the dark lens
candidates have very high flux ratios between the images – 4 of the 9 am-
biguous quasar pairs considered by Rusin (2002) have flux ratios of greater
than 10:1. Magnification bias makes such large flux ratios very improbable for

7 We detected the host galaxies of the Q2345–007 quasars in the CASTLES H-band
image. Their morphology is probably inconsistent with the lens hypothesis, but
we viewed the data as too marginal to publish the result
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true gravitational lenses (§B.6.6, Kochanek 1995b). Third, the suppression of
central/third/odd images in the lens population is a consequence of baryonic
cooling and the resulting increase of the central surface density. Standard
dark matter halos with their shallow central cusps, ρ ∝ r−1, generally pro-
duce detectable third images. Since it is probably a requirement for a lens to
remain dark that the baryons in the halo cannot cool (or they would form
stars), you would expect the typical dark lens to resemble APM08279+5255
and have an easily detectable third image (Rusin 2002). Thus, in the context
of CDM we would expect dark lenses to be standard cuspy density distribu-
tions like the NFW model (Eqn. B.60). Rusin (2002) evaluated the likelihood
of the quasar pairs assuming that dark lenses have the structure of CDM
halos and found that the observed flux ratios and the lack of three-image
dark lenses were extremely unlikely. Only the real lens APM08279+5255 had
a significant probability of being produced by a dark CDM halo, although for
this case I think the exposed cusp/disk lens explanation for the morphology
is more likely.

The evidence overwhelmingly favors interpreting the quasar pairs as bi-
nary quasars. However, as originally pointed out by Djorgovski (1991), the
one problem with the binary hypothesis is that the incidence of the quasar
pairs is two orders of magnitude above that expected from an extrapolation
of the quasar-quasar correlation function on scales of Mpc. As discussed in
Kochanek, Muñoz & Falco (1999) and Mortlock, Webster & Francis (1999)
the incidence can be increased if the incipient merger of the two host galax-
ies is triggering the quasar activity. The separation distribution of the binary
quasars is crudely compatible with tidally triggered activity when the merger
starts followed by a coalescence of the host galaxies driven by tidal friction.
Small separation binary quasars (∆θ < 3.′′0) are rare because the decay of the
host galaxy orbits accelerates as their separation diminishes. Well-measured
angular distributions of binary quasars, potentially obtainable from SDSS,
might allow detailed explorations of the triggering and merging physics.

B.8 The Role of Substructure

Simulations of CDM halos predicted many more small satellites than were
actually observed in the Milky Way (e.g. Kauffmann et al. 1993, Moore et
al. 1999, Klypin et al. 1999). Crudely 5-10% of the mass was left in satel-
lites with perhaps 1-2% at the projected separations of 1–2Re where we see
most lensed images (e.g. Zentner & Bullock 2003, Mao et al. 2004). This is
far larger than the observed fraction of 0.01–0.1% in observed satellites (e.g.
Chiba 2002). Solutions were proposed in three broad classes: hide the satel-
lites by preventing star formation so they are present but dark (e.g. Klypin
et al. 1999, Bullock et al. 2000), destroy them using self-interacting dark
matter (e.g. Spergel & Steinhardt 2000), or avoid forming them by changing
the power spectrum to something similar to warm dark matter with signifi-
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Fig. B.58. The most spectacular example of an anomalous flux ratio,
SDSS0924+0219 (Inada et al. 2003). In this CASTLES infrared HST image, the D
image should be comparable in brightness to the A image, but is actually an order
of magnitude dimmer. The A and B images are minima, while C and D are saddle
points. The contours are spaced by factors of two from the peak of the A image.
The lens galaxy is seen at the center. At present we do not know whether the sup-
pression of the saddle point in this lens is due to microlensing or substructure. If it
is microlensing, ongoing monitoring programs should see it return to its expected
flux within approximately 10 years.

cantly less power on the relevant mass scales (e.g. Bode et al. 2001). These
hypotheses left the major observational challenge of distinguishing dark satel-
lites from non-existent ones. This became known as the CDM substructure
problem.

It was well known in the lensing community that the fluxes of lensed im-
ages were usually poorly fit by lens models. There was a long litany of reasons
for ignoring them arising from possible systematic errors which can corrupt
image fluxes. Differential effects between the images from the interstellar
medium of the lens can corrupt the fluxes (dust in the optical/IR, scatter
broadening in the radio, see §B.9.1). Time delays combined with source vari-
ability can corrupt any single-epoch measurement. Microlensing by the stars
in the lens galaxy can modify the fluxes of any sufficiently compact com-
ponent of the source (at a minimum the quasar accretion disk, see Part 4).
The most peculiar problem was the of anomalous flux ratios in radio lenses.
Radio sources are essentially unaffected by the ISM of the lens galaxy in
low resolution observations that minimize the effects of scatter broadening
(VLA rather than VLBI), true absorption appears to be rare, radio sources
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generally show little variability even when monitored, and most of the flux
should come from regions too large to be affected by microlensing. Yet in
B1422+231, for example, the three cusp images violated the cusp relation for
their fluxes (that the sum of the signed magnifications of the three images
should be zero, see Metcalf & Zhao 2002, Keeton, Gaudi & Petters 2003, or
Schneider, Ehlers & Falco 1992).8

It is easier to outline the problem of anomalous flux ratios near a fold
caustic (such as images A and D in SDSS0924+0219, see Fig. B.58), than
a cusp caustic. Near a fold, the lens equations can be reduced to a one-
dimensional model with

β = θ (1 − Ψ ′′) − 1

2
Ψ ′′′θ2 → −1

2
Ψ ′′′θ2 (B.122)

and inverse magnification

µ−1 = (1 − Ψ ′′) − Ψ ′′′θ → −Ψ ′′′θ (B.123)

where we choose our coordinates such that there is a critical line at θ = 0 (i.e.
1 − Ψ ′′ = 0) and the primes denote derivatives of the potential. These equa-
tions are easily solved to find that you have images at θ± = ±(−2β/Ψ ′′′)1/2

if the argument of the square root is positive and no solutions otherwise – as
you cross the fold caustic (β = 0) two images are created or destroyed on the
critical line at θ = 0. Their inverse magnifications of µ−1

± = ∓(−2βΨ ′′′)1/2

are equal in magnitude but reversed in sign. Hence, if the assumptions of the
Taylor expansion hold, the images merging at a fold should have identical
fluxes. Either by guessing or by tedious algebra you can determine that the
fractional correction to the magnification from the next order term is of or-
der θ±Ψ (4)/Ψ ′′′. For any reasonable central potential where the images are
at radius θ0 from the lens center, the fractional correction will be of order
θ±/θ0 ∼ 0.1 for the typical pair of anomalous images. Hence, using gravity
to produce the anomalous flux ratios requires terms in the potential with a
length scale comparable to the separation of the images to significantly vio-
late the rule that they should have similar fluxes. Mao & Schneider (1998)
pointed out that a very simple way of achieving this was to put a satel-
lite near the images, and they found that this could explain the anomaly in
B1422+231. Metcalf & Madau (2001, also see Bradac et al. 2002 for images of
the magnification patterns expected from a CDM halo) put these two pieces
together, pointing out that if normal satellite galaxies were too rare to make
anomalous flux ratios common, the missing CDM substructure was not. They
predicted that in CDM, anomalous flux ratios should be common.
8 In specific models there can also be global invariants relating image positions

and magnifications (e.g. Witt & Mao 2000, Hunter & Evans 2001, Evans &
Hunter 2002). These results are usually for simple softened power law models
using either ellipsoidal potentials or an external shear rather than ellipsoidal
cuspy density distributions with an external shear, so their applicability to the
observed lenses is unclear.
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Fig. B.59. (Top) A Monte Carlo test for estimating substructure surface densities.
The heavy curves show the estimated probability distribution for the substructure
surface density fraction in a sample of 7 four-image lenses in which the input fraction
was 5% (marked by the vertical line). The points on the curve show the median,
1σ and 2σ confidence limits. The output distributions are consistent with the true
input fraction. The dashed line shows how the accuracy would improve given a
sample of 56 lenses (i.e. multiplying the 8 trials of 7 images each).

Fig. B.60. (Bottom) The same method applied to the real data. The three distri-
butions show the effects of changing assumptions on the actual flux measurement
errors – the greater the measurement uncertainties the less substructure surface
density is required to explain the flux ratio anomalies. The middle case (10%) is
probably slightly too conservative (20% is ridiculously conservative and 5% is prob-
ably too optimistic).
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If we add a population of satellites with surface density κsat = Σsat/Σ
near the images we can estimate the nature of the perturbations. If we model
them as pseudo-Jaffe potentials with critical radius b and break radius9 a =
(bb0)

1/2, then the satellites produce a deflection perturbation of order

〈δθ2〉1/2 ∼ 10−3b0

(

10Σsat

Σc

)1/2(
103b

b0

)3/4

. (B.124)

Only massive satellites will be able to produce deflection perturbations large
enough to be detected given typical astrometric errors. Because the astro-
metric constraints for lenses are so accurate, generally better than 0.′′005,
satellites with deflection scales larger than b >∼ 10−2b0 will usually have ob-
servable effects on model fits and must be included in the basic lens model.
The shear perturbation

〈δγ2〉1/2 ∼ 0.1

(

10Σsat

Σc

)1/2(
103b

b0

)1/4(
lnΛ

10

)1/2

, (B.125)

where ln Λ = ln(a/s) is a Coulomb logarithm required to make the integral
converge at small separations, is significantly larger. The effects of substruc-
ture gain on those from the primary lens as we move to quantities requiring
more derivatives of the potential because the substructure has less mass but
shorter length scales. For example most astronomical objects have masses
and sizes that scale with internal velocity σv as M ∝ σ4

v and R ∝ σ2
v. So time

delays, which depend on the (two-dimensional) potential Ψ ∝ M ∝ σ4
v, will

be completely unaffected by substructure. Deflections, which require one spa-
tial derivative of the potential, α ∝ Ψ/R ∝ σ2

v , are affected only be the more
massive substructres. Magnifications, which require two spatial derivatives of
the potential, κ ∼ γ ∼ Ψ/R2 ∝ σ0

v, are affected equally by all mass scales
provided the Einstein radius of the object is larger than the characteristic size
of the source. Substructure will also affect brighter images more than fainter
images because the magnifications of the brighter images are more unstable
to small perturbations. Recall that the magnification µ = (λ+λ−)−1 where
one of the eigenvalues λ± = 1 − κ ± γ, usually λ−, is small for a highly
magnified image. If we now add a shear perturbation δγ, the perturbation
to the magnification is of order δγ/λ− so you have a bigger fractional per-
turbation to the magnification for the same shear perturbation if the image
is more highly magnified. The last important effect from substructure, for
which I know of no simple, qualitative explanation, is that substructure dis-
criminates between saddle points and minima when it is a small fraction of
the total surface density (Schechter & Wambsganss 2002, Keeton 2003b). In
this regime, the magnification distributions for the saddle points develop an
extended tail toward demagnification that is not present for the minima.

9 This is the tidal truncation radius for an SIS of critical radius b orbiting in an
SIS of critical radius b0 > b. The total satellite mass is ≃ πabΣc.
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Fig. B.61. Saddle point suppression in lenses. The three panels show the cumula-
tive distributions of model flux residuals, log(fobs/fmod), in the real data, assuming
constant fractional flux errors for each image. The solid (dashed) lines are for min-
ima (saddle points), with squares (no squares) for the distribution corresponding to
the most (least) magnified image. From top to bottom the distributions are shown
for samples of 8 radio, 10 optical or 15 total four-image lenses. If the flux residuals
are created by propagation effects we would not expect the distributions to depend
on the image parity or magnification, while if they are due to low optical depth
substructure we would expect the distribution for the brightest saddle points to be
shifted to lower observed fluxes.
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It turns out that anomalous flux ratios are very common – a fact which
had been staring us in the face but was ignored because most people (in-
cluding the author!) were mainly just annoyed that the flux ratios could
not be used to constrain the potential of the primary lens so as to deter-
mine the radial mass profile. When Dalal & Kochanek (2002) collected the
available four-image radio lenses to estimate the abundance of substructure,
they found that 5 of 6 systems showed anomalies. In order to estimate the
abundance of substructure Dalal & Kochanek (2002) developed a Bayesian
Monte Carlo method which estimated the likelihood that adding substructure
would significantly improve models of seven four-image lenses including the
fact that the model for the primary lens would have to be adjusted each time
any substructure was added. Under the assumption that the uncertainties in
flux measurements (systematic as well as statistical) were 10%, they found
a substructure mass fraction of 0.006 < fsat < 0.07 (90% confidence) with
a median estimate of fsat = 0.02. This is consistent with expectations from
CDM simulations, including estimates of the destruction of the satellites in
the inner regions of galaxies (Zentner & Bullock 2003, Mao et al. 2004), and
too high to be explained by normal satellite populations. Because the result
is driven by the flux anomalies, which do not depend on the mass of the
substructures, rather than astrometric anomalies, which do depend on the
mass, the results had almost no ability to estimate the mass scale associated
with the substructure.

While substructure with approximately the surface density expected from
CDM is consistent with the data, it is worth examining other possibilities.
We would expect any effect from the ISM to be strongly frequency dependent
(whether in the radio or in the optical). At least for radio lenses, Kochanek
& Dalal (2004) found that the optical depth function needed to explain the
radio flux anomalies would have to be gray, ruling out all the standard radio
suspects. We would also expect propagation effects at radio frequencies to
preferentially affect the faintest images because they have the smallest an-
gular sizes – remember that more magnified images are always bigger even
if you cannot resolve the change in size. The ISM also cannot discriminate
between images based on parity – the ISM is a local property of the lens
and the parity is not, so they cannot show a correlation. Hence, if radio
propagation effects created the anomalies they should be the same for min-
ima and saddle points and more important for the fainter than the brighter
images. Fig. B.61 shows the cumulative distributions of flux residuals for ra-
dio, optical and combined four-image lens samples from Kochanek & Dalal
(2004). The bright saddle point images clearly have a different distribution
in each case, as we would expect for substructure but not for the ISM. The
Kolmogorov-Smirnov test significance of the differences between the most
magnified saddle points and the other three types of images (brightest mini-
mum, faintest minimum, faintest saddle) is 0.04%, 5% and 0.3% for the radio,
optical and joint samples respectively. The next most discrepant image is the
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brightest minimum, also as expected for substructure, but with less signifi-
cance. Various statistical games (bootstrap resampling methods of estimating
significance or testing for anomalies) always give the same results. Thus, the
ISM is ruled out as an explanation.

Even though simple Taylor series arguments make it unlikely that changes
to the central potential are a solution (see §B.4.4), it still has its advocates
(Evans & Witt 2003, Quadri et al. 2003, Möller, Hewitt & Blain 2003, Kawano
et al. 2004). The basic answer is that it is possible to create flux anomalies
by making the deviations of the central potential from ellipsoidal sufficiently
large for the angular structure of the potential to change rapidly enough be-
tween nearby images to produce the necessary magnification changes. There
are three basic problems with this solution (see §B.4.6 as well).

The first problem is that the required deviations from an ellipsoidal pro-
file far too large. This is true even though the biggest survey of such models
allowed image positions to shift by approximately 10 times their actual un-
certainties in order to alter the image fluxes (Evans & Witt 2003) – had they
forced the models to match the true astrometric uncertainties they would
have needed even larger perturbations. Kochanek & Dalal (2004) found that
models fitting the flux anomalies required |a4| ≫ 0.01 compared to the typical
values observed for galaxies and simulated halos |a4| ∼ 0.01 (see §B.4.4). It is
fair to say, however, that the quantitative results on the multipole structure
of simulated halos are limited.

The second problem is that when we test these solutions in lenses for
which we have additional model constraints, the models are forced back to-
ward the standard ellipsoidal models. The basic problem, as Evans & Witt
(2003) show, is that the problem of fitting image positions and fluxes with
potentials of the form rF (θ) can be reduced a a problem in linear algebra if
F (θ) is expanded as a multipole series – by adding enough terms it is pos-
sible to fit any four-image lens exactly. The reasons go back to the lack of
constraints we discussed in §B.4.6. Fig B.27 illustrates this point using the
lens B1933+503. Kochanek & Dalal (2004) first fit the four compact images
with a model including deviations from an ellipsoidal surface density. With
sufficiently strong deviations there were models that could eliminate the flux
anomalies in this system. However, this lens, B1933+503, actually has three
components to its source – a compact core forming the four-image system
with the anomaly but also to radio lobes lensed into another four-image sys-
tem and a two-image system for 10 images in all (Fig. B.7). When we add
the constraints from these other images the model is forced back to being a
standard ellipsoidal model with a flux ratio anomaly. In the future, the degree
to which lens galaxy potentials are ellipsoidal could be thoroughly tested in
the lenses with Einstein ring images of their host galaxies.

The third problem with using the central potential to produce flux ratio
anomalies is that it does not lead to the discrimination between saddle points
and minima shown in Fig. B.61. Kochanek & Dalal (2004) demonstrate this
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Fig. B.62. The improvement in the fit to the Ros et al. (2000) VLBI data on
MG0414+0534 from adding an additional lens with a Einstein radius 15% that of
the primary lens galaxy as a function of its position. The squares show the location
of the quasar images, the central circles mark the position of the main lens galaxy
and the single circle marks the position of object X (see Fig. B.6). The heavy
contour has the same χ2 = 123 as single component models, and they then drop a
factor of 0.2 per lighter contour to a minimum of χ2 = 0.6 almost exactly at the
position of Object X.

with Monte Carlo simulations, but the basic reason is simple. Consider a
lens like PG1115+080 with two images merging at a saddle point. The sense
with which the saddle point and minima are perturbed depends on the phase
of the higher order multipoles relative to the images and the critical line,
but for any fixed lens potential, that phase varies depending on the source
position, so the average effect cannot make the bright saddle points show
a significantly different set of properties from the bright minima. Every ob-
served flux anomaly could be explained by adding complex angular structures
to the main lens, but the inability of these models to differentiate between
saddle points and minima would still rule them out.

For the moment there are two barriers to improving estimates of the sub-
structure mass fraction. First, radio lens surveys have run out of sources
bright enough to conduct efficient surveys. This will only change as upgrades
to existing radio arrays are completed. The proposed Merlin and VLA up-
grades will provide both sensitivity and resolution improvements that will
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Fig. B.63. VLBI maps of MG2016+112 (Koopmans et al. 2002). The large differ-
ence in the C11/C12 separation as compared to the C13/C2 separation is the clearest
example of an “astrometric” anomaly in a lens. The critical line passes between C12

and C13 and by symmetry we would expect the separations of the subcomponents
on either side of the critical line to be similar. In this case the cause of the asymme-
try seems to be a galaxy D about 0.′′8 South of the C image (see Fig. B.6). Galaxy
D has the same redshift as the primary lens (Koopmans & Treu 2002).
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make the next generation of radio lens surveys easier than the last. Second,
searches for substructure using optical quasars need to separate the effects
of microlensing and substructure. With simple imaging this can be done by
finding parts of the quasar which are sufficiently extended to avoid signifi-
cant contamination from microlensing. Emission line (e.g. Moustakas & Met-
calf 2003) and dust emission regions should both be large enough to filter out
the effects of the stars. Studying emission line ratios is now relatively easy
because of the new generation of small-pixel integral field spectrographs on
8m-class telescopes. Mid-infrared flux ratios for the dusty regions remain dif-
ficult, but the have been obtained for one lens (Q2237+0305, Agol et al. 2000)
and could be extended to several more.

The gold standard, however, would be astrometric detection of dark sub-
structure so that we would obtain a direct, mass estimate. In all the present
analyses, the most massive substructures were included as part of the model.
They were not, however, dark substructures because they matched to satel-
lites visible in HST images of the lenses. For example, Object X in MG0414+0534
(Fig. B.6) has effects on the image positions that are virtually impossi-
ble to reproduce with changes in the potential of the central lens galaxy
(Trotter, Winn & Hewitt 2000), while models with it easily fit the data
(Ros et al. 2000). Fig. B.62 shows the dependence of the goodness of fit to
MG0414+0534 on the location of an additional lens component, with a deep
minimum located at the observed position of Object X. The deflections pro-
duced by an object of mass M generally scale as M1/2, so it is relatively easy
to detect the deflection perturbations from objects only 1% the mass of the
primary lens. One approach is to search lenses with VLBI structures for signs
of perturbations. This has been attempted for B1152+199 by Metcalf (2002),
but the case for substructure is not very solid given the limited nature of the
data. The cleanest example of astrometric detection of something small, but
sadly not dark, is in the VLBI structure of image C in MG2016+112 (Koop-
mans et al. 2002). The asymmetry in the VLBI component separations of
image C on either side of the critical line (see Fig. B.63) is due to a very faint
galaxy 0.′′8 South of the image with a deflection scale ∼ 10% of the primary
lens (see Fig. B.6). This is in reasonable agreement with the prediction from
the H-band magnitude difference of 4.6 mag and the (lens) Faber-Jackson
relation between magnitudes and deflections. In this case, we even know that
the satellite is at the same redshift as the lens because Koopmans & Treu
(2002) accidentally measured its redshift in the course of their observations
to measure the velocity dispersion of the lens galaxy.

B.8.1 Low Mass Dark Halos

When we are examining a particular lens, almost all the substructure will con-
sist of satellites associated with the lens, with only a ∼ 10% contamination
from other small halos along the line-of-sight to the source (Chen, Kravtsov &
Keeton 2003). However, the excess of low mass halos in CDM mass functions
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relative to visible galaxies is a much more general problem because the low
mass CDM satellites should exist everywhere, not just as satellites of massive
galaxies. Crudely, luminosity functions diverge as dn/dL ∼ 1/L ∼ 1/M while
CDM mass functions diverge as dn/dM ∼ M−1.8 so the fraction of low mass
halos that must be dark increases∼ M−0.8 at low masses. Fig. B.51 illustrates
this assuming that all low mass halos have baryons which have cooled (e.g.
Gonzalez et al. 2000, Kochanek 2003c). In the context of CDM, the solution
to this general problem is presumably the same as for the satellites respon-
sible for anomalous flux ratio – they exist but lost their baryons before they
could form stars. Such processes are implicit in semianalytic models which
can reproduce galaxy luminosity function (e.g. Benson et al. 2003) but can
be modeled empirically in much the same way was employed for the break
between galaxies in clusters in §B.7 (e.g. Kochanek 2003c). In any model, the
probability of the baryons cooling to form a galaxy has to drop rapidly for
halo masses below ∼ 1011M⊙ just as it has to drop rapidly for halo masses
above ∼ 1013M⊙. Unlike groups and clusters, where we still expect to be able
to detect the halos from either their member galaxies or X-ray emission from
the hot baryons trapped in the halo, these low mass halos almost certainly
cannot be detected in emission.

We can only detect isolated, low-mass dark halos if they multiply image
background sources. For SIS lenses the distribution of image separations for
small separations (∆θ/∆θ∗ ≪ 1, Eqn. B.112) scales as

dτSIS

d∆θ
∝ ∆θ1+γF J (1+α)/2 (B.126)

where α describes the divergence of the mass/luminosity function at low mass
and γFJ is the conversion from mass to velocity dispersion (see §B.6.2). For
the standard parameters of galaxies, α ≃ −1 and γFJ ≃ 4, the separation dis-
tribution is dτSIS/d∆θ ∝ ∆θ. In practice we do not observe this distribution
because the surveys have angular selection effects that prevent the detection
of small image separations (below 0.′′25 for the radio surveys), so the observed
distributions show a much sharper cutoff (Fig. B.1). Even without a cutoff,
there would be few lenses to find – the CLASS survey found 9 lenses between
0.′′3 ≤ ∆θ ≤ 1.′′0 in which case we expect only one lens with ∆θ < 0.′′3 even
in the absence of any angular selection effects. A VLBI survey of 3% of the
CLASS sources with milli-arcsecond resolution found no lenses (Wilkinson et
al. 2001), nor would it be expected to for normal galaxy populations. Our
non-parametric reconstruction of the velocity function including selection ef-
fects confirms that the existing lens samples are consistent with this standard
model (Fig. B.50).

The result is very different if we extrapolate to low mass with the α ≃ −1.8
slope of the CDM halo mass function. The separation distribution becomes
integrably divergent, dτSIS/d∆θ ∝ ∆θ−0.6, and we would expect 15 lenses
with ∆θ < 0.′′3 given 9 between 0.′′3 ≤ ∆θ ≤ 1.′′0. Unfortunately, the Wilkin-
son et al. (2001) VLBI survey is too small to rule out such a model. A larger
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VLBI survey could easily do so, allowing the lenses to confirm the galaxy
counting argument for the existence of second break in the density structure
of halos at low mass (Kochanek 2003c, Ma 2003) similar to the one between
galaxies and high mass halos (§B.7). If the baryons in the low mass halos ei-
ther fail to cool, or cool and are then ejected by feedback, then their density
distributions should revert to those of their CDM halos. If they are stan-
dard NFW halos, Ma (2003) shows that such low mass dark lenses will be
very difficult to detect even in far larger surveys than are presently possible.
Nonetheless, improving the scale of searches for very small separations from
the initial attempt by Wilkinson et al. (2001) would provide valuable limits
on their existence.

The resulting small, dark lenses would be the same as the dark lenses we
discussed in §B.7.2 for binary quasars and explored by Rusin (2002). They will
also create the same problems about proving or disproving the lens hypothesis
as was raised by the binary quasars with the added difficulty that they will
be far more difficult to resolve. Time delays, while short enough to be easily
measured, will also be on time scales where quasars show little variability.
Confirmation of any small dark lens will probably requires systems with three
or four images, rather than two images, and the presence of resolvable (VLBI)
structures.

B.9 The Optical Properties of Lens Galaxies

The optical properties of lens galaxies and the properties of their interstellar
medium (ISM) are important for two reasons. First, statistical calculations
such as those in §B.6 rely on lens galaxies obeying the same scaling relations
as nearby galaxies and the selection effects depend on the properties of the
ISM. Thus, measuring the scaling relations of the observed lenses and the
properties of their ISM are an important part of validating these calculations.
Second, lenses have a unique advantage for studying the evolution of galaxies
because they are the only sample of galaxies selected based on mass rather
than luminosity, surface brightness or color. Evolution studies using optically-
selected samples will always be subject to strong biases arising from the
difficulty of matching nearby galaxies to distant galaxies. Selection by mass
rather than light makes the lens samples almost immune to these biases.

Most lens galaxies are early-type galaxies with relatively red colors and
few signs of significant on-going star formation (like the 3727Å or 5007Å
Oxygen lines). The resulting need to measure absorption line redshifts is one
of the reasons that the completeness of the lens redshift measurements is so
poor. Locally, early-type galaxies follow a series of correlations which also
exist for the lens galaxies and have been explored by Im, Griffiths & Rat-
natunga (1997), Keeton, Kochanek & Falco (1998), Kochanek et al. (2000),
Rusin et al. (2003), Rusin, Kochanek & Keeton (2003), van de Ven, van
Dokkum & Franx (2003), Rusin & Kochanek (2004).
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The first, crude correlation is the Faber-Jackson relation between velocity
dispersion and luminosity used in most lens statistical calculations. A typical
local relation is that from §B.6.2 and shown in Fig. B.41. Most lenses lack
directly measured velocity dispersions, but all lenses have a well-determined
image separation ∆θ. For specific mass models the image separation can
be converted into an estimate of a velocity dispersion, such as the ∆θ =
8π(σv/c)2Dds/Ds relation of the SIS, but the precise relationship depends
on the mass distribution, the orbital isotropy, the ellipticity and so forth (see
§B.4.9). For the lenses, there is a close relationship between the Faber-Jackson
relation and aperture mass-to-light ratios. The image separation, ∆θ, defines
the aperture mass interior to the Einstein ring,

Map =
π

4
Σc∆θ2 (B.127)

where Σc = c2Ds/4πGDdsDd is the critical surface density. By image sepa-
ration we usually mean either twice the mean distance of the images from the
lens galaxy or twice the critical radius of a simple lens model rather than a
directly measured image separation because these quantities will be less sen-
sitive to the effects of shear and ellipticity. If we measure the luminosity in the
aperture Lap using (usually) HST, then we know the aperture mass-to-light
(M/L) ratio Υap = Map/Lap.

If the mass-to-light ratio varies with radius or with mass, then to compare
values of Υap from different lenses we must correct them to a common radius
and common mass. If these scalings can be treated as power laws, then we
can define a corrected aperture mass to light ratio Υ∗ = Υap(D

ang
d ∆θ/2R0)

x

where R0 is a fiducial radius and x is an unknown exponent, and we would
expect to find a correlation of the form

log Υ∗ = 2(1 + a) log ∆θ + 0.4Mabs + constant (B.128)

where Mabs is the absolute magnitude of the lens (in some band) and a value
a 6= 0 indicates that the mass-to-light ratio varies either with mass or with
radius. We can then rewrite this in a more familiar form as

Mabs = Mabs,0 + γEV zl − 1.25γFJ log

(

∆θ

∆θ0

)

(B.129)

where ∆θ0 sets an arbitrary separation scale, γEV (or a more complicated
function) determines the evolution of the luminosity with redshift, and γFJ =
4(1 + a) sets the scaling of luminosity with normalized separation defined so
that for an SIS lens (where ∆θ ∝ σ2

v) the exponent γFJ will match the index
of the Faber-Jackson relation (Eqn. B.102). Fig. B.64 shows the resulting
relation converted to the rest frame B band at redshift zero. The relation is
slightly tighter than local estimates of the Faber-Jackson relation, but the
scatter is still twice that expected from the measurement errors. The best fit
exponent γFJ = 3.29±0.58 (Fig. B.65) is consistent with local estimates and
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Fig. B.64. (Top) The “Faber-Jackson” relation for gravitational lenses. The fig-
ure compares the observed absolute B magnitude corrected for evolution to that
predicted from the equivalent of the Faber-Jackson relation for gravitational lenses
(Eqn. B.129). The different point styles indicate whether the lens and source red-
shifts were directly measured or estimated. From Rusin et al. (2003).

Fig. B.65. (Bottom) The redshift zero absolute B-band magnitude and effective
exponent of the “Faber-Jackson” relation L ∝ ∆θγF J /2 for gravitational lenses.
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implies a scaling exponent a = −0.18 ± 0.14 that is marginally non-zero. If
the mass-to-light ratio of early-type galaxies increases with mass as Υ ∝ Mx,
then x = −a = 0.18±0.14 is consistent with estimates from the fundamental
plane that more massive early-type galaxies have higher mass-to-light ratios.
The solutions also require evolution with γEV = −0.41± 0.21, so that early-
type galaxies were brighter in the past. These scalings can also be done in
terms of observed magnitudes rather than rest frame magnitudes to provide
simple estimation formulas for the apparent magnitudes of lens galaxies in
various bands as a function of redshift and separation to an rms accuracy of
approximately 0.5 mag (see Rusin et al. 2003).

The significant scatter of the Faber-Jackson relation makes it a crude tool.
Early-type galaxies also follow a far tighter correlation known as the funda-
mental plane (FP, Dressler et al. 1987, Djorgovski & Davis 1987) between the
central, stellar velocity dispersion σc, the effective radius Re and the mean
surface brightness inside the effective radius 〈SBe〉 of the form

log

(

Re

h−1kpc

)

= α log

(

σc

km s−1

)

+ β

( 〈SBe〉
mag arcsec−2

)

+ γ (B.130)

where the slope α and the zero-point γ depend on wavelength but the slope
β ≃ 0.32 does not (e.g. Scodeggio et al. 1998, Pahre, de Carvalho & Djor-
govski 1998). Local estimates for the rest frame B-band give α = 1.25 and
γ0 = −8.895 − log(h/0.5) (e.g. Bender et al. 1998). In principle both the
zero points and the slopes may evolve with redshift, but all existing studies
have assumed fixed slopes and studied only the evolution of the zero point
with redshift. For galaxies with velocity dispersion measurements, the ba-
sis of the method is that measurement of Re and σv provides an estimate
of the surface brightness the galaxy will have at redshift zero. The differ-
ence between the measured surface brightness at the observed redshift and
the surface brightness predicted for z = 0 measures the evolution of the
stellar populations between the two epochs as a shift in the zero-point ∆γ.
The change in the zero-point is related to the change in the luminosity by
∆L = −0.4∆SBe = ∆γ/(2.5β). While these estimates are always referred
to as a change in the mass-to-light ratio, no real mass measurement enters
operationally. If, however, we assume a non-evolving virial mass estimate
M = cMσ2

vRe/G for some constant cM , then the FP can be rewritten in
terms of a mass-to-light ratio,

log Υ = log

(

M

L

)

∝
(

10β − 2α

5β

)

log σc +

(

2 − 5β

5β

)

log Re−
γ

2.5β
(B.131)

so that if both α and β do not evolve, the evolution of the mass-to-light
ratio is d log Υ/dz = −(dγ/dz)/(2.5β). Either way of thinking about the FP,
either as an empirical estimator of the redshift zero surface brightness or an
implicit estimate of the virial mass, leads to the same evolution estimates but
alternate ways of thinking about potential systematic errors.
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Fig. B.66. (Top) Constraints on the B-band luminosity evolution rate
d log(M/L)B/dz as a function of the logarithmic density slope n (ρ ∝ r−n) of
the galaxy mass distribution. Solid (dashed) contours are the 68% and 95% con-
fidence limits on two parameter (one parameter). These use the self-similar mass
models of Eqn. B.89 and are closely related to the fundamental plane. From Rusin
& Kochanek (2004).

Fig. B.67. (Bottom) Constraints on the mean star formation epoch 〈zf 〉 as a func-
tion of the logarithmic density slope n (ρ ∝ r−n) of the galaxy mass distribution.
Solid (dashed) contours are the 68% and 95% confidence limits on two parameter
(one parameter). The horizontal dotted lines mark 〈zf 〉 = 1.3, 1.4, 1.5, 1.6 and 1.7.
The lens sample favors older stellar populations with 〈zf 〉 > 1.5 at 95% confidence.
These use the self-similar mass models of Eqn. B.89 and are closely related to the
fundamental plane. From Rusin & Kochanek (2004).
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Confusion about applications of lenses to the FP and galaxy evolution
usually arise because most gravitational lenses lack direct measurements of
the central velocity dispersion. Before addressing this problem, it is worth
considering what is done for distant galaxies with direct measurements. The
central dispersion appearing in the FP has a specific definition – usually either
the velocity dispersion inside the equivalent of a 3.′′0 aperture in the Coma
cluster or the dispersion inside Re/8. Measurements for particular galaxies
almost never exactly match these definitions, so empirical corrections are ap-
plied to adjust the velocity measurements in the observed aperture to the
standard aperture. As we explore more distant galaxies, resolution problems
mean that the measurement apertures become steadily larger than the stan-
dard apertures. The corrections are made with a single, average local relation
for all galaxies – implicit in this assumption is that the dynamical structure
of the galaxies is homogeneous and non-evolving. This seems reasonable since
the minimal scatter around the FP seems to require homogeneity, but says
nothing about evolution. These are also the same assumptions used in the
lensing analyses.

If early-type galaxies are homogeneous and have mass distributions that
are homologous with the luminosity distributions, then there is no difference
between the lens FP and the normal kinematic FP, independent of the actual
mass distribution of the galaxies (Rusin & Kochanek 2004). If the mass dis-
tributions are homologous, then the mass and velocity dispersion are related
by M = cMσ2

cRe/G where cM is a constant, σc is the central velocity disper-
sion (measured in a self-similar aperture like the Re/8 aperture used in many
local FP studies), and Re is the effective radius. If we allow the mass-to-light
ratio to scale with luminosity as Υ ∝ Lx, then the normal FP can be written
as

log Re =
2

2x + 1
log σc +

0.4(x + 1)

2x + 1
〈SBe〉 +

log cM

2x + 1
, (B.132)

which looks like the local FP (Eqn. B.130) if α = 2/(2x + 1) and β =
0.4(x + 1)/(2x + 1) (see Faber et al. 1987). Thus, the lens galaxy FP will be
indistinguishable from the FP provided early-type galaxies are homologous
and the slopes can be reproduced by a scaling of the mass-to-light ratio (as
they can for x ≃ 0.3 given α ≃ 1.2 and β ≃ 0.3, e.g., Jorgensen, Franx
& Kjaergaard 1996 or Bender et al. 1998). All the details about the mass
distribution, orbital isotropies and the radius interior to which the velocity
dispersion is measured enter only through the constant cM or equivalently
from differences between the FP zero point γ measured locally and with
gravitational lenses. In practice, Rusin & Kochanek (2004) show that the zero
point must be measured to an accuracy significantly better than ∆γ = 0.1
before there is any sensitivity to the actual mass distribution of the lenses
from the FP. Thus, there is no difference between the aperture mass estimates
for the FP and its evolution and the normal stellar dynamical approach unless
the major assumption underlying both approaches is violated. It also means,
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perhaps surprisingly, that measuring central velocity dispersions adds almost
no new information once these conditions are satisfied.

Rusin & Kochanek (2004) used the self-similar models we described in
§B.4.8 to estimate the evolution rate and the star formation epoch of the
lens galaxies while simultaneously estimating the mass distribution. Thus,
the models for the mass include the uncertainties in the evolution and the
reverse. Fig. B.66 shows the estimated evolution rate, and Fig. B.67 shows
how this is related to a limit on the average star formation epoch 〈zf 〉 based
on Bruzual & Charlot (1993, BC96 version) population synthesis models. This
estimate is consistent with the earlier estimates by Kochanek et al. (2000)
and Rusin et al. (2003) which used only isothermal lens models, as we would
expect. Van de Ven, van Dokkum & Franx (2003) found a somewhat lower
star formation epoch (〈zf 〉 = 1.81.4

−0.5) when analyzing the same data, which
can be traced to differences in the analysis. First, by weighting the galaxies by
their measurement errors when the scatter is dominated by systematics and
by dropping two higher redshift lens galaxies with unknown source redshifts,
van de Ven et al. (2003) analysis reduces the weight of the higher redshift
lens galaxies, which softens the limits on low 〈zf 〉. Second, they used a power
law approximation to the stellar evolution tracks which underestimates the
evolution rate as you approach the star formation epoch, thereby allowing
lower star formation epochs. These two effects leverage a small difference in
the evolution rate10 into a much more dramatic difference in the estimated
star formation epoch. These evolution rates are consistent with estimates for
cluster or field ellipticals by (e.g. van Dokkum et al. 1996, 2001, van Dokkum
& Franx 2001, van Dokkum & Ellis 2003, Kelson et al. 1997, 2000), and
inconsistent with the much faster evolution rates found by Treu et al. (2001,
2002) or Gebhardt et al. (2003).

B.9.1 The Interstellar Medium of Lens Galaxies

As well as studying the emission by the lens galaxy we can study its ab-
sorption of emission from the quasar as a probe of the interstellar medium
(ISM) of the lens galaxies. The most extensively studied effect of the ISM is
dust extinction because of its effects on estimating the cosmological model
from optically-selected lenses and because it allows unique measurements of
extinction curves outside the local Group. There are also broad band effects
on the radio continuum due to free-free absorption, scatter broadening and
Faraday rotation. While all three effects have been observed, they have been
of little practical importance so far. Finally, in both the radio and the optical,
the lens can introduce narrow absorption features. While these are observed

10 Rusin & Kochanek (2004) obtained d log(M/L)B/dz = −0.50±0.19 including the
uncertainties in the mass distribution, Rusin et al. (2003) obtained −0.54± 0.09
for a fixed SIS model, and van de Ven et al. (2003) obtained −0.62 ± 0.13 for a
fixed SIS model.
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Fig. B.68. Histograms of the differential extinction in various lens subsamples
from Falco et al. (1999). In each panel the solid histogram shows the full sample of
37 differential extinctions measured in 23 lenses while the shaded histogram shows
the distributions for different selection methods (radio/optical) or galaxy types
(early/late). The hatched region shows the extinction range consistent with the
Falco, Kochanek & Muñoz (1998) analysis of the difference between the statistics of
radio-selected and optically-selected lens samples (see §B.6.6). Note that the most
highly extincted systems, PKS1830–211 and B0218+357, are both radio-selected
and late-type galaxies. The lowest differential extinction bins are contaminated by
the effects of finite measurement errors.
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in some lenses, observational limitations have prevented them from being as
useful as the are in other areas of astrophysics.

As we mentioned in §B.6, extinction is an important systematic prob-
lem for estimating the cosmological model using the statistics of optically
selected lenses. It modifies the results by changing the effective magnification
bias of the sample because it can make lensed quasars dimmer than their
unlensed counterparts. Because we see multiple images of the same quasar,
it is relatively easy to estimate the differential extinction between lensed im-
ages under the assumption that the quasar spectral shapes are not varying
on the time scale corresponding to the time delay between the images and
that microlensing effects are not significantly changing the slope of the quasar
continuum. The former is almost certainly valid, while for the latter we sim-
ply lack the necessary data to check the assumption (although we have a
warning sign from the systems where the continuum and emission line flux
ratios differ, see Part 4). Under these assumptions, the magnitude difference
at wavelength λ between two images A and B

mA(λ) − mB(λ) = −2.5 log

∣

∣

∣

∣

µA

µB

∣

∣

∣

∣

+ R

(

λ

1 + zl

)

∆E(B − V ) (B.133)

depends on the ratio of the image magnifications µA/µB, the differential ex-
tinction ∆E(B − V ) = EA −EB between the two images and the extinction
law R(λ/(1+zl)) of the dust in the rest frame of the dust. We have the addi-
tional assumption that either the extinction law is the same for both images or
that one image dominates the total extinction (Nadeau et al. 1991). Because
it is a purely differential measurement that does not depend on knowing the
intrinsic spectrum of the quasar, it provides a means of determining extinc-
tions and extinction laws that is otherwise only achievable locally where we
can obtain spectra of individual stars (the pair method, e.g. Cardelli, Clayton
& Mathis 1989). The total extinction cannot be determined to any compa-
rable accuracy because estimates of the total extinction require an estimate
of the intrinsic spectrum of the quasar. Fig. B.68 shows the distribution of
differential extinctions found in the Falco et al. (1999) survey of extinction in
23 gravitational lenses. Only 7 of the 23 systems had colors consistent with
no extinction, and after correcting for measurement errors and excluding the
two outlying, heavily extincted systems the data are consistent with a one-
sided Gaussian distribution of extinctions starting at 0 and with a dispersion
of σ∆E ≃ 0.1 mag. The two outlying systems, B0218+357 and PKS1830–
211, were both radio-selected and both have one image that lies behind a
molecular cloud of a late type lens galaxy (see below).

For lenses that have the right amount of dust, so that the image flux
ratio can be measured accurately over a broad range of wavelengths, it is
possible to estimate the extinction curve R(λ/(1 + zl)) of the dust (Nadeau
et al. 1991) or to estimate the dust redshift under the assumption that the
extinction curve is similar to those measured locally (Jean & Surdej 1998).
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Fig. B.69. The extinction curve of the dust in SBS0909+532 at zl = 0.83 by
Motta et al. (2002). The solid squares show the magnitude difference as a function
of inverse rest wavelength derived from integral field spectra of the continuum of
the quasars. The open squares are broad band measurements from earlier HST
imaging and the filled triangles are the flux ratios in the quasar emission lines. The
solid curve shows the best fit RV = 2.1 ± 0.9 Cardelli, Clayton & Mathis (1989)
extinction curve while the dashed curve shows a standard RV = 3.1 curve. The
offset between the continuum and emission line flux ratios seems not to depend on
wavelength and is probably due to microlensing.

Starting with Nadeau et al. (1991), there have been many estimates of extinc-
tion curves in lens galaxies (Falco et al. 1999, Toft, Hjorth & Burud 2000,
Motta et al. 2002, Muñoz et al. 2004). The most interesting of these are
for systems where the region near the 2175Å extinction feature is visible.
This requires source and lens redshifts that put the feature at long enough
wavelengths to be easily observed (i.e. higher lens redshifts) with a quasar
UV continuum extending to shorter wavelengths (i.e. lower source redshifts).
Motta et al. (2002) achieved the first cosmological detection of the feature
in the zl = 0.83 lens SBS0909+532, as shown in Fig. B.69. The overall ex-
tinction curve is marginally consistent with a standard Galactic RV = 3.1
extinction curve. Other cosmologically distant extinction curves are very dif-
ferent from normal Galactic models ranging for an anomalously low RV curve
in MG0414+0534 at zl = 0.96 (Falco et al. 1999), probably an SMC extinc-
tion curve in LBQS1009–252 at an estimated redshift of zl ≃ 0.88 (Muñoz
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et al. 2004), and a anomalously high RV extinction curve for the dust in
the molecular cloud of the zl = 0.68 lens galaxy in B0218+357. The Jean &
Surdej (1998) idea of using the shape of the extinction curve to estimate the
redshift of the dust also seems to work given a reasonable amount of dust and
wavelength coverage (see Falco et al. 1999, Muñoz et al. 2004), but too few
lenses with unknown redshifts satisfy the requirements for widespread use of
the method.

For broad band radio emission from the source, the three observed prop-
agation effects are free-free absorption, scatter broadening and Faraday ro-
tation. For example, in PMNJ1632–0033, the candidate third image of the
lens (C) has the same radio spectrum as the other two images except at the
lowest frequency observed (1.4 GHz) where it is fainter than expected. This
can be interpreted as free-free absorption by electrons at the center of the
lens galaxy but the interpretation needs to be confirmed by measurements
at additional frequencies to demonstrate that the dependence of the optical
depth on wavelength is consistent with the free-free process (Winn, Rusin &
Kochanek 2004). Scatter broadening is observed in many radio lenses (e.g.
PMN0134–0931, Winn et al. 2003; B0128+437, Biggs et al. 2004; PKS1830–
211, Jones et al. 1996; B1933+503, Marlow et al. 1999) primarily as changes
in the fluxes of images between high resolution VLBI observations and lower
resolution VLA observations or apparently finite sizes for compact source
components in VLBI observations. In the presence of a magnetic field, the
scattering medium will also rotate polarization vectors (e.g. MG1131+0456,
Chen & Hewitt 1993). This is only of practical importance if maps which
depend on the polarization vector are used to constrain the lens potential.
In short, these effects are observed but have so far been of little practical
consequence.

More surprisingly, absorption by atoms and molecules has also been of
little practical import for lens physics as yet. Wiklind & Alloin (2002) provide
an extensive review of molecular absorption and emission in gravitational
lenses. The two systems with the strongest absorption systems are B0218+357
and PKS1830–211 (see Gerin et al. 1997 and references therein) where one
of the two images lies behind a molecular cloud of the spiral galaxy lens.
These two systems also show the highest extinction of any lensed images
(Falco et al. 1999). Molecular absorption systems can be used to determine
time delays (Wiklind & Alloin 2002), measure the redshift of lens galaxies
(the lens redshift in PKS1830-211 is measured using molecular absorption
lines, Wiklind & Combes 1996), and potentially to determine the rotation
velocity of the lens galaxy (e.g. Koopmans & de Bruyn 2003). These studies at
centimeter and millimeter wavelengths are heavily limited by the resolution
and sensitivity of existing instruments, and the importance of these radio
absorption features will probably rise dramatically with the completion of
the next generation of telescopes (e.g. ALMA, LOFAR, SKA).
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Similar problems face studies of metal absorption lines in the optical.
Since most lenses are at modest redshifts, the strongest absorption lines ex-
pected from the lens galaxies tend to be observable only from space because
they lie at shorter wavelengths than the atmospheric cutoff. For most lenses
only the MgII (2800Å) lines are observable from the ground since you only
require a lens redshift zl >∼ 0.26 to get the redshifted absorption lines long-
wards of 3500Å. The other standard metal line, CIV (1549Å), is only visible
for zl >∼ 1.25, and we have no confirmed lens redshifts in this range. Spec-
troscopy with HST can search for metal lines in the UV, but the integra-
tion times tend to be prohibitively long unless the quasar images are very
bright. Thus, while absorption lines either associated with the lens galaxy
or likely to be associated with the lens galaxy are occasionally found (e.g.
SDSS1650+4251, Morgan, Snyder and Reens 2003; or HE1104–1805, Lid-
man et al. 2000), there have been no systematic studies of metal absorption
in gravitational lenses. Nonetheless, some very bright quasar lenses are fa-
vored targets for very high dispersion studies of they Lyα forest, particularly
the four-image lens B1422+231 and the three image lens APM08279+5255,
because the lens magnification makes these systems anomalously bright for
quasars at zs > 3.

B.10 Extended Sources and Quasar Host Galaxies

As we saw in Figs. B.3, B.4, and B.8, we frequently see lensed emission
from extended components of the source. These arcs and rings are important
because they can supply the extra constraints needed to determine the ra-
dial mass distribution that we lack in a simple two-image of four-image lens
(§B.4.1). The magnification produced by gravitational lensing also allows us
to study far fainter quasar host galaxies than is otherwise possible. Compar-
isons of the luminosities and colors of high and low redshift host galaxies and
the relative luminosities of the host and the quasar are important for under-
standing the growth of supermassive black holes and their relationships with
their parent halos.

Modeling extended emission is more difficult than modeling point sources
largely because of the complications introduced by the finite resolution of the
observations. In this section we first discuss a simple theory of Einstein ring
images, then some methods for modeling extended emission, and finally some
results about the mass distributions of lenses and the properties of quasar
host galaxies. All models of extended lenses sources start from the fact that
lensing preserves the surface brightness of the source – what we perceive as
magnification is only an artifact of the finite resolution of our observations.
This can be modified by absorption in the ISM of the lens galaxy (e.g. see,
Koopmans et al. 2003), but we will neglect this complication in what follows.
We start with a simple analytic model for the formation of Einstein rings,
then discuss numerical reconstructions of lensed sources and their ability
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Fig. B.70. An illustration of ring formation by an SIE lens. An ellipsoidal source
(left gray-scale) is lensed into an Einstein ring (right gray-scale). The source plane
is magnified by a factor of 2.5 relative to the image plane. The tangential caustic
(astroid on left) and critical line (right) are superposed. The Einstein ring curve is
found by looking for the peak brightness along radial spokes in the image plane.
For example, the spoke in the illustration defines point A on the ring curve. The
long line segment on the right is the projection of the spoke onto the source plane.
Point A corresponds to point A’ on the source plane where the projected spoke
is tangential to the intensity contours of the source. The ring in the image plane
projects into the four-lobed pattern on the source plane. Intensity maxima along
the ring correspond to the center of the source. Intensity minima along the ring
occur where the ring crosses the critical curve (e.g. point B). The corresponding
points on the source plane (e.g. B’) are where the astroid caustic is tangential to
the intensity contours.

to constrain mass distributions, and end with a survey of the properties of
quasar host galaxies.

B.10.1 An Analytic Model for Einstein Rings

Most of the lensed extended sources we see are dominated by an Einstein
ring – this occurs when the size of the source is comparable to the size of
the astroid caustic associated with producing four-image lenses. When the
Einstein ring is fairly thin, there is a simple analytic model for the formation
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Fig. B.71. The Einstein ring curves in PG1115+080 (top) and B1938+666 (bot-
tom). The black squares mark the lensed quasar or compact radio sources. The
light black lines show the ring curve and its uncertainties. The black triangles show
the intensity minima along the ring curve (but not their uncertainties). The best fit
model ring curve is shown by the dashed curve, and the heavy solid curve shows the
critical line of the best fit model. The model was not constrained to fit the critical
line crossings.
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of Einstein rings (Kochanek, Keeton & McLeod 2001). The important point
to understand is that the ring is a pattern rather than a simple combination
of multiple images. Mathematically, what we identify as the ring is the peak
of the surface brightness as a function of angle around the lens galaxy. We
can identify the peak by finding the maximum intensity λ(χ) along radial
spokes in the image plane, θ(λ) = θ0 + λ(cos χ, sin χ). At a given azimuth
χ we find the extremum of the surface brightness of the image fD(θ) along
each spoke, and these lie at the solutions of

0 = ∂λfD(θ) = ∇θfD(θ) · dθ

dλ
. (B.134)

The next step is to translate the criterion for the ring location onto the source
plane. In real images, the observed image fD(θ) is related to the actual surface
density fI(θ) by a convolution with the beam (PSF), fD(θ) = B ∗ fI(θ), but
for the moment we will assume we are dealing with a true surface brightness
map. Under this assumption fD(θ) = fI(θ) = fS(β) because of surface
brightness conservation. When we change variables, the criterion for the peak
brightness becomes

0 = ∇βfS(β) · M−1 · dθ

dλ
(B.135)

where the inverse magnification tensor M−1 = dθ/dβ is introduced by the
variable transformation. Geometrically we must find the point where the
tangent vector of the curve, M−1 ·dθ/dλ is perpendicular to the local gradient
of the surface brightness ∇βfS(β). These steps are illustrated in Fig. B.70.

This result is true in general but not very useful. We next assume that
the source has ellipsoidal surface brightness contours, fS(m2), with m2 =
∆β ·S ·∆β where ∆β = β−β0 is the distance from the center of the source,
β0, and the matrix S is defined by the axis ratio qs = 1 − ǫs ≤ 1 and po-
sition angle χs of the source. We must assume that the surface brightness
declines monotonically, dfs(m

2)/dm2 < 0, but require no additional assump-
tions about the actual profile. With these assumptions the Einstein ring curve
is simply the solution of

0 = ∆β · S · µ−1 · dθ

dλ
. (B.136)

The ring curve traces out a four (two) lobed cloverleaf pattern when projected
on the source plane if there are four (two) images of the center of the source
(see Fig. B.70). These lobes touch the tangential caustic at their maximum
ellipsoidal distance from the source center, and these cyclic variations in the
ellipsoidal radius produce the brightness variations seen around the ring.
The surface brightness along the ring is defined by fI(λ(χ), χ) for a spoke
at azimuth χ and distance λ(χ) found by solving Eqn. B.135. The extrema
in the surface brightness around the ring are located at the points where
∂χfI(λ(χ), χ) = 0, which occurs only at extrema of the surface brightness
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of the source (the center of the source, ∆β = 0 in the ellipsoidal model), or
when the ring crosses a critical line of the lens and the magnification tensor
is singular (|M |−1 = µ−1 = 0) for the minima. These are general results that
do not depend on the assumption of ellipsoidal symmetry.

For an SIE lens in an external shear field we can derive some simple
properties of Einstein rings to lowest order in the various axis ratios. Let the
SIE have critical radius b, axis ratio ql = 1 − ǫl and put its major axis along
θ1. Let the external shear have amplitude γ and orientation θγ . We let the
source be an ellipsoid with axis ratio qs = 1 − ǫs and a major axis angle χs

located at position (β cosχ0, β sin χ0) from the lens center. The tangential
critical line of the lens lies at radius

rcrit/b = 1 +
ǫl

2
cos 2χ − γ cos 2(χ − χγ) (B.137)

while the Einstein ring lies at

rE

b
= 1 +

β

b
cos(χ − χ0) −

ǫl

6
cos 2χ + γ cos 2(χ − χγ). (B.138)

At this order, the Einstein ring is centered on the source position rather than
the lens position. The orientation of the ring is generally perpendicular to
that of the critical curve, although it need not be exactly so when the SIE
and the shear are misaligned due to the differing coefficients of the shear
and ellipticity terms in the two expressions. These results lead to a false
impression that the results do not depend on the shape of the source. In
making the expansion we assumed that all the terms were of the same order
(β/b ∼ γ ∼ ǫl ∼ ǫs), but we are really doing an expansion in the ellipticity of
the potential of the lens eΨ ∼ el/3 rather than the ellipticity of the density
distribution of the lens, so second order terms in the shape of the source
are as important as first order terms in the ellipticity of the potential. For
example in a circular lens with no shear (ǫl = 0, γ = 0) the ring is located at

rE

b
= 1 +

β

b

(2 − ǫs) cos(χ − χ0) + ǫs cos(2χs − χ − χ0)

2 − ǫs + ǫs cos 2(χs − χ)
(B.139)

which has only odd terms in its multipole expansion and converges slowly
for flattened sources. In general, the ring shape is a weak function of the
source shape only if the potential is nearly round and the source is almost
centered on the lens. The structure of the lens potential dominates the even
multipoles of the ring shape, while the structure of the source dominates the
odd multipoles.

In fact, the shape of the ring can be used to simply “read off” the am-
plitudes of the higher order multipoles of the lens potential. This is nicely
illustrated by an isothermal potential with arbitrary angular structure, Ψ =
rbF (χ) with 〈F (χ)〉 = 1 (see Zhao & Pronk 2001, Witt et al. 2000, Kochanek
et al. 2001, Evans & Witt 2001) in the absence of any shear. The tangential
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critical line of the lens is

rcrit

b
= F (χ) + F ′′(χ). (B.140)

If êχ and êθ are radial and tangential unit vectors relative to the lens center
and β0 is the distance of the source from the lens center, then the Einstein
ring curve is

rE

b
= F (χ) + F ′(χ)

êχ · S · êθ

êθ · S · êθ
+

β0 · S · êθ

êθ · S · êθ
→ F (χ) + β0 · êθ (B.141)

with the limit showing the result for a circular source.
Thus, by analyzing the multipole structure of the ring curve one can de-

duce the multipole structure of the potential. While this has not been done
non-parametrically, the ability of standard ellipsoidal models to reproduce
ring curves strongly suggests that higher order multipoles cannot be signif-
icantly different from the ellipsoidal scalings. Fig. B.71 shows two examples
of fits to the ring curves in PG1115+080 and B1938+666 using SIE plus ex-
ternal shear lens models. The major systematic problem with fitting the real
data are that bright quasar images must frequently be subtracted from the
image before the ring curve can be extracted, and this can lead to artifacts
like the wiggle in the curve between the bright A1/A2 images of PG1115+080.
Other than that, the accuracy with which the ellipsoidal (plus shear) mod-
els reproduce the curves is consistent with the uncertainties. In both cases
the host galaxy is relatively flat (qs = 0.58 ± 0.02 for PG1115+080 and
0.62± 0.14 for B1938+666). The flatness of the host explains the “boxiness”
of the PG1115+080 ring, while the B1938+666 host galaxy shape is poorly
constrained because the center of the host is very close to the center of the
lens galaxy so the shape of the ring is insensitive to the shape of the source.
Unless the source is significantly offset from the center of the lens, as we
might see for the host galaxy of an asymmetric two-image lens, it does not
constrain the radial density profile of the lens very well – after considerable
algebraic effort you can show that the dependence on the radial structure
scales as |∆β|4. It can, however, help considerably in this circumstance be-
cause it eliminates the angular degrees of freedom in the potential that make
it impossible for two-image lenses to constrain the radial density profile at
all.

B.10.2 Numerical Models of Extended Lensed Sources

Obviously the ring curve and its extrema are an abstraction of the real struc-
ture of the lensed source. Complete modeling of extended sources requires a
real model for the surface brightness of the source. In many cases it is suffi-
cient to simply use a parameterized model for the source, but in other cases
it is not. The basic idea in any non-parametric method is that there is an
optimal estimate of the source structure for any given lens model. This is
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most easily seen if we ignore the smearing of the image by the beam (PSF)
and assume that our image is a surface brightness map. Since surface bright-
ness is conserved by lensing, fI(θ) = fS(β). For any lens model with pa-
rameters p, the lens equations define the source position β(θ, p) associated
with each image position. If we had only single images of each source point,
this would be useless for modeling lenses. However, in a multiply imaged
region, more than one point on the image plane is mapped to the same
point on the source plane. In a correct lens model, all image plane points
mapped to the same source plane position should have the same surface
brightness, while in an incorrect model, points with differing surface bright-
nesses will be mapped to the same source point. This provided the basis
for the first non-parametric method, sometimes known as the “Ring Cycle”
method (Kochanek et al. 1989, Wallington, Kochanek & Koo 1995). Suppose
source plane pixel j is associated with image plane pixels i = 1 · · ·nj with
surface brightness fi and uncertainties σi. The goodness of fit for this source
pixel is

χ2
j =

nj
∑

i=1

(

fi − fs

σi

)2

(B.142)

where fs will be our estimate of the surface brightness on the source plane.
For each lens model we compute χ2(p) =

∑

χ2
j and then optimize the lens

parameters to minimize the surface brightness mismatches.
The problem with this algorithm is that we never have images that are

true surface brightness maps – they are always the surface brightness map
convolved with some beam (PSF). We can generalize the simple algorithm
into a set of linear equations. Although the source and lens plane are two-
dimensional, the description is simplified if we simply treat them as a vector
fS of source plane surface brightness and a vector f I of image plane flux
densities (i.e. including any convolution with the beam). The two images are
related by a linear operator A(p) that depends on the parameters of the
current lens model and the PSF. In the absence of a lens, A is simply the
real-space (PSF) convolution operator. In either case, the fit statistic

χ2 =
|f I − A(p)fS |2

σ2
(B.143)

(with uniform uncertainties here, but this is easily generalized) must first be
solved to determine the optimal source structure for a given lens model and
then minimized as a function of the lens model. The optimal source structure
dχ2/dfS = 0 leads to the equation that fS = A−1(p)f I . The problem, which
is the same as we discussed for non-parametric mass models in §B.4.7, is that
a sufficiently general source model when combined with a PSF will lead to
a singular matrix for which A(p)−1 is ill-defined – physically, there will be
wildly oscillating source models for which it is possible to obtain χ2(p) = 0.

Three approaches have been used to solve the problem. The first is LensClean
(Kochanek & Narayan 1992, Ellithorpe, Kochanek & Hewitt 1996, Wuck-
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nitz 2004), which is based on the Clean algorithm of radio astronomy. Like
the normal Clean algorithm, LensClean is a non-linear method using a prior
that radio sources can be decomposed into point sources for determining the
structure of the source. The second is LensMEM (Wallington, Kochanek &
Narayan 1996), which is based on the Maximum Entropy Method (MEM) for
image processing. The determination of the source structure is stabilized by
minimizing χ2 +λ

∫

d2βfS ln(fS/f0) while adjusting the Lagrange multiplier
λ such that at the minimum χ2 ∼ Ndof where Ndof is the number of degrees
of freedom in the model. Like Clean/LensClean, MEM/LensMEM is a non-
linear algorithm in which solutions must be solved iteratively. Both LensClean
and LensMEM can be designed to produce only positive-definite sources. The
third approach is linear regularization where the source structure is stabilized
by minimizing χ2 +λfS ·H ·fS (Warren & Dye 2003, Koopmans et al. 2003).
The simplest choice for the matrix H is the identity matrix, in which case
the added criterion is to minimize the sum of the squares of the source flux.
More complicated choices for H will minimize the gradients or curvature of
the source flux. The advantage of this scheme is that the solution is simply
a linear algebra problem with (AT (p)A(p) + λH)fS = AT (p)f I .

In all three of these methods there are two basic systematic issues which
need to be addressed. First, all the methods have some sort of adjustable
parameter – the Lagrange multiplier λ in LensMEM or the linear regular-
ization methods and the stopping criterion in the LensClean method. As the
lens model changes, the estimates of the parameter errors will be biased if
the treatment of the multiplier or the stopping criterion varies with changes
in the lens model in some poorly understood manner. Second, it is difficult
to work out the accounting for the number of degrees of freedom associated
with the model for the source when determining the significance of differences
between lens models. Both of these problems are particularly severe when
comparing models where the size of the multiply imaged region depends on
the lens model. Since only multiply imaged regions supply any constraints
on the model, one way to improve the goodness of fit is simply to shrink the
multiply imaged region so that there are fewer constraints. Since changes in
the radial mass distribution have the biggest effect on the multiply imaged
region, this makes estimates of the radial mass distribution particularly sen-
sitive to controlling these biases. It is fair to say that all these algorithms
lack a completely satisfactory understanding of this problem. For radio data
there are added complications arising from the nature of interferometric ob-
servations, which mean that good statistical models must work with the raw
visibility data rather than the final images (see Ellithorpe et al. 1996).

These methods, including the effects of the PSF, have been applied to de-
termining the mass distributions in 0047–2808 (Dye & Warren 2003), B0218+357
(Wucknitz, Biggs & Browne 2004), MG1131+0456 (Chen, Kochanek & He-
witt 1995, and MG1654+134 (Kochanek 1995a). We illustrate them with the
Dye & Warren (2003) results for 0047–2808 in Fig. B.72. The mass distribu-
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Fig. B.72. Models of 0047–2808 from Dye & Warren (2003). The right panel shows
the lensed image of the quasar host galaxy after the foreground lens has been sub-
tracted. The middle panel shows the reconstructed source and its position relative
to the tangential (astroid) caustic. The left panel shows the resulting constraints
on the central exponent of the dark matter halo (ρ ∝ r−γ) and the stellar mass-
to-light ratio of the lens galaxy. The dashed contours show the constraints for the
same model using the central velocity dispersion measurement from Koopmans &
Treu (2003).

tion consists of the lens galaxy and a cuspy dark matter halo, where Fig. B.72
shows the final constraints on the mass-to-light ratio of the stars in the lens
galaxy and the exponent of the central dark matter density cusp (ρ ∝ r−γ).
The allowed parameter region closely resembles earlier results using either
statistical constraints (Fig. B.32) or stellar dynamics (Fig. B.33). In fact, the
results using the stellar dynamical constraint from Koopmans & Treu (2003)
are superposed on the constraints from the host in Fig. B.72, with the host
providing a tighter constraint on the mass distribution than the central ve-
locity dispersion. The one problem with all these models is that they have too
few degrees of freedom in their mass distributions by the standards we dis-
cussed in §B.4.6. In particular, we know that four-image lenses require both
an elliptical lens and an external tidal shear in order to obtain a good fit to
the data (e.g. Keeton, Kochanek & Seljak 1997), while none of these models
for the extended sources allows for multiple sources of the angular structure
in the potential. In fact, the lack of an external shear probably drives the
need for dark matter in the 0047–2808 models. Without dark matter, the
decay of the stellar quadrupole and the low surface density at the Einstein
ring means that the models generate too small a quadrupole moment to fit
the data in the absence of a halo. The dark matter solves the problem both
through its own ellipticity and the reduction in the necessary shear with a
higher surface density near the ring (recall that γ ∝ 1 − 〈κ〉). Again see the
need for a greater focus on the angular structure of the potential.
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Fig. B.73. The host galaxy in PG1115+080. The top left panel shows the 1-orbit
NICMOS image from Impey et al. (1998). The top right panel shows the lensed
host galaxy after subtracting the quasar images and the lens galaxy, The lower left
panel shows the residuals after subtracting the host as well. For comparison, the
lower right panel shows what an image of an unlensed PG1115+080 quasar and
host would look like in the same integration time and on the same scales. The host
galaxy is an H= 20.8 mag late-type galaxy (Sersic index n = 1.4) with a scale length
of Re = 1.5h−1 kpc. The demagnified magnitude of the quasar is H= 19.0 mag.
The axis ratio of the source, qs = 0.65 ± 0.04 is consistent with the estimate of
qs = 0.58±0.02 from the simpler ring curve analysis (§B.10.1, Fig. B.71, Kochanek
Keeton & McLeod 2001).

B.10.3 Lensed Quasar Host Galaxies

One advantage of studying lensed quasars is that the lens magnification enor-
mously enhances the visibility of the quasar host. A typical HST PSF makes
the image of a point source have a mean surface brightness that declines as
R−3 with distance R from the quasar. Compared to an unlensed quasar, the
host galaxy of a lensed quasar is stretched along the Einstein ring leading
to an improvement in the contrast between the host in the quasar of µ2 for
an image magnified by µ – you gain µ3 by stretching the host away from
the quasar and lose µ because the quasar is magnified. Perpendicular to the
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Einstein ring, the contrast becomes a factor of µ worse than for an unlensed
quasar. Since the alignment of the magnification tensor relative to the host
changes with each image, the segment of the host where contrast is lost will
correspond to a segment where it is gained for another image leading to a
net gain for almost all parts of the source when you consider all the images.
The distortions produced by lensing also mean the host structure is more
easily distinguished from the PSF. In a few cases, like SDSS0924+0219 in
Fig. B.58, microlensing or substructure may provide a natural coronograph
that supresses the flux from the quasar but not that from the host. Despite
naive expectations (and TAC comments), the distortions have little conse-
quence for understanding the structure of the host even though a lens model
is required to produce a photometric model of the host.

The only extensive survey of lensed quasar hosts is that of Peng (2004).
Fig. B.73 shows the example of PG1115+080, a zs = 1.72 radio-quiet (RQQ)
quasar. The Einstein ring image is easily visible even in a short, one-orbit
exposure. For comparison, we also took the final model for the quasar and
the its host and produced the image that would be obtained in the same time
if we observed the quasar in the absence of lensing. It is quite difficult to see
the host, and this problem will carry through in any numerical analysis.

At low redshifts (z < 1), quasar host galaxies tend to be massive early-
type galaxies (e.g. McLure et al. 1999, Dunlop et al. 2003). Over 80% of
quasars brighter than MV < −23.5 mag are in early-type galaxies with L >∼
2L∗ and effective radii of Re ∼ 10 kpc for z <∼ 0.5. Radio quiet quasars (RQQ)
tend to be in slightly lower luminosity hosts than radio loud quasars (RLQ)
but only by factors of ∼ 2 at redshift unity. Far fewer unlensed host galaxies
have been detected above redshift unity (e.g. Kukula et al. 2001, Ridgway et
al. 2001) with the surprising result that the host galaxies are 2–3 mag brighter
than the typical host galaxy at low redshift and corresponded to ∼ 4L∗

galaxies. Given that the low redshift hosts were already very massive galaxies,
it was expected that higher redshift hosts would have lower masses because
they were still in the process of being assembled and forming stars (e.g.
Kauffmann & Haehnelt 2000). One simple explanation was that by selecting
from bright radio sources, these samples picked quasars with more massive
black holes as the redshift increased, creating a bias in favor of more massive
hosts. The key to checking for such a bias is to be able to detect far less
luminous hosts, and the improved surface brightness contrast provided by
lensing the host galaxies provides the means.

Fig. B.74 shows the observed H-band magnitudes of the lensed hosts as
compared to low redshift host galaxies and other studies of high redshift
host galaxies. Although 30% of the lensed quasars are radio-loud, they have
luminosities similar to the lensed (or unlensed) radio-quiet hosts. There are
no hosts as bright as the Kukula et al. (2001) radio-loud quasar hosts. Once
the luminosities of the quasar and the host galaxy are measured we can
compare them to the theoretical expectations (Fig. B.75). While the models
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Fig. B.74. Observed H-band magnitudes of quasar host galaxies. The solid (open)
circles are secure (more questionable) hosts detected in the CASTLES survey of
lensed hosts. The low redshift points are from McLeod & McLeod (2001). All the
Ridgway et al. (2001) systems are radio quiet. For comparison, we superpose the
evolutionary tracks for a non-evolving E/S0 galaxy (solid curve), an evolving E/S0
galaxy which stars forming stars at zf = 5 with a 1 Gyr exponentially decaying
star formation rate (long dashed line) and a star forming Sb/c model (short dashed
line). The evolution models are matched to the luminosity of an L∗ early-type
galaxy at redshift zero. The CASTLES observations can reliably detect hosts about
4 magnitudes fainter than the quasar. From Peng (2004).

agree with the data at low redshift, they are nearly disjoint by z ∼ 3 in the
sense that the observed quasars and hosts are significantly more luminous
than predicted. The same holds for the Kukula et al. (2001) and Ridgway
et al. (2001) samples, suggesting that black holes masses grow more rapidly
than predicted by the theoretical models or that accretion efficiencies were
higher in the past. Vestergaard (2004) makes a similar argument based on
estimates of black hole masses from emission line widths.
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Fig. B.75. A comparison of the estimated rest frame absolute magnitudes of
the quasars and hosts as compared to the theoretical models for the evolution
of galaxies and the growth of black holes as a function of redshift by Kauffmann
& Haehnelt (2000). The low redshift quasars from McLeod & McLeod (2001) oc-
cupy the triangle in the upper left panel. At intermediate redshift the lensed host
galaxies occupy a region similar to the models, but the two distributions are nearly
disjoint by z ≃ 3. Both the hosts and the quasars are significantly more luminous
than predicted. The horizontal line marks the luminosity of an L∗ galaxy at z = 0.
From Peng (2004).

B.11 Does Strong Lensing Have A Future?

Well, you can hardly expect an answer of “No!” at this point, can you? Since
we have just spent nearly 170 pages on the astrophysical uses of lenses, there
is no point in reviewing all the results again here. Instead I suggest some
goals for the future.

Our first goal is to expand the sample of lenses from ∼ 100 to ∼ 1000.
While 80 lenses seems like a great many compared to even a few years ago, it is
still too few to pursue many interesting questions. The problem worsens if the
analysis must be limited to lenses meeting other criteria (radio lenses, lenses
found in a well-defined survey, lenses outside the cores of clusters · · ·) or if the
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sample must be subdivided into bins (redshift, separation, luminosity · · ·).
For example, one of the most interesting applications of lenses will be to map
out the halo mass function. This is difficult to do with any other approach
because no other selection method works homogeneously on dark low-mass
halos, galaxies of different types, groups and clusters. Unlike any other sample
in astronomy, gravitational lenses are selected based on mass rather than
luminosity, so the same search method works for all halos – the separation
distribution of lenses is a direct mapping of the halo mass function. It is not
a trivial mapping because the structure of halos changes with mass, but the
systematics are far better than those of any other approach. The fact that
lenses are mass-selected also gives them an enormous advantage in studying
the evolution of galaxies with redshift over optically-selected samples where it
will be virtually impossible to select galaxies in the same manner at both low
and high redshift. There is no shortage of detectable lenses in the universe – it
is simply a question of imaging enough of the sky at high angular resolution.
The upgraded VLA and Merlin radio arrays are the most promising tools for
this objective.

Our second goal is to systematically monitor the variability of as many
lenses as possible. Time delays, if measured in large numbers and measured
accurately, can resolve most of the remaining issues about the mass distri-
butions of lenses. This is true even if you regard the H0 as unmeasured or
uncertain – the Hubble constant is the same number for all lenses, so as the
number of time delay systems increases, the contribution of the actual value
of the Hubble constant to constraining the mass distribution diminishes. At
the present time, we are certain that the typical early-type galaxy has a
substantial dark matter halo, but we are uncertain how it merges with the
luminous galaxy. Steady monitoring of microlensing of the source quasars by
the stars in the lens galaxy will also help to resolve this problem because
the patterns of the microlensing variability constrain both the stellar surface
density near the lensed images and the total density (Part 4, Schechter &
Wambsganss 2002). The constraints from time delays and microlensing will
be complemented by the continued measurement of central velocity disper-
sions.

Our third goal should be to obtain ultra-deep, high resolution radio maps
of the lenses to search for central images in order to measure the central
surface densities of galaxies and to search for supermassive black holes. Kee-
ton (2003a) showed that the dynamic ranges of the existing radio maps of
lenses are 1–2 orders of magnitude too small to routinely detect central images
given the expected central surface densities of galaxies. Only very asymmet-
ric doubles like PMN1632–0033, where Winn et al. (2004) have detected a
central image, are likely to show central images with the present data. Once
we reach the sensitivity needed to detect central images, we will also either
find central black holes or set strict limits on their existence (Mao, Witt &
Koopmans 2001). This is the only approach that can directly detect even
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quiescent black holes and determine their masses at cosmological distances.
The existing limits could be considerably improved simply by co-adding the
existing radio maps either for individual lenses or even for multiple lenses in
order to obtain statistical limits.

Our fourth goal should be to unambiguously identify a “dark” satellite of
a lens galaxy. For starters we need to conduct complete statistical analyses
of lens galaxy satellites in general, by determining their mass functions and
radial distributions. As part of such an analysis we can obtain upper bounds
on the number of dark satellites. Then, with luck, we will find an example
of a lens that requires a satellite at a specific location for which there is no
optical counterpart. This may be too conservative a condition. For example,
Peng (2004) argues that much of the flux of Object X in MG0414+0534
(Fig. B.6) is actually coming from lensed images of the quasar host galaxy
rather than the satellite.

Finally, lens magnification already means that it is far easier to do pho-
tometry of a lensed quasar host galaxy than an unlensed galaxy. The next
frontier is to measure the kinematics of cosmologically distant host galaxies.
This might already be doable for the host galaxy of Q0957+561 at zs = 1.41,
but will generally require either JWST or the next generation of ground
based telescopes. With larger lens samples we may also find more cases like
SDSS0924+0219 where gravitational lensing provides a natural coronograph
for the quasar.
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