ARlogo Annu. Rev. Astron. Astrophys. 2005. 43: 677-725
Copyright © 2005 by Annual Reviews. All rights reserved

Next Contents Previous

4. OBSERVATIONAL PROSPECTS

Observations of the molecular gas discussed here are critical for understanding early Universe galaxy formation. The morphology, kinematics, and gas density estimates provided by better measurements of CO and other molecular lines will lead to a detailed understanding of the processes and mechanisms involved in assembling galaxies and forming stars in the early Universe.

The present suite of telescopes available for the detection of EMGs has produced a sample of 36, which is expected to grow, particularly for SMGs, within the limits of the observing time allocated for high-z CO emission searches. A doubling of the sample is not unreasonable to expect in the next five years. But this falls far short of the sample sizes needed for true statistical studies of EMG properties. The current sample is especially deficient at redshifts z > 3, where the potential of the EMGs for the study of galaxy formation is most important. There is only one EMG that probes the era of re-ionization.

Besides their limitations for the detection of more EMGs, the ability of the present telescopes to study these objects in detail is severely limited in sensitivity and angular resolution. Only the strongest sources, observed at high frequencies, possibly through gravitational lenses, and with long integration times, offer clues regarding the structure of EMGs. To understand EMGs, images that resolve and map the molecular line emitting region are critical.

ALMA is the only observing facility planned for operation within the next decade that combines the sensitivity, angular resolution, flexibility of observing modes, and site conditions required for such imaging. ALMA will be the premier telescope for the study of EMGs. Its 64 12m-diameter antennas provide the collecting area needed for high sensitivity. The ability to reconfigure the array allows one to select angular resolution for any observing frequency. The angular resolution at a frequency of 350 GHz is 1" in the compact configuration, as high as 0.014" using baselines up to the maximum of 14 km, and scaling inversely with frequency. The correlator can process up to 16 GHz of bandwidth from each antenna, in four separately tunable 2-GHz-wide signals in each of the two polarizations. The receiver noise will be three times the quantum limit (Trx approx 3h nu / k) for all but the highest frequency receiver bands. A compact array of 12 7m-diameter antennas, plus four 12m diameter antennas for calibration purposes, bolsters sensitivity on spatial frequencies between that of a single 12m antenna and the shortest baseline (15m) in the large array. The site is comparable in quality to the South Pole for millimeter/submillimeter observing, and superbly located for studying the southern sky and much of the northern sky. For further information on ALMA, the reader is referred to http://www.alma.nrao.edu/ and http://www.eso.org/projects/alma.

Guilloteau (2001) and Blain (2001) have reviewed ALMA's capability to observe high-z spectral line and continuum emission, respectively. As an illustration of ALMA's power for detailed studies of EMGs, consider the SMG J23099, where the CO source has been modeled (Genzel et al. 2003) as a rotating disk of diameter 16 kpc (5"). When used in a 6-km-maximum baseline configuration (resolution 0.5") with an 8-hour integraton, ALMA will yield an image with velocity resolution of 100 km s-1 and rms noise of 0.4 mJy (5sigma). This is 10% of the unresolved flux density of the source, enough to check the validity of the model. Because this observation can be done with only one of the tunable 2-GHz inputs to the correlator, simultaneous observations of, say, CS(7-6), HCN(4-3), and up to 29 other lines within the instantaneous bandpass of the receiver could be made. Although these lines may not be detected in a single 0.5" beam, the u-v data, fully sampled to 6 km, could be smoothed to 1" resolution, thereby yielding a 5sigma sensitivity of 0.1 mJy.

For simple detection of EMGs in CO emission, the (6-5) transition, for example, at a redshift of z = 2 with a peak line intensity of 1 mJy beam-1 (or any spectral line in the bandpass with this peak line strength), would be seen by ALMA at the 10sigma level with velocity resolution of 50 km s-1 in a typical 4-h observing session. The continuum emission observed in this same session at 230 GHz would reach a 5sigma sensitivity of 33 µJy beam-1. The continuum emission from Arp 220 moved to a redshift of z = 2 could be detected at the 5sigma level in less than 30 min of observing time. Because of the "negative K-correction," this statement is true for Arp 220 at any redshift up to z ~ 20.

Given the sensitivity of ALMA, with seven times the collecting area of the IRAM interferometer and a superior site, it is clear that the study of EMGs will be transformed from one of imaging CO emission to one of imaging emission from a variety of interstellar molecules. The importance to gas density studies of HCN, [C I] , and [C II] have been discussed above. Carbon monosulfide may be an even better tracer of dense, star-forming gas than is HCN (Shirley et al. 2003, but its weaker lines remain beyond the reach of present telescopes. Formaldehyde is another molecule that traces dense gas, potentially accessible to ALMA observers of EMGs. Searches should be made with ALMA for the isotopomers of CO. The ALMA correlator can observe many lines simultaneously, making it very powerful for astrochemical studies.

The potential for ALMA to reveal the process of galaxy formation and evolution in the early Universe can be summarized by noting that observing CO emission in the z = 6.4 quasar SDSS J1148 tests limits of present instruments. ALMA will be able to observe CO in a galaxy at this redshift having the CO luminosity of a large, normal spiral such as M51 or NGC 891, making it possible to probe the era of re-ionization with a much larger population. Readers who wish to design their own ALMA observing programs can find a sensitivity calculator at http://www.eso.org/projects/alma/science/bin/sensitivity.html.

Other facilities will also play a significant role in the study of EMGs. An upgraded IRAM interferometer, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Submillimeter Array (SMA), and the Extended VLA (EVLA) will add increased sensitivity and/or bandwidth to present capability. For objects with redshift z geq 2, CO emission from low-J levels falls in the centimeter wavelength observing bands of the EVLA. The EVLA will be particularly suitable for observing HCN in lower-J transitions. Receiver systems working to wavelengths as short as 0.7 cm combined with a powerful wide-band correlator will make the EVLA a powerful telescope for EMG observing in the Northern Hemisphere. Large single dishes such as the Green Bank Telescope (GBT) are also proving useful for EMG study, as the detection of HCN(1-0) emission in F10214 (Vanden Bout, Solomon & Maddalena 2004) has demonstrated. The GBT will be primarily useful for measuring CO(1-0) luminosity, detecting new EMGs in that line, and doing continuum surveys with 3 mm wavelength bolometer cameras. Upon completion, the 50-m diameter Large Millimeter Telescope (LMT) will be the most powerful single-aperture telescope for the study of EMGs. Its very substantial collecting area will make it a telescope of choice for blind surveys.

The next decade will see explosive growth in the number of known EMGs, the findings concerning their properties, and most important, in knowledge of their structure and evolution. The ability of ALMA to image the kinematics of the molecular star-forming gas in galaxies from the era of recombination to the present will be invaluable to our understanding of the evolution of galaxies and the Universe.

ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance of J. W. Barrett in the preparation of the figures. PVB is grateful for the hospitality of the Institut d'Astrophysique, Paris, and the Department of Astronomy, University of Texas, Austin, during the writing of this review.

Appendix 1 - Early (Universe) Molecular (Line Emission) Galaxies

EMGa CO coordinates Redshift Galaxy Lensed?
  R.A. (2000) Decl. (2000) z(CO) type (µ = mag.)

SMM J02396b 02:39:56.59 -01:34:26.6b 1.062±0.002b SMG µ = 2.5b
Q0957+561Ac 10:01:20.88 +55:53:54.0d 1.4141c QSO µ = 1.6, 1.7d
Q0957+561Bc 10:01:21.01 +55:53:49.4d     µ = 4.3d
HR10e 16:45:02.26 +46:26:26.5f 1.439±0.001f ERO ?
IRAS F10214g 10:24:34.56 +47:09:09.8h 2.28581±0.00005h QSO µ = 17h
SMM J16371b 16:37:06.50 +40:53:13.8b 2.380±0.004b SMG ?
SMM J16368i 16:36:50.43 +40:57:34.7i 2.3853±0.0014i SMG ?
53W002j 17:14:14.71 +50:15:30.6k 2.3927±0.0003k Radio Unlikely
SMM J16366b 16:36:58.23 +41:05:23.7b 2.450±0.002b SMG ?
SMM J04431i 04:43:07.25 +02:10:23.3i 2.5094±0.0002i SMG µ = 4.4l
SMM J16359Am 16:35:54.81 +66:12:37m 2.5168±0.0003m SMG µ = 14n
SMM J16359Bm 16:35:44.15 +66:12:24m 2.5168±0.0003m SMG µ = 22n
SMM J16359Cm 16:35:50.85 +66:12:06m 2.5168±0.0003m SMG µ = 9n
Cloverleaf o 14:15:45.97 +11:29:43.2p 2.5579±0.0001q QSO µ = 11r
SMM J14011s 14:01:04.93 +02:52:24.1t 2.5652±0.0001t SMG µ=5-25t
VCV J1409u 14:09:55.50 +56:28:27.0v 2.5832±0.0001v QSO ?
LBQS 0018z 00:21:27.30 -02:03:33.0u 2.620z QSO ?
MG 0414w 04:15:10.73 +05:34:41.2x 2.639±0.002w QSO Yesx
MS1512-cB58y 14:14:22.22 +36:36:24.8y 2.7265±0.0005y LBG µ=32y
LBQS 1230aa 12:33:10.47 +16:10:53.1bb 2.741±0.001aa QSO ?
RX J0911.4u 09:11:27.50 +05:50:52.0u 2.796±0.001u QSO µ=22cc
SMM J02399dd 02:39:51.89 -01:35:58.8ee 2.8076±0.0002ee SMG µ=2.5ee
SMM J04135u 04:13:27.50 +10:27:40.3u 2.846±0.002u QSO µ=1.3ff
B3 J2330gg 23:30:24.84 +39:27:12.2gg 3.092gg Radio Unlikely
SMM J22174b 22:17:35.20 +00:15:37.6b 3.099±0.004b SMG ?
MG 0751hh 07:51:41.46 +27:16:31.4hh 3.200hh QSO µ=17hh
SMM J09431i 09:43:03.74 +47:00:15.3i 3.3460±0.0001i SMG µ=1.2ii
SMM J13120b 13:12:01.20 +42:42:08.8b 3.408±0.002b SMG ?
TN J0121jj 01:21:42.75 +13:20:58.0jj 3.520jj Radio ?
6C1908kk 19:08:23.70 +72:20:11.8kk 3.532kk Radio Unlikely
4C60.07kk 05:12:54.75 +60:30:50.9ll 3.791kk Radio Unlikely
4C41.17Rmm 06:50:52.24 +41:30:31.6mm 3.7958±0.0004mm Radio Unlikely
4C41.17Bmm 06:50:52.12 +41:30:30.3mm 3.7888±0.0008mm    
APM 08279nn 08:31:41.70 +52:45:17.4nn 3.9114±0.0002nn QSO µ=7oo
PSS J2322pp 23:22:07.15 +19:44:22.5qq 4.1192±0.0004qq QSO µ=2.5rr
BRI 1335Nss 13:38:03.42 -04:32:34.1tt 4.4074±0.0015uu QSO ?
BRI 1335S 13:38:03.40 -04:32:35.4tt 4.407tt    
BRI 0952aa 09:55:00.10 -01:30:07.1aa 4.4337±0.0003aa QSO µ=4aa
BR 1202Nvv 12:05:22.98 -07:42:29.9tt 4.6916tt QSO Likely
BR 1202Svv 12:05:23.12 -07:42:32.9tt 4.6947tt    
TN J0924yy 09:24:19.92 -22:01:41.5yy 5.203yy Radio Unlikely
SDSS J1148ww 11:48:16.64 +52:51:50.3ww 6.4189±0.0006xx QSO Yes

a Reference is to discovery paper; b Greve et al. (2004b); c Planesas et al. (1999);
d Krips et al. (2004); e Andreani et al. (2000); f Greve, Ivison & Papadopoulos (2003);
g Brown & Vanden Bout (1991), Solomon, Downes & Radford (1992a); h Downes & Solomon (2003);
i Neri et al. (2003); j Scoville et al. (1997); k Alloin, Barvainis & Guilloteau (2000);
l Smail et al. (1999); m Sheth et al. (2004); n Kneib et al. (2004b); o Barvainis et al. (1994);
p Center of four lensed components, Kneib et al. (1998); q Barvainis et al. (1997);
r Venturini & Solomon (2003); s Frayer et al. (1999); t Downes & Solomon (2003);
u Hainline et al. (2004); v Beelen et al. (2004); w Barvainis et al. (1998);
x Hewitt et al. (1992); y Baker et al. (2004); z K. Izaak, private communication;
aa Guilloteau et al. (1999); bb Hewett et al. (1995); cc Barvainis & Ivison (2002a);
dd Frayer et al. (1998); ee Genzel et al. (2003); ff Knudsen et al. (2003); gg De Breuck et al. (2003b);
hh Barvainis, Alloin & Bremer (2002); ii Cowie, Barger & Kneib (2002);
jj De Breuck, Neri & Omont (2003a); kk Papadopoulos et al. (2000); ll Greve, Ivison & Papadopoulos (2004);
mm De Breuck et al. (2005); nn Downes et al. (1999); oo Lewis et al. (2002); pp Cox et al. (2002);
qq Carilli et al. (2002b); rr Carilli et al. (2003); ss Guilloteau et al. (1997); tt Carilli et al. (2002b);
uu Carilli, Menten & Yun (1999); vv Omont et al. (1996b) & Ohta et al. (1995); ww Walter et al. (2003);
xx Bertoldi et al. (2003b); yy Klamer et al. (2005).


Appendix 2

EMG Transition S Deltav Deltav S(peak) L'(app.) L'(int.) Mgas
  (Jy km s-1) (km s-1) (mJy) (1010 L'*)a (1010 L'*)a (1010 Modot)

SMM J02396 CO 2-1b 3.4 ± 0.3 780 ±60 ~ 5 5.1 ± 0.5 2.0 1.6
Q0957+561A(r) CO 2-1c 0.34 ± 0.06 160 ± 20 2.1 ± 0.2 0.9 ± 0.2 0.6 0.4
Q0957+561A(b) CO 2-1c 0.25 ± 0.06 280 ± 60 0.9 ± 0.2 0.7 ± 0.2 0.4 0.4
Q0957+561B CO 2-1c 0.61 ± 0.06 280 ± 50 2.2 ± 0.2 1.6 ± 0.2 0.4 0.4
HR10 CO 1-0d 0.6 ± 0.1 - ~ 0.7 6.5 ± 1.1 - 5.2µ-1
  CO 2-1e 1.45 400 ~ 4 3.8 -  
  CO 5-4e 1.35 380 ~ 7 0.6 -  
IRAS F10214 CO 3-2f 4.1 ± 0.6 220 ± 20 14.5 ± 1.5 11.3 ± 1.7 0.7 0.6
  4-3f 5.5 ± 1.0 220 ± 40 23 ± 4 8.6 ± 0.16 0.5  
  6-5f 8.5 ± 2.0 200 ± 30 32 ± 6 5.9 ± 1.4 0.4  
  7-6f 7.1 ± 2.0 210 ± 40 19 ± 5 3.6 ± 1.0 0.2  
  HCN 1-0g 0.05 ± 0.01 140 ± 30 0.45 ± 0.08 2.3 ± 0.4 0.14 1.0
  [C I] 1-0h 1.6 ± 0.2 160 ± 30 9.2 ± 1.0 2.1 ± 0.3 -  
SMM J16371 CO 3-2b 1.0 ± 0.2 830 ± 130 ~ 1 3.0 ± 0.6 - 2.4µ-1
SMM J16368 CO 3-2i 2.3 ± 0.2 840 ± 110 ~ 3 6.9 ± 0.6 - 5.5µ-1
53W002 CO 3-2j 1.20 ± 0.15 420 ± 40 2.5 ± 0.8 3.6 ± 0.4 3.6 2.9
SMM J16366 CO 3-2b 1.8 ± 0.3 870 ± 80 ~ 2 5.6 ± 0.9 - 4.5µ-1
SMM J04431 CO 3-2i 1.4 ± 0.2 350 ± 60 3.5 ± 0.5 4.5 ± 0.6 1.0 0.8
SMM J16359A CO 3-2k 1.6 ± 0.13 ~ 500 ~ 4 5.5 ± 0.4 0.4 0.4
SMM J16359B CO 3-2k 2.50 ± 0.12 ~ 500 ~ 7 8.2 ± 0.4 0.4 0.4
SMM J16359C CO 3-2k 1.58 ± 0.17 ~ 500 ~ 4 5.2 ± 0.6 0.6 0.4
Cloverleaf CO 3-2l 13.2 ± 0.2 416 ± 6 30.0 ± 1.7 44 ± 1 4.0 3.2
  4-3m 21.1 ± 0.8 375 ± 16 53 ± 2 40 ± 2 3.6  
  5-4m 24.0 ± 1.4 398 ± 25 56 ± 3 29 ± 2 2.6  
  7-6n 36 ± 6 ~ 450 80 ± 8 22 ± 4 2.0  
  HCN 1-0o 0.069 ± 0.012 ~ 300 0.24 ± 0.04 3.5 ± 0.6 0.32 2.2
  [C I] 1-0h 3.9 ± 0.6 360 ± 60 11.2 ± 2.0 6.5 ± 1.0 -  
  2-1l 5.2 ± 0.3 468 ± 25 13.2 ± 2.9 3.2 ± 0.2 -  
SMM J14011 CO 3-2p 2.8 ± 0.3 190 ± 11 13.2 ± 1.0 9.4 ± 1.0 0.4-1.9 0.3-1.5
  7-6p 3.2 ± 0.5 170 ± 30 12.4 ± 3.0 2.0 ± 0.3 0.08-0.4  
  [C I] 1-0h 1.8 ± 0.3 235 ± 45 7.3 ± 1.5 3.0 ± 0.5 -  
VCV J1409 CO 3-2q 2.3 ± 0.2 311 ± 28 6 ± 1 7.9 ± 0.7 - 6.3µ-1
  7-6q 4.1 ± 1.0 ~ 300 10 ± 3 2.6 ± 0.6 -  
  1-0r 0.007 ± 0.002 ~ 200 0.08 ± 0.03 0.7 ± 0.2 - 4.9µ-1
LBQS 0018 CO 3-2s 1.55 ± 0.26 163 ± 29 - 5.4 ± 0.9 - 4.3µ-1
MG0414 CO 3-2t 2.6 ± 0.5 ~ 580 4.4 9.2 - 7.4µ-1
MS1512-cB58 CO 3-2u 0.37 ± 0.08 175 ± 45 ~ 2 1.4 ± 0.3 0.043 0.03
LBQS 1230 CO 3-2v 0.80 ± 0.26 - - 3.0 ± 1.0 - 2.4µ-1
RX J0911.4 CO 3-2w 2.9 ± 1.1 350 ± 60 ~ 8 11.3 ± 4.3 0.52 0.4
SMM J02399 CO 3-2x 3.1 ±0.4 ~ 1100 ~ 4 12.2 ± 1.6 4.9 3.9
SMM J04135 CO 3-2w 5.4 ± 1.3 340 ± 120 ~ 16 22 ± 5 17 13.0
B3 J2330 CO 4-3y 1.3 ± 0.3 ~ 500 2.5 3.4 ± 0.8 3.4 2.7
SMM J22174 CO 3-2b 0.8 ± 0.2 780 ± 100 ~ 1 3.7 ± 0.9 - 3.0
MG 0751 CO 4-3z 5.96 ± 0.45 390 ± 40 ~ 15 16 ± 1 1.0 0.8
SMM J09431 CO 4-3i 1.1 ± 0.1 420 ± 50 2.5 ± 0.5 3.2 ± 0.3 2.7 2.2
SMM J13120 CO 4-3b 1.7 ± 0.3 530 ± 50 ~ 3 5.2 ± 0.9 - 4.2µ-1
TN J0121 CO 4-3aa 1.2 ± 0.4 ~ 700 ~ 2 5.4 ± 1.0 5.4 4.3
6C1908 CO 4-3bb 1.62 ± 0.30 530 ± 70 ~ 3 5.2 ± 1.0 5.2 4.2
4C60.07 CO 1-0cc 0.15 ± 0.03 ~ 550 0.27 ± 0.05 8.7 ± 1.7 8.7 7.0
  CO 1-0cc 0.09 ± 0.01 165 ± 24 0.30 ± 0.10 5.2 ± 0.6 5.2 4.2
  4-3bb 1.65 ± 0.35 ~ 550 ~ 3 6.0 ± 0.9 6.0  
  4-3bb 0.85 ± 0.2 ~ 150 ~ 6 3.0 ± 0.2 3.0  
4C41.17R CO 4-3dd 1.20 ± 0.15 500 ± 100 ~ 2.5 4.3 ± 0.5 4.3 5.2
4C41.17B CO 4-3dd 0.60 ± 0.15 500 ± 150 ~ 1.5 2.2 ± 0.5 2.2 5.2
APM 08279 CO 1-0ee 0.150 ± 0.045 - - 9.1 ± 2.7 1.3 1.0
  4-3ff 3.7 ± 0.5 480 ± 35 7.4 ± 1.0 14 ± 2 2.0  
  9-8ff 9.1 ± 0.8 ~ 500 17.9 ± 1.4 6.8 ± 0.6 1.0
(N/NE comp.)gg 2-1ee 1.15 ± 0.54 - - 17 ± 8 -  
PSS J2322 CO 1-0hh 0.19 ± 0.08 200 ± 70 0.9 ± 0.2 12 ± 5 5.0 4.0
  2-1hh 0.92 ± 0.30 - 2.70 ± 0.24 15 ± 5 6.1  
  4-3ii 4.21 ± 0.40 375 ± 40 10.5 17.3 ± 1.6 6.9  
  5-4ii 3.74 ± 0.56 275 ± 50 12 9.8 ± 1.5 3.9  
  [C I] 1-0jj 0.81 ± 0.12 319 ± 66 2.4 3.3 ± 0.5 -  
BRI 1335N CO 2-1kk 0.18 ± 0.06 - 0.45 ± 0.14 3.3 ± 1.1 - 2.6µ-1
BRI 1335S CO 2-1kk 0.26 ± 0.06 - 0.67 ± 0.14 4.8 ± 1.1 - 3.8µ-1
BRI 1335 CO 5-4ll 2.8 ± 0.3 420 ± 60 6 ± 1 8.2 ± 0.9 - 6.6µ-1
BRI 0952 CO 5-4v 0.91 ± 0.11 230 ~ 3 2.8 ± 0.3 0.7 0.5
BR 1202N CO 2-1kk 0.26 ± 0.05 - 0.44 ± 0.07 5.2 ± 1.0 - 4.2
  5-4mm 1.3 ± 0.3 ~ 350 ~ 3 4.2 ± 1.0 -  
BR 1202S CO 2-1kk 0.23 ± 0.04 - 0.77 ± 0.10 4.6 ± 0.8 - 3.7
  5-4mm 1.1 ± 0.2 ~ 190 ~ 5 3.5 ± 0.6 -  
BR 1202 CO 4-3mm 1.5 ± 0.3 - - 7.6 ± 1.5 - 6.1
  7-6mm 3.1 ± 0.9 ~ 275 ~ 10 5.1 ± 1.5 -  
TN J0924 CO 1-0 0.087 ± 0.017 ~ 300 0.52 ± 0.12 8.2 ± 1.6 8.2 6.6
  5-4 1.19 ± 0.27 ~ 300 7.8 ± 2.7 4.5 ± 1.0 4.5  
SDSS J1148 CO 3-2nn 0.18 ± 0.04 ~ 250 ~ 0.6 2.6 ± 0.6 - 2.1µ-1
  6-5oo 0.73 ± 0.076 ~ 280 ~ 2.5 2.6 ± 0.3 -  
  7-6oo 0.640 ± 0.088 ~ 280 ~ 2.1 1.7 ± 0.2 -  

a L'* = K km s-1 pc2; b Greve et al. (2004b); c Krips et al. (2003); d Greve, Ivison & Papadopoulos (2003);
e Andreani et al. (2000); f D. Downes & P.M. Solomon, manuscript in preparation;
g Vanden Bout, Solomon & Maddalena (2004); h Weiß et al. (2005); i Neri et al. (2003);
j Alloin, Barvainis & Guilloteau (2000); k Kneib et al. (2004b); l Weiß et al. (2003);
m Barvainis et al. (1997); n Kneib et al. (1998); o Solomon et al. (2003); p Downes & Solomon (2003);
q Beelen et al. (2004); r Carilli et al. (2004); s K. Izaak, private communication;
t Barvainis et al. (1998); u Baker et al. (2004); v Guilloteau et al. (1999); w Hainline et al. (2004);
x Genzel et al. (2003); y De Breuck et al. (2003a); z Barvainis, Alloin & Bremer (2002);
aa De Breuck et al. (2003b); bb Papadopoulos et al. (2000); cc Greve, Ivison & Papadopoulos (2004);
dd De Breuck et al. (2005); ee Papadopoulos et al. (2001); ff Downes et al. (1999);
gg Components lie 2-3" to N and NE and may be unrelated to the nuclear source;
hh Carilli et al. (2002b); ii Cox et al. (2002); jj Pety et al. (2004); kk Carilli et al. (2002b);
ll Guilloteau et al. (1997); mm Omont et al. (1996b); nn Walter et al. (2003); oo Bertoldi et al. (2003b).
 

Appendix 3.

EMG Band Flux density LFIR(app.) LFIR(int.) Mdust
  (µm) (mJy) (1012 Lodot) (1012 Lodot) (108 Modot)

SMM02396 850 a 11 16.3a 6.5a  
  450 a 42 16.3a 6.5a  
Q0957+561 850 b 7.5±1.4 14c 6c 2.5b
HR10 1350 d 2.13 ± 0.63 6.5d   6.8µ-1 d
  850 d 4.89 ± 0.74 6.5d   6.8µ-1 d
  450 d 32.3 ± 8.5 6.5d   6.8µ-1 d
  850 e 8 ± 2 9e   9µ-1 e
IRAS F10214 1410 f 5.7 ± 1.0 60f 3.6f 0.23f
  1240 f 10 ± 2 60f 3.6f  
  1230 g 9.6 ± 1.4 60f 3.6f  
  1100 h 24 ± 5 60f 3.6f  
  850 h 50 ± 5 60f 3.6f  
  450 i 273 ± 45 60f 3.6f  
  350 j 383 ± 51 60f 3.6f  
SMM J16371 1300 k 4.2 ± 1.1      
  850 l 11.2 ± 2.9      
SMM J16368 1300 m 2.5 ± 0.4      
  850 n 8.2 ± 1.7 16c    
53W002 1300 o 1.7 ± 0.4      
SMM J16366 850 n 10.7 ± 2.0 20c    
SMM J04431 1300 l 1.1 ± 0.3      
  850 p 7.2 ± 1.7 13m 3m  
SMM J16359 1350 q 3.0 ± 0.7      
SMM J16359A 850 r 11 ± 1 45r 1r 2s
  450 r 45 ± 9 45r 1r 2s
SMM J16359B 850 r 17 ± 2 45r 1r 2s
  450 r 75 ± 15 45r 1r 2s
SMM J16359C 850 r 9 ± 1 45r 1r 2s
  450 r 32 ± 6 45r 1r 2s
Cloverleaf 1300 b 18 ± 2 59t 5.4t 1.5t
  850 b 58.8 ± 8.1 59t 5.4t 1.5t
  450 b 224 ± 38 59t 5.4t 1.5t
  350 j 293 ± 14 77j 7j 3.5j
SMM J14011 1350 u 2.5 ± 0.8 20u 0.8-4.0u 0.13-0.65v
  850 w 14.6 ± 1.8      
  450 w 41.9 ± 6.9      
VCV J1409 1300 x 10.7 ± 0.6 43x    
  350 y 159 ± 14y 35y   38µ-1 x
LBQS 0018 850 z 17.2 ± 2.9 33c    
MG0414 b 40 ± 2      
  1300 b 20.7 ± 1.3      
  850 b 16.7 ± 3.8 32c    
  450 b 66 ± 16      
MS1512-cB58 1200 aa 1.06 ± 0.35      
  850 bb 4.2 ± 0.9 3.1bb 0.1bb  
LBQS 1230 1350 cc 3.3 ± 0.5      
  1250 cc 7.5 ± 1.4      
  350 j 104 ± 21 36j   11µ-1 j
RX J0911.4 3000 b 1.7 ± 0.3      
  1300 b 10.2 ± 1.8      
  850 b 26.7 ± 1.4 51c 2.3c  
  450 b 65 ± 19      
  350 dd ~ 50      
SMM J02399 1270 ee 7.0 ± 1.2      
  1350 ff 5.7 ± 1.0 11 ff 4.4 ff 6-8 ff
  850 ff 26 ± 3 11 ff 4.4 ff 6-8 ff
  750 ff 28 ± 5 11 ff 4.4 ff 6-8 ff
  450 ff 69 ± 15 11 ff 4.4 ff 6-8 ff
SMM J04135 850 gg 25.0 ± 2.8 31 gg 24 gg 18 gg
  450 gg 55 ± 17 31 gg 24 gg 18 gg
B3 J2330 1200 hh 4.8 ± 1.2 28 hh 28 hh  
  850 ii 14.1 ± 1.7 13 hh 13 ii  
  450 ii 49 ± 18 13 hh 13 ii  
SMM J22174 850 l 6.3 ± 1.3 12c    
MG 0751 3000 jj 4.1 ± 0.5      
  1300 jj 6.7 ± 1.3      
  850 b 25.8 ± 1.3 49c 2.9c  
  450 b 71 ± 15      
SMM J09431 1300 m 2.3 ± 0.4      
  850 kk 10.5 ± 1.8 20m 17m  
SMM J13120 850 ll 6.2 ± 1.2 12c    
TN J0121 850 ii 7.5 ± 1.0 7ii 7ii  
6C1908 850 ii 10.8 ± 1.2 9.8ii 9.8ii  
4C60.07 1250 mm 4.5 ± 1.2      
  850 ii 14.4 ± 1.0 13ii 13ii  
  850 nn 17.1 ± 1.3 32c    
  450 nn 69 ± 23      
4C41.17 1245 oo 3.4 ± 0.7      
  850 nn 12.1 ± 0.9      
  450 nn 22.5 ± 8.5      
  350 j 37 ± 9 20j 20j 4.6j
APM 08279 3200 pp 1.2 ± 0.3      
  1400 pp 17.0 ± 0.5      
  1300 b 24 ± 2      
  850 b 84 ± 3      
  450 b 285 ± 11      
  350 y 392 ± 36 200y 29y 5.8y
PSS J2322 1200 qq 9.6 ± 0.5     9.0qq
  1350 rr 7.5 ± 1.3 23 rr 9.3 rr  
  850 rr 24 ± 2 23 rr 9.3 rr  
  450 rr 79 ± 19 23 rr 9.3 rr  
  350 y 66 ± 9 30y 12y 9.6y
BRI 1335 1350 cc 5.6 ± 1.1      
  1250 cc 10.3 ± 1.4      
  350 j 52 ± 8 28j   17µ-1 j
BRI 0952 1350 cc 2.2 ± 0.5 9.6cc 2.4cc 0.7cc
  1250 cc 2.78 ± 0.63      
  850 b 13.4 ± 2.3 25c 6.4c  
BR 1202 1350 cc 16 ± 2      
  350 j 106 ± 7 71j   19j
SDSS J1148 1200 ss 5.0 ± 0.6 25tt   6.7µ-1 ss
  850 tt 7.8 ± 0.7 25tt   2.8µ-1 tt
  450 tt 24.7 ± 7.4 25tt    
  350 y 23 ± 3 27y   4.4µ-1 y

a Smail et al. (2002); b Barvainis & Ivison (2002); c Using LFIR = 1.9 × 1012 S850, Neri et al. (2003);
d Dey et al. (1999)e Greve, Ivison & Papadopoulos (1999);
f D. Downes & P.M. Solomon, manuscript in preparation; g Downes et al. (1992);
h Rowan-Robinson et al. (1993); i Clements et al. (1992); j Benford et al. (1999);
k Greve et al. (2004c); l Chapman et al. (2005); m Neri et al. (2003); n Ivison et al. (2002);
o Alloin, Barvainis & Guilloteau (2000); p Smail et al. (1999); q Kneib et al. (2004a);
r Kneib et al. (2004b); s Sheth et al. (2004); t Weiß et al. (2003); u Downes & Solomon (2003);
v Mean for µ = 5-25, Downes & Solomon (2003); w Ivison et al. (2000); x Omont et al. (2003);
y A. Beelen, P. Cox, D.J. Benford, C.D. Dowell, A. Kovacs, et al., manuscript in preparation;
z Priddey et al. (2003); aa Baker et al. (2001); bb van der Werf et al. (2001); cc Guilloteau et al. (1999);
dd J.-W. Wu, private communication; ee Genzel et al. (2003); ff Ivison et al. (1998);
gg Knudsen, van der Werf & Jaffe (2003); hh De Breuck et al. (2003a); ii Reuland et al. (2004);
jj Barvainis, Alloin & Bremer (2002); kk Cowie, Barger & Kneib (2002); ll Chapman et al. (2003);
mm Papadopoulos et al. (2000); nn Archibald et al. (2001); oo De Breuck et al. (2005);
pp Downes et al. (1999); qq Omont et al. (2001); rr Cox et al. (2002);
ss Bertoldi et al. (2003a); tt Robson et al. (2004).

Next Contents Previous