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Abstract

From time to time, and quite more frequently in recent years, claims
appear favoring a variable Initial Mass Function (IMF), one way or an-
other, either in time or space. In this chapter we add our two pennies
of wisdom, illustrating how the IMF affects various properties of galax-
ies and galaxy clusters. We start by showing that even relatively small
variations of the IMF slope have large effects on the demography of stel-
lar populations, moving the bulk of the stellar mass from one end to the
other of the distribution. We then point out how the slope of the IMF
in different mass ranges controls specific major properties of galaxies and
clusters. The slope of the IMF below ∼ 1 M⊙ controls the M/L ratio of
local ellipticals, whereas the slope between ∼ 1 and ∼ 1.4 M⊙ controls the
evolution with redshift of such ratio, hence of the fundamental plane of
elliptical galaxies. Similarly, the slope between ∼ 1 and ∼ 40 M⊙ drives
the ratio of the global metal mass in clusters of galaxies to their total
luminosity. While we believe that it is perfectly legitimate to entertain
the notion that the IMF may not be universal, our message is that when
proposing IMF variations to ease a specific problem then one should not
neglect to explore the full consequences of the invoked variations.

This paper is integrally reproduced from Chapter 8 of the book by L.
Greggio & A. Renzini: Stellar Populations. A User Guide from Low to

High Redshift (2011, Wiley-VHCVerlag-GmbH& Co., ISBN 9783527409181),
whose index is also appended.

∗e-mail: laura.greggio@oapd.inaf.it, alvio.renzini@oapd.inaf.it
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The IMF from Low to High Redshift

At all redshifts much of galaxy properties depend on the IMF, including mass-
to-light ratios, derived galaxy masses and star formation rates, the rate of the
luminosity evolution of the constituent stellar populations, the metal enrich-
ment, and so on . With so many important issues at stake, we still debate
as to whether the IMF is universal, that is, the same in all places and at all
cosmic times, or whether it depends on local conditions such as the intensity
of star formation (starburst vs. steady star formation), or on cosmic time, for
example, via the temperature of the microwave background. As is well known,
we do not have anything close to a widely accepted theory of the IMF, and this
situation is likely to last much longer than desirable. Again, star formation is an
extremely complex (magneto)hydrodynamical process, indeed much more com-
plex than stellar convection or red giant mass loss, for which we already noted
the absence of significant theoretical progress over the last 40-50 years. Thus,
the IMF is parametrized for example., as one or more power laws or as a log-
normal distribution, and the parameters are fixed from pertinent observational
constraints. Wherever the IMF has been measured from statistically significant
stellar counts, a Salpeter IMF has been found, that is, φ(M) ∝ M−s, with
s = 1+ x ≃ 2.35, however with a flattening to s ≃ 1.3 below ∼ 0.5M⊙. Specifi-
cally, where possible, this has been proved for stellar samples including the solar
vicinity, open and globular clusters in the Galaxy and in the Magellanic Clouds,
actively starbursting regions, as well as the old galactic bulge. Nevertheless,
this does not prove the universality of the IMF, as –with one exception– more
extreme environments have not been tested yet in the same direct fashion. The
exception is represented by the very center the of the Milky Way, in the vicin-
ity of the supermassive black hole, a very extreme environment indeed, where
very massive stars seem to dominate the mass distribution. In this chapter we
discuss a few aspects of the IMF, using some of the stellar population tools
that have been illustrated in the previous chapters, and exploring how specific
integral properties of stellar populations depend on the IMF slope in specific
mass intervals. In particular, the dependence on the IMF of the mass-to-light
ratio of stellar populations is illustrated, along with its evolution as stellar pop-
ulations passively age. Then the M/L ratios of synthetic stellar populations,
and their time evolution, are compared to the dynamical M/L ratios of local
elliptical galaxies, as well as to that of ellipticals up to redshift ∼ 1 and beyond.
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These comparisons allow us to set some constraint on the low-mass portion of
the IMF, from ∼ 0.1 to ∼ 1.4M⊙. A strong constraint of the IMF slope from
∼ 1M⊙ up to ∼ 40M⊙ and above is then derived from considering the metal
content of clusters of galaxies together with their integrated optical luminosity.

8.1

How the IMF Affects Stellar Demography

For a fixed amount of gas turned into stars, different IMFs obviously imply
different proportions of low mass and high mass stars. This is illustrated in
Figure 8.1 showing three different IMFs, all with the same slope below 0.5M⊙,
that is s = 1 + x = 1.35, and three different slopes above:

φ(M) = AM−s for M ≥ 0.5M⊙

= 0.51.3−sAM−1.3 for M ≤ 0.5M⊙

(8.1)

where the factor 0.51.3−s ensures the continuity of the IMF at M = 0.5M⊙.
The normalization of the three IMFs corresponds to a fixed amount M of gas
turned into stars, that is, for fixed

M =

∫ 120

0.1

Mφ(M)dM. (8.2)

Here the case s = 2.35 corresponds to the Salpeter-diet IMF already encoun-
tered in previous chapters. Thick lines in Figure 8.1b show the cumulative
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Figure 8.1: Left: three different IMFs normalized to have the same total stellar mass of
1 M⊙. Below 0.5M⊙ all three IMFs have the same slope s =1.3 and above it s =1.5,
2.35 (Salpeter) and 3.35, shown as dashed, solid, and dot-dashed lines, respectively. Right:
cumulative distributions of the number (thick lines) and of the stellar mass (thin lines) for
the three IMFs with the same line encoding as in the left panel.
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Figure 8.2: The scale factor A as a function of the IMF slope. All IMFs are normalized to
a unitary total mass. Also shown is the corresponding mass-to-number conversion factor Kφ,
such that the total number of stars is given by Kφ times the mass turned into stars (in solar
units).

distributions, defined as the number of stars with mass less than M , N(M ′ <

M) =
∫M

0.1
φ(M ′)dM ′, while thin lines show the fraction of mass in stars less

massive than M . In a Salpeter-diet IMF ∼ 0.6% of all stars are more massive
than 8 M⊙, while for s = 3.35 and 1.5 these fractions are 0.03% and 9% respec-
tively. The mass in stars heavier than 8 M⊙ is 20% for a Salpeter-diet IMF; it
drops to 1% for s = 3.35, and is boosted to 77 % for s = 1.5, a top-heavy IMF.
Figure 8.1 wants to convey the message that IMF variations have a drastic effect
on stellar demography, and therefore on several key properties of stellar popula-
tions. Suffice it to say that most of the nucleosynthesis comes from M > 10M⊙

stars, whereas the light of an old population (say, t > 10 Gyr) comes from stars
with M ≃ 1M⊙, and therefore is proportional to φ(M = M⊙).

Figure 8.2 shows the variation of scale factor A (cf. Chapter 2) as a function
of the IMF slope, again for a fixed amount M of gas turned into stars. The
scale factor A has a maximum for s ≃ 2.75, pretty close to the Salpeter’s slope.
Since by construction A = φ(M = 1M⊙) and the luminosity of a >

∼10 Gyr
old population is proportional to φ(M = 1M⊙), an IMF with the Salpeter’s
slope has the remarkable property of almost maximizing the light output of
an old population, for fixed mass turned into stars. A flat IMF (s = 1.35) is
much less efficient in this respect, indeed by a factor of ∼ 8 compared to the
Salpeter’s slope, as shown by Figure 8.2. This figure also shows the mass-to-
number conversion factor Kφ, giving the number of stars NT formed out of a
unit amount of gas turned into stars, that is, NT = KφM/M⊙. Thus, for a
Salpeter-diet IMF Kφ ≃ 1.5, saying that ∼ 150 stars are formed out of 100M⊙
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of gas turned into stars.
An empirically motivated, broken-line IMF such as that shown in Figure 8.1

is widely adopted in current astrophysical applications, yet Nature is unlike to
make such a cuspy IMF. Perhaps a more elegant rendition of basically the same
empirical data is represented by a Salpeter+lognormal distribution in which a
lognormal IMF at low masses joins smoothly to a Salpeter IMF at higher masses,
that is:

Mφ(M) = A1 exp [−(LogM − LogMc)
2/2σ2], for M ≤ 1M⊙

= A2M
−x, for M > 1M⊙

(8.3)

where A1 = 0.159, Mc = 0.079, σ = 0.69, A2 = 0.0443 and x = 1.3. Thus,
this Chabrier IMF is almost identical to the Salpeter IMF above 1M⊙, and
smoothly flattens below, being almost indistinguishable from the Salpeter-diet
IMF.

Explorations of variable IMFs can be made by either changing its slope,
or by moving to higher/lower masses the break of the IMF slope with respect
to Equation (8.1), or allowing the characteristic mass Mc in Equation (8.3) to
vary. Figure 8.3 shows examples of such evolving IMFs. The two slope IMF
with Mbreak = 0.5M⊙ and the Chabrier IMF with Mc = 0.079M⊙ (lines a
and c in Figure 8.3) fit each other extremely well and both provide a good fit
to the local empirical IMF. By moving the break/characteristic mass to higher
values one can explore the effects of such evolving IMF, for example mimicking
a systematic trend with redshift. The cases with Mc ≃ Mbreak ≃ 4M⊙ are

Figure 8.3: Examples of evolving IMFs, for a two-slope IMF and a Chabrier-like IMF. Lines
a and c represent the local IMF. The other lines show modified IMFs to explore a hypothetical
evolution with redshift, with the break mass and the characteristic mass Mc having increased
to ∼ 4M⊙, lines b and d respectively for the two-slope and the Chabrier-like IMF. All IMFs
have been normalized to have the same value for M = M⊙.

shown in Figure 8.3 (lines b and d). Having normalized all IMFs to the same
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value of φ(M = 1M⊙), Figure 8.3 allows one to immediately gauge the relative
importance of massive stars compared to solar mass stars, with the latter ones
providing the bulk of the light from old (>∼10 Gyr) populations.

8.2

The M/L Ratio of Elliptical Galaxies and the IMF Slope Below 1M⊙

Figure 8.4 shows as a function of age the M∗/LB ratio (where M∗ is the stellar
mass) for SSPs with solar composition, and different IMFs each with a single
slope s over the whole mass range 0.1 ≤ M ≤ 100M⊙. Very large mass-to-light
ratios are produced by either very flat (s = 1.35) or very steep (s = 3.35) IMFs,
whereas the Salpeter’s slope gives the lowest values of the M∗/LB ratio. This
is a result of the different stellar demography already illustrated in Figures 8.1
and 8.2, such that a steep IMF is dwarf dominated, that is, most of the mass
is in low-mass stars, whereas a flat IMF is remnant dominated and most of the
mass is in dead remnants.

Figure 8.4: The stellar mass-to-light ratio of solar metallicity SSPs as a function of age, for
three different single slope IMFs, from 0.1 to 100 M⊙. Also plotted are values of the dynamical
M/L ratio for a sample of local elliptical galaxies with detailed dynamical modelling (source:
M/L ratios for models: Maraston, C. (1998, Mon. Not. R. Astron. Soc., 300, 872); for the
data: Cappellari, M. et al. (2006, Mon. Not. R. Astron. Soc., 366, 1126), van der Marel,
R.P. and van Dokkum, P. (2007, Astrophys. J., 668, 756), van Dokkum, P. and van der Marel,
R.P. (2007, Astrophys. J., 655, 30); ages: from Eq. (1) in Thomas, D. et al. (2010, Mon.

Not. R. Astron. Soc., 404, 1775)).

Measurements of the structure (e.g., half light radius) and stellar velocity
dispersion of elliptical galaxies provide estimates of their dynamical mass, hence
their dynamical mass-to-light ratio can be compared to the stellar M/L ratio.
This is shown in Figure 8.4 for a sample of local elliptical galaxies with de-
tailed dynamical modelling, having adopted a relation between the luminosity-
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weighted age of their stellar populations and velocity dispersion, namely
Log(Age/Gyr) = −0.11+0.47 Log(σv), consistent with Eq. (6.16). Clearly very
steep (s = 3.5) and very flat (s = 1.5) slopes of the IMF appear to be excluded
by the data, whereas the intermediate (Salpeter) slope is quite consistent with
the data, apart from the older galaxies which have a higher M/L ratio than the
SSP models. However, besides an increase of age also the average metallicity is
likely to increase with σv, with the galaxies in Figure 8.4 spanning a range from
∼ 1/2 solar to ∼ 2 times solar. Thus, the same galaxies are displayed again
in Figure 8.5, together with model M/L ratios for a straight Salpeter IMF and
three different metallicities. The trend in M/L ratio exhibited by the data ap-
pears to be consistent with the trend resulting from the metallicity trend with
σv, and with a straight Salpeter IMF. However, things may not be as simple as
they appear. Dark matter may contribute to the dynamicalM/L ratios, and the
IMF may not be straight Salpeter. A Salpeter-diet IMF such as that shown in
Figure 8.1 would give M∗/LB ratios systematically lower by ∼ 40% than shown
in these figures, thus opening some room for a dark matter contribution to the
dynamical mass of these galaxies. Alternatively, an IMF slightly flatter than
Salpeter at high masses, with its larger contribution by stellar remnants, would
reproduce the high dynamical M/L ratios of the oldest galaxies, without dark
matter contribution. It is quite difficult to circumvent this dark-matter/IMF
degeneracy on the dynamical M/L ratios of elliptical galaxies.

Figure 8.5: The M/L ratio of SSPs with a straight Salpeter IMF, for subsolar (dotted),
supersolar (dashed) and solar metallicity (solid), as indicated. The two solid lines refer to
two releases of the same set of SSP models (source: model M/L ratios are from Maraston, C.
(1998, Mon. Not. R. Astron. Soc., 300, 872; 2005, Mon. Not. R. Astron. Soc., 362, 799);
data points are the same as in Figure 8.4).
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8.3

The Redshift Evolution of the M/L Ratio of Cluster Ellipticals and

the IMF Slope Between ∼ 1 and ∼ 1.4M⊙

The slope of the IMF controls the rate of luminosity evolution of a SSP, as
shown by Figure 2.6 for the bolometric light. The flatter the IMF the more rapid
the luminosity declines past an event of star formation. On the contrary, the
steeper the IMF the slower such decline, as the light from many low-mass stars
compensates for the progressive death of the rarer, more massive and brighter
stars. Having identified and studied passively evolving elliptical galaxies all
the way to z ∼ 2 and even beyond, one expects that their M/L ratio must
systematically decrease with increasing redshift, and do so by an amount that
depends on the slope of the IMF. This test is particularly effective if undertaken
for cluster ellipticals, as clusters provide fairly numerous samples of ellipticals at
well defined redshifts. Besides the IMF, the rate of luminosity (M/L) evolution
also depends on the age of a SSP, being much faster at young ages than at late
epochs. Thus, the rate of M/L evolution of elliptical galaxies with redshift must
depend on both the IMF slope and the luminosity-weighted age of their stellar
populations, or, equivalently on their formation redshift.

We know that the bulk of stars in local massive ellipticals are very old, and
for an age of ∼ 12 Gyr the light of such galaxies comes from a narrow range
around the turnoff mass MTO at ∼ 1M⊙. Their progenitors at z ∼ 1.5 must
be younger by the corresponding lookback time, that is, ∼ 9 Gyr younger, and
from the MTO−age relation (Eq. (2.2)) we see that the bulk of light of such
progenitors has to come from stars of mass around MTO ≃ 1.4M⊙. Thus, the
evolution of the M/L ratio of old stellar populations from redshift zero all the
way to redshift ∼ 1.5 is controlled by the IMF slope in the narrow interval
between ∼ 1 and ∼ 1.4M⊙. The IMF slope below ∼ 1M⊙ has no influence
on the luminosity evolution, and that above ∼ 1.4M⊙ was in control of the
luminosity evolution at redshifts beyond ∼ 1.5. Therefore, the evolution of the
M/L ratio of elliptical galaxies from z = 0 to ∼ 1 allows us to measure the slope
of the IMF just near M ∼ 1M⊙.

Figure 8.6 shows the evolution with redshift of the M∗/LB ratio of solar
composition SSPs, for various IMF slopes and different formation redshifts.
Also plotted is the averageM∗/LB ratio of cluster ellipticals from the literature,
from local clusters at z ∼ 0 all the way to clusters at z ∼ 1.3. A Salpeter slope
(s = 2.35) fits the data for a formation redshift zF between ∼ 2 and ∼ 3,
which is in pretty good agreement with both the formation redshift derived
from age-dating local ellipticals in various ways, and with the observed rapid
disappearance of quenched galaxies beyond z ∼ 2. Assuming that the IMF
at the formation redshift of ellipticals was like line b in Figure 8.3, then with
s = 1.3 at M = 1M⊙ this IMF would require a formation redshift well beyond
3 in order to fit the data. Line d instead, with s = 0.8 at M = 1M⊙ would
fail to match the data even assuming zF = ∞, as shown in Figure 8.6. One can
conclude that the evolution of the M/L ratio of cluster elliptical galaxies up to
redshift ∼ 1.3 does not favor any significant departure from the Salpeter value
s = 2.35 of the slope of the IMF in the vicinity of M ∼ 1M⊙, all the way to a
formation redshift beyond ∼ 2.
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Figure 8.6: The differential redshift evolution (with respect to the value at z = 0) of the
M∗/LB mass-to-light ratio of solar composition SSPs, for various choices of the IMF slope
between ∼ 1 and ∼ 1.4M⊙, and for various assumed formation redshifts zF, as indicated.
The data points refer to the M∗/LB ratio of elliptical galaxies in clusters at various redshifts,
from z ∼ 0 up to z ≃ 1.3. (Updated from Renzini, A. (2005) The Initial Mass Function 50

Years later, (ed. E. Corbelli et al. , Ap. Sp. Sci. Library, 327, 221.).

8.4

The Metal Content of Galaxy Clusters and the IMF Slope Between

∼ 1 and ∼ 40M⊙, and Above

In its youth, a stellar population generates lots of UV photons, core collapse
supernovae and metals that go to enrich the ISM. In its old age, say ∼ 12 Gyr
later, the same stellar population radiates optical-near-IR light from its ∼ 1M⊙

stars, while all more massive stars are dead remnants. The amount of metals
(MX) that are produced by such populations is proportional to the number of
massive starsM>

∼8M⊙ that have undergone a core collapse supernova explosion,
whereas the luminosity (e.g., LB) at t ≃ 12 Gyr is proportional to the number
of stars with M ∼ 1M⊙. It follows that the metal-mass-to-light ratio MX/LB

is a measure of the number ratio of massive to ∼ M⊙ stars, that is, of the
IMF slope between ∼ 1 and ∼ 40M⊙. Clusters of galaxies offer an excellent
opportunity to measure both the light of their dominant stellar populations,
and the amount of metals that such populations have produced in their early
days. Indeed, most of the light of clusters of galaxies comes from ∼ 12 Gyr old,
massive ellipticals, and the abundance of metals can be measured both in their
stellar populations and in the intracluster medium (ICM). Iron is the element
whose abundance can be most reliably measured both in cluster galaxies and in
the ICM, but its production is likely to be dominated by Type Ia supernovae
whose progenitors are binary stars. As extensively discussed in Chapter 7, a
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large fraction of the total iron production comes from Type Ia supernovae, and
the contribution from CC supernovae is uncertain; therefore the MFe/LB ratio
of clusters is less useful to set constraints on the IMF slope between ∼ 1 and
M>

∼10M⊙. For this reason, we focus on oxygen and silicon, whose production
is indeed dominated by core collapse supernovae.

Following the notations in Chapter 2, the IMF can be written as:

φ(M) = a(t, Z)LBM
−s, (8.4)

where a(t, Z) is the relatively slow function of SSP age and metallicity shown
in Figure 2.10, multiplied by the bolometric correction shown in Figure 3.1.
Thus, the metal-mass-to-light ratio for the generic element “X ” can be readily
calculated from:

MX

LB

=
1

LB

∫ 120

8

mX(M)φ(M)dM = a(t, Z)

∫ 120

8

mX(M)M−sdM, (8.5)

where mX(M) is the mass of the element X which is produced and ejected
by a star of mass M . From stellar population models one has a(12Gyr, Z) =
2.22 and 3.12, respectively, for Z = Z⊙ and 2Z⊙ and we adopt a(12Gyr) =
2.5 in Eq. (8.5). Using the oxygen and silicon yields mO(M) and mSi(M)
from theoretical nucleosynthesis (cf. Figure 7.5), Equation (8.5) then gives the
MO/LB andMSi/LB metal mass-to-light ratios that are reported in Figure 8.7 as
a function of the IMF slope between∼ 1 and∼ 40M⊙. As expected, theMO/LB

and MSi/LB are extremely sensitive to the IMF slope. The values observed in
local clusters of galaxies, from X-ray observations of the ICM and assuming
stars are near solar on average, are ∼ 0.1 and ∼ 0.008M⊙/L⊙, respectively for
oxygen and silicon, as documented in Chapter 10. These empirical values are
also displayed in Figure 8.7. A comparison with the calculated values shows that
with the Salpeter IMF slope (s = 2.35) the standard explosive nucleosynthesis
from core collapse supernovae produces just the right amount of oxygen and
silicon to match the observed MO/LB and MSi/LB ratios in clusters of galaxies,
having assumed that most of the B−band light of clusters comes from ∼ 12 Gyr
old populations. Actually, silicon may be even somewhat overproduced if one
allows a ∼ 40% contribution from Type Ia supernovae (cf. Figure 7.17).

Figure 8.7 also shows that with s = 1.35 such a top heavy IMF would
overproduce oxygen and silicon by more than a factor ∼ 20. Such a huge
variation with ∆s = 1 is actually expected, given that for a near Salpeter slope
the typical mass of metal producing stars is ∼ 25M⊙. By the same token, the
IMF labelled b in Figure 8.3 would overproduce metals by a factor ∼ 4 with
respect to a Salpeter-slope IMF (lines a and c ), whereas the IMF labelled d
in Figure 8.3 would do so by a factor ∼ 20. Thus, under the assumptions that
the bulk of the light of local galaxy clusters comes from ∼ 12 Gyr old stars,
that current stellar theoretical nucleosynthesis is basically correct, and that no
large systematic errors affect the reported empirical values of the MO/LB and
MSi/LB ratios, then one can exclude a significant evolution of the IMF with
cosmic time, such as for example, one in which the IMF at z ∼ 3 would be
represented by line b or d in Figure 8.3, and by line a or c at z = 0.
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Figure 8.7: The oxygen and silicon mass-to-light ratios as a function of the IMF slope for
a ∼ 12 Gyr old, near solar metallicity SSP with oxygen and silicon yields from standard
nucleosynthesis calculations. Different lines refer to the different theoretical yields shown in
Figure 7.5a,b. The horizontal lines show the uncertainty range of the observed values of these
ratios in clusters of galaxies, with central values as reported in Chapter 10, and allowing for
a ∼ ±25% uncertainty.

————OOO————

A variable IMF is often invoked as an ad hoc fix to specific discrepancies that
may emerge here or there, which however may have other origins. For example,
an evolving IMF with redshift has been sometimes invoked to ease a perceived
discrepancy between the cosmic evolution of the stellar mass density, and the
integral over cosmic time of the star formation rate. In other contexts it has
been proposed that the IMF may be different in starbursts as opposed to more
steady star formation, or in disks vs. spheroids. Sometimes one appeals to a
top-heavy IMF in one context, and then to a bottom-heavy one in another, as
if it was possible to have as many IMFs as problems to solve. Honestly, we do
not know whether there is one and only one IMF. However, if one subscribes
to a different IMF to solve a single problem, then at the same time one should
make sure the new IMF does not destroy agreements elsewhere, or conflicts with
other astrophysical constraints. While it is perfectly legitimate to contemplate
IMF variations from one situation to another, it should be mandatory to explore
all consequences of postulated variations, well beyond the specific case one is
attempting to fix. This kind of sanitary check is most frequently neglected in
the literature appealing to IMF variations. A few examples of such checks have
been presented in this chapter.
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