Back to the article index


Article Contents

ABSTRACT

1.INTRODUCTION
1.1.History
1.2.Theories of Cosmic Acceleration
1.3.Looking Forward

2.OBSERVABLES, PARAMETERIZATIONS, AND METHODS
2.1.Basic Equations
2.2.Model Parameterizations
2.3.CMB Anisotropies and Large Scale Structure
2.4.Parameter Dependences and CMB Constraints
2.5.Overview of Methods

3.TYPE Ia SUPERNOVAE
3.1.General Principles
3.2.The Current State of Play
3.3.Observational Considerations
3.4.Systematic Uncertainties and Strategies for Amelioration
3.5.Space vs. Ground
3.6.Prospects

4.BARYON ACOUSTIC OSCILLATIONS
4.1.General Principles
4.2.The Current State of Play
4.3.Theory of BAO
4.3.1.Linear Theory
4.3.2.Non-linear Evolution and Galaxy Clustering Bias
4.3.3.Reconstruction
4.3.4.Fitting to Data
4.4.Observational Considerations
4.4.1.Statistical Errors
4.4.2.From BAO to Dark Energy
4.4.3.Sampling Density
4.4.4.Spectroscopic vs. Photometric Redshifts
4.4.5.Tracers of Structure
4.5.Systematic Uncertainties and Strategies for Amelioration
4.5.1.Measurement Systematics
4.5.2.Astrophysical Systematics
4.5.3.Cosmological Systematics
4.6.Space vs. Ground
4.7.Prospects

5.WEAK LENSING
5.1.General principles: Overview
5.2.Weak lensing principles: Mathematical discussion
5.2.1.Deflection of light in cosmology
5.2.2.Cosmic shear, magnification, and flexion
5.2.3.Power spectra and correlation functions*
5.2.4.Method I: Cosmic Shear Power Spectrum*
5.2.5.Method II: Power Spectrum Tomography*
5.2.6.Method III: Galaxy-galaxy Lensing*
5.2.7.Method IV: Cosmography*
5.2.8.Method V: Non-Gaussian Statistics*
5.3.The Current State of Play
5.3.1.Cosmic shear
5.3.2.Galaxy-galaxy lensing as a cosmological probe
5.3.3.Lensing outside the optical bands
5.4.Observational Considerations and Survey Design
5.4.1.Statistical Errors
5.4.2.The Galaxy Population for Optical Surveys
5.4.3.Photometric Redshifts and their Calibration
5.4.4.Lensing in the Radio
5.4.5.Lensing of the CMB
5.5.Measuring Shears
5.5.1.The Idealized Problem
5.5.2.Shape Measurement Algorithms*
5.5.3.Shape Measurement Errors*
5.5.4.Noise Rectification and Selection Biases*
5.5.5.Determining the PSF and Instrument Properties
5.6.Astrophysical systematics
5.6.1.Intrinsic Alignments*
5.6.2.Theoretical uncertainties in the matter power spectrum*
5.7.Systematic Errors and their Amelioration: Summary
5.8.Advantages of a Space Mission
5.9.Prospects

6.CLUSTERS OF GALAXIES
6.1.General Principles
6.2.The Current State of Play
6.3.Observational Considerations
6.3.1.Expected Numbers and Cosmological Sensitivity
6.3.2.Cluster Finding
6.3.3.Calibrating the Observable-Mass Relation
6.4.Systematic Uncertainties and Strategies for Amelioration
6.4.1.Redshift Uncertainties
6.4.2.Contamination and Incompleteness: The Tailsof P(X|M,z)
6.4.3.Calibrating the Core of P(X|M,z)
6.4.4.Theoretical Systematics
6.5.Space vs. Ground
6.6.Prospects

7.ALTERNATIVE METHODS
7.1.Measurement of the Hubble Constant at z ≈ 0
7.2.Redshift-Space Distortions
7.3.The Alcock-Paczynski Test
7.4.Alternative Distance Indicators
7.5.Standard Sirens
7.6.The Lyα Forest as a Probe of Structure Growth
7.7.Other Tests of Modified Gravity
7.8.The Integrated Sachs-Wolfe Effect
7.9.Cross-Correlation of Weak Lensing and Spectroscopic Surveys
7.10.Strong Gravitational Lenses
7.11.Galaxy Ages
7.12.Redshift Drift
7.13.Alternative Methods: Summary

8.A BALANCED PROGRAM ON COSMIC ACCELERATION
8.1.A Fiducial Program
8.2.Forecasting Constraints
8.3.Results: Forecasts for the Fiducial Program and Variations
8.3.1.Constraints in simple w(z) models
8.3.2.Constraints on structure growth parameters
8.3.3.Dependence on w(z) model and binning of data
8.3.4.Constraints on w(z) in the general model
8.4.Forecasts for Clusters
8.5.Forecasts for Alternative Methods
8.5.1.The Hubble constant
8.5.2.The Alcock-Paczynski Test
8.5.3.Redshift-space Distortions
8.5.4.Distances
8.6.Observables and Aggregate Precision
8.7.Prospects with Many Probes

9.CONCLUSIONS

APPENDIX A. GLOSSARY OF ACRONYMS AND FACILITIES

REFERENCES