Back to the article index


Article Contents

ABSTRACT

1.INTRODUCTION

2.THE THREE-DIMENSIONAL DUST RADIATIVE TRANSFER PROBLEM
2.1.The Radiative Transfer Equation
2.2.Primary Emission and Absorption
2.3.Including Scattering
2.4.Radiative Transfer in Dust Mixtures
2.5.Including Dust Emission
2.6.Radiative Transfer of Polarized Radiation

3.THE DISCRETE THREE-DIMENSIONAL DUST RADIATIVE TRANSFER PROBLEM
3.1.Spatial Grids
3.1.1.Local mean intensity storage grids
3.1.2.Density and source grids
3.1.3.Solution grids
3.2.Direction Grid
3.3.Wavelength and Dust Grain Grids

4.THE RAY-TRACING SOLUTION METHOD
4.1.Ray-Tracing Solution for a Single Ray
4.1.1.Beyond the spatial grid resolution
4.1.2.High optical depths
4.2.Ray location and global solution of the RTE
4.2.1.Thermal emission
4.2.2.Including scattered radiation
4.3.Ray-Tracing Error Analysis

5.THE MONTE CARLO SOLUTION METHOD
5.1.Simple MC RT
5.1.1.Step 1: birth.
5.1.2.Step 2: determination of the interaction point.
5.1.3.Step 3: absorption and scattering.
5.2.Weighted MC RT
5.2.1.Biased emission.
5.2.2.Absorption-scattering split.
5.2.3.Forced scattering
5.2.4.Peel-off technique.
5.2.5.Continuous absorption.
5.2.6.Instantaneous dust emission.
5.2.7.High optical depths.
5.2.8.Polychromatism.
5.3.Uncertainties for Monte Carlo

6.CHALLENGES IN MODELING OBSERVATIONS
6.1.Model Choice
6.2.Gridding
6.3.Comparison of Models and Data
6.4.Exploration of the Parameter Space
6.5.Error Analysis
6.6.Inverse RT

7.CODES AND BENCHMARKS
7.1.Available 3D codes
7.2.Benchmark efforts

8.THE FUTURE OF THE FIELD
8.1.Present Status
8.2.General Trends
8.3.Future Benchmarks
8.4.Data Modeling Future
8.5.Future Connections to Nondust Radiative Transfer Codes
8.6.Future Algorithms
8.7.Input Physics Improvements
8.8.Challenges

REFERENCES