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Molecular gas in distant galaxies from ALMA studies
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Abstract ALMA is now fully operational, and has been observing in early
science mode since 2011. The millimetric (mm) and sub-mm domain is ideal to
tackle galaxies at high redshift, since the emission peak of the dust at 100µm
is shifted in the ALMA bands (0.3mm to 1mm) for z=2 to 9, and the CO
lines, stronger at the high-J levels of the ladder, are found all over the 0.3-
3mm range. Pointed surveys and blind deep fields have been observed, and the
wealth of data collected reveal a drop at high redshifts (z > 6) of dusty massive
objects, although surprisingly active and gas-rich objects have been unveiled
through gravitational lensing. The window of the reionization epoch is now
wide open, and ALMA has detected galaxies at z=8-9 mainly in continuum,
[CII] and [OIII] lines. Galaxies have a gas fraction increasing steeply with
redshift, as (1+z)2, while their star formation efficiency increases also but
more slightly, as (1+z)0.6 to (1+z)1. Individual object studies have revealed
luminous quasars, with black hole masses much higher than expected, clumpy
galaxies with resolved star formation rate compatible with the Kennicutt-
Schmidt relation, extended cold and dense gas in a circumgalactic medium,
corresponding to Lyman-α blobs, and proto-clusters, traced by their brightest
central galaxies.

Keywords Galaxies · Early Universe · Re-ionization · molecules

1 Introduction

The recent years have seen a breakthrough in the domain of high redshift
galaxies, and in particular in the knowledge of their molecular gas and their
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star formation with ALMA. While the uv/optical/infrared domains give infor-
mation on the star formation density, and its evolution in the Universe (e.g.
Madau and Dickinson, 2014), the efficiency of star formation requires knowl-
edge of the gas content. Molecular gas is the fuel of star formation, and its
observation is necessary to understand galaxy formation.

ALMA with its 66 dishes (54 antennae of 12m and 12 antennae of 7m,
located in a unique high and dry site, has increased the power of previous (be-
fore 2010) millimetric arrays by an order of magnitude. Baselines from 20m to
16km, at wavelengths between 3mm to 0.3mm, provide spatial resolutions up
to 15mas. The large bandwidth of 7.5 GHz/polar ensures a high sensitivity for
continuum observations, and allows to search and determine redshifts. ALMA
is well adapted for deep fields, but not for big surveys, the field of view is
from 1 arcmin (at 3mm) to 6 arcsec (at 0.3mm). Mapping small regions with
mosaics is very efficient.

The main advantage for high redshift galaxies is that the peak of dust
emission usually around 100 microns, for star forming objects, is redshifted
to the submm and mm domain. This produces a negative K-correction, i.e.
continuum emission from dust is as easy to detect at z=10 than at z=1 (e.g.
Blain et al, 2002). Already in the pre-ALMA era, it was possible to detect
hundreds of high-z galaxies with L(IR) > 1012 L�, up to z=6 (e.g. Omont,
2007). The large derived dust masses of ∼108 M�, mean that dust forms early
in the universe. These sub-millimeter galaxies (SMG) contribute significantly
to the sub millimetre background, their redshift distribution peaks at z=2-3
(Chapman et al, 2005).

For the CO lines, there is no negative K-correction, although the flux is
higher at the upper levels of the ladder (high J), when the gas is dense enough
(e.g. Combes et al, 1999). Distant galaxies have started to be explored in
molecular lines in 1992, with lensed objects (Brown and Vanden Bout, 1992;
Downes et al, 1995), and line detections followed at a high rate, about 50
objects up to z=6.4 with the quasar J1148+5251 (Cox, 2005; Maiolino et al,
2005).

With ALMA, it is now possible to detect CO lines in a large amount of high-
z galaxies, even not amplified by gravitational lensing. It is possible to discover
obscured objects in deep fields, from their dust emission, and search for their
redshift, when it is not possible in the optical domain. For z>6 galaxies, the
high-J CO lines (J>7) are observed at low frequencies (3mm) with a field of
view of 1 arcmin, and a bandwidth of 2x 8GHz ∼ 16%, or 50 000km/s. At
z=6, the spacing between the various CO lines of the rotational ladder is of
16 GHz, so that the redshift may be obtained with 2 tunings only.

This review highlights the main results of ALMA observations of distant
galaxies, from the dust emission to molecular lines. The CO are the most
usual gas tracers, but at very high z, the [CII] and CI lines bring important
information, in a domain where the CO lines are not or little excited. Dense gas
tracers (HCN, HCO+, CS, etc) and isotopes, bring complementary knowledge
on gas properties, and are frequently observed simultaneously, thanks to the
wide bandwidth of ALMA.
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The review emphasizes only the recent results since the previous reviews in
the domain, pre- or post-starting of ALMA Solomon and Vanden Bout (2005);
Carilli and Walter (2013).

2 The CO lines as tracer of the molecular gas

The main H2 molecule is symmetric and has no dipolar transition. At the low
temperature of the interstellar medium (∼ 20K), the quadrupolar transitions
are not excited, and moreover they have a very weak Einstein coefficient. The
main tracer of the molecular gas is then the CO molecule (with solar abundance
of CO/H2 ∼ 10−4), tracing the bulk of the gas, with a critical density of the
order of 103-104 cm−3 for the lowest levels. Other molecules with a higher
critical density (more than 2 orders of magnitude higher), like HCN, HCO+

or CS are used as high density tracers. Their intensity is usually 10-30 times
lower.

2.1 Emission lines

At high redshift, the large advantage of the CO tracer is the high probability to
find any line J from the rotational ladder, since the ladder spacing decreases
as (1+z)−1; and when the gas is excited, the line strength of the J levels
increases almost as the square of the frequency. There are good reasons to
expect higher density molecular gas in high-z galaxies (they are more gas rich,
and their volumic density is higher), such that higher excitation is the norm.
This situation favors the detection of molecular gas at high-z, while the atomic
gas has large difficulties with the unique 21cm line.

The distribution of radiating energy among the various J-lines of the CO
ladder called the SLED (Spectral Line Energy Distribution), is a very useful
diagnostic of the physics of the emitting interstellar medium (ISM), in partic-
ular its density and temperature. It has been shown that the CO SLED can
distinguish between quiescent Milky Way-like galaxies, where the emission is
peaking at J=3, and dense and warm starbursts, where the peak is up to
J=8 (Weiß et al, 2007). These excitations come from star formation processes
(PDR, or photo-dissociation regions), but near AGN, higher excitation is pos-
sible, in particular through hard X-rays (XDR, or X-ray dominated regions)
(van der Werf et al, 2010). In some cases of very concentrated starbursts, the
dust opacity could also perturb the SLED (Papadopoulos et al, 2010).

At high redshift, galaxies have a higher gas fraction, the gas is denser, and
star formation rates are higher in average. It is therefore expected that the CO
lines are more excited, favoring the detection of the molecular gas. There is
also the possibility of radiative excitation from the cosmic background, which
temperature varies in (1+z), reaching ∼ 30K at z=9. It is not obvious that this
excitation helps the detection, since the detected signal is only the excess above
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the background. This has been simulated, and indeed, there is no negative K-
correction for the CO lines, contrary to the dust continuum emission, (e.g.
Combes et al, 1999; da Cunha et al, 2013).

The derivation of the molecular content from the CO lines relies on the
CO-to-H2 conversion factor, well calibrated at low redshift, and in particular
in the Milky Way: clouds are then detected individually, and their virial masses
estimated. The conversion factor has a robust statistical value, when averaged
over a large cloud population, with a wide range of masses and densities. The
factor depends however strongly on gas metallicity (e.g. Bolatto et al, 2013). It
is possible to quantify the fraction of diffuse and clumpy components, with high
density tracers such as HCO+, HCN, allowing to refine the conversion factor.
For example Oteo et al (2017) have shown with ALMA that the excitation
of HCO+, HCN and HNC in two lensed dusty starbursts at z∼ 2 is very
similar to what is already known in local IR-bright galaxies. Due to the virial
hypothesis, the conversion factor is thought to vary as the square root of the
H2 volumic density, divided by the brightness temperature of the clouds, ∝
n(H2)1/2/TB . In local starbursts, both the cloud brightness and their density
increases, which limits the variation of the ratio (e.g. Leroy et al, 2011). The
metallicity is however a serious problem, since it is thought to decrease with
redshift. Using one of the first large surveys of star forming galaxies at z>1,
Genzel et al (2012) have estimated the variation of the conversion factor with
metallicity (see Figure 1).

2.2 Absorption lines

A complementary way to probe the interstellar medium of high redshift galax-
ies is from absorption lines in front of a strong millimeter continuum source.
These molecular lines can provide information on the chemistry and its evolu-
tion with z, and also the physical conditions of the gas (density, temperature).
The lines may be very narrow (< 1km/s) and useful to constrain the variations
of fundamental constants. The absorbing systems before ALMA were only 4-5
(e.g. Combes, 2008). With ALMA, it was possible to carry on a molecular
survey towards the system PKS1830-211, corresponding to two gravitational
images and an Einstein ring in the absorbing foreground lens (Muller et al,
2014). In particular, isotopes of the chloronium were detected, and OH+, H2O+

have allowed to measure the molecular gas fraction and the ionization rate of
the gas, in several lines of sight (Muller et al, 2016). With ALMA, new molec-
ular lines are detected in z=0.5-1 absorbers (e.g. Wiklind et al, 2018), but
also a large number in more local radio sources (David et al, 2014; Tremblay
et al, 2016), where the absorptions are determinant to disentangle inflows from
outflows.
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Fig. 1 The derived conversion factor between the CO(1-0) luminosity and the molecular
gas mass, αCO as a function of metallicity in the gas phase. The molecular gas mass is
computed independently of the CO luminosity from the SFR and the Kennicutt-Schmidt
(KS) relation, with a slope n=1.1. The gray circles are for local galaxies (Leroy et al, 2011).
The gas metallicity for high-z blue-symbol galaxies have been obtained from the [NII]/Hα
flux ratio, converted to oxygen abundance scale from Denicoló et al (2002) and Maiolino
et al (2008). The red symbols are galaxies where metallicity is derived from the total stellar
mass. Image reproduced with permission from Genzel et al (2012), copyright by AAS.

3 Dust emission as a molecular gas tracer

Although the CO molecule is arguably the best tracer of the H2 content of a
galaxy, it is primordial to gather results from several tracers, to inter-compare
them, and avoid some of the main biases of any given diagnostic. At high
redshift, this is even more required, since the CO lines observed are from a
high J-level, and several CO lines are needed to derive the gas excitation,
and estimate the CO(1-0) intensity calibrated in terms of H2 mass. The main
alternate tracer is the dust continuum emission in the Rayleigh Jeans domain
(i.e. close to the CO(4-3) to CO(7-6) if excited), where the dust emission is
linear in both temperature and column density. The assumed dust-to-gas ratio
will account for metallicity effect. Other tracers at very high z are fine structure
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line emission such as the [CII] at 158µm, or the [OIII] at 88µm, with some
specificity as gas tracers, as will be developed in Section 6.

Casey et al (2014) have written a detailed review of far-infrared and sub-
millimeter survey of high redshift galaxies with dust emission. Although the
temperature of the dust heated by star formation in molecular clouds, is ex-
pected in average of the order of 20-40K, in some cases, nuclear starbursts
or AGN, the dust can peak at 60K. This produces large uncertainties in the
detection rates of continuum surveys, since their success rate depends in the
SED distribution of the sources.

Scoville et al (2014, 2016) have proposed that the Rayleigh-Jeans tail of
the dust emission spectrum, peaking around 100µm, acts as a good tracer of
the gas content of galaxies: the Rayleigh-Jeans regime means that the dust
temperature is involved only linearly, and does not introduce too much un-
certaintly. Of course the dust abundance is also proportional to metallicity,
so the conversion factor between the dust emission and gas mass, through the
dust-to-gas ratio, is as incertain as the CO method. However, the detection
of the dust continuum might be easier than the line, and does not require
specific tunings. In compensation, there is more confusion and no redshift or
kinematical information on the detected objects. While it is relatively easy to
detect actively star forming galaxies and starbursts, main sequence objects at
relatively low redshifts are more difficult to detect in dust continuum than in
the CO lines, given the non-linear LFIR-LCO scaling relation. For instance, in
a sample of normal star-forming galaxies of the COSMOS field at z∼ 3, about
half of the galaxies are detected in continuum with ALMA, and the rest of the
undetected sources have to be stacked (Schinnerer et al, 2016). Besides, the
CO line observation provides more very useful information as the dynamical
mass, and gas excitation.

Another difference between dust and CO tracers, is that the former traces
both atomic and molecular gas. A calibration experiment has shown however
that at low and high redshift the two main tracers of the molecular/interstellar
gas agree very well, see Figure 2.

4 Galaxy surveys at high redshift

Although ALMA is not a large survey facility, it is of primordial importance
to gather the properties (gas content and excitation, star formation rate, etc.)
of a large number of objects, to gain a statistical significance, and to be able
to split the samples in several categories, to explore the influence of param-
eters. Essential in the value of surveys are the selection criteria, for them to
be representative even if flux-limited. Surveys have been done with carefully
chosen criteria from multi-wavelength studies: these are pointed surveys when
sources are already well-known (position, z, stellar mass, SFR). Another type
of surveys is the deep field method, unbiased, but sometimes less successful,
according to the choice of sensitivity required (shallow, deep), and the choice
of tuning (continuum, lines, etc.). Blind surveys have however the immense
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Fig. 2 Comparison between the dust continuum and CO line tracers of the interstellar
gas. The left panel compares the 850µm and CO luminosities for normal low-z star forming
galaxies (SF gal), low-z ULIRGs, and z∼ 2 submillimeter galaxies (SMG, many of them are
lensed). At right, the ratio between these two luminosities (L’CO being converted to Mmol)
shows in more detail an almost constant proportionality factor. The conversion factor used
is Mmol = 6.5 L’CO [K km/s pc2]. Image reproduced with permission from Scoville et al
(2016), copyright by AAS.

Fig. 3 Scaling relations of µgas=Mmolgas/M∗ with redshift (left), and depletion time tdep
= Mmolgas/SFR (right), for the binned data sets (large symbols) and the individual data
points (colored distributions), from Tacconi et al (2018). All available data from NOEMA
and ALMA have been taken into account, with zero point corrections. Image reproduced
with permission from Tacconi et al (2018), copyright by AAS.

advantage to be completely unbiased by other wavelengths, with the hope
to detect brand new objects, obscured in the optical and UV. Both are now
described in turn.
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4.1 Pointed surveys

Optical/IR surveys have shown that the cosmic star formation density had a
peak at about z=2, and then has dropped by a factor ∼ 20 (e.g. Madau and
Dickinson, 2014). It was also discovered that, although luminous and ultra-
luminous infrared galaxies (ULIRGs) tend to dominate more and more the star
formation as z approaches 1 (Le Floc’h et al, 2005), the starburst mode is not
the dominant star forming mode at z∼ 2, but contributes only by 10%. The
confusion arose at the start because local ULIRGs are all starbursts, due to
galaxy interactions and mergers (e.g. Sanders and Mirabel, 1996). Starbursts
can be defined as transient states, with an elevated star formation rate (SFR)
which cannot be sustained during the ”normal” time-scale to consume the gas
content of a galaxy, which is 2 Gyr (Bigiel et al, 2008). This time-scale is also
called the depletion time tdep. When the redshift increases, the average SFR
increases, and LIRGs or ULIRGs do not require anymore the starburst mode
for their interpretation. It is then possible to define a Main Sequence (MS)
of “normal” star formation (Whitaker et al, 2012, 2014; Speagle et al, 2014).
The specific SFR, divided by the stellar mass, i.e. sSFR=SFR/M∗ increases
strongly with redshift, in (1+z)3 up to z∼ 2, and decreases only slightly with
mass, as M−0.1,−0.4

∗ (Lilly et al, 2013). About 90% of the star formation in the
Universe occurs on the main sequence, essentially in exponential galaxy disks
(e.g. Wuyts et al, 2011).

The evolution of galaxies along the main sequence (MS), and the evolution
of the main sequence itself with redshift, have been the object of many models,
implying both gas accretion to re-fuel galaxies after the depletion times of the
order of a few Gyr, and the moderation of star formation due to the feedback.
Some propose a quasi-stationnary state (Bouché et al, 2010; Lilly et al, 2013),
and others a violent evolution across the MS, passing through a starburst
phase or a quiescent one, via violent instabilities and compaction (Dekel et al,
2009; Tacchella et al, 2016).

It is crucial to investigate through the abundance of the molecular com-
ponent for galaxies on the MS, as a function of redshift, what are the main
processes regulating the star formation, and galaxy evolution. A large num-
ber of surveys have been carried out, for instance the PHIBSS survey with
NOEMA, or the COSMOS with ALMA from dust emission, which demon-
strate a large increase of the molecular gas fraction with redshift (Tacconi
et al, 2010, 2013; Scoville et al, 2014, 2016), but also a slight decrease of the
depletion time, i.e. an increase of star formation efficiency.

In these surveys, two different tracers for the interstellar gas have been
used: the most direct one, the CO lines, depending on the CO-to-H2 conver-
sion factor, and the dust emission in the Rayleigh-Jeans domain, which traces
both atomic and molecular gas, but depends also on metallicity, and on the as-
sumed dust temperature, albeit in a linear way (Scoville et al, 2014; Schinnerer
et al, 2016). The proportionality factor between dust emission and gas mass
is established from nearby galaxies and the Milky Way (through the Planck
satellite data), but several parameters may vary, as the slope of the dust opac-
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ity with frequency, the metallicity and dust abundance, or the nature of dust.
In the literature, it was found that the gas masses derived at high redshift
from the dust emission are somewhat larger than that from the CO lines, at
least by a factor 2. Part of the explanation could be that dust emission traces
both atomic and molecular gas. Although it is very difficult to have direct
estimation of the HI gas at high z, the best estimation comes from the Lyα
absorbers along the line of sight towards remote quasars (e.g. Prochaska et al,
2005), and it appears that the cosmic density of HI gas is roughly constant.
Given that the molecular gas strongly increases with z, it is assumed that it
will dominate as soon as z> 0.5 (e.g. Lagos et al, 2012).

From a compilation of all literature data on molecular gas at high z, around
the main sequence and slightly above, scaling relations have now been derived
for about 1400 objects (Genzel et al, 2015; Tacconi et al, 2018). The main
results are a quantification of the increase of gas fraction with z, and de-
crease of depletion time, as shown in Fig. 3. These scaling relations take into
account all the various parameters (distance from the MS, defined as δMS
= sSFR/sSFR(MS,z,M∗), redshift, stellar mass), exploiting the fact that the
dependence of gas fraction and depletion time (or SFE, the Star Formation
Efficiency= 1/tdep) on these parameters is uncorrelated to some extent, i.e.
the variables are separable.

The variation of the depletion time with δMS is clear, at a given z and
M∗, tdep is decreasing for galaxies above the MS in the starburst phase, and
increasing below in the quenching phase. The main results found by all surveys
and analysis is that the gas content in galaxies increases significantly with z,
as ∼ (1+z)2, but still lower than the SFR on the MS, which is increasing as
∼ (1+z)3 up to z=3-4 (Scoville et al, 2017; Tacconi et al, 2018). In addition,
the star formation efficiency (SFE) is increasing with z, i.e. the depletion time
varies as (1+z)−0.6 to (1+z)−1. There is no dependency of SFE with stellar
mass, on the main sequence. The gas fraction, or the gas-to-stellar mass ratio
decreases with stellar mass. This explains also the variation of the slope of the
MS with stellar mass: if the SFR is almost linear with M∗ for small masses,
it then saturates and the slope is lower than 1. Since high mass galaxies have
a more massive bulge, and bulges do not participate to star formation, it
is tempting to subtract the bulge mass, to check the SFR variation of disk
only. Abramson et al (2014) performed the bulge-disk decomposition for large
samples of low-z galaxies in the Sloan survey, and indeed, the MS slope is
almost vanishing (and vanishes completey in some samples). The sSFR of disks
only is quasi independent of their stellar mass. The remaining dependency
could be related to the central bulge concentration (Pan et al, 2016).

All these results are supporting models where galaxy evolution and star
formation are mainly driven by external gas accretion. Several interpretations
have been elaborated (Berta et al, 2013; Scoville et al, 2017). It is possible
to trace the evolution of galaxies, their star formation rate and gas content,
assuming continuity, neglecting in a first step the contribution of starbursts
(5-10%), and the quenched galaxies, which must be of very high mass, and in
dense environments (Peng et al, 2010). To maintain the evolution of the MS, it



10 Françoise Combes

Fig. 4 Left: Evolution of galaxies on the main sequence (MS), assuming they evolve con-
tinuously on the MS. The full lines show the MS relations at 5 different redshifts (colours)
from the observed consensus compiled by Speagle et al (2014). The dash lines show the time
evolution of 1, 5, and 10×1010 M� galaxies in between two redshifts. They evolve downward
and rightward with time, at a rate 0.7 SFR, taking into account 30% of stellar mass loss.
Right: The gas and stellar mass cosmic densities versus redshift for galaxies in the range M∗
= 1010 to 1012 M�. These computations have used the observed scaling relations between
gas mass and the 3 parameters (z, δMS, M∗), and the stellar mass functions from Ilbert et al
(2013). Images reproduced with permission from Scoville et al (2017), copyright by AAS.

is necessary that galaxies are continuously accreting gas, to refuel their SFR,
given their low depletion time-scales, lower than 1Gyr. This refueling can be
mostly due to cold gas accretion (Dekel et al, 2013), but also may include
minor mergers. The major mergers are considered to be exceptional events,
making galaxies to exit the MS from above for a transient period. Using the
empirically determined relations between gas content and SFE with redshift,
stellar mass and offset from MS, and assuming dM∗/dt =0.7 SFR (30% of
the gas is returned to the interstellar medium through stellar mass loss), it
is possible to trace the evolution of individual galaxies on the MS diagram
(cf Figure 4). The set of equations can be closed, and the net accretion rates
can be derived as a function of z and the main parameters. For the average
considered mass, the accretion rate increases as ∼ (1+z)3.5, which may explain
the high SFR in early galaxies, and is justified by the high gas density in the
early universe.

Adopting these simplifying hypotheses, and summing over the stellar mass
function (e.g. Ilbert et al, 2013), the equations can yield the evolution of the
cosmic density of the total gas in galaxies (H2 +HI, traced by dust emission,
result given in Figure 4).

Lensed galaxies allow to explore a lower mass regime (M∗ <2.5 1010 M�),
with lower SFR (< 40 M�/yr) (Dessauges-Zavadsky et al, 2015). It is now
possible to see the star formation efficiency decrease with stellar mass. This low
mass regime reveals the same increase of gas fraction and SFE with redshift.
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Fig. 5 ALMA 870µm images of 10 SPT (South Pole Telescope) sources (red contours),
superposed on near-infrared images (NIR, grey-scale) from HST, VLT or SOAR telescopes.
The NIR indicates the starlight from ths foreground lensing galaxies. The high-z galaxies
are only seen by ALMA. Their spectroscopic redshifts were determined by ALMA CO line
observations, and are shown in red in each panel, of size 8”×8”. Image reproduced with
permission from Vieira et al (2013), copyright by Springer.

With both CO lines and dust continuum emission, it is possible to see large
variations of the dust-to-gas ratio among the various types of star forming
galaxies, even at a given metallicity.

Observations of some gas-rich galaxies below the MS suggests that quench-
ing does not require the total removal or depletion of molecular gas, as many
quenching models propose (Suess et al, 2017). Spilker et al (2018) detected
with ALMA the CO line in 4 out of 8 z∼0.7 passive galaxies 3-10 times below
the MS. Their gas fraction is below 10%, small enough that the depletion time
is rather short. The gas rotation axis is aligned on the stellar one, implying
no recent gas accretion. Even though the samples are still not enough to draw
firm conclusions, it appears that the quenching towards forming massive red
and dead galaxies is rather slow, and due to the cessation of gas accretion.

One of the very successful surveys of ALMA in its first cycle (16 antenna)
was to search for CO lines in the high-z (z >1) sample of dusty continuum
sources, assembled over 1300 square degrees by the South Pole Telescope
(SPT). The survey benefitted from the negative K-correction, and therefore all
redshifts were expected with minimum bias. Most of the highest flux sources
are lensed. Out of 26 sources, ALMA detected 23 in one CO line (among
them 12 with multiple lines, so that the redshift is clearly determined). In
the continuum at 870µm, with spatial resolutions 0.5 - 1.5”, only one minute
integration per source was sufficient to reveal the arc and ring morphology of
the lensed background objects, as displayed in Figure 5. Star formation rates
larger than 500 M�/yr imply that the sources are ULIRGs (Vieira et al, 2013).
The spectroscopic survey in Band 3 more than doubled the known redshifts
at this epoch, and had a median redshift of z=3.5. The fraction of dusty and
luminous starbursts at high z appears higher than previously thought (see
Figure 6).



12 Françoise Combes

Fig. 6 The cumulative redshift distribution of luminous, dusty starburst galaxies: the SPT
galaxies, with ALMA determined redshifts, are shown in black. The blue sample objects have
redshifts determined from rest-frame ultraviolet spectroscopy. The orange sample galaxies
in the COSMOS survey have only photometric redshifts from optical/IR. ALMA detected a
large fraction of high-z dusty starburst galaxies, and previous surveys were biased to lower
redshift than the underlying population. Image reproduced with permission from Vieira et al
(2013), copyright by Springer.

4.2 ALMA deep fields

In the UV/optical/IR domains, considerable knowledge on galaxy evolution
has come from the study of blank fields, integrating deeply in selected regions of
the sky minimizing foregrounds, with the HST (HDF, UDF, XDF, Illingworth
et al (2013)), and also with a multitude of instruments at all wavelengths, from
the X-ray (Chandra/XMM), to the far-infrared (Spitzer, Herschel) and radio
(VLA). From the 11 HST filters, it has been possible to obtain nearly 10 000
photometric redshifts (e.g. Rafelski et al, 2015). Follow-up from the ground has
obtained also spectroscopic redshifts, namely with the VLT (Le Fèvre et al,
2004; Bacon et al, 2017), although the latter spectro-z still amount to less
than 2% of the total. These surveys have allowed precious knowledge on galaxy
properties (sizes, stellar masses, star formation rates), and their evolution with
redshift (e.g. Madau and Dickinson, 2014). However, to understand galaxy
evolution, the fuel of star formation, the molecular gas, has to be observed. Also
optical surveys are biased against the most obscured and dusty star forming
galaxies, and sub-mm surveys are needed. Already ponctual observations have
shown that indeed dusty starbursts exist up to z=6 (Riechers et al, 2013), and
surveys with Herschel (Elbaz et al, 2011), or SCUBA-2 (Coppin et al, 2015)
have used priors to tackle blending, and stacking to explore just below the
sensitivity limit of their instruments.

With ALMA gaining a large factor in sensitivity and spatial resolution,
deep surveys are now eagerly expected. The first survey of the Subaru-XMM
(SXDF) deep field (1.5 arcmin2 with ALMA) reported by Tadaki et al (2015)
has observed in 1.1mm continuum, with a sensitivity of σ = 55µJy/beam. They
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Fig. 7 Left: the UV absolute magnitude of all galaxies in the HUDF, as a function of
redshift, with the ALMA 1.3mm detections in red. Right: when stellar masses are considered,
now the ALMA detections are at the top, meaning that they are indeed the most obscured
in UV. The bright blue box emphasizes the ALMA detection of 80% of the most massive
galaxies (M∗ > 2 1010 M�) at z>2. Below z=1, the detection rate of massive galaxies drops,
which indicates possible quenching. The grey-blue box gathers the galaxies which have been
stacked and lead to an ALMA global detection. The absence of very massive galaxies above
z=3 is clearly visible. Image reproduced with permission from Dunlop et al (2017).

targetted 12 Hα-selected star-forming galaxies (SFG) at z=2-2.5, but detected
only 3 of them. The frequency corresponds to 300-400µm in the rest-frame, so
that dust emission should be easy to detect. It also corresponds to 100µm, the
peak of dust emission, for z=10, and objects with the same mass should be
even more easy to detect with the K-correction, so that their absence indicates
a drop in the luminosity function with z. One of the object detected is very
compact (Re = 0.7 kpc), with a high gas fraction of 44%. In the same ALMA
field Hatsukade et al (2016) conclude from the possibly detected 23 sources
above 0.2mJy that the source count is typical, and comparable to all previous
ALMA serendipitous detections.

Dunlop et al (2017) reports about the 4.5 arcmin2 ALMA survey of the
HUDF at 1.3mm at σ = 30µJy sensitivity. The extraction of reliable sources in
continuum is difficult. About 50 sources are first found above 3.5σ, but around
30 are also found in negative, i.e. below -3.5σ. Therefore most of the 50 sources
must be spurious. Comparing with other data, 16 detections are then secured,
through counterparts with HST, infrared and/or radio-cm, 13 of them having
a spectroscopic redshift in the optical. The average redshift is z=2.15 and only
one source has z > 3. The lack of high-redshift detections confirms the rapid
drop-off of high-mass galaxies in the field, above z=3. Figure 7 shows clearly
that the ALMA detections are among the most UV-obscured objects in the
HUDF.

Aravena et al (2016) have carried out a deeper 1.2mm ALMA survey of
the HUDF in a restricted region of 1 arcmin2, with σ = 13µJy sensitivity.
They detect 9 sources at 3.5σ with average z=1.6, and only one source above
z=2, which is significantly lower than the shallower survey of Dunlop et al
(2017). The detections correspond to 55% of the extragalactic background
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light (EBL) at 1.2mm measured by the Planck satellite; when stacking all the
sources optically known in this region, it is possible to recover 80% of this
EBL.

In addition to this continuum survey of 1 arcmin2 of the HUDF, the same
team carried out an ALMA spectroscopic survey (ASPECS, CO and [CII]
lines) in two frequency bands at 3mm and 1mm, covering the frequency ranges
84-115 GHz, and 212-272 GHz (Walter et al, 2016). A blind search for lines
have found 10 candidates in the 3mm band and 11 at 1mm. The identification
of the sources is then done searching for optical/NIR counterparts, with a
known redshift. This occurs in 9 out of the 21 candidates. In one or two cases,
other CO lines at higher J are also detected in the same survey, and confirm
the identification. Most of the times, the lack of other lines suggest that the
redshift of the object is large and/or the upper level J of the CO line is large.
In addition, stacking has been done for all sources with known redshifts for
the first 4 CO lines, but with no detection (Decarli et al, 2016b). Molecular
masses were derived for each of the identified sources, and found compatible
with previous results for main sequence galaxies, with a large scatter (Decarli
et al, 2016a). All results and constraints on the derived cosmic H2 density are
gathered in Figure 8.

From the ASPECS survey, it is now possible to estimate the expected signal
from CO lines during an intensity mapping experiment. Based on individual
detections only, Carilli et al (2016) estimate the mean surface brightness to
0.94 µK at 3mm and 0.55µK at 1.3mm, these values being lower limits to take
into account all the possible lines below detection.

5 Individual galaxies at high redshift

Besides the large surveys with statistical value to explore galaxy evolution with
redshift, the discovery of special cases, pointed observations of high-z quasars,
and the study of over-densities, have provided a wealth of information.

5.1 Starburst and quasar associations

Objects already known as SMG with single dish continuum detectors were
easily detected with ALMA, like this association of three LBG at z=5.3 studied
by Riechers et al (2014). From the lines of [CII] and OH detected, an SFR
surface density of 530 M�/yr/kpc2 was derived, implying a disk approaching
the Eddington limit for radiation pressure on dust. Since OH is slightly blue-
shifted with respect to [CII], this might indicate a molecular outflow due to
SN feedback. Swinbank et al (2014) have made a survey with ALMA in the
Extended Chandra Deep Field South (ECDFS) of 99 SMG, and found that
they are all ULIRGs with SFR ∼ 300 M�/yr and dust temperature of 32K.
The contribution of these SMG to the cosmic star formation is about 20% over
z=1-4.
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Fig. 8 Comoving mass density of molecular gas in galaxies ρ(H2) as a function of red-
shift. The ALMA spectroscopic survey (ASPECS) constraints are plotted in pink boxes,
with vertical sizes corresponding to the uncertainties. The blue boxes represent the IRAM
interferometer constraints (Walter et al, 2014). The predictions of semi-analytical models
are superposed as a yellow line (Obreschkow et al, 2009), a blue line (Lagos et al, 2012)
and a green line (Popping et al, 2014). The compilation of literature data on MS galaxies
is the grey area (Sargent et al, 2014). The circle symbol at z=0 is from Keres et al (2003),
and the losange from Boselli et al (2014). Keating et al (2016) have computed an upper
limit (orange triangle) from CO intensity mapping at z∼3. The global behaviour of the H2

cosmic density is very similar to the star formation density, with a peak around z=2. Image
reproduced with permission from Decarli et al (2016b), copyright by AAS.

High redshift starbursts can be detected serendipitously, like the bright z
= 5.24 lensed submillimeter galaxy in the field of Abell 773 (Combes et al,
2012), as part of the Herschel Lensing Survey (HLS, Egami et al (2010)). This
project surveyed a series of nearby galaxy clusters at z∼0.1-0.5 playing the
role of gravitational telescopes, amplifying background galaxies. These were
selected by their very red SPIRE colours, implying a high redshift. Follow-up
at millimeter wavelengths allows to discover the spectroscopic redshift, with
the help of at least two detected lines. In this case several CO lines up to CO(7-
6), CI, H2O and the [NII]205µm lines were discoverd, and allowed to constrain
the variations of fundamental constants (Levshakov et al, 2012). With ALMA,
spectroscopic redshifts are obtained routinely.

An hyperluminous quasar at z=4.4 slected from WISE-SDSS was detected
with ALMA by Bischetti et al (2018) in dust continuum and [CII] line. It
is at the center of a proto-cluster, merging with two close companions. The
quasar is actively forming stars with SFR ∼ 100 M�/yr, and the host galaxy
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will increase its stellar mass more rapidly than its black hole mass, which is
observed 2 orders of magnitude too massive, with respect to local relations.

Venemans et al (2017) have detected several CO lines, CI and [CII] in
z∼ 7 quasars, and shown that these lines have excitation compatible with
photodissociation regions, but not X-ray dominated regions. The properties of
the molecular gas and dust in these quasars are dominated by an important
star-formation activity, confirming that intense starbursts are co-existing with
AGN activities.

5.2 Lensed high-z galaxies, high spatial resolution and GMC studies

ALMA can have very high spatial resolution in its extended configuration, up
to 15-20 milli-arcsec (mas). A remarquable object was observed to demonstrate
these capabilities, with baselines up to 15km: SDP.81 (ALMA Partnership
et al, 2015). This gravitationally lensed galaxy at z=3.042 was discovered by
the Herschel survey H-ATLAS (Eales et al, 2010; Negrello et al, 2010). Its
redshift was determined through CO lines; the lensing galaxy is at z = 0.299,
and the amplification factor is µ = 11 (Bussmann et al, 2013). With a beam
of 25mas at 1mm (180pc at z=3.042), the ALMA continuum map reveals the
two gravitational arcs with unprecedented sharpness. Figure 9 show a tapered
version of the maps in continuum, CO and H2O lines; the images have been
tapered to lower resolution to gain more signal to noise. The two arcs are part
of an Einstein ring, of radius 1.5”. The forefround lensing galaxy is invisible
on these images, except for a weak continuum source at the center of the ring,
which has a spectral index consistent with synchrotron emission. The lensing
galaxy is a massive elliptical (3.6 1011 M� inside the Einstein ring of 1.5”=
6.7 kpc, at z=0.299, and no AGN is detected optically. But the 1.4 GHz flux
is compatible with the mm spectral index, and corresponds to an AGN radio
core. The continuum from the arcs comes from dust emission in the high-z star
forming galaxy, with an SFR = 527 M�/yr. The three CO lines detected (from
J=5, 8 and 10) show regions in the galaxy of different excitation, implying a
complex structure. The H2O emission comes from a thermal line, which ratio
with the CO lines is rather weak, may be due to differential lensing. The wealth
of details acquired in ∼30h of telescope time in early science with only 22 to
36 antennae is quite impressive.

Given the enhanced spatial resolution due to lensing, it is possible to ex-
plore the resolved Kennicutt-Schmidt relation (KS) in these high-z galaxies.
The surface densities of the molecular gas and star formation rate have been
compared in different regions of SDP.81 (z∼3) (Sharda et al, 2018). There is
much more SFR than predicted from the linear KS relation, and the authors
propose another relation between gas and SFR, taking into account the free-
fall time of the clouds. Since the observed turbulence in the cloud is much
higher than for local galaxies, based on the observed high gas velocity dis-
persion, a model of multifreefall based on turbulence (Salim et al, 2015) is in
better agreement with observations. Note that another attempt to derive the
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Fig. 9 ALMA images with high resolution (CO lines and continuum, 100-170mas) or lower
resolution (H2O line, 900mas). Top: CO J = 5 4, 8 7, and 10 9 integrated intensity. Middle:
2.0, 1.3, and 1.0 mm continuum. Bottom: Band 6 and 7 spectral index, 1.14 mm continuum
(combined Band 6 and 7 data, and H2O integrated intensity. The beam sizes are indicated
by the black ellipses at the bottom of the panels. Image reproduced with permission from
ALMA Partnership et al (2015), copyright by AAS.

resolved KS relation for distant galaxies, even without any lensing, has given
results compatible with the linear KS relation (Freundlich et al, 2013).

ALMA is now able to detect normal galaxies at z∼ 7 (e.g. Maiolino et al,
2015). With the [CII] line and continuum dust emission, the detection of Ly-
man break galaxies have been successful, implying SFR of 5-15 M�/yr. A
spatial offset of the order of 4 kpc has been observed between the [CII] emis-
sion and the Lyα line and far UV, suggesting that stellar feedback rapidly
destroys/disperses the molecular clouds.
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5.3 Black hole mass estimation at high-z

A large number of quasars have been detected now at z∼ 6 in molecules,
and their CO/[CII] kinematics can be used to derive the central dynamical
mass. From their broad lines detected in optical, and a widely known relation
between Broad Line Region (BLR) luminosity and radius calibrated from re-
verberation mapping (e.g. Bentz et al, 2013), it is possible to compare the black
hole mass (MBH), and the host dynamical mass. The high-z quasars appear all
with a much higher black-hole mass than expected from their dynamical mass
and the local M-σ relation (Wang et al, 2013; Venemans et al, 2016). This sur-
prising result could come from the large uncertainties of the mass estimation.
It is not possible to distinguish bulge and disk, so the MBH is compared to the
total host dynamical mass, but this is precisely conservative. The inclination
of the rotating molecular disk is not well known, and the result is valid only
statistically. The MBH estimation has also a fudge factor for inclination. In
most systems, it is assumed that the [CII] or CO lines are centered on the
systemic velocity, and can be reliably used to derive the dynamical mass of
the central stellar bulge. However, the optical MgII broad emission lines are
systematically blue-shifted. The average blue-shift is of ∼ 500 km/s, but can
be found up to 1700 km/s. This is interpreted as an outflow due to the central
AGN, given that the symmetrical red-shifted region behind is too obscured to
be seen.

Even if the dynamical mass is not well estimated, it is possible to have
a lower limit for it with the mass of the gas, estimated from both the lines
and the dust emission. In these high-z systems, the gas fraction is often larger
than 50%, and the dynamical mass cannot be more underestimated than by
a factor 2. The derived black hole masses are then robustly 3-4 higher than
expected from the local relation (see Figure 10).

5.4 Ly-alpha blobs and proto-clusters

Protoclusters are overdensities in the early universe, where the growth of struc-
tures and their accompanying black holes are accelerated. They are not yet
virialised into clusters, but are precious to understand why black holes might
start growing very quickly, and AGN feedback might shape the first galaxies.
Narrowband imaging at rest-frame Ly-α have revealed accumulation of Ly-α
emitters (LAE), but also extended (>30 kpc) Ly-α emission (often termed
Lyman-Alpha Blobs, LAB) (e.g. Steidel et al, 2000; Matsuda et al, 2004). In
these protoclusters, X-ray observations have revealed a significantly higher (by
a factor ∼ 5) fraction of AGN (e.g. Lehmer et al, 2009), suggesting a longer
duty-cycle for black hole accretion in galaxies of rich environments. Alexander
et al (2016) observed with ALMA such AGN in proto-clusters and obtained
a high detection rate, implying SFRs of 200-400 M�/yr, somewhat enhanced
with respect to the field. This enhanced star formation may explain the ex-
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Fig. 10 Black hole mass versus the dynamical mass of z∼6 quasar host galaxies and the
bulge mass of local galaxies. The black diamonds are values obtained for local galaxies
(Kormendy and Ho, 2013). Their MBH – Mbulge relation is represented by the solid line
and the shaded area. The large and colored symbols are the high-z quasars. The green stars
are the z>6.5 quasars from Venemans et al (2016). For a given bulge mass, the high-redshift
quasars have a more massive black hole than local galaxies. From the quasar luminosity
(linked to its accretion rate), and from the observed star formation rate, it is possible to
extrapolate the trajectory of the points (arrows) during the next 50 Myr. Image reproduced
with permission from Venemans et al (2016), copyright by AAS.

tended Ly-α emission of the LAB, given a reasonable escape fraction for the
continuum ionizing photons.

Proto-clusters can also be the site of a colder gas phase, which is extended
as a circumgalactic medium (CGM) around the main galaxies. A striking ex-
ample is the Spiderweb, a conglomerate of merging galaxies at z=2.2 (Emonts
et al, 2016). Several CO lines and CI were observed with ALMA and ATCA,
showing an extended network of clumps and filaments, with gas excitation
similar to that of the Milky Way (see Figure 11). The gas is metal enriched
and dense, and most of it must come from tidal and ram-pressure stripping
from the interactng/merging galaxies in the central region of the proto-cluster
(Emonts et al, 2018).
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Fig. 11 Left: One channel map (V=-447km/s, 90km/s wide) of the [CI] emission obtained
with ALMA towards the Spiderweb proto-cluster of galaxies (Emonts et al, 2018). The
blue contours are from [CI]3P1-3P0 emission, and the red contours from the 36 GHz radio
continuum, both overlaid on the HST image. Right: Overlay of CO(4-3) contours on the
HST F160W image of the Candels-5001 proto-cluster at z=3.47 (Ginolfi et al, 2017). The
red bar is the HST PSF, at 0.34µm in the rest frame. Images reproduced with permission
from Emonts et al (2018) and Ginolfi et al (2017).

Molecular gas structures elongated on scales of ∼ 40 kpc are not rare in
high-z proto-clusters, and a molecular mass of 2-6 1011 M� has been detected
in CO(4-3) and dust emission, with clumping and relatively high metallicity,
at z=3.5 (Ginolfi et al, 2017). The extended structure is compatible with a
tidal/ram pressure origin, but could also be fueled by some cold gas accretion
(see Figure 11).

6 Epoch of reionization

Stark (2016) has reviewed our knowledge of early galaxies, in the first billion
years after the Big-Bang. For z>6, ALMA yields a good opportunity to detect
the dust emission, provided that they are dusty enough. The peak of dust
emission is indeed shifted towards λ > 0.7mm. For high-z objects, it becomes
difficult to obtain spectroscopic redshifts optically, especially when obscured
by dust. ALMA can then help to identify the objects, thanks to the [CII] line
at 158µm, redshifed to λ > 1.1mm. Models of the ISM had predicted that
the main coolant would be through this [CII] line, however the observations
reserved some surprises. The photoelectric heating efficiency of the dust, mea-
sured by the ratio L[CII]/LFIR, varies by about 2 orders of magnitude, and
is decreasing at high LFIR, for strong starbursts. The main factor reducing
this efficiency has been shown to be the dust temperature, and the strong UV
field (Malhotra et al, 2017): indeed, the L[CII]/LFIR ratio is very well anti-
correlated to the dust temperature, whatever the redshift. Figure 12 gathers a
large fraction of the [CII] studies so far, and shows that the [CII]/FIR ratio is
higher at high redshift, although still declining with LFIR. The high-z quasars
detected reveal a wide range of properties, sometimes behaving like starbursts,
while sometimes the quasar excitation may prevail (e.g. Venemans et al, 2016).
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Many searches have been made with ALMA, with some surprising failures,
indicating that galaxies are really ”primordial”, with low metallicity (Z<0.1)
and little dust. The typical Lyα emitter Himiko was not detected in the con-
tinuum, nor in the [CII] line (Ouchi et al, 2013). Several other upper limits
confirmed that most LBG between z=6 and 8 are very difficult to detect, even
with gravitational lensing (e.g. Schaerer et al, 2015). With more observations,
Himiko is now detected in the [CII] line, but not in dust emission (Carniani
et al, 2018), revealing a dust deficiency.

Evidence also exists of early galaxies, with their ISM extended over kpc
sizes, but weak or undetected in dust emission, while revealing strong [CII] line
emission (Capak et al, 2015). These show some similarity to low-metallicity
dwarfs in the local Universe, like the LMC, which have a very high L[CII]/LFIR
ratio. However, these high-z objects are much more massive, which implies on
the contrary a rapid evolution in the ISM dust properties over redshift, due to
metal deficiency. Selecting their objects with a relatively lower Lyα equivalent
widths, indicating the presence of dust, at a given UV luminosity, Willott et al
(2015) reports dust emission and [CII] line detections at z∼6. The velocity
redshift of the Lyα with respect to the [CII] line is very prominent at high-z,
due to increased intergalactic gas (IGM) absorption of the blue wing of Lyα.
The expected enhancement of IGM absorption in the EoR, is not always there
(Pentericci et al, 2016), implying patchy reionization.

At high-z, galaxies are clumpy, and sometimes the [CII] line and even the
[OIII] line at 88µm are spatially offset from the Lyα or UV clumps (Carniani
et al, 2017; Matthee et al, 2017). These offsets may be explained by obscura-
tion, different excitation or metallicity of the different tracers. Alternatively,
strong feedback could have removed a large fraction of gas and dust, or sev-
eral parts of the systems are interacting while assembling, as suggested by
theoretical models (Katz et al, 2017).

Some of the highest redshifts found in the EoR with ALMA are the z=8.38
gravitationally lensed galaxy selected from deep HST imaging in the Frontier
Field cluster Abell 2744 (Laporte et al, 2017), or the Lyman Break galaxy at
z=8.31 behind the Frontier Field cluster MACS J0416.1-2403 (Tamura et al,
2018). Dust emission and the [OIII] line have been detected, raising the prob-
lem of forming such dust amounts ∼ 600 Myr after the Big Bang. This would
imply that each SN-II explosion has been able to produce 0.5 M� of dust,
during the SFR=15-20 M�/yr star forming phase, since z=10-12.

The highest redshift is MACS1149-JD1 at z=9.11, a lensed galaxy dec-
tected in the [OIII] line. No redshift was known from the optical before, and
the [OIII] line was used to measure the redshift. The colors of its stellar pop-
ulation show that star formation began at z=15 in this galaxy (Hashimoto
et al, 2018).

Contrary to many ALMA surveys, finding a drop in their source num-
ber at high redshift, Strandet et al (2016) find a redshift distribution much
more weighted towards the high-z, because of a low-frequency selection. Dusty
sources were selected from the South Pole Telescope (SPT) survey, from their
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Fig. 12 The [CII] to FIR luminosity ratio versus the FIR luminosity. The low-redshift
galaxies are plotted as black circles, from Malhotra et al (2001), Luhman (2013), and Dı́az-
Santos et al (2013). Various ULIRGs at high redshift (z=1 to 6) detections from the literature
are in green circles, and the Hello sources (z=1-3) amplified by lenses are in blue circles
(Malhotra et al, 2017). The red circles are the high-z SPT sources from Gullberg et al
(2015), corrected for their amplification factor. Quasars at z>4 are plotted as magenta
stars (Venemans et al, 2012, 2016). At high z, the [C II]/FIR ratio still declines with FIR
luminosity, but takes higher values than at z=0.

1.4mm continuum flux; eliminating the synchrotron sources, by requiring 1.4mm
flux being twice higher than the 2mm flux.

Although most of high-z star forming objects selected optically have low
dust content, exceptional objects exist, like HFLS3, at z=6.34, with SFR=2900
M�/yr, a gas mass of 1011 M�, including 2 1011 M� of atomic gas, and a
depletion time of 36 Myr (Riechers et al, 2013). These must be located in
proto-clusters, and are the progenitors of massive ellipticals in clusters today.

7 Summary

ALMA has been working now for about 7 years since its commissioning in
2011, and has acccumulated a wealth of data, which have yet to be digested and
interpreted. In many domains, ALMA has provided impressive breakthroughs,
with unprecedented sensitivity and spatial resolution.

One of the main goals in galaxy evolution is to determine the molecular gas
properties of galaxies as a function of redshift, to better understand the cosmic
star formation history. This has been done through pointed observations, with
large sample of objects selected from their stellar mass and SFR, being on the
main sequence of star forming galaxies, where are born 90% of the stars in the
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Universe. Two main factors have been emphasized: the gas fraction increases
steadily on the main sequence, as (1+z)2, and this is the main reason of the
peak in the SFRD at z∼ 2. At a lower level, the star formation efficiency is
also increasing with redshift, as (1+z)α, with α=0.6-1, (or the depletion time
is decreasing, as (1+z)−α), although the cause of this has not be clearly identi-
fied: either due to smaller and denser galaxies, with a shorter dynamical time,
or due to a larger importance of galaxy interactions. Although some galaxy
molecular maps have been done, and resolved Kennicutt-Schmidt relation ex-
plored, this is only the beginning, and the influence of morphology, kinematics
and dynamics of galaxies is not yet understood.

In parallel, deep blind surveys, completely unbiased by previous wave-
lengths, have been carried out focussed either on the dust continuum, or the
CO lines, with shallow or deeper approaches, according to the surface covered.
The hope was to detect dusty galaxies at very high redshift, not suspected
by other surveys. Eventually, dusty and massive galaxies are not as frequent
as previously hoped at z larger than 5, which confirms the high-z drop in
optical surveys. ALMA is now opening clearly the windows of the epoch of
re-ionization, and it is likely that the main actors to reionize the Universe will
turn out to be a large number of small and dwarf galaxies, while the major
starbursts and quasars have a minor influence.

ALMA surveys have begun to unveil the cosmic evolution of the H2 content,
but this is only the beginning, with huge error-bars, not allowing to disentangle
the various theoretical models, as shown in Figure 8. In the future, this cosmic
evolution will be compared with the star formation history, and also with the
atomic gas content, to have a more precise budget of gas and star formation
at all epochs.

There remain a large number of unsolved issues, like the symbiotic evolu-
tion of black hole and bulges in galaxies, which appear to be divergent at high
redshift, the importance of AGN feedback in the early universe, the influence
of environment in proto-clusters. The detection of important quantities of cold
and dense gas in the circumgalactic medium at early times might give some
clues in the missing baryon problem.

Acknowledgements I thank Paul Ho for inviting me to write this review.
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Bouwens R, Bouché N, Kollatschny W, Schaye J, Marino RA, Pello R,
Herenz C, Guiderdoni B, Carollo M (2017) The MUSE Hubble Ultra Deep
Field Survey. I. Survey description, data reduction, and source detection.
A&A608:A1, DOI 10.1051/0004-6361/201730833, 1710.03002

Bentz MC, Denney KD, Grier CJ, Barth AJ, Peterson BM, Vestergaard M,
Bennert VN, Canalizo G, De Rosa G, Filippenko AV, Gates EL, Greene JE,
Li W, Malkan MA, Pogge RW, Stern D, Treu T, Woo JH (2013) The Low-
luminosity End of the Radius-Luminosity Relationship for Active Galactic
Nuclei. ApJ767:149, DOI 10.1088/0004-637X/767/2/149, 1303.1742

Berta S, Lutz D, Nordon R, Genzel R, Magnelli B, Popesso P, Rosario
D, Saintonge A, Wuyts S, Tacconi LJ (2013) Molecular gas mass func-
tions of normal star-forming galaxies since z ˜ 3. A&A555:L8, DOI
10.1051/0004-6361/201321776, 1304.7771

Bigiel F, Leroy A, Walter F, Brinks E, de Blok WJG, Madore B, Thornley
MD (2008) The Star Formation Law in Nearby Galaxies on Sub-Kpc Scales.

1601.00682
1503.02652
1607.06769
1710.03002
1303.1742
1304.7771


Molecular gas in high-z galaxies with ALMA 25

AJ136:2846–2871, DOI 10.1088/0004-6256/136/6/2846, 0810.2541
Bischetti M, Piconcelli E, Feruglio C, Duras F, Bongiorno A, Carniani S,

Marconi A, Pappalardo C, Schneider R, Travascio A, Valiante R, Vietri G,
Zappacosta L, Fiore F (2018) The WISSH quasars project V. ALMA reveals
the assembly of a giant galaxy around a z=4.4 hyper-luminous QSO. ArXiv
e-prints 1804.06399

Blain AW, Smail I, Ivison RJ, Kneib JP, Frayer DT (2002) Submillime-
ter galaxies. Phys. Rep.369:111–176, DOI 10.1016/S0370-1573(02)00134-5,
astro-ph/0202228

Bolatto AD, Wolfire M, Leroy AK (2013) The CO-to-H2 Conversion Fac-
tor. ARA&A51:207–268, DOI 10.1146/annurev-astro-082812-140944, 1301.
3498

Boselli A, Cortese L, Boquien M, Boissier S, Catinella B, Lagos C, Saintonge
A (2014) Cold gas properties of the Herschel Reference Survey. II. Molecu-
lar and total gas scaling relations. A&A564:A66, DOI 10.1051/0004-6361/
201322312, 1401.8101
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tended [C II] Emission in Himiko at z=6.6. ApJ854:L7, DOI 10.3847/
2041-8213/aaab45, 1712.01890

Casey CM, Narayanan D, Cooray A (2014) Dusty star-forming galaxies at high
redshift. Phys. Rep.541:45–161, DOI 10.1016/j.physrep.2014.02.009, 1402.
1456

Chapman SC, Blain AW, Smail I, Ivison RJ (2005) A Redshift Survey of the
Submillimeter Galaxy Population. ApJ622:772–796, DOI 10.1086/428082,
astro-ph/0412573

Combes F (2008) Molecular absorptions in high-z objects. Ap&SS313:321–326,
DOI 10.1007/s10509-007-9632-3, astro-ph/0701894

Combes F, Maoli R, Omont A (1999) CO lines in high redshift galaxies: per-
spective for future MM instruments. A&A345:369–379, astro-ph/9902286

Combes F, Rex M, Rawle TD, Egami E, Boone F, Smail I, Richard J, Ivi-
son RJ, Gurwell M, Casey CM, Omont A, Berciano Alba A, Dessauges-
Zavadsky M, Edge AC, Fazio GG, Kneib JP, Okabe N, Pelló R, Pérez-
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CM, Murchikova L, Koda J, Álvarez-Márquez J, Lee N, Laigle C, McCracken
HJ, Ilbert O, Pope A, Sanders D, Chu J, Toft S, Ivison RJ, Manohar S
(2016) ISM Masses and the Star formation Law at Z = 1 to 6: ALMA
Observations of Dust Continuum in 145 Galaxies in the COSMOS Survey
Field. ApJ820:83, DOI 10.3847/0004-637X/820/2/83, 1511.05149

Scoville N, Lee N, Vanden Bout P, Diaz-Santos T, Sanders D, Darvish B,
Bongiorno A, Casey CM, Murchikova L, Koda J, Capak P, Vlahakis C,
Ilbert O, Sheth K, Morokuma-Matsui K, Ivison RJ, Aussel H, Laigle C,
McCracken HJ, Armus L, Pope A, Toft S, Masters D (2017) Evolution
of Interstellar Medium, Star Formation, and Accretion at High Redshift.
ApJ837:150, DOI 10.3847/1538-4357/aa61a0, 1702.04729
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