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The Modified Dynamics–A Status Review
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Abstract. The Modified dynamics (MOND) has been pro-
pounded as an alternative to Dark matter. It imputes the mass
discrepancy in galaxy systems to failure of standard dynamics in
the limit of small accelerations. After a brief description of the
MOND tenets, I discuss how its predictions now compare with
the data. I put special emphasis on rotation-curve analysis–
whence comes the most clear-cut support for MOND, and on
the cores of rich x-ray clusters, where MOND does not yet ex-
plain away the mass discrepancy. I then outline the MOND pro-
gram, especially work still left to do. This is followed by general
comments on cosmology and structure formation in MOND. I
conclude with some incomplete thoughts on the possible origin
of MOND (as an effective theory); in particular on the possibil-
ity that it comes about as a vacuum effect.

1. Introduction–the basic tenets of MOND

To speak of the “dark matter” problem is to beg one of the most impor-
tant conundrums in present-day science; after all we have no direct evidence
that dark matter actually exists in appreciable quantities. All we know is
that the masses directly observed in galactic systems fall below what is
calculated using standard dynamics. Stuffing galactic systems and the uni-
verse with putative dark matter is perhaps the least painful remedy for
most people, but it is not the only one possible. Another avenue worthy of
consideration builds on a possible failure of standard dynamics under the
conditions that prevail in galactic systems. As you may know, the modified
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dynamics (MOND) has been put forth in just this vein[1]. It hinges on the
accelerations in galactic systems being very small compared with what is
encountered in the solar system, say. MOND asserts that non-relativistic
dynamics involves the constant a0, with the dimensions of acceleration, so
that in the formal limit a0 → 0–i.e., when all quantities with the dimen-
sions of acceleration are much larger than a0–standard dynamics obtains
(in analogy with the appearance of h̄ in quantum mechanics, and the classi-
cal limit for h̄→ 0). In the opposite (MOND) limit of large a0 dynamics is
marked by reduced inertia; one may roughly say that in this limit inertia at
acceleration a is ma2/a0, instead of the standard ma. This still allows for
different specific formulations. Indeed we have nonrelativistic formulations
of MOND, derivable from actions, based on either modified gravity[2], or
on modified inertia[3]; these will be described below. A simple, if primi-
tive, formulation that captures much of the content of MOND, and which
gives the basic idea, is this: Imagine a test particle in the gravitational
field of some mass distribution whose standard (Newtonian) gravitational
acceleration field is gN. In standard dynamics the acceleration, g, of the
particle is gN itself. MOND posits that this is so only in the limit gN � a0.
In the opposite limit gN � a0 we have roughly g ∼ (gNa0)1/2. To inter-
polate between the limits we use a relation of the form µ(g/a0)g = gN,
where µ(x) ≈ x for x � 1, and µ(x) ≈ 1 when x� 1. This relation gives
an approximate relation between the typical accelerations in a system (as
embodied, say, in an exact virial relation derived from an exact theory). It
also gives a very good approximation for the acceleration in circular mo-
tion relevant for rotation curves of disc galaxies[3][4] (in modified inertia
theories it give the exact rotation curve). In the more decent formulations
of MOND, the actual acceleration of a test particle is not directly related
to the local Newtonian acceleration as in the above relation (in particular,
the two are not in the same direction, in general).

Some immediate, and unavoidable, predictions of even the basic tenets
are[1][5]:

1. The rotation curve for any isolated body becomes flat, asymptoti-
cally.

2. The asymptotic rotational velocity, V∞, depends only on the total
mass of the body, M , via V 4

∞ = MGa0. This predicts a Tully-Fisher
relation between velocity and luminosity if the M/L values are narrowly
distributed.

3. A similar approximate relation exists, for a body supported by ran-
dom motions, between the mean velocity dispersion and the total mass.
This is relevant to mass determinations of systems such as dwarf-spheroidal,
and elliptical, galaxies, and of galaxy groups and clusters. It also predicts
an approximate L ∝ σ4 relation in such systems (with similar M/L values).

4. The smaller the typical acceleration of a gravitationally bound sys-
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Figure 1. The mass discrepancy (dynamical mass over detected mass) in
various galactic systems plotted against the typical system size.

tem, the larger the mass discrepancy it should evince. It had thus been
predicted that all low-surface-brightness (LSB) systems should evince large
mass discrepancies since, for a given M/L, surface brightness is propor-
tional to acceleration (in the mean). This pertains, e.g., to dwarf-spheroidal
satellites of the Milky Way, and to low-surface-brightness disc galaxies.

5. Above all, the full rotation curve of a disc galaxy should be obtained,
using MOND, from the distribution of the observed mass alone.

Comparison with the data, as discussed later, yields a value of a0, de-
termined in several, independent ways (using the different roles of a0 in the
theory). Very interestingly, the value a0 turns out to be of the same order
as cH0–an acceleration parameter of cosmological significance[1]. Antici-
pating later discussion, I remark here that this might be a crucial clue as to
the origin of MOND, and its possible origin in effects related to cosmology.

2. The performance of MOND

Figure 1 summarizes the mass discrepancy in various galactic systems. It
shows, approximately, the ratio of the dynamical mass, as determine with
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Figure 2. The mass discrepancy plotted against the typical system accel-
eration.

standard dynamics, to the mass so far accounted for by direct observations.
The discrepancy is plotted against some “typical” system radius. (Masses
in galactic systems show no sign of saturation with radius, and the value
within that “typical” radius is used.) I note, in passing, that there is no
correlation of the discrepancy with system size. Remark, in particular, that
the small dwarf spheroidals and LSB discs show large discrepancies, while
the large galaxy clusters evince only moderate discrepancies. This flies in
the face of attempts to explain away the mass discrepancy by modifying
gravity at large distances, predicting increase in the “discrepancy” with
size. (Contrary to some lingering misconception, MOND is not a modifi-
cation at large distances, but at low accelerations–which for a given mass
are attained at large distances.)

The use of MOND dynamics should eliminate the mass discrepancy in
all systems. Put differently, MOND predicts the mass discrepancy expected
when using Newtonian dynamics. Figure 2 shows the discrepancy plotted
now against the typical inverse acceleration–as prescribed by MOND. It
also shows the MOND prediction of the discrepancy as a solid line interpo-
lating the value 1 at low a−1 and the predicted discrepancy, a0/a, at a� a0.
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The positions of the blobs describing the different galactic systems roughly
represent detailed work on individual systems: dwarf spheroidals[6]-[9],
disc-galaxy rotation curves[10]-[13], galaxy groups[14], x-ray clusters (e.g.
[15]-[18]), and large-scale filaments[19]. I expand here on two types of sys-
tems.

2.1. Cores of rich x-ray clusters

We see in Fig. 2 that MOND explains away the mass discrepancy in all
the systems studied except one–the cores of rich x-ray clusters. This is
discussed in [20], but the point had been made before in ref.[16] (and a
hint of it is in ref.[15], see also ref.[18]). (I separate, somewhat artificially,
the results for cluster cores, within a few hundred kiloparsecs, from the
cluster bulk within a few megaparsecs. There is, of course, continuity: the
discrepancy in the core, which still lingers in MOND, decreases and disap-
pears as we go to larger radii.) The point is that x-ray-cluster cores have,
by and large, borderline accelerations (i.e. of order a0 or somewhat larger).
MOND tells us then not to expect much of a mass discrepancy there, when,
in fact, the mass so far accounted for (in hot gas, and stars) falls short of the
dynamical mass obtained from gas hydrostatics, and from strong lensing.
According to MOND there must then reside in these cores normal baryonic
matter yet undiscovered. It is well known that such clusters are character-
ized by cooling flows that deposit large quantities of matter in their cores.
These deposits have not yet been discovered, and, it is surmised, might be
in the form of dim stars or warm gas. Present-day mass-deposition rates
do not suffice to supply the required mass within the Hubble time, but
the rates might have been higher in the past. In any event it is a strong
prediction of MOND that the dark matter in cluster cores is baryonic and
will be detected. The recent detection of strong UV emission from the
cluster Abell 1795 has been interpreted as arising from warm gas enough
to account for the dark matter in the core[21].

From an historical perspective, it is interesting to remember that at the
time of the advent of MOND it was not known that clusters harbor large
quantities of hot, x-ray-emitting gas. This, as we now know, constitutes
the lion’s share of the baryonic mass in x-ray clusters. Similar to the case
with the cluster cores now, the MOND analysis of the time[22] still left a
mass discrepancy for some clusters (such as Coma, A2029, A2199, A2256).
Seeing that these clusters are x-ray sources, it had been surmised[22] that
intergalactic gas responsible for the emission might account for the lingering
discrepancy, as indeed proved to be the case.
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2.2. Rotation-curve analysis

Rotation-curve analysis is arguably the heart of MOND testing. It sur-
passes all other tests as regards the quality of the data, the freedom from
astrophysical assumptions, and the range of acceleration values covered.
About eighty disc galaxies with sufficient data (extended, two-dimensional
velocity maps, photometry, and HI distribution) have now been successfully
MOND tested by various studies[23][10][24][11][12][13]. For each galaxy the
analysis involves, in most cases, one adjustable parameter–the M/L value
of the stellar disc (in standard dark-halo fits there are two additional free
parameters characterizing the halo). A success of MOND for even a single
rotation curve is most significant, because even full freedom to choose M/L
is anything but sufficient to make MOND work in any given case. This is
nicely demonstrated in ref [13] by analyzing a synthetic galaxy model taken
to have the HI data (HI distribution, and rotation curve) from one galaxy,
and the stellar light distribution from another. An attempt to fit this galaxy
with MOND gives a very bad best fit, and the best-fit M/L value is unrea-
sonably high. In contrast, a standard, dark-halo fit for this “wrong” galaxy
model gives a very good fit (with reasonable M/L value). Another example
serving to demonstrate the limited leverage of the M/L parameter: Many
galaxies have high accelerations (a� a0) in their inner parts; MOND then
predicts no discrepancy there, and the stellar M/L value is thus fixed by
the inner parts. The rotation curve in the outer parts (its shape, whether
falling or rising, and amplitude) then remains an unadjustable prediction
of MOND that could easily fail.

In addition, note that the stellar M/L value is not really a totally free
parameter. In must fall within some acceptable range, and, by and large,
is constrained by theoretical models. The study of ref.[12], which is unique
in its use of the infrared K ′ photometric band–arguably the best repre-
sentative of stellar mass–shows that, indeed, the resulting MOND M/L
values, for the sample of Ursa Major galaxies studied, are very narrowly
distributed near one solar unit. The study also finds that the B-band,
MOND M/L values are strongly correlated with the observed galaxy color,
following the expected theoretical relation. All this shows M/L to be a
rather tightly tethered parameter, which further heightens the significance
of the successful MOND analysis.

3. The general MOND program

Those cleaving to Newtonian dynamics may take the success of MOND
to reflect some very strict regularity–encompassing the whole gamut of
galactic systems–relating the distribution of visible matter to that of dark
matter via a simple formula. The few of us who have contributed to MOND
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Figure 3. Schematics of the MOND program.

theory and testing over the years view this success as strong indication
of departure from standard dynamics in the parameter region relevant to
galactic systems. Taking MOND in such a vein, one seeks to construct
theories, with increasing depth and compass, that incorporate the basic
tenets of MOND. Figure 3 presents the schematics of these efforts, with
full-line blocks marking areas in advanced stages of development.

At the nonrelativistic level, at least, MOND may be viewed as either a
modification of gravity, or a modification of inertia[1]. In the former, the
gravitational field produced by a given mass distribution is dictated by a
new equation; in the latter the equation of motion is MONDified, while
the force fields remain intact. An example of the former is the MONDifi-
cation of the Poisson equation discussed in ref. [2] where the gravitational
potential, ϕ, is determined by the mass distribution, ρ, via

~∇ · [µ(|~∇ϕ|/a0)~∇ϕ] = 4πGρ. (1)

Mondified inertia is discussed in refs. [3][25]. In such theories, when
derived from an action, one replaces the standard kinetic action for a par-
ticle (

∫
v2/2 dt) by a kinetic action that is a more complicated functional

of the particle trajectory

AmS[r(t), a0], (2)
7



where Am depends only on the body, and can be identified with its mass,
and S depends only on the trajectory and on a0 as a parameter. Weak
equivalence is thus insured. In the formal limit a0 → 0 the action goes to
the standard kinetic action. In the opposite limit, a0 →∞, S ∝ a−1

0 , and
inertia disappears in the very limit.

With respect to Newtonian dynamics, special relativistic dynamics is an
example of modified inertia: The equation of motion of a relativistic particle
moving in a force field F(r) is md(γv)/dt = mγ[a + γ2c−2(v · a)v] = F(r),
derived from the kinetic action mc2

∫
dτ = mc2

∫
γ−1 dt. Here too there

appears a parameter, c, which, like a0 in MOND (and h̄ in QM) both
delimits the standard (classical) region, and enters the dynamics in the non-
classical regime. Unlike the special-relativistic action, which is still local,
the MOND action is perforce non-local if it is to be Galilei invariant[3].

Mondified gravity and mondified inertia do not differ on what we call the
basic predictions of MOND: The asymptotic flatness of rotation curves (and
their general shape), the M ∝ V 4 relation, the added stability of systems in
the deep MOND regime[26], etc. There are, however, important differences;
some examples are: 1. In mondified gravity only systems governed by
pure gravity (such as galactic systems) are affected, while in mondified
inertia the modification applies for whatever combination of forces is at
play. 2. in the former, the acceleration of a test particle depends only on its
position in the field, while in the latter it depends strongly on other details
of the trajectory (inertia is identified with acceleration only in standard
Newtonian dynamics). As an example, we can see in the special-relativity
case, mentioned above, that the v ·a term vanishes for a circular orbit, but
dominates, at high γ, for a linear trajectory. 3. In mondified inertia the
expressions for the conserved quantities and adiabatic invariants in terms
of the motion are modified[3], in contradistinction to mondified gravity.

An acceptable relativistic extension for MOND is not yet at hand. Dis-
cussions of various candidates can be found in refs. [2][27][28][29], but each
of these has its problems. These problems seem to be specific to the partic-
ular models (e.g. that in [2] has superluminal modes, scalar-tensor theories
as discussed in [28] do not give as large a light bending as is observed, and
that in [29] is based on a non-dynamical pregeometry).

Reflection over this question has convinced me that a relativistic exten-
sion will not just be a relativistic theory where a0 appears as a parameter,
with GR restored in the limit a0 → 0. I have always viewed MOND as an
effective theory (i.e. an approximate theory that results from a deeper one
in a certain limit, and/or when some of the relevant degrees of freedom are
integrated out). In the present case MOND is perhaps an approximation
in the limit of small sizes and short times (on the cosmological scale), and
nonrelativistic motion, due to some yet-undiscovered effect connected with
cosmology. An analogy will highlight the point: If we are ignorant of earth
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gravity as derived from the pull of the earth–such as when we are immured
forever in a small laboratory near the earth’s surface–dynamics is described
approximately by modified inertia of the form

F = m(a − g), (3)

where F is the applied force excluding earth gravity, and g is the free-fall
acceleration on earth. This can be recast to resemble MOND inertia:

F = mµ
↔

(a/g) · a, (4)

where µ
↔

(x) ≡ 1− e⊗x
x2 , and e ≡ g/g is a down-pointing unit vector. This is

a good approximation inasmuch as this proverbial laboratory is our whole
universe; i.e., for systems small compared with R⊕ (analogous to the Hub-
ble distance), and times small compared with H−1

⊕ = t⊕ ≡ R⊕/c⊕, where
c⊕ = (M⊕G/R⊕)1/2 is the escape speed–analogous to the speed of light.
The effective “acceleration constant”, g, appearing in this modified inertia
is related to the “cosmological” parameters by g = c⊕H⊕.

In a relativistic extension of MOND, or in the cosmological context, a0

may lose its role as a “universal constant”[3][25]–as g does in the above
analogy when dealing with, say, satellite motion for which v ∼ c⊕. The
peculiar situation is further highlighted by the fact that–in view of a0 ∼
cH0–the only system that is both high-field in the GR sense and in the
deep-MOND regime is the universe at large. (In the quantum analogue
a system in the high-field, quantum regime is of Planck scale or smaller.
There, we can, at least look from outside the Planck scale, which we cannot
do in MOND.) Relativistic MOND must then be understood as part and
parcel of cosmology, as I elaborate more in the next section.

4. Cosmology and structure formation

Cosmology is then not simply an application of a relativistic version of
MOND but a unit with it. The key to finding the underlying theory may
lie in understanding first how an acceleration of cosmological significance
can, at all, enter local dynamics, which I discuss in the last section.

If a0 is a fingerprint of cosmology on local dynamics, it is not necessarily
the identification a0 ∼ aex ≡ cH0 which is the the right one. There are
other cosmological acceleration scales[30][3][31] such as ac ≡ c2/Rc, where
Rc is the curvature radius (spatial or space-time), or aΛ ≡ cΛ1/2, where Λ
is the cosmological constant. Today we have only upper limits on ac, which
is of the order of aex. Several pieces of evidence seem now to imply a non-
zero cosmological-constant with Λ ∼ H2

0 . If this is true then we also have
a0 ∼ aΛ. Thus a0 might be a proxy for any of the cosmological acceleration
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parameters. Since these depend differently on cosmic time, a0 may vary
with cosmic time in a way that is difficult to know without the correct
identification. Such possible variation of a0 has obvious ramifications for
the formation and the ensuing evolution of galactic systems.

Even without a theory we can make out some semi-quantitative aspects
by which MOND cosmology must differ greatly from standard cosmology:

1. MOND is based on the phenomenology of galactic systems and hence,
in principle, is not committed on the question of cosmologically homoge-
neous component of dark matter. But certainly, it is in the spirit of MOND
that we should not conjecture the existence of any DM component with-
out first trying to explain it away with new physics. Recent leanings to-
ward a non-zero cosmological constant(CC) are a step in this direction.
And perhaps[25] the same mechanism that produces a CC-like contribu-
tion might also effect MOND (hence the coincidence a0 ∼ cΛ1/2). At any
event, a MOND-inspired cosmology would start with no dark matter.

2. The MOND Jeans mass–a basic concept in structure formation,
which indicates which masses are likely to collapse from an homogeneous
medium–depends differently on the temperature, T , and density, ρ, of the
medium[30]: MJ (MOND) ∝ T 2/a0, instead of the Newtonian dependence
MJ ∝ T 3/2ρ−1/2.

3. The acceleration in a collapsing system increases as the collapse
proceeds (after detachment from the Hubble flow). If a0 varies at all, it is
expected to decrease with cosmic time. So, the effect of MOND is expected
to decrease with time in a collapsing system. (The system would behave
as if the fraction of fictitious dark matter it harbors decreases with time.)

In default of a theory one can still attempt to obtain approximate
MOND cosmologies–in order to get a hint of what is expected–by sup-
plementing nonrelativistic MOND with extra assumptions. For instance,
one might assume that a0 does not vary with cosmic time, identifying it
with a veritable cosmological constant[30]. This is done in ref. [32] where
some further tentative assumptions are made. In such a case one is bound
to ask why it is that this constant a0 is today of the same order as the vari-
able cH0. The same question arises in connection with the emerging value
of the cosmological constant Λ ∼ H2

0 . In MOND, at any rate, this could
find an antropic explanation whereby structure formation (hence star for-
mation and the eventual development of mankind) is facilitated when the
acceleration within the horizon (∼ cH0)–decreasing as it does with cosmic
time–becomes similar to the crucial dynamical constant a0[30][32].

5. A possible origin of MOND

Why should then a cosmological acceleration parameter enter local dynam-
ics in galaxy systems? I have discussed this question in refs.[3][25] and give
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here a brief account. I shall concentrate on mondified inertia, which seems
to me more promising at this juncture.

The thread I would like to follow is that inertia might result from the
interaction of matter with the vacuum. Also, cosmology affects the vac-
uum and is affected by it (e.g. through a contribution to a cosmological
constant). So, either cosmology affects inertia through the intermediary
vacuum, or, cosmology and inertia are both affected by the vacuum dy-
namics, which then enters cosmology, say, as a cosmological constant, Λ,
and MOND through a0 ≈ cΛ1/2.

Inertia is what makes kinematics into dynamics, associating with mo-
tion the attributes of energy and momentum that can be changed only by
applying forces, as described by the appropriate equation of motion. Just
how much energy and momentum is associated with so much motion is
dictated by the kinetic action of the relevant degrees of freedom. To ob-
tain inertia as a derived effect is to derive the kinetic actions (in our case
from some vacuum effect). From this action the energy-momentum tensor
is derived; thus, in relativity, this action also encapsules the contribution
of the particular degree of freedom to the sources of gravity. Attempts to
derive inertia–in the spirit of Mach’s principle–have concentrated mainly
on inertia of bodies–see e.g. ref. [33]. But, of course, all dynamical degrees
of freedom, whether we describe them as bodies (particles) or fields, carry
inertia.

Supposedly one starts from only interactions between the different de-
grees of freedom and get inertia in the form of effective kinetic actions. We
know that interactions can, indeed, induce and modify inertial actions. For
example, the effective mass of “free” electrons and holes in a semiconduc-
tor can be greatly changed from its vacuum value; mass renormalization
in field theory is, of course, a vacuum effect; and the Higgs mechanism in-
duces an effective mass term from the interaction with the putative Higgs
field. It is also known that the interaction of the electromagnetic field with
charged vacuum fields begets a free effective action for the electromagnetic
field–the Heisenberg-Euler effective action (see e.g. [34] and [35] p. 195).
What role, if any, these mechanisms play in MOND is not clear. However,
since they are known to affect inertia, they must be reckoned with in any
complete analysis.

The scheme I have in mind is inspired by Sakharov’s proposal[36] to
derive the “free” (Einstein-Hilbert) action of gravity from effects of the
vacuum: Curvature of space-time modifies the dynamical behavior of vac-
uum fields, hence producing an associated energy or action for the metric
field. To lowest order (in the Planck length over the curvature radius) this
gives the desired expression

∫
g1/2R. Sakharov’s arguments make use of

the fact that the vacuum fields have inertia (since they are assumed to carry
the usual energy-momentum). So, derived inertia comes prior to induced
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gravity a-la Sakharov. Mechanisms proposed in the literature to produce
inertia from vacuum effects (as in refs. [37] [38]) also presuppose inertia
of the vacuum fields, and can thus not serve as primary mechanisms for
inertia.

For the vacuum to be an agent for inertia it is necessary, in the first
place, that a non-inertial observer be able to perceive enough details of its
motion in the vacuum. The Lorentz invariance built into our theories leads
to a vacuum that is, perforce, Lorentz invariant, so uniform motion cannot
be detected through it. It is well known, however, that non-inertial motion
raises from the vacuum a specter that can be sensed by the observer in
different ways[39]. This phenomenon has so far been studied for only a
limited class of simple motions. For example, for an observer on a collinear
trajectory of constant-acceleration, a, (hyperbolic motion) this avatar of
the vacuum is the Unruh radiation: a thermal bath the observer finds itself
immersed in, of temperature T = a/2π (h̄ = 1, c = 1, k = 1)[39][40].
Circular, highly relativistic motions have been discussed, e.g. in refs. [41]-
[46] where it is found that a single parameter, a = γ2v2/r ≈ γ2/r, still
determines the spectrum of the incarnation of the vacuum (γ is the Lorentz
factor); this is quasi-thermal with effective temperature T = ηa/2π, where
η is of order unity and depends somewhat on the frequency. For general
motions, hardly anything is known about the radiation. It is clear that the
effect must be a nonlocal functional of the whole trajectory, because the
relevant wavelengths and frequencies of the radiation may be of the order
of scale lengths and frequencies, respectively, that characterize the motion.
(For stationary motions, such as the two described above, all points are
equivalent, so the Unruh-like radiation appears to depend only on “local”
properties. However, the non-local information on the stationarity of the
trajectory enters strongly.)

While the Unruh-like radiation may well serve as a marker for non-
inertial motions it is still difficult to implicate it directly in the generation
of inertia: 1. It is not clear that it carries all the information on the motion
needed to produce inertia. For example, even for hyperbolic motion, can
the direction of its acceleration be told by the accelerated observer (it
should be remembered that the radiation is characterized by more than
just its spectrum. For example, a finite size observer can compare the
radiation in its different parts.) 2. If inertia is local–as it is to a very good
approximation in the non-MOND regime–it has to adjust instantaneously
to the state of motion. The latter may change however on time scales that
are short compared with the typical period of the Unruh-like radiation.
In the MOND regime there is no experimental indication that inertia is
local; on the contrary, as mentioned before, theoretical arguments point to
nonlocal MOND inertia.

How does MOND fit into this, and, in particular, how can the con-
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nection with cosmology be made? When the acceleration of a constant-a
observer becomes smaller than a0, the typical frequency of its Unruh radi-
ation becomes smaller than the expansion rate of the Universe, the Unruh
wavelength becomes larger than the Hubble distance, etc. [30][3]. We ex-
pect then some break in the response of the vacuum when we cross the a0

barrier. What is the Unruh radiation seen by a non-inertial observer in a
nontrivial universe? We know that even inertial observers in a nontrivial
universe find themselves immersed in radiation arising from the distortion
of the vacuum. The simplest and best-studied case is that of a de Sit-
ter universe in which all inertial observers see a thermal spectrum with a
temperature TΛ = (Λ/3)1/3/2π [47], where Λ is the cosmological constant
characterizing the de Sitter cosmology. It was shown in refs. [48][49] that
an observer on an hyperbolic trajectory, in a de Sitter universe, also sees
thermal radiation, but with a temperature

T (a) =
1

2π
(a2 + Λ/3)1/2. (5)

If inertia is what drives a non-inertial body back to (some nearby)
inertial state, striving to annul the vacuum radiation–here, for hyperbolic
motion, to drive T back to TΛ–then T − TΛ is a relevant quantity. (With
cosmology fixed, the best that inertia can do is drive T to TΛ; in the
cosmological context it also strives to drive TΛ to zero.) We can write

2π(T − TΛ) ≡ 2π∆T = aµ̂(a/â0), (6)

with

µ̂(x) = [1 + (2x)−2]1/2 − (2x)−1, (7)

and â0 = 2(Λ/3)1/2. The quantity ∆T behaves in just the manner required
from MOND inertia[1] [µ̂(x� 1) ≈ x, µ̂(x� 1) ≈ 1−(2x)−1] with a0 = â0

naturally identified with a cosmological acceleration parameter. (This need
not be the effective form of µ for trajectories other than hyperbolic; in
mondified inertia there is no µ in the theory itself, and a different form of
µ may apply, for instance, to circular orbits[3][25].) While this observation
is interesting and suggestive, I cannot tell whether it is germane to MOND,
because it is not backed by a concrete mechanism for inertia, and because
I cannot generalize the observation to more general motions.

In de Sitter space-time the expansion rate, the space-time curvature,
and the cosmological constant are one and the same. These parameters
differ from each other in a general Friedmanian universe, and so the above
lesson learnt for the de Sitter case does not tell us which of the cosmological
acceleration parameters is to be identified with a0 in the real universe.

Recall that, in MOND, inertia vanishes in the limit a0 → ∞. In the
above picture this qualitative tenet of MOND is effected because the limit
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corresponds to Λ → ∞, or H0 → ∞, etc.; so, the Gibbons-Hawking-like
radiation due to cosmology swamps the thermal effects due to non-inertial
motion: the difference between inertial and non-inertial observers is effaced
in this limit.
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