
ar
X

iv
:0

81
1.

11
01

v1
  [

as
tr

o-
ph

] 
 7

 N
ov

 2
00

8

Lopsided spiral galaxies

Chanda J. Jog∗ & Francoise Combes∗∗

∗ Department of Physics, Indian Institute of Science, Bangalore 560012, India

∗∗ Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, Paris F-75014,

France

1

Abstract

The light distribution in the disks of many galaxies is non-axisymmetric or ‘lopsided’
with a spatial extent much larger along one half of a galaxy than the other, as in
M101. Recent near-IR observations show that lopsidedness is common. The stellar
disks in nearly 30 % of galaxies have significant lopsidedness of > 10% measured
as the Fourier amplitude of the m=1 component normalized to the average value.
This asymmetry is traced particularly well by the atomic hydrogen gas distribution
lying in the outer parts. The lopsidedness also occurs in the nuclear regions, where
the nucleus is offset with respect to the outer isophotes. The galaxies in a group
environment show higher lopsidedness. The origin of lopsidedness could be due to the
disk response to a tidally distorted halo, or via gas accretion. An m=1 perturbation
in a disk leads to a shift in the center of mass in the disk, and this then acts as an
indirect force on the original center of the disk. The disk is inherently supportive
of an m=1 mode, which is a particular feature only of lopsided modes, and which
makes their dynamical study interesting and challenging.

The lopsidedness has a large impact on the dynamics of the galaxy, its evolution,
the star formation in it, and on the growth of the central black hole and on the
nuclear fueling, merging of binary black holes etc. The disk lopsidedness can be
used as a diagnostic to study the halo asymmetry. This is an emerging area in
galactic structure and dynamics. In this review, the observations to measure the
lopsided distribution, as well as the theoretical progress made so far to understand
its origin and properties, and the related open problems will be discussed.
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1 Introduction

It has been known for a long time that the light and hence the mass distribu-
tion in disks of spiral galaxies is not strictly axisymmetric, as for example in
M 101 or in NGC 1637 (Sandage 1961), where the isophotes are elongated in
one half of the galaxy. Despite this, however, astronomers have largely tended
to ignore this fact and to assume the disks to be axisymmetric because it is
much simpler to study the dynamics of axisymmetric disks. This phenomenon
was first highlighted in the pioneering paper by Baldwin, Lynden-Bell, & San-
cisi (1980), where they detected an asymmetry in the spatial extent of the
atomic hydrogen gas in the outer regions in the two halves of some galaxies,
and gave these the apt name of ‘lopsided’ galaxies. A galaxy is said to be
lopsided if it displays a global non-axisymmetric spatial distribution of type
m = 1 where m is the azimuthal wavenumber, or a cosφ distribution where φ
is the azimuthal angle in the plane of the disk.

Surprisingly no further systematic work was done on this topic till mid-1990’s.
Since then there has been a resurgence in this field. The lopsided distribution
has now been detected and studied also in the old stellar component as traced
in the near-IR starting with the observations of Block et al. (1994) and Rix
& Zaritsky (1995). This exciting new development of the imaging studies of
spiral galaxies in the near-IR K-band (2.2 µ) was made possible by the devel-
opment of the NICMOS 3 array. The dust extinction effects are negligible in
the near-IR, hence these studies reveal the spatial distribution of the underly-
ing old stellar population, which constitute the main mass component of the
disk. These observations detected a non-axisymmetric m = 1 distribution of
surface density of old stars in the inner/optical region of the disk. Rix & Zarit-
sky (1995) define A1, the fractional amplitude of the first azimuthal fourier
component (m = 1) of surface brightness, to be the quantitative measure of
disk lopsidedness. They find that A1 increases with radius. The average value
measured between 1.5-2.5 disk scalelengths is large ≥ 0.1, and 30% of the
galaxies studied show a higher lopsidedness (Zaritsky & Rix 1997). A similar
high average value of disk lopsidedness was confirmed in a recent Fourier-
analysis study of a much larger sample of 149 galaxies (Bournaud et al. 2005
b).

The above analysis shows that nearly one third of the 149 galaxies exhibit 10 %
or more asymmetry in the amplitude of the m = 1 Fourier component. Thus,
lopsided distribution in the disk is a general phenomenon, and is stronger at
larger radii. Hence it is important to understand the origin and dynamics of
the lopsided distribution in spiral galaxies.

The lopsided distribution in the HI gas has been mapped spatially (Haynes et
al. 1998), and also mapped kinematically for a few galaxies (Schoenmakers,
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Franx & de Zeeuw 1997, Swaters et al. 1999), and by global velocity profiles
for a much larger sample (Richter & Sancisi 1994). Such an asymmetry has
also been detected in dwarf galaxies (Swaters et al. 2002), and also in the
star-forming regions in irregular galaxies (Heller et al. 2000). The asymmetry
may affect all scales in a galaxy. While the large-scale lopsidedness is more
conspicuous, the off-centering of nuclei is now often discovered at high spatial
resolution. A prototype of this m = 1 nuclear distribution is the inner region
of M31, where the central black hole is clearly off-centered with respect to
its nuclear stellar disk (e.g., Tremaine 2001). This frequent nuclear m = 1
perturbation must play a central role in the fueling of the active galactic
nucleus (AGN) in a galaxy.

The origin and the evolution of lopsidedness are not yet well-understood,
though a beginning has been made to address these problems theoretically.
Like any other non-axisymmetric perturbation, the lopsided distribution would
also tend to get wound up by the differential rotation in the galactic disk within
a few dynamical timescales. Since a large fraction of galaxies exhibit lopsided-
ness, it must be either a long-lived phenomenon or generated frequently. Tidal
interaction (Beale & Davies 1969), and satellite galaxy accretion (Zaritsky &
Rix 1997) have been suggested as the origin of the disk lopsidedness, these
can occur frequently. Weinberg (1995) has shown that the tidal interaction
between the Galaxy and the Large Magellanic Cloud (LMC) leads to a lop-
sided distortion of the Galaxy halo at resonance points between the LMC and
the halo orbit frequencies, which in turn causes a lopsided distribution in the
disk of the Galaxy. Since galaxy interactions are now known to be common,
the origin of disk lopsidedness as attributed to the disk response to the tidal
distortion in a halo has been proposed and studied by Jog (1997, 2002), and
Schoenmakers et al. (1997). Some other possible mechanisms that have been
suggested involve an off-center disk in a halo as in a dwarf galaxy (Levine &
Sparke 1998), or gas accretion (Bournaud et al. 2005 b), or treating it as a
global, long-lived mode (Saha, Combes & Jog 2007).

The m = 1 distribution in the inner regions of some galaxies such as M 31 has
been modeled through analytical work and numerical simulations (Tremaine
1995, Statler 2001, Bacon et al. 2001, de Oliveira & Combes 2008). According
to the various physical conditions in galaxy nuclei (such as the mass of the
bulge, the mass of the nuclear disk and that of the central black hole, the
presence of gas, etc.), an m = 1 mode is unstable, or an m = 1 excitation is
very slowly damped and can persist for several hundreds of dynamical times.
Such long-lived lopsided distribution is also seen in the centers of advanced
mergers of galaxies (Jog & Maybhate 2006). Due to their persistence, the
lopsided modes could play a significant role in the evolution of the central
regions of galaxies, especially in the fueling of a central AGN.

An m=1 perturbation in a disk leads to a shift in the center of mass in the disk,
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and this then acts as an indirect force on the original center of the disk. The
disk is inherently supportive of an m=1 mode, which is a particular feature
only of a lopsided mode. This results in long-lasting global lopsided modes.
While the m = 2 case corresponding to the two-armed spiral pattern or bars
has been studied extensively, the m = 1 mode has not received comparable at-
tention in the literature so far. This has to be redressed: first, m=1 is common
and the amplitude is even larger than for m=2 (Jarrett et al. 2003), second,
the m=1 modes do not have an Inner Lindblad Resonance, or ILR (e.g., Block
et al. 1994), and hence can allow transport of matter in the inner regions, and
third, these appear to be long-lived.

The existence of long-lived lopsided modes is expected to have a significant
impact on the dynamics of the galaxy, the star formation in it, and on the
nuclear fueling etc. In the tidal picture, the disk lopsidedness can be used as
a diagnostic to study the lopsidedness of the dark matter halo (Jog 1999).
Similarly, higher-order (m = 2) disk asymmetry can allow one to study the
ellipticity of the dark matter halo (Jog 2000, Andersen & Bershady 2002).
Thus in addition to being interesting and challenging in itself, a study of disk
lopsidedness can yield information about a number of other interesting prop-
erties of galaxies. Extra-planar gas and lopsidedness are frequently correlated
(Sancisi et al 2008).

Recently, the lopsided distribution in galaxies in different environments such
as groups and clusters and centers of mergers has been studied. These show
different properties, such as the higher observed lopsided amplitudes in the
group galaxies (Angiras et al. 2006). In future studies, these can act as impor-
tant tracers of the dynamics of disks and dark matter halos in these settings.

In Section 2, we discuss the observational properties of lopsidedness as seen in
HI and old stars, in the main disk as well as in the central region of galaxies.
The various theoretical models proposed in the literature and their comparison
is given in Section 3. The dynamics of lopsidedness in the central region of
the near-Keplerian case region is discussed in Section 4. Section 5 discusses
the observations and dynamical implications of lopsidedness in galaxies in a
different setting, namely in groups, clusters and in centers of mergers. Section
6 discusses several related points including the comparison between m=1 and
2 cases, the deduction of the halo asymmetry etc. Section 7 gives the effect
of lopsidedness on the galaxy. Finally, Section 8 gives a brief summary and
future directions for this field.
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2 Observations of lopsidedness in galactic disks

While lopsidedness is seen to be a ubiquitous phenomenon (Section 1), various
methods are used in the literature to define the asymmetry in disk galaxies.
We list and compare below the details, such as the definitions, the size of
the sample studied, the tracer used (near-IR radiation from old stars, and
21 cm emission from the HI gas etc.) There is no consensus so far as to
what is the definition for lopsidedness as well as what constitutes lopsidedness
(or the threshold). Obviously this has to be done if say the percentage of
galaxies showing lopsidedness as per the different criteria are to be compared.
At the end of Section 2.1, we recommend the use of a standard criterion for
lopsidedness as well as the threshold that could be adopted by future workers.

The disk lopsidedness in spiral galaxies has been studied in two different
tracers- HI, the atomic hydrogen gas studied in the outer parts of disks, and
the near-IR radiation from the inner/optical disks which traces the old stellar
component of the disks. The lopsidedness was historically first detected in the
HI, which we now realize is due to a higher lopsided amplitude at large radii.
Hence we follow the same, chronological order in the summary of observations
given next.

2.1 Morphological lopsidedness

2.1.1 Morphological lopsidedness in HI gas

The asymmetric distribution of HI in M101 was noted in the early HI ob-
servations (Beale & Davies 1969). This phenomenon was first highlighted by
Baldwin et al. (1980), who studied galaxies with highly asymmetric spatial
extent of atomic hydrogen gas distributions in the outer regions in the two
halves of a galaxy, such as M101 and NGC 2841 (see Fig. 1 here). This pa-
per mentions the asymmetric distribution of light and HI in spiral galaxies
such as M101. Quantitatively, they looked at the HI distribution in the four
prototypical galaxies, namely, M101, NGC 891, NGC 4565, NGC 2841. They
defined a galaxy to be ”lopsided” in which the galaxy is more extended on
one side than the other, and where the projected density of HI on the two
sides of the galaxy is at least 2:1 , and in which the asymmetry persists over
a large range in radius and position angle. All these lopsided galaxies were
also noted to have large-scale velocity perturbations. For a quantitative mea-
surement of lopsidedness the edge-on systems cannot be used. The cut-off in
inclination used for the near-IR and HI studies is given in Sections 2.1.2 and
5.1 respectively.
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Fig. 1. Galaxies showing an asymmetry in the spatial extent of 2:1 or more in the HI
distribution : M101 (top left, where the HI intensity is plotted here as gray scale) and
NGC 2841 (top right: here the HI contours are superimposed on an optical image),
These galaxies were termed ”lopsided” galaxies by Baldwin, Lynden-Bell, & Sancisi
(1980). These figures are from Braun (1995) and Bosma (1981) respectively. Other
typical examples are NGC 4654 (lower left: where HI contours are superimposed on
an optical image) and UGC7989 (lower right, showing contours and grey scale of
the HI intensity), from Phookun & Mundy (1995), and Noordermeer et al. (2005)
respectively.

There was no further work on this topic for over a decade. Further HI mapping
of a few individual galaxies such as NGC 4254 was done by Phookun, Vogel,
& Mundy (1993) which stressed the obvious spatial asymmetry but they did
not measure the lopsidedness. This paper studied the special case of the not-
so-common one-armed galaxies such as NGC 4254 where the phase varies with
radius (see Section 2.3).
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Richter & Sancisi (1994) collected data from single-dish HI surveys done using
different radio telescopes, for a large sample of about 1700 galaxies. They
found that 50 % of galaxies studied show strong lopsidedness in their global
HI velocity profiles. This could be either due to spatial lopsided distribution
and/or lopsided kinematics. But since a large fraction of their sample shows
this effect, they concluded that it must reflect an asymmetry in the gas density,
as is confirmed by the correlation between the spatial and global HI velocity
asymmetries in some galaxies like NGC 891, see Fig. 2 here. They argued
that the asymmetry in HI represents a large-scale structural property of the
galaxies. The criteria they used to decide the asymmetry are: (1). significant
flux difference between the two horns ( > 20% or > 8 sigma) (2). Total flux
difference (> 55 : 45%) between the low and the high velocity halves (3).
Width differences in the two horns (> 4 velocity channels or 50 km s−1). One
word of caution is that it is not clear from their paper if these three give
consistent identification of a galaxy as being lopsided or not.

The global velocity tracer is likely to underestimate the asymmetry fraction
as for example if the galaxy were to be viewed along the major axis as pointed
out by Bournaud et al. (2005 b), or for a face-on galaxy as noted by Kamphuis
(1993).

The comparison of asymmetry in the stars as detected in the near-IR and
the HI asymmetry in surface density using the second criterion of Richter &
Sancisi (1994) shows a similar behaviour in a sample of 76 galaxies (Fig. 6
of Bournaud et al. 2005 b). However, the asymmetry is quantitatively larger
and more frequent in HI than in stars. This result supports the conjecture by
Richter & Sancisi (1994) that the asymmetry in the global velocity profiles is
a good tracer of the disk mass asymmetry. While making this comparison, it
should be noted, however, that the HI asymmetry is seen more in the outer
radial range while the asymmetry in the near-IR is seen in the inner region of
a galactic disk.

Haynes et al. (1998) studied the global HI profiles of 103 fairly isolated spirals.
52 of the 78 or ∼ 75% galaxies showed statistically significant global profile
asymmetry of 1.05. Many show large asymmetry: 35 have asymmetry > 1.1,
20 have > 1.15, and 11 have > 1.2 .

The atomic hydrogen gas is an ideal tracer for a quantitative study of lop-
sidedness in galaxies since the HI gas extends farther out than the stars. The
typical radial extent of HI is 2-3 times that of the stars (e.g. Giovanelli &
Haynes 1988), and the amplitude of asymmetry increases with radius (Rix
& Zaritsky 1995) as seen for the stars. However, surprisingly, a quantitative
measurement of HI spatial lopsidedness has not been done until recently. In a
first such study, the two-dimensional maps of the surface density of HI have
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Fig. 2. Asymmetric HI surface density plot of NGC 891 (contours at the bottom
left); position-velocity diagram of the same galaxy (contours at the bottom right);
and the global velocity profile in NGC 891 (spectrum at the top), from Richter &
Sancisi (1994).

been Fourier-analyzed recently to obtain the m=1 Fourier amplitudes and
phases for a sample of 18 galaxies in the Eridanus group (Angiras et al. 2006)-
see Section 5.2 for details. Such analysis needs to be done for nearby, large-
angular size galaxies using sensitive data which will allow a more detailed
measurement of lopsidedness in nearby galaxies. A study along these lines is
now underway using the data from WHISP, the Westerbork observations of
neutral Hydrogen in Irregular and SPiral galaxies (Manthey et al. 2008).

The molecular hydrogen gas also shows a lopsided distribution in some galax-
ies, with more spatial extent along one half of a galaxy as in NGC 4565
(Richmond & Knapp 1986), IC 342 (Sage & Solomon 1991), NGC 628 (Adler
& Liszt 1989) and M51 (Lord & Young 1990). However, this effect is not com-
mon in most cases and that can be understood as follows. The lopsidedness
appears to be more strongly seen in the outer parts of a galaxy and the am-
plitude increases with radius as seen in stars (Rix & Zaritsky 1995),and also
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in HI gas (Angiras et al. 2006). Theoretically it has been shown that the disk
lopsidedness if arising due to a response to a distorted halo with a constant
amplitude can only occur in regions beyond ∼ 2 disk scalelengths (Jog 2000).
In most galaxies the molecular gas in constrained to lie within two disk scale-
lengths or half the optical radius (Young 1990). Hence we can see that in most
galaxies, there is no molecular gas in the regions where disk lopsidedness in
stars or HI is seen. This is why the molecular gas being in the inner parts of
the galactic disk does not display lopsidedness in most cases.

2.1.2 Morphological lopsidedness in old stars

The near-IR traces the emission from the old stars since dust extinction does
not significantly affect the emission in the near-IR. The systematic study of
this topic was started in the 1990’s when a few individual galaxies such as NGC
2997 and NGC 1637 were mapped in the near-IR by Block et al (1994). They
noted the m=1 asymmetry in these but did not study it quantitatively. The
pioneering quantitative work in this field was done by Rix & Zaritsky (1995)
who measured the asymmetry in the near-IR for a sample of 18 galaxies. In
each galaxy, A1, the fractional amplitude for the m=1 mode normalized by
an azimuthal average (or m=0), was given at the outermost point measured
in the disk, i.e. at 2.5 exponential disk scalelengths. This distance is set by
the noise due to the sky background in the near-IR. The mean value is 0.14
, and 30 % have A1 values more than 0.20 which were defined by them to be
lopsided galaxies. A typical example is shown in Fig. 3.

This study was extended for a sample of 60 galaxies by Zaritsky & Rix (1997).
They carried out the Fourier analysis of the near-IR surface brightness between
the radial range of 1.5-2.5 Rexp, where Rexp is the characteristic scale of the
exponential light distribution. The normalised m = 1 Fourier amplitude A1 is
a more representative indicator of disk lopsidedness.

It was shown that 30 % of the galaxies have A1 > 0.2, which was taken to
define the threshold lopsidedness as in the previous work. Rudnick & Rix
(1998) studied 54 early-type galaxies (S0-Sab) in R- band and found that 20
% show A1 values measured between the radial range of 1.5-2.5 Rexp to be >
0.19.

A similar measurement has recently been done on a much larger sample of
149 galaxies from the OSU (Ohio State University) database in the near-IR
(Bournaud et al. 2005 b), see Fig. 4. This confirms the earlier studies but for a
larger sample, and gives a smaller value of lopsided amplitude, namely ∼ 30%
show lopsideness amplitude of 0.1 or larger when measured over the radial
range of 1.5-2.5 Rexp. The galaxies with inclination angles of < 700 were used
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Fig. 3. The values of the various fractional Fourier amplitudes and phases vs. radius
in units of the disk scalelengths for NGC 1325 (from Rix & Zaritsky 1995). The
amplitude scale in the lower three panels has been expanded by a factor of 5/3 for
clarity, since these higher m components have smaller amplitudes . The lopsided
amplitude A1 increases with radius, and the phase is nearly constant with radius.

for this study. Since this is a large, unbiased sample it can be taken to give
definitive values, and in particular the mean amplitude of 0.1 can be taken as
the threshold value for deciding if a galaxy is lopsided. The lopsidedness also
shows an increasing value with radius, as seen in the Rix & Zaritsky (1995)
study.

In the Fourier decomposition studies the determination of the center is a tricky
issue, and the same center has to be used for all the subsequent annular radial
bins, otherwise during the optimization procedure, a different center could get
chosen and will give a null measurement for the lopsidedness. This is applicable
for the lopsidedness analysis for HI (Angiras et al. 2006, 2007), and also for
centers of mergers (Jog & Maybhate 2006). These two cases are discussed
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Fig. 4. The histogram showing the distribution of lopsidedness measured in 149
galaxies at inclination of < 700 from the OSU sample (Bournaud et al. 2005 b). The
typical normalized lopsided amplitude A1 measured over the radial range between
1.5 to 2.5 disk scalelengths is ∼ 0.1. Thus most spiral galaxies show significant
lopsidedness.

respectively in Sections 5.1 and 5.3.

The large number of galaxies used allows for a study of the variation with type.
It is found that late-type galaxies are more prone to lopsidedness, in that a
higher fraction of late-type galaxies are lopsided, and they show a higher value
of the amplitude of lopsidedness (Bournaud et al. 2005 b), see Fig. 5. This is
similar to what was found earlier for the variation with galaxy type for the HI
asymmetries (Matthews, van Driel, & Gallagher 1998). These samples largely
consist of field galaxies, while the group galaxies show a reverse trend with
galaxy type (Angiras et al. 2006, 2007) implying a different mechanism for the
origin of lopsidedness in these two settings, see Section 5.1 .

While an axisymmetric galaxy disk gives rise only to radial gravity forces,
and therefore no torque, any asymmetry in the disk, either m = 1, m = 2 or
higher, gives rise to tangential forces in addition to radial forces, and then to
a gravity torque. From the near-infrared images, representative of old stars,
and thus of most of the mass, it is possible to compute the gravitational
forces experienced in a galactic disk. The computation of the gravitational
torque presents important complementary information, namely it gives the
overall average strength of the perturbation potential as shown for m=2 (Block
et al. 2002), and for m=1 (Bournaud et al. 2005 b), whereas the Fourier
amplitudes give values which are weighted more locally. The gravitational
potential is derived from the near-infrared image, see Bournaud et al. (2005 b)
for the details of this method. The m=1 component of the gravitational torque,
Q1 between 1.5-2.5 disk scalelengths is obtained, the histogram showing its
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Fig. 5. The plot of the cumulative function of < A1 > for three groups of Hubble
types of spiral galaxies: the early-types (0 < T < 2.5), the intermediate types
(2.5 < T < 5 ), and the late-types (5 < T < 7.5), where T denoted the Hubble type
of a galaxy (taken from Bournaud et al. 2005 b). The late-type galaxies are more
lopsided than the early-type galaxies.

distribution is plotted in Fig. 6 , which is similar to that for the lopsided
amplitude A1 (Fig. 4) as expected.

Fig. 6. The histogram of Q1, the m=1 Fourier amplitude in the gravitational po-
tential, for the OSU sample of galaxies, from Bournaud et al. 2005 b.

An even larger sample based on the SDSS data has now been Fourier-analyzed
by Reichard et al. (2008), and they also get a similar average value of lopsid-
edness in spiral galaxies, see Fig. 7. However, they use the surface density data
between 50% and 90% light radii, so a clear one-to-one quantitative compari-
son of the values of lopsidedness from this work as compared to the previous
papers in the literature discussed above is not possible. This work confirms
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that galaxies with low concentration, and low stellar mass density (or the late-
type spirals) are more likely to show lopsidedness, as shown earlier for HI by
Matthews et al. (1998) and for stars by Bournaud et al. (2005 b).

Fig. 7. The histogram of number of galaxies vs. A1 values for the SDSS sample, from
Reichard et al. (2008). The histogram gives similar values to the earlier studies by
Rix & Zaritsky (1995) and Bournaud et al. (2005 b)

Another approach to measure the asymmetry involves the wedge method (Ko-
rnreich et al. 1998, 2002) where the flux within circular sectors or wedges ar-
ranged symmetrically with respect to the galactic disk centre are compared.
While it is easier to measure this than the Fourier amplitudes, it gives only
average values. An extreme limit of the wedge method is applied by Abraham
et al. (1996) and Conselice et al. (2000). They define the rotation asymme-
try parameter as the ratio of fractional difference between the two sides, so
that 0 corresponds to a symmetric galaxy and 0.5 for the most asymmetric
galaxy. This is a more global or average definition of the disk asymmetry and
is suitable for studying highly disturbed galaxies, and not those showing a sys-
tematic variation as in a lopsided distribution. Such highly disturbed systems
are seen at high redshifts, for which this criterion was used first.

An interesting point to note is that spurious signs of asymmetry arising due
to dust extinction (Rudnick & Rix 1998) and that arising due to the pointing
error of single-dish telescope (Richter & Sancisi 1994) were checked and ruled
out. Conversely, a galaxy could look more symmetric in the global velocity
profile than it is, if the galaxy is seen face-on. In that case even though the
morphology is asymmetric -as in HI in NGC 628, the global velocity profile is
symmetric, and hence the galaxy would appear to be kinematically symmetric-
see Kamphuis (1993).

Based on the above discussion of the various methods, we recommend that the
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future users adopt the fractional Fourier amplitude A1 as the standard crite-
rion for lopsidedness. This is because it gives a quantitative measurement, is
well-defined, and can be measured easily as a function of radius in a galaxy,
and thus allows an easy comparison of its value between galaxies and at dif-
ferent radii. The threshold value that could be adopted could be the average
value of 0.1 seen in the field galaxies in the intermediate radial range of 1.5-2.5
Rexp (Bournaud et al. 2005 b), so that galaxies showing a higher value can
be taken to be lopsided. A uniform criterion will enable the comparison of
amplitudes of lopsidedness in different galaxies, and also allow a comparison
of the fraction of galaxies deduced to be lopsided in different studies.

2.2 Kinematical lopsidedness

The lopsidedness or a (cos φ) asymmetry is often also observed in the kinemat-
ics of the galaxies. This could be as obvious as the asymmetry in the rotation
curves on the two halves of a galactic disk, as is shown in Fig 8 (Swaters et al.
1999, Sofue & Rubin 2001), or more subtle as in the asymmetry in the veloc-
ity fields (Schoenmakers et al. 1997). Often the optical centres are distinctly
separated spatially from the kinematical centers as in M33, M 31, and espe-
cially in dwarf galaxies as pointed out by Miller & Smith (1992). The rotation
curve asymmetry is also seen as traced in the optical for stars (Sofue & Rubin
2001). The detailed 2-D velocity fields were so far mainly observed for HI as
in the interferometric data (see e.g. Schoenmakers et al. 1997, Haynes et al.
1998). Now such information is beginning to be available for the bright stellar
tracers as in Hα emission from HII regions (Chemin et al. 2006, Andersen et
al. 2006), however since the filling factor of this hot, ionized gas is small, it is
not an ideal tracer for a quantitative study of disk lopsidedness.

Schoenmakers et al. (1997) use the kinematical observational data in HI on
two galaxies- NGC 2403 and NGC 3198, and deduce the upper limit on the
asymmetry in the m=2 potential to be < a few percents. However, this method
gives the result up to the sine of the viewing angle. Kinematic asymmetry in
individual galaxies such as NGC 7479 has been studied and modeled as a
merger with a small satellite galaxy (Laine & Heller 1999).

The rotation curve is asymmetric in the two halves of a galaxy or on the two
sides of the major axis as shown for DDO 9 and NGC 4395 by Swaters et al.
(1999), see Figure 8. However, they do not make a more detailed quantitative
measurement of the asymmetry. Swaters (1999) in his study of dwarf galaxies
showed that 50% of galaxies studied show lopsidedness in their kinematics.
Schoenmakers (2000) applied his calculations on kinematical lopsidedness in
galactic disks to five galaxies in the Sculptor group and found that all five show
significant lopsidedness. A similar result has been found for the 18 galaxies
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studied in the Ursa Major cluster (Angiras et al. 2007). The frequency of
asymmetry and its magnitude is higher in galaxies in groups - see section 5.2
for details.

Fig. 8. The rotation curve in DDO 9 and in NGC 4395 is asymmetric on two sides
of the galaxy, from Swaters et al. (1999).

A galaxy which shows spatial asymmetry would naturally show kinematical
asymmetry (e.g., Jog 1997) except in the rare cases of face-on galaxies as
discussed above where the galaxy can show asymmetry in the morphology but
not in the kinematics. However, the papers which study lopsidedness do not
always mention it. On the contrary, in the past, several papers have made a
distinction between the spatial or morphological lopsidedness and kinematical
lopsidedness (e.g. Swaters et al. 1999, Noordermeer, Sparke & Levine 2001)
and have even claimed (Kornreich et al. 2002) that the velocity asymmetry is
not always correlated with the spatial asymmetry. However, in contrast, it has
been argued that the two have to be causally connected in most cases (Jog
2002), especially if the lopsidedness arises due to the disk response to a tidal
encounter.

An important point to remember is that the same tracer (stars or HI) should be
considered to see if a galaxy showing spatial lopsidedness is also kinematically
lopsided or not, and vice versa. This is because the HI asymmetry is higher
and is seen in the outer parts of the galaxy while the asymmetry in the near-IR
is more concentrated in the inner regions. This criterion is not always followed
(see e.g., Kornreich et al 2002). Thus the often-seen assertion in the literature
that the spatial asymmetry is not correlated with kinematic asymmetry is not
meaningful, when the authors compare the spatial asymmetry in the optical
with the kinematical asymmetry in the HI.

17



2.3 Phase of the disk lopsidedness

The phase of the lopsided distribution provides an important clue to its physi-
cal origin, but surprisingly this has not been noted or used much in the litera-
ture. Interestingly, the phase is nearly constant with radius in the data of Rix
& Zaritsky (1995), as noted by Jog (1997). This is also confirmed in the study
of a larger sample of 60 galaxies by Zaritsky & Rix (1997), (Zaritsky 2005,
personal communication), and also for the sample of 54 early-type galaxies
studied by Rudnick & Rix (1998). A nearly constant phase with radius was
later confirmed for a larger sample of 149 mostly field galaxies (Bournaud et
al. 2005 b), and also for the 18 galaxies in the Eridanus group (Angiras et al.
2006). The latter case is illustrated in Fig. 9. This points to the lopsidedness
as a global m = 1 mode, and this idea has been used as a starting point to
develop a theoretical model (Saha et al. 2007). There are a few galaxies which
do show a systematic radial variation in phase, as in M51 (Rix & Rieke 1993),
which therefore appear as one-armed spirals.

Fig. 9. The plot of the phase of the m=1 Fourier component vs. radius (given in
terms of the disk scalelength) for the HI surface density for two galaxies ESO 482 -
G 013 and NGC 1390 in the Eridanus group of galaxies, from Angiras et al. (2006).
Note that the phase is nearly constant with radius indicating a global lopsided
mode.

In contrast, the central regions of mergers of galaxies, show highly fluctuating
phase for the central lopsidedness (Jog & Maybhate 2006). This may indicate
an unrelaxed state, which is not surprising given that the mergers represent
very different systems than the individual spirals mainly discussed here.

2.4 Observations of off-centered nuclear disks

A certain number of galaxies are observed to have an off-centered nuclear
disk, and more generally an m = 1 perturbation affecting more particularly
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the nuclear region. Our own Galaxy is a good example, since the molecular gas
observations have revealed that the molecular nuclear disk has three quarters
of its mass at positive longitude, which is obvious in the central position-
velocity diagram (the parallelogram, from Bally et al 1988). The asymmetry
appears to be mainly a gas phenomenon, since the off-centreing is not obvious
in the near-infrared images (e.g. Alard 2001, Rodriguez-Fernandez & Combes
2008). The gas is not only off-centered but also located in an inclined and
warped plane (Liszt 2006, Marshall et al 2008). An m = 1 perturbation is
superposed on the m = 2 bar instability. The most nearby giant spiral galaxy,
M31, has also revealed an m = 1 perturbed nuclear disk in its stellar dis-
tribution (Lauer et al 1993, Bacon et al 1994). The spatial amplitude of the
perturbation is quite small, a few parsecs, and this suggests that this nuclear
lopsidedness could be quite frequent in galaxies. However, it is difficult to
perceive it due to a lack of resolution in more distant objects. Since M31 is
the prototype of the m = 1 nuclear disk, we will describe it in detail in the
next section. Some other examples have been detected, like NGC 4486B in
the Virgo cluster (Lauer et al 1996), but the pertubation must then be much
more extended, and that phenomenon is rare.

Fig. 10. HST WFPC2 V-band image of M31. The surface brightness contributed by
the UV cluster coinciding with the component P2 has been clipped out. The white
dot indicates the position of the black hole. ¿From Kormendy & Bender (1999).

2.4.1 The case of the M31 nuclear disk

The first images of M31 to reveal the asymmetrical nucleus were the pho-
tographs at 0.2” resolution from the Strastoscope II by Light et al (1974).
They first resolved the nucleus, and measured a core radius of 0.48” (1.8pc).
The total size of the nucleus is 4 arcsec (15pc). They showed that the nucleus
is elongated, with a low intensity extension outside the bright peak (cf Fig.
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10); and they considered the possibility of a dust lane to mask the true center.
Nieto et al (1986) confirmed this morphology in the near-UV and also evoked
dust. Later, it was clear that dust could not be the explanation of this peculiar
morphology, since the center was still offset from the bulge in the near-infrared
image (Mould et al 1989). As for the kinematics, it was already remarked by
Lallemand et al. (1960) that the nucleus is rotating rapidly, showing a very
compact velocity curve, falling back to zero at a radius of 2 arcsec. This was
confirmed by Kormendy (1988) and Dressler & Richstone (1988), who con-
cluded to the existence of a black hole in the center of M31, of ∼ 107 M⊙,
with the assumption of spherical symmetry. Lauer et al (1993, 1998) revealed
with HST that the asymmetrical nucleus can be split into two components, like
a double nucleus, with a bright peak (P1) offset by ∼ 0.5” from a secondary
fainter peak (P2), nearly coinciding with the bulge photometric centre, and
the proposed location of the black hole (e.g. Kormendy & Bender 1999). It is
well established now from HST images from the far-UV to near-IR (King et
al. 1995, Davidge et al. 1997) that P1 has the same stellar population as the
rest of the nucleus, and that a nearly point-like source produces a UV excess
close to P2 (King et al. 1995 ).

2-D spectroscopy by Bacon et al (1994) revealed that the stellar velocity field
is roughly centred on P2, but the peak in the velocity dispersion map is offset
by ∼ 0.7” on the anti-P1 side (Fig. 11). With HST spectroscopy the velocity
dispersion peak reaches a value of 440±70 km s−1. and the rotational velocity
has a strong gradient (Statler et al. 1999). The black hole mass required to
explain these observations ranges from 3 to 10 × 107 M⊙. The position of the
black hole is assumed to coincide with the centre of the UV peak, near P2,
and possibly with the hard X-ray emission detected by the Chandra satellite
(Garcia et al. 2000).

2.4.2 Other Off-centered nuclei

It has been known from a long time that the nearby late-type spiral M33 has
a nucleus displaced from the young population mass centroid, by as much as
500pc (de Vaucouleurs & Freeman 1970, Colin & Athanassoula 1981). This
off-centreing is also associated with a more large-scale lopsidedness, and can
be explained kinematically by a displacement of the bulge with respect to
the disk. Such kind of off-centreing is a basic and characteristic property of
late-type Magellanic galaxies. In NGC 2110, an active elliptical galaxy, Wilson
& Baldwin (1985) noticed a displacement of the nucleus with respect to the
mass center of 220pc, both in the light and kinematics. Many other active
nuclei in elliptical galaxies have been reported off-centered, but the presence
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Fig. 11. Velocity profile (top) and velocity dispersion (bottom) in the nucleus of
M31. The crosses are from STIS (HST) and the filled circles from OASIS (CFHT).
The OASIS kinematics have been averaged over a 0.2” wide slit (PA= 39◦) - taken
from Bacon et al. (2001).

of dust obscuration makes its reality difficult to assert (e.g. Gonzalez-Serrano
& Carballo 2000, where 9 galaxies out of a sample of 72 ellipticals are off-
centered).

Quite clear is the case of the double nucleus in the barred spiral M83 (Thatte
et al 2000): near-infrared imaging and spectroscopy reveals, in spite of the
high extinction, that the nucleus is displaced by 65pc from the barycenter of
the galaxy, or that there are two independent nuclei. Molecular gas with high
velocity is associated with the visible off-center nucleus, and this could be the
remnant of a small galaxy accreted by M83 (Sakamoto et al 2004). In some
cases what appeared to be a double nucleus could in fact be two regions of star
formation in centers of mergers of galaxies as in Arp 220 (Downes & Solomon
1998).

Recently, Lauer et al (2005) studied a sample of 77 early-type galaxies with
HST/WFPC2 resolution, and concluded that all galaxies with inner power-law
profiles have nuclear disks, which is not the case of galaxies with cores. They
found 2 galaxies with central minima, likely to have a double nucleus (cf Lauer
et al 2002), and 5 galaxies having an off-centered nucleus. This perturbation
also appears as a strong feature in the Fourier analysis (A1 term).

Off-centering is also frequently observed in central kinematics, where the peak
of the velocity dispersion is displaced with respect to the light center (Em-
sellem et al 2004, Batcheldor et al 2005). Decoupled nuclear disks, and off-
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centered kinematics are now clearly revealed by 2D spectroscopy.

3 Theoretical models for the origin of lopsidedness:

The origin and the evolution of lopsidedness are not yet well-understood and
in fact not received much theoretical attention. The lopsidedness is observed
in a variety of tracers and settings. It is observed in old and young stars, and
in HI and H2 gas, within the optical disk and far outside the optical disk
as seen in the tracer HI gas, and in field galaxies and in galaxies in groups.
Given all these parameters it is difficult to come up with a unique physical
mechanism for the generation or the maintenance of disk lopsidedness. Indeed
there could be multiple paths for it, such as tidal interactions, gas accretion, or
an internal instability. The particular mechanism that dominates depends on
the situation concerned as can be seen from the following discussion. Towards
the end of this section (section 3.4), we give a summary of the most likely
physical mechanisms for the origin of disk lopsidedness in spiral galaxies.

We also stress that the standard m=2 case has been extensively studied for
years both analytically as well as by N-body simulations, both in the context
of central bars (e.g. Binney & Tremaine 1987, Combes 2008, Shlosman 2005)
or as two-armed spiral features (Rohlfs 1977, Toomre 1981). Thus the basic
physics of their growth and dynamics is fairly well-understood. In contrast, the
m=1 feature has just begun to be studied. We discuss the physical differences
between these two cases (m= 1 and 2), and later in Section 6 a comparison
between their observed values is made.

3.1 Kinematical model for the origin of lopsidedness

The simplest way to explain the observed lopsided disk distribution is to start
with a set of aligned orbits and see how long these will take to get wound
up, as was done by Baldwin et al. (1980), see Fig. 12. It is well-known that
the differential rotation in a galactic disk would tend to smear any material
feature over a few dynamical timescales. Baldwin et al. (1980) showed that on
taking account of the epicyclic motion of the stars, the effective radial range
over which the differential motion affects the winding up is reduced by nearly
a factor of 2, and this helps in increasing the lifetime of the feature. The net
winding up time twinding, for a feature between two radii R1 and R2 is then
given by twinding = 2 π/∆(Ω − κ), where Ω and κ are the angular speed of
rotation and the epicyclic frequency respectively, and ∆ denotes the difference
taken at these two radii. For a flat rotation curve with κ = 1.414Ω, this gives
twinding = 5 [2 π/∆Ω] , which is about 5 times longer than the usual winding
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up time for material arms.

Fig. 12. Left: Pattern of lopsided elliptical orbits whose major axes were aligned to
begin, following Baldwin et al. (1980). The orbits tend to get misaligned with time
due to the differential rotation in the disk. Right: Frequencies Ω, Ω − κ and Ω + κ

in a typical galaxy disk. In the case of a prograde mode, a possible pattern speed
Ωp is indicated, allowing Corotation (CR) and Outer Lindblad Resonance (OLR)
(taken from Combes 2000).

For the outer parts of a galaxy say at ∼ 15 kpc , this is ∼ 2 Gyr, which is a
few times larger than the local dynamical timescale but is still less that the
lifetime of the Galaxy. Hence they argued that the lopsidedness cannot be
primordial, and must be generated repeatedly in the disk. Further, this model
cannot explain why many isolated galaxies such as M101 show lopsidedness,
which is the puzzle they had started out to solve.

Further work on the kinematical origin of lopsidedness due to a cooperation
of orbital streams of stars near resonance was done by Earn & Lynden-Bell
(1996), with similar results for its lifetime as discussed above. Apart from the
short winding time, a generic problem with the kinematical model is that it
is not clear what gives rise to the aligned orbits in the first place.

3.2 Dynamical models for the origin of lopsidedness

The set of dynamical models discussed next deal with a more physical origin
for the lopsidedness. The most commonly proposed models include tidal en-
counters, gas accretion, instability in a counter-rotating disk, an off-centered
disk in the halo, and ram pressure stripping in a cluster. Of these the most
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promising are the first two, with the tidal encounters being the dominant
mechanism for group galaxies. In addition to these externally triggered pro-
cesses, the disk lopsidedness could also arise as a global m=1 instability in
self-gravitating disks.

3.2.1 Tidal encounters, and disk response to distorted halo

One of the earliest ideas suggested for generating lopsidedness in a galaxy was
due to a tidal encounter as applied to M101 (Beale & Davies 1969), although
no details were worked out. It is easy to see that a perturbation as say due
to a tidal encounter between two galaxies with an arbitrary orientation can
generate a force term of type cos φ, which can then generate lopsidedness in
the galaxy (Combes et al. 2004, see Chapter 7.1.1). The other modes will also
be generated but generally m=1 and 2 are observed to be the strongest (Rix
& Zaritsky 1995). Also see Section 6 for a discussion the observed relative
strengths of the m = 1 and 2 modes.

In addition to the above direct triggering of lopsidedness as a disk response to
the tidal force, it can also be generated more indirectly due to the response of
the disk to the distorted halo which feels a stronger effect of the interaction
(Weinberg 1995, Jog 1997, Schoenmakers et al. 1997). The details of lopsided-
ness thus induced will be summarised in this section. The effect can be seen
as in the spatial or surface density distribution as well as in the kinematics.

A generally stronger perturbation resulting from the infall of a satellite galaxy
can also result in the disk lopsidedness as shown in the N-body simulation
study by Walker et al. (1996). Zaritsky & Rix (1997) further used this idea
to constrain the rate of infall of satellites onto a galaxy from the fraction of
galaxies showing lopsidedness and the star formation, both triggered by the
satellite infall. Note that this gives an upper limit on the satellite infall rate if
there are other mechanisms which also give rise to the disk lopsidedness; such
as gas accretion as discussed in Section 3.2.2.

Since the dark matter halo is more extended than the disk, during a tidal
encounter the halo is expected to experience a stronger tidal perturbation on
general grounds. Weinberg (1995, 1998) has studied this case numerically for
the specific case of the interaction between the LMC and the Galaxy. The live
halo shows a strong lopsided response at the resonance points as set by the
orbit of the LMC with respect to the Galaxy. The disk response to this dis-
torted halo is shown to be much stronger than the direct lopsidedness triggered
in it due to the encounter. A detailed numerical evolution of a galactic disk
and the halo perturbed by an impulsive perturbation (Kornreich et al. 1998)
shows that m=1 can grow as a free sloshing libration but can only last for a
dynamical timescale. On the other hand, a number of encounters covering a
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large parameter space for the galaxy mass ratios, orbits, disk inclination were
studied by numerical simulations by Bournaud et al. (2005 b). They conclude
that the resulting lopsidedness can have an amplitude as high as the typical
observed value ∼ 10%, and it lasts for more than ten dynamical timescales ∼
2 Gyr, after which the lopsidedness drops rapidly.

3.2.1.a Orbits and isophotes in a perturbed disk

We next briefly summarise the results for the orbits, isophotes and kinematics
for a disk that is perturbed by a linear lopsided perturbation potential, as say
due to a distorted halo (Rix & Zaritsky (1995), Jog (1997, 2000), Schoenmakers
et al (1997)) where the halo distortion could be ascribed to a tidal encounter.
These equations of motion are general and are applicable irrespective of the
mechanism giving rise to the external potential to which the disk responds.
This simple model allows one to draw general conclusions about the strength
of the perturbation potential by a comparison of results with observations as
is shown next.

The details of this approach (Jog 2000) are summarised below. The dynamics
of particles on closed orbits in an axisymmetric disk perturbed by a lopsided
halo potential is treated. The cylindrical coordinate system (R, φ) in the galac-
tic disk plane is used.

The unperturbed, axisymmetric potential in the disk plane, ψ0(R), and the
perturbation potential, ψlop(R) are defined respectively as:

ψ0(R) = Vc
2lnR (1)

ψlop(R) = Vc
2 ǫlop cosφ (2)

where ψ0(R) represents the typical region of flat rotation, with Vc being the
constant rotational velocity, as seen in a typical spiral galaxy. This is perturbed
by a small, constant, non-rotating, perturbation potential with a lopsided
form as given by ψlop(R). Here ǫlop is a small perturbation parameter, which is
taken to be constant with radius for simplicity. That is, a halo with a constant
lopsided distortion is assumed. This is a simple model but it still allows one
to understand the resulting orbits, isophotes and the kinematics in a lopsided
galaxy.

Consider a circular orbit at R0. The coupled equations of motion for the per-
turbed quantities δR and δφ are solved together using the first-order epicyclic
theory. The resulting solutions for the perturbed motion are:
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R = R0 (1 −2ǫlop cosφ) ; VR = 2Vc ǫlop sinφ ; Vφ = Vc (1+3ǫlop cosφ) (3)

Thus, an orbit is elongated along φ = 1800, that is along the minimum of the
lopsided potential, and it is shortened along the opposite direction. This result
was also noted by Earn & Lynden-Bell (1996).

The loop orbits discussed here are not valid for radii much smaller than the disk
scalelength (Rix & Zaritsky 1995), but this does not affect the applicability
of this analysis to galactic disks because the disk lopsidedness is typically
observed only at radii beyond 1.5 disk scalelengths.

The other signatures of the effect of the lopsided perturbation potential are its
effect on the isophotes and the kinematics in the disk, discussed next. Since
the imaging observations give information on the isophotes rather than orbits,
it is necessary to also obtain the isophotal shapes in an exponential galactic
disk in a lopsided potential. For an exponential disk, the above approach gives:

A1 =
ǫiso
2

R

Rexp
(4)

where ǫiso is the ellipticity of the isophote at R, and Rexp is the exponential
disk scale length. Note that here the radii measuring the minimum and max-
imum extents of an isophote are along the same axis - unlike in the standard
definition of ellipticity where these two are along directions that are normal
to each other. The resulting isophotes have an egg-shaped oval appearance, as
observed say in M 101. Thus, the azimuthal asymmetry in the surface density
or the fractional Fourier amplitude for m=1, as denoted by A1 manifests it-
self as an elongation of an isophote, and both represent the same underlying
phenomenon.

The effective surface density in a self-gravitating, exponential galactic disk
may be written as:

µ(R, φ) = µ0 exp[−
R

Rexp

(1 − ǫiso
2
cosφ)] (5)

For a particular isophote, the term in the square bracket is a constant and
hence this formally defines the parametric form of an isophote. Thus the min-
imum radius of an isophote occurs along φ = 1800 while the maximum occurs
along φ = 00; while the opposite is true for an individual orbit. Thus the
isophotes are elongated in a direction opposite to an orbit, and the elonga-
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tion is along the same direction where the maximum effective surface density
occurs- this will be true for any self-gravitating system (Jog 1997).

To obtain the lopsided potential in terms of the observed lopsided Fourier
amplitude, the equations of perturbed motion (eq. [3])have to be solved with
the equation of continuity, and the effective surface density (eq. [5]]). Now,
the equation of continuity is given by:

∂

∂R
[Rµ(R, φ) VR(φ)] +

∂

∂φ
[µ(R, φ) Vφ(φ)] = 0 (6)

Solving these, and combining with eq.[4], yields the following important results
(valid for R ≥ Rexp):

ǫlop =
A1

(2R/Rexp) − 1
(7)

and,

ǫiso/ǫlop = 4(1 − Rexp

2R
) (8)

Thus, the ellipticity of isophotal contours ǫiso is higher by at least a factor of 4
compared to ǫlop. Thus even a ∼ few % asymmetry in the halo potential leads
to a large ∼ 10% spatial lopsidedness in the disk. This makes the detection
of lopsidedness easier, and it explains why a large fraction of spiral galaxies is
observed to be lopsided.

For the typical observed values of A1 ≥ 0.1 at R/Rexp = 1.5−2.5 (see Section
2.2), the typical ǫlop ∼ 0.03 (from eqs.[3], and [4]), or ∼ 0.05 in view of the
negative disk response discussed next. Thus, from the observed disk lopsided-
ness, we obtain a value of the halo lopsidedness. In the limiting case of high
observed A1 ∼ 0.3 − 0.4, the resulting ǫlop is still small ≤ 0.1, this is due to
the high ratio of ǫiso/ǫlop (eq. 8). This is an interesting physical result, because
it means that despite the visual asymmetry, such galaxies are dynamically
robust.

The above results for orbits and isophotes are shown to be applicable for both
stars and gas in the same region of the galaxy since they respond to the same
lopsided potential and have comparable exponential disk scale lengths (Jog
1997). This was confirmed by a detailed comparison of the Fourier analysis of
the two-dimensional HI data and the 2MASS near-IR representing stars for a
few galaxies in the Eridanus group (Angiras et al. 2006) and in Ursa Major
(Angiras et al. 2007). The two tracers show comparable lopsided amplitudes
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(see Fig. 25). This is true even though the HI gas in these group galaxies obeys
a gaussian rather than an exponential radial distribution.

In the above analysis, the phase is taken to be constant with radius and hence
set equal to zero. When the phase of the potential varies with radius, the
resulting isophotes show a prominent one-arm, as observed in M51 and NGC
2997.

3.2.1.b Kinematics in a perturbed disk

The kinematics in the disk perturbed by a lopsided potential is also strongly
affected. The net rotational velocity, Vφ, (see eq. [3]), is a maximum at φ = 00,
and it is a minimum along the opposite direction. This results in distinctly
non-axisymmetric rotation curves in the two halves of a galaxy (Jog 1997),
with the maximum difference between the rotational velocities ∼ 10% or 20-30
km s−1 for the typical observed A1 values (Jog 2002). This naturally explains
the observed asymmetry in rotation curves of galaxies such as M 101. The
observers most often give an azimuthally averaged data, thereby the precious
information on the kinematical asymmetry is lost. It is strongly recommended
(see Jog 2002) that the observational papers give, when possible, a full az-
imuthal plot of the rotation velocity or at the very least the average taken
in each hemisphere separately. The latter is done in many papers- see e.g.
Begeman 1987, which can be used to deduce the kinematical asymmetry in
galaxies. Such asymmetry has also been studied by Swaters et al. (1999) from
their kinematical data in HI on DDO 9 and NGC 4395. They show that the
rotation curve rises more steeply in one half of the galaxy than in the other.

The asymmetry in the velocity fields resulting from the disk response to a
lopsided halo perturbation has also been studied by Schoenmakers (1999).
The results obtained are applied to analyze the kinematical data from a few
spiral galaxies (Schoenmakers et al. 1997, Swaters et al. 1999). Schoenmakers
et al (1997) show that the Fourier amplitudes m+1 and m− 1 of the velocity
field are affected when the perturbation potential of type m is considered.
By comparing the observed values for m = 2 with the calculated values they
obtain an upper limit (uncertain up to the sine of the inclination angle) for
the lopsided perturbation potential.

The approach described in this section assumes a simplified perturbation lop-
sided potential with a constant amplitude, also only closed orbits are consid-
ered for simplicity. The orbits would change slightly and would not be closed
if the random motion of the particles is taken into account. However, this does
not affect the isophotal shapes - see Rix & Zaritsky (1995).
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3.2.1.c Radius for the onset of disk lopsidedness

The lopsided distribution in a disk cannot self-support itself because the po-
tential corresponding to it opposes the perturbation potential, as discussed
next. The effective disk surface density or the disk density response is shown
to be a maximum along φ = 00, that is along the maximum of the lopsided po-
tential (Jog 1997), see eq.(5) above. This has interesting and subtle dynamical
consequences (Jog 1999). This can be seen from the self-gravitational poten-
tial corresponding to the non-axisymmetric disk response, which is obtained
by inversion of Poisson equation for a thin disk using the Henkel transforms
of the potential-density pairs. This response potential is shown to oppose the
imposed lopsided potential. This may seem counter-intuitive but it arises due
to the self-gravity of the disk. Thus in the inner parts of the disk, the disk
resists any imposed perturbation potential.

A self-consistent calculation shows that the net lopsided distribution in the
disk is only important beyond 1.8 disk scale lengths and its magnitude in-
creases with radius. This indicates the increasing dynamical importance of
halo over disk at large radii. The negative disk response decreases the imposed
lopsided potential by a factor of ∼ 0.5− 0.7 (Jog 2000). The above radial de-
pendence agrees well with the onset of lopsidedness as seen in the near-IR
observations of Rix & Zaritsky (1995). On taking account of this effect, a
given observed lopsided amplitude corresponds to the deduced perturbation
potential to be higher by a factor of ∼ 1.3 − 1.4.

The radius of onset of lopsidedness and the reduction in the imposed potential
depend on the form of the perturbation potential which was taken to be con-
stant for simplicity in Jog (1999). A more realistic case with a radially varying
perturbation potential as in a tidal encounter with amplitude decreasing at
low radii, will result in the highest decrease at lowest radii (Pranav & Jog
2008). In this case the actual value of reduction will decide the radius beyond
which net disk lopsidedness is seen.

This idea of negative disk response is a general result and is applicable for any
gravitating system which is perturbed by an external mechanism. Although it
is shown here for a cosφ perturbation resulting from a tidal perturbation, it is
applicable for any linear perturbation of the system. A similar study for the
onset of warps (which can be represented by an m=1 mode along the vertical
direction) has been done (Saha & Jog 2006). This shows the onset of warps
from a radius of 4-5 disk scalelengths, in good agreement with observations
(Briggs 1990). The disk self-gravity is more important along the z-direction
for a thin disk and hence the disk is able to resist vertical distortion till a
larger radius than the planar distortion.
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3.2.1.d Comparison of A1 vs. tidal parameter

Since tidal encounters (e.g. Beale & Davis 1969, Weinberg 1995) and satellite
accretion (Zaritsky & Rix 1997) have often been suggested as the mechanism
for the origin of the disk lopsidedness, it is instructive to check how the ob-
served amplitude A1 for lopsidedness varies with the tidal parameter Tp as
was done by Bournaud et al. (2005 b). The tidal parameter Tp was calculated
in each case as:

Tp = log Σi[(
Mi

M0

)(
R0

Di
)3] (9)

where the sum is computed over the companions for a galaxy of target mass
M0 and radius R0 and Mi is the mass of the companion at a projected distance
Di on the sky. The summation is over neighbours within 2 degrees on the sky
and within 500 km s−1 velocity range of the test galaxy.

Fig. 13. Plot of A1 vs. tidal parameter for the 35 strongly lopsided galaxies in the
OSU sample (taken from Bournaud et al. 2005 b). There is no correlation between
these quantities, in particular the isolated galaxies with high A1 (top l.h.s. corner
of this plot) cannot be explained by a recent tidal interaction.

The result is plotted in Figure 13, for the 35 most lopsided galaxies which are at
an inclination of < 700. Surprisingly, this does not show a correlation between
the lopsided amplitude and the strength of the tidal parameter. In particular
it is hard to explain the galaxies with high A1 and low tidal parameter (in the
top l.h.s. of this figure) in the tidal picture. On the other hand, this still does
not rule out tidal encounters as the origin for lopsidedness if it is long-lived,
or if it arises due to a satellite merger (Walker et al 1996, Bournaud et al.
2005 b).
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In order to check the typical values of lopsided amplitudes generated in tidal
encounters and satellite accretion, N-body simulations for a number of en-
counters and satellite mergers were studied. They included the tidal encoun-
ters between nearly equal-mass galaxies (up to the ratio of 4:1) and mergers
of small-mass galaxies (in the ratio of 5:1-20:1) (Bournaud et al. 2005 b). It
was found that tidal interactions can indeed generate a fairly large amplitude
similar to or higher than the average value of ∼ 0.1. However, the amplitude
then drops rapidly and hence can be seen only for < 2 Gyr. A typical example
of an encounter between a 2:1 mass ratio is shown in Figure 14. Thus tidal
encounters cannot explain the high amplitude of lopsidedness seen in several
isolated galaxies such as NGC 1637, although it could arise due to a recent
satellite accretion. While a satellite accretion of mass ratio 7:1-10:1 can result
in a strong lopsidedness, it can also thicken the disk more than is observed
(Bournaud, Combes, & Jog 2004 , Bournaud et al. 2005 a). The thickening of
disks can set a limit on the rate of satellite mergers (Toth & Ostriker 1992).
It needs to be checked if a small-mass satellite falling onto a galactic disk can
generate the right amplitude distribution of lopsidedness without thickening
the disk, and further if there exist satellites in sufficient numbers to fall in at
a steady rate to repeatedly generate lopsidedness as required by the observed
high fraction of lopsided galaxies.

The mechanism for origin of lopsidedness involving a tidal encounter has been
explored by Mapelli et al. (2008) in the context of NGC 891. They show that
the lopsidedness seen in the atomic hydrogen gas in NGC 891 is due to the fly-
by encounter with its neighbour UGC 1807. They argue that this is a preferred
mechanism over gas accretion from cosmological filaments or that due to ram
pressure from the intergalactic medium.

Further, a number of statistical features for the field galaxies show that a
tidal encounter cannot be the primary mechanism for the origin of the disk
lopsidedness- for example, the lopsidedness is higher for late-type galaxies
whereas tidal encounters and mergers would tend to lead to the secular evolu-
tion of a galaxy towards early-type galaxies. Thus if tidal interactions were the
primary mechanism for generating lospidedness, then the early-type galaxies
should show a higher amplitude of lopsidedness. This is opposite to what is
sen in the field galaxies (Bournaud et al. 2005 b). Thus other mechanisms
such as gas accretion (Section 3.2.2) could be important in generating the
lopsidedness in field galaxies.

In the group galaxies, on the other hand, the tidal interactions being more
frequent, play a dominant role in generating lopsidedness. This is evident
from the fact that the early-type galaxies show higher lopsided amplitudes as
seen in the Eridanus group galaxies (Angiras et al. 2006) and less strongly in
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Fig. 14. Plot of A1 vs. time in the middle radial range of 1.5-2.5 disk scalelengths,
generated in a distant interaction between galaxies of mass ratio 2:1 (taken from
Bournaud et al. 2005 b). The peak value of A1 is large ∼ 0.2, higher than the average
value seen in the OSU field galaxies sample, but it drops rapidly to 0.05 in a few
Gyr. The lower panel shows the same in terms of Q1, the cumulative potential from
the disk.

the Ursa Major group of galaxies (Angiras et al. 2007). The details are given
in Section 5.

3.2.2 Gas Accretion, and other mechanisms

The intergalactic gas accretion was proposed as a qualitative idea to explain
the m=1 asymmetry in NGC 4254 by Phookun et al.(1993). They proposed
that the lopsidedness could arise due to the subsequent swing amplification in
stars and gas (as in Jog 1992). An extensive study of origin of lopsidedness via
N-body simulations (Bournaud et al. 2005 b) shows that while tidal encounters
can explain the observed amplitudes of disk lopsidedness, these cannot explain
the various observed statistical properties such as the correlation between A1

and A2, and the higher lopsidedness seen for the late-type field galaxies. In
order to do this, one needs to take account of gas accretion from outside the
galaxy.

There is growing evidence that galaxies steadily accrete gas from the external
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regions, as seen from the cosmological models (Semelin & Combes 2005), and
also observed in nearby galaxies (Sancisi et al. 2008). Thus it is natural to
see how this affects the mass distribution in a disk. While the details of gas
infall are not yet well-understood, it is plausible that a galaxy may undergo an
asymmetric gas infall on the two sides from say two different external filaments.
An application of this idea showed that the gas infall and the resulting star
formation can well reproduce the striking asymmetry observed in NGC 1367
(Bournaud et al. 2005 b), see Fig. 15 here.

Fig. 15. NGC data - near-IR data (left panel), and the same from N-body simulations
with gas accretion in two streamers at a rate so as to double the mass of the galaxy
in a Hubble time (right panel), taken from Bournaud et al. (2005 b).

A word of caution is that if gas accretion is the mechanism for generation
of lopsidedness, one would expect to see asymmetry in the gas velocity fields
whereas these are smoothly continuous as pointed out by Baldwin et al. (1980).
In the case of galaxies in groups, in any case, the tidal interactions may play
a dominant role, see Section 5.2 for the details.

Other physical models have also been developed in the literature but these are
probably not as widely applicable due to the specific parameters or conditions
chosen, as discussed below. This includes a proposed model where the growth
of m=1 is treated as an instability in a self-gravitating disk (Lovelace et al
1999). This results in strongly unstable eccentric motions but only within the
central disk scalelength. Here a linear analysis is used to treat slowly growing
mode, and the pattern speed could be either positive or negative. In another
model where the disk is off-centered with respect to the halo up to a maximum
distance of the core radius (Levine & Sparke 1999) also shows lopsidedness.
However, it is seen only in the inner regions within the core radius of the halo
where the halo density and hence the rotation speed is constant. Both these
papers do not yield higher lopsidedness in the outer parts, and this result con-
tradicts the observations which preferentially show lopsidedness in the outer
parts of a galaxy. The kinematical and morphological asymmetries resulting
from the latter model are shown to be not always correlated (Noordermeer et
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al. 2001). This is somewhat unexpected - since on general physical grounds
the two would be expected to be related causally (see Section 2.2). In any
case, the restricted set of initial conditions required for this model makes it
applicable only to a few galaxies such as the dwarf galaxies.

A self-consistent model for m=1 in a self-gravitating disk has been proposed
by Syer & Tremaine (1996) in the so-called razor-thin disks. However, the
density response due to an imposed perturbation opposes the perturbing force
(see Jog 1999) and hence the disk asymmetry cannot result from the orbital
asymmetry as was also argued by Kuijken (1993) and Earn & Lynden-Bell
(1996). Moreover, the model by Syer & Tremaine (1996) gives the density
response to be maximum along the perturbed force, which is in contrast to
the result by Rix & Zaritsky (1995), and Jog (1999).

3.2.3 Lopsidedness as an instability

An obvious possible explanation for the origin of the lopsided mode is that
it arises due to gravitational instability in the disk. For example, this was
proposed and studied for the gas by Junqueira & Combes (1996). A similar
model for the disk in a dark matter halo perturbed by a satellite was studied
by Chan & Junqueira (2003), however these models generate lopsidedness only
in the inner regions in contrast to the observed trends. An internal mechanism
based on the non-linear coupling between m=2 (bars or spiral arms) and m=3
and m=1 has been proposed by Masset & Tagger (1997) which gives rise to
the excitation of m=1 modes in the central regions.

Lopsided instabilites have been shown to develop in counter-rotating stellar
disks which have a high fraction of retrograde orbits (Hozumi & Fujiwara 1989,
Sellwood & Valluri 1997, Comins et al 1997, Dury et al 2008). Galaxies where
the gas participates to the counter-rotation are quite often observed to develop
m = 1 perturbations (e.g. Garcia-Burillo et al 2000, 2003). However, since
counter-rotation is rarely seen in stellar disks (Kuijken, Fisher, & Merrifield
1996, Kannappan & Fabricant 2001, McDermid et al 2006), this cannot be the
primary mechanism for the generation of lopsidedness in disks.

In a recent work, the self-gravity of a slowly-rotating global m=1 mode has
been shown to lead to a long-lasting lopsided mode in a purely exponential disk
as in a spiral galaxy (Saha, Combes, & Jog 2007). This model was motivated
by the fact that the observations show that the lopsidedness has a constant
phase with radius which indicates a global mode. Further, it was noted that
m=1 is unique in that the centre of mass of the disturbed galaxy is shifted
away from the original centre of mass and thus acts as a restroing force on
the latter. Thus the system can self-support the m=1 mode for a long time
especially when one takes account of the self-gravity of the global mode.
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Using the linearized fluid equations and the softened self-gravity of the per-
turbation, a self-consistent quadratic eigenvalue equation is derived for the
lopsided perturbation in an exponential galactic disk and solved. Fig. 16 shows
the resulting isodensity contours, clearly the centres of isocontours are pro-
gressively more disturbed in the outer parts.

Fig. 16. Contours of constant surface density for a global m=1 mode, taken from
Saha et al. (2007). Here the x and y axes are given in units of the disk scalelength.
The maximum surface density occurs at (0,0). The outer contours show a progressive
deviation from the undisturbed circular distribution, indicating a more lopsided
distribution in the outer parts- as observed.

The self-gravity of the mode results in a significant reduction in the differential
precession, by a factor of ∼ 10 compared to the free precession. This leads to
persistent m=1 modes, as shown in Fig. 17.

Fig. 17. The precession rate for the global lopsided mode vs. the size of the disk
in units of the disk scalelength in a galactic disk (shown as the line with circles) is
very low, thus the mode is long-lived. The dashed line denotes the free precession
(κ − Ω). This is taken from Saha et al. (2007).

N-body simulations are performed to test the growth of lopsidedness in a pure
stellar disk, which confirm these results (see Fig. 18). Both approaches are
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compared and interpreted in terms of slowly growing instabilities on timescales
of ∼ a few Gyr, with almost zero pattern speed.

Fig. 18. The isodensity contours in a purely stellar exponential galactic disk, given in
a logarithmic scale of the surface density of the stellar disk, face-on (top panel) and
edge-on (lower panel) views at four different epochs: T =0, 4.8, 9.6, 14.4 Gyr, from
left to right, taken from Saha et al. (2007). The global lopsided mode is long-lived
and lasts for ∼ 14 Gyr.

Though this is a somewhat idealized approach, it is precisely this that has
allowed the authors to focus on the basic dynamics of the excitation and
growth of m=1 modes. For example, here the only important input parameters
are the softening and the Toomre Q parameter. A smaller value of Toomre
Q results in a fast initial growth of the mode but later as the Q increases
due to the heating in the system, the mode is self-regulated and has a nearly
constant amplitude A1 that is long-lived. The softening acts as an indicator
of the coherence in the mode, and a higher value results in a faster growth
rate of the modes. These global modes are precessing remarkably slowly, and
therefore are relatively long-lived. Numerical analysis of the eigen modes of a
cold thin disk shows that, if treated as modes of zero pattern speed, warps
and lopsidedness are fundamentally similar in nature (Saha 2008).

Such small pattern speed is also in agreement with the work of Ideta (2002)
who showed that the rotating m=1 mode in a live halo would be damped very
rapidly by the density wake induced in the halo, see Fig. 19. Hence he argued
that the m=1 modes must be non-rotating at a rate smaller than 1 km s−1

kpc−1. This would give the damping time to be comparale to the Hubble time,
which can explain the high frequency of lopsidedness seen in spiral galaxies.

In a recent paper Dury et al. (2008) have studied a galactic disk in an inert
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Fig. 19. The damping time of the lopsided mode vs. the pattern speed, for a self–
gravitating case (solid line) and without self-gravity (dashed line) respectively, taken
from Ideta (2002). Damping times ∼ Hubble time imply a very low pattern speed
of the lopsided mode.

halo by N-body simulations and argued that that a rotating m=1 mode can
occur as a result of the swing amplification (Toomre 1981).

3.2.4 Effect of inclusion of rotation and a live halo

The work by Saha et al. (2007) shows that a gravitating disk is susceptible
to the growth of m=1 modes, irrespective of the origin of these modes. These
could be triggered as a response to a distorted halo, or by gas accretion. We
caution, however, that Saha et al. (2007) treat a simple, specialized case of
slow rotating modes in a pure exponential disk. A more realistic treatment
should include a live or a responsive halo in addition to the disk. Here more
parameters enter the picture such as the relative mass of the halo and the
disk, and ratio of the core radius of the halo to the disk scalelength etc. The
inclusion of a live halo is expected to further support the persistent m=1
modes, in analogy with what was shown for bars by Athanassoula (2002) and
for a general, local non-axisymmetric feature by Fuchs (2004). In contrast,
other papers suggest that a responsive halo tends to damp a feature in the
disk by the wake created in the halo. This was shown for disk lopsidednesss
(m=1 in the plane) by Ideta (2002), and shown in the case of warps treated as
an m=1 mode normal to the galactic plane (Nelson & Tremaine 1995). This
issue needs to be clarified by further dynamical studies of a global m=1 mode
of an arbitrary pattern speed in a galactic disk. This study should include a
live halo, and have a high resolution (since poor resolution may smoothen the
response and give a spuriously long-lasting mode), with the aim to check the
lifetime of such a mode.
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A lopsided mode in a collisionless spherical dark matter halo is shown to be
long-lasting or slowly damped compared to the dynamical timescales (Wein-
berg 1994, Vesperini & Weinberg 2000). However it is not clear if this is due
to the fact that the halo is supported by random motion and hence a pertur-
bation in it is long-lived. On the other hand, in a spiral galaxy, the presence of
differential rotation puts a limit on any material feature due to the precession
rate. In contrast, the numerical simulations of perturbations triggered in a
galaxy with live halo, due to the tidal encounter of nearly equal-mass galaxies
(up to the ratio of 4:1) and mergers of small-mass galaxies (in the ratio of
5:1-20:1) show that the lopsidedness thus generated, although long-lived com-
pared to the dynamical timescales, does not last beyond ∼ 2 Gyr (Bournaud
et al. 2005 b). The crucial factor that decides the lifetime of the lopsided mode
could be its pattern speed, with the small speed cases lasting for a long-time
close to the Hubble time (Ideta 2002, Saha et al. 2007). The off-centering of
the mass distribution is less pronounced in the case of high rotation speed.
This could lead to a short lifetime of the m=1 mode as pointed out by Ideta
(2002). In this case the restoring term in the equations of motion (Saha et al.
2007, eq. 18) is less pronounced and hence the m=1 mode lasts for a shorter
time. Alternatively, it could be that the wake generated in a halo could be
larger for a higher pattern speed, and hence the halo tends to dampen such
modes. This may be the reason why the lopsidedness generated in a disk with
a live halo due to a tidal encounter or a minor merger (Bournaud et al. 2005
b) lasts for < 2 Gyr.

While slow m=1 modes are shown to be long-lived, the uniqueness of this
solution is still not established, or that this is what explains the observed
lopsidedness. Also it is not clear what would excite such slow modes. The
generating mechanism may have a strong bearing on the resulting pattern
speed: a tidal encounter is expected to result in lopsidedness with a high
pattern speed ∼ the relative velocity over the impact parameter as argued by
Ideta (2002). Gas accretion, on the other hand, may not easily give a global
m=1 mode, while observations show the mode to be global. Further numerical
simulations should check if a satellite accretion can give rise to a slow, global
mode. An actual measurement of the pattern speed of the lopsided mode in
a real galaxy will help settle this issue, and we urge observers to take up this
important measurement.

3.3 Comparison between origin of m=1 and m=2; stars and gas

As discussed at the beginning of Section 3, the m = 2 case is fairly well-
understood, while the m=1 case has only begun to get attention from theo-
rists. There are several differences in the dynamics and evolution of the two
features, and also as applied to stars or gas. First, the presence of dark matter
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halo is likely to have a substantial role to play in the origin and evolution of
lopsidedness in a disk. This is especially true in the outer parts of a disk since
the disk lopsidedness is observed to increase with the radial distance where
the halo is more important. In the inner regions of a galaxy, on the other hand,
the inclusion of the bulge is likely to play an important role in stabilizing the
m=1 mode (de Oliveira & Combes 2008).

Further, the m=1 mode generally has no ILR (Inner Lindblad Resonance, e.g.,
Block et al. 1994) hence its evolution differs from that of m=2. The m=1 mode
does not get damped easily due to the angular momentum transport occurring
at the resonance points as in the case of m=2 (Lynden-Bell & Kalnajs 1972). In
case of m=2 this causes an absorption of the wave at the ILR and thus a break
in the feedback loop. But in absence of an ILR for m=1, this break does not
arise and this helps in sustaining the global m=1 mode for a long time. In this
picture, the gas being cold behaves in a different way. The absorption at the
resonance point is only partial for gas and hence even m=2 can be sustained
in gas despite the presence of an ILR. This helps support the generation of
m=2 and higher order modes in the presence of gas.

3.4 A summary of the various mechanisms

Of the various mechanisms proposed so far, the most promising ones, as judged
by the resulting agreement with the observations, are those involving tidal
encounters and gas accretion.

An m=1 perturbation in a disk leads to a shift in the centre of mass in the
disk, and this then acts as an indirect force on the original centre of the disk.
The disk is thus shown to naturally support an m=1 mode, and as pointed
out above, this is a characteristic property valid only of a lopsided mode.
This basic physics is sometimes clouded over because of the additional effects
introduced due to the inclusion of the dark matter halo, the bulge, and the
gas as in a real galaxy. Further, depending on whether the halo is live or
rigid, and whether it is pinned or not, and whether the pattern is rotationg
or stationary can lead to additional complexities. Also, other features like the
wandering of the centre (Miller & Smith 1992) may introduce an m=1 mode.
In short, there seem many paths to get m=1 in a galaxy, and therefore it is
important to identify which is the most applicable one in a real galaxy.

Long-term maintenance of disk lopsidedness

It has been realized from the beginning that the lopsided modes should be
fairly long-lived (e.g., Baldwin et al. 1980) or excited frequently. This is needed
in order to explain the high fraction of galaxies showing lopsidedness, and also
the strong lopsidedness seen in isolated galaxies like M101. It has been noted
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that since m=1 does not have an ILR, it should be the preferred mode in
the galactic disk (Section 3.3). This, however, does not say anything directly
about its lifetime. The persistence of lopsided mode is still an open question,
as shown by the discussion below.

While tidal encounters can generate the right lopsided amplitudes, these are
not correlated with the strength of a tidal encounter (Bournaud et al. 2005
b), or with the presence of nearby neighbors (Wilcots & Prescott 2004). This
could be explained if the disk lopsidedness once generated either directly in the
disk, or as a response to a long-lived halo distortion, were long-lived, so that
there is no clear correlation with a tidal encounter. N-body simulations with
a live halo show the resulting m=1 modes in the disk to last for ∼ 2− 3 Gyr,
which is much smaller than the Hubble time, thus these need to be triggered
again. A tidal encounter will typically generate a fast mode which is expected
to be not long-lived (see the discussion in Section 3.2.3).

While the satellite accretion of mass ratio 7:1-10:1 can result in a strong lop-
sidedness, it can also thicken the disk more than is observed (Bournaud et
al. 2004). Also, it has a short lifetime of < 2 Gyr (Bournaud et al. 2005 b).
It further needs to be checked if a smaller-mass satellite falling onto a galac-
tic disk can generate the right amplitude distribution of lopsidedness without
thickening the disk, and if there are adequate number of such satellites that
can fall in at a steady rate.

The pattern speed is expected to have a significant effect in determining the
lifetime of a lopsided mode with a slow patttern being long-lived. It is not
clear if a live halo will help or hinder the long-term sustenance of an m=1
mode, as discussed in Section 3.2.3.

Future work needs to study the long-term maintenance of m=1 modes when
generated by accretion of a low-mass satellite. A similar study needs to be
done for the case of gas accretion and to see if the latter gives a global mode.
The observations of group galaxies with their generally stronger and frequent
triggering of lopsidedness (see Section 5) can act as a constraint on any gen-
erating mechanism proposed for the field galaxies.

4 Lopsidedness in the central region

4.1 Stability of central nuclear disks

It is now well established that all galaxies with bulges or spheroids host a
massive central black hole (Gebhardt et al. 2000). The central region, or nu-
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clear disk, in galaxies therefore have a gravitational potential very close to
the Keplerian. Some similarities exist with proto-planetary systems (Rauch &
Tremaine 1996), or with the formation of new stars through accretion disks
(Adams et al. 1989, Alexander et al. 2007). The nearly Keplerian potential,
with the angular velocity Ω ∼ r−3/2 favors eccentric orbits and m = 1 modes,
instead of Ω ∼ r−1 of galactic disks which favor m = 2 perturbations.

Nearly keplerian disks have the particular property that the orbit precession
rate is almost zero (Ω ∼ κ). If the apsides are aligned at a given time, they
will stay so in a Ωp ∼ 0 mode. The self-gravity of the disk makes κ > Ω,
and the orbits differentially precess at a rate (Ω − κ) < 0. However, if the
disk self-gravity is not large, a small density perturbation could be sufficient
to counteract the small differential precession. Goldreich & Tremaine (1979)
showed that in the case of Uranian rings, the self-gravity could provide the
slight impulse to equalize the precession rates, and align the apsides. Two
kinds of waves could propagate in such disks- slow stable modes, and unstable
rapid waves, growing on a dynamical time-scale.

The density wave theory (e. g., Lin & Shu 1964) predicts that in a self-
gravitating stellar disk, global spiral modes can develop only between the
radial range delimited by the Lindblad resonances, i.e. for m2(Ω−Ωp)

2 < κ2.
Only in gaseous disks, where the pressure forces dominate, acoustic waves can
propagate outside this range. Considering the m = 1 waves, for a pure keple-
rian potential (neglecting the self-gravity of the disk), Ω = κ, and the pertur-
bations are neutral. If there is some self-gravity in the disk, then (Ω− κ) < 0,
there is only an outer Lindblad resonance and a corotation, but no inner res-
onance (for prograde modes with Ωp > 0), and therefore the radial range for
the development of m = 1 perturbations is quite large.

The study of WKB modes in a non self-gravitating gaseous disk, with trun-
cation radii at the inner and outer boundary, was first done by Kato (1983),
who found a region of trapped one-arm waves, with quite low pattern fre-
quency, much lower than the orbital frequency. Adams et al (1989) considered
the influence of self-gravity, in order to apply to young stellar objects, which
can have accretion disks with masses of the same order as the central stellar
mass. The self-gravity of such a disk is sufficient to modify the precession
rate of nearly keplerian orbits (Ω− κ) to a common and coherent value. They
found a pattern speed which is of the same order as the angular velocity in
the disk, and the unstable waves develop with a growth time comparable to
the dynamical time-scale. The special shape of modes is shown in Fig. 20.

Crucial to the development of the perturbations, a special characteristic of
the m = 1 mode is to shift the gravity center of the system from the domi-
nant central mass (the black hole for instance), also see Section 3.2.3. In the
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Fig. 20. Isodensity contours for the lowest order m = 1 mode, in a disk of mass
equal to the central point mass. Note the shape in alternating “bananas” instead of
a continuous one-arm spiral. The dashed lines show the locations of the corotation
and the outer Lindblad resonance. ¿From Adams et al. (1989).

reference frame of the black hole, this implies the introduction of an inertial
force, which by reference to celestial mechanics, is called the indirect term.
This term is the mediator of angular momentum exchange between the disk
inside and outside corotation and the central mass. The coupling with the
outer Lindblad resonance provides the amplification that is usually provided
by the corotation in m = 2 modes. A feedback cycle has been proposed by Shu
et al (1990), and called SLING (Stimulation by the Long-range Interaction of
Newtonian Gravity). The modes depend strongly on the outer disk boundary
conditions, since a reflection of short waves is assumed there, in the 4-waves
feedback cycle. This cycle is only possible with a gaseous component, since
the short waves are not absorbed at the resonance but cross the OLR (Outer
Lindblad Resonance).

4.1.1 Slow stable modes, damping slowly

Another possibility to explain central lopsidedness is to exploit the slow modes,
that are stable, but can be long-lived, excited by some external mechanism,
such as the accretion of a globular cluster or a giant molecular cloud. The
precession rate of eccentric orbits is Ω − κ =0 in the potential of a point
mass MBH , and slightly negative in the presence of a small disk of mass Md,
lighter than the central point mass, with amplitude varying as (Md/

√
MBH) or
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∝ (Md/MBH)Ω. If self-gravity has a large enough role, and in particular, if the
disk is cold enough and its Jeans length smaller than the disk radius, m = 1
density waves can propagate; their dispersion relation has been studied in the
tight-winding limit or WKB approximation (Lee & Goodman 1999, Tremaine
2001). In the linear approximation, the pattern speed for the wavelength λ =
2π/k is in first approximation for (Md/MBH) << 1, as given by:

Ωp = Ω − κ+
πGΣd|k|

Ω
F (
k2c2

Ω2
) (10)

where Σd is the surface density of the disk, and F the usual reduction factor
that takes into account the velocity dispersion c of the stellar disk, and its
corresponding velocity distribution (e.g., Tremaine 2001). The pattern speed
then remains of the order of (Md/MBH)Ω, for a sufficiently cold disk, and is
much smaller than the orbital frequency. These slow waves exist whenever
the thin-disk Jeans length λJ = c2/GΣd is lower than 4r, while the Toomre
parameter Q is less relevant (Lee & Goodman 1999).

The study by Tremaine (2001) shows that disks orbiting a central mass support
slow m = 1 modes, which are all stable. Their frequencies are proportional
to the strength of collective effects, which is either self-gravity, or velocity
dispersion (or pressure in fluid disks). The latter phenomenon can be simulated
with softened gravity. There are then two kinds of slow modes: the g-modes
(where self-gravity is dominating, and softening is unimportant), which are
long waves, with kr << 1, with negative frequency ω < 0; and the p-modes,
which depend on the softening b, which can have both short and long waves
(kr ∼ b), and with positive frequency ω > 0; as the softening increases, the
amplitude of the mode decreases, as well as ω.

In numerical N-body simulations of nuclear stellar disks, Jacobs & Sellwood
(2001) have reported the presence of a slowly decaying prograde m = 1 mode
in annular disks around a slightly softened point mass, but only for disk masses
less than 10% of the central mass concentration. This confirms the existence
of a persistent slow mode, with positive ω increasing with the mass of the
disk, and decreasing with the amplitude of the perturbation.

Touma (2002) has computed the normal modes of a series of N rings in a thin
disk, through linearized dynamics, and using the Laplace-Lagrange secular
theory of planetary motions (valid for small eccentricities). The gravity is
softened to mimic a hot stellar disk, and varies as the velocity dispersion. The
modes are stable when all rings are prograde, but a fraction of only 5% of
counter-rotating rings is sufficient to make unstable modes appear. Sambhus
& Sridhar (2002) built a model of the M31 nucleus with counter-rotating orbits
in a razor thin nucleus, and checked that this amount of counter-rotation could
be compatible with observations. The counter-rotating stars could come from
a past accreted system, like a globular cluster.
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Bacon et al (2001) explored by N-body simulations the possibility of stable
m = 1 mode to explain the M31 eccentric nuclear disk. They found that for
a disk mass accounting for ∼ 20 – 40% of the total central mass, self-gravity
is sufficient to counteract the differential precession of the disk. An external
perturbation can excite this mode, and it is then long-lasting, over 100 Myr, or
3000 rotation periods. The prograde mode found in the simulations compares
well with the p-modes of Tremaine (2001). There is a remarkable agreement
between the observed (∼ 3kms−1pc−1) and predicted value of the pattern
speed, in spite of all approximations, and although the WKB approximation
is not satisfied.

Although the slow modes are long-lived, their exciting mechanisms should be
found, to explain the high frequency of the phenomenon. The dynamical fric-
tion of the m = 1 wave on the stellar bulge has been proposed by Tremaine
(1995) as an amplification mechanism, if its pattern speed is sufficiently pos-
itive. This amplification results from the fact that the friction decreases the
energy less than the angular momentum. The orbits with less and less angu-
lar momentum are more and more eccentric, and the m = 1 mode develops.
Although the efficiency of the mechanism has not been proven, it should not
apply for the slow modes considered here, in a slightly rotating bulge. An ex-
ternal perturbation is more likely to trigger the m = 1 perturbation. There is
the possibility of infalling of globular clusters, through dynamical friction, a
mechanism explored in the next section. Also interstellar gas clouds should be
continuously infalling onto the center, since within 10-100 pc of M31 nucleus,
dust lanes, and CO molecular clouds are observed (Melchior et al. 2000). The
interval between two such external perturbations (either passage of a globular
cluster, or a molecular cloud) in M31 is of the same order of magnitude, so
that the external perturbations are an attractive mechanism.

Each episode of m = 1 waves will heat the disk somewhat, but the instability
is not very sensitive to the initial radial velocity dispersion. Over several 108 yr
periods, the nuclear disk could be replenished by fresh gas from the large-scale
M31 disk and subsequent star formation. The hypothesis of cold gas accretion
from the disk of M31 itself, has then not only the advantage to trigger the
m = 1 perturbation, but also to explain the maintenance of a rather thin and
cold nuclear disk.

4.2 Double nuclei by infalling bodies

One solution to the double nuclei problem is to assume that dense stellar
systems, like globular clusters, or a dwarf satellite, or even black holes, are
regularly infalling into the galaxy center, and are responsible for the observed
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Fig. 21. Simulation of a globular cluster infall towards a galaxy nucleus containing
a massive black hole, fit to the M31 characteristics. The panels show the face-on
view contours from the cluster stars, from the start to 0.46 Myr. The bottom right
panel shows the histogram of the angular momentum for the cluster particles at the
beginning (solid line) and at the end (dashed line) of the simulation. From Emsellem
& Combes (1997).

morphology. Although the events may be relatively rare, their actual frequency
is not well-known, and the question remains open as to a possible fit to the
observations.

The typical dynamical friction time-scale, for an object of mass M at about
10pc from the center, in a spiral galaxy with a bulge of ∼ 1010 M⊙, typical
of an Sb galaxy like M31, is ∼ 107(106M⊙/M) yr, and it could be much
smaller inside. Although short with respect to galactic time-scales, this is
much larger than the orbital time of 3 ×105 yr at this radius. Tremaine et al
(1975) precisely proposed that the central stellar nuclei in spiral galaxies are
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the results of many globular clusters infalling by dynamical friction. Typically
nuclear stellar systems of 107-108 M⊙ would require the infall of a hundred
globular clusters. In this frame, the frequency of the event is relatively large,
and could be compatible with the observations.

N-body simulations of globular clusters or dwarf galaxies infalling through
the gravitational field of a disk, a bulge, and/or a central black hole, have
been carried out by many authors (e.g. Charlton & Laguna 1995, Johnston
et al 1999, Combes et al 1999, Bekki 2000b), and applied to explain the M31
nucleus morphology (Emsellem & Combes 1997, Quillen & Hubbard 2003).
N-body simulations demonstrate that the infalling system is destroyed by the
tidal forces of the black hole at the right distance of the nucleus (about 3pc).
The debris then rotate around the nucleus in eccentric orbits, and form an
eccentric disk. Several hypotheses can then be explored: either the infalling
system is alone able to form the nuclear disk (Bekki 2000a), but then its mass
corresponds more to the core of a dwarf galaxy having merged recently with
the big primary (a quite rare event). Or the infall of the system excites an
eccentric mode in the nuclear disk (Bacon et al 2001), as proposed by Tremaine
(1995). Also, the presence of the infalling system not yet diluted in the nuclear
disk increase the asymmetry. The details of the dynamics, and in particular
the inclination of the nuclear disk with respect to the main disk of M31, or
the shift of the velocity dispersion peak from the black hole position, due to
the systematic rotation of the luminosity peak of the disk, are all explained
by the model by Emsellem & Combes (1997), see Fig. 21.

The nature of the infalling system is constrained by the present metallicity and
colors of the nuclear disk, especially if the assumption is made that the infalling
system is the first one and forms totally the nuclear disk (Bekki 2000a). The
observed colors of the double luminosity peaks in M31 are quite similar to
the nuclear disk ones, and different from the bulge, so the hypothesis that the
nuclear disk is formed from the infalling systems themselves is possible. The
hypothesis of globular clusters is more likely, in the sense that the probability
to observe it is larger, the friction time-scale being longer, and it requires
at least 25 globular clusters to form the nuclear disk. The hypothesis of a
dwarf galaxy merger does not correspond to the quite un-perturbed state of
the M31 disk. There is some evidence of a past merger around M31, in the
shape of an extended stellar disk, loops and shells (Ibata et al 2001, Irwin et
al 2005). However, the time to form these stellar streams is much longer than
the time-scale for the galaxy core to infall to the center.

It is interesting to discuss in this context the case of the double nucleus in
NGC 4486B, which is thought to be similar to the M31 case, but with larger
masses, and larger separation (Lauer et al 1996). NGC 4486B is a compact
elliptical galaxy, in the outer envelope of M87 in the Virgo cluster. The double
nuclei are separated by 12pc, and produce two almost equal luminosity peaks
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at similar distance from the photo-center, so creating almost no lopsidedness
in projection. If explained by a nuclear disk, it is of very small eccentricity. The
hypothesis of a past merger as the origin of the two stellar nuclei is weaker in
this case, since the environment of the cluster center does not favor mergers.

The idea of infalling systems can be generalized to all galaxy mergers as the
origin of lopsidedness. In particular, mergers of galaxies could naturally form
eccentric disks. The disk would come from the disruption by tidal forces of
one of the stellar core. The presence of massive black holes in each spiral
galaxy with bulge, strongly supports this scenario. The end steps of the merger
process would form a binary black hole. The destruction of nuclear stellar
systems by the tidal forces of the black holes led Merritt & Cruz (2001) to
suggest that the existence of low-density cores (and not cusps) in giant galaxies
is the consequence of mergers. Further simulations of mergers with central
black holes should be performed to explore the formation of eccentric disks.

Somewhat larger-scale asymmetry on scales ∼ 1 kpc is also seen in mergers of
galaxies and is deduced to be long-lived, as discussed in Section 5.3.

4.3 Core wandering

Some of the nuclear lopsidedness might also be explained through a special
oscillation of the central black hole, called ”core wandering”. This name came
from the physics of globular cluster, that was observed to reveal slow oscilla-
tion, with a time-scale larger than the crossing time in numerical simulations
(Makino & Sugimoto 1987). Miller & Smith (1992) showed by a large series of
numerical simulations that a massive nucleus cannot coincide with the mass
centroid of its galaxy in a stable way. The type of instability, where the motion
of the nucleus implies potential distortions in the center, which trap more par-
ticles, is overstable, and reaches a saturation limit. The phenomenon is local,
and the time-scale of the oscillation of the nucleus is of the same order as the
central dynamical period (cf Figure 22). This core wandering appears phys-
ical, and not the consequence of a N−1/2 random noise oscillation, as tested
by simulations with highly varying particle number. In that case, the pertur-
bation amplitude that starts the growth is indeed depending on N , but not
the limiting amplitude, nor the growth rate, which is always a few dynamical
times. The N−1/2 phenomenon can be hard to distinguish in small-N simula-
tions, and in globular clusters (Sweatman 1993), but this is not the case for
galaxies.

The stochastic part of the core wandering phenomenon has been modeled by
Chatterjee et al (2002), separating the force on the central mass in the collec-
tive action of the stellar system in which it is embedded, and the fluctuating
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stochastic force provided by individual stellar encounters. This second force
produces a Brownian motion of the central point mass. These motions occur
on a time scale much shorter than the time-scale of evolution of the stellar
system.

As for the coherent modes of the stellar system coupled to the central mass,
the growing oscillation looks like a density wave, and the saturation amplitude
of the motion reaches a galaxy core radius. This unstable phenomenon involves
the nucleus, even if there is no central black hole in the center, and is also
observed in dynamical friction experiments, when the decay of a satellite is
studied (e.g. Bontekoe & van Albada 1987). The limiting amplitude of the
nucleus oscillation is then reached from above. This kind of oscillation is also
observed in spherical galaxies, and continues to develop for a Hubble time
(Miller & Smith 1994).

Fig. 22. Evolution with time of the three coordinates of the “nucleus” consisting in
the central 1024 particles, selected from an N-body simulation of 100 352 particles.
The saturation of the amplitude of oscillations is visible. From Miller & Smith
(1992).

Taga & Iye (1998a) studied the oscillations of a central massive black hole in
a rotating galaxy, and also confirmed that the phenomenon is not an N−1/2

random noise effect, but a true physical phenomenon. They found by N-body
simulations that a massive central body can undertake long-lasting oscilla-
tions, but only when its mass is lower than 10% of the disk mass. This pro-
duces disk oscillations around it. Crucial must be the rotation of the pattern
around the center, since it does not vary its amplitude, when the number of
particles change. The disk oscillations occur only when the black hole is al-
lowed to move, when the black hole is artificially nailed down to the center,
the disk oscillations vanish. They also conclude that the mechanism at the
origin of this instability is a density wave, with a fixed pattern as a function
of radius.
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When the disk around the central mass is fluid, an instability akin to the one
proposed by Shu et al (1990) is possible, with a feedback provided by reflection
on a sharp edge in the outer disk. Heemskerk et al (1992) estimate that the
edge effect is artificial, and studied instead an m = 1 instability arriving only
when the masses of the central object and the disk are comparable. There can
be angular momentum exchange between the mass and the disk. To simplify
their model, they considered only a gaseous disk with a central gap. This
instability is confirmed by Woodward et al (1994), and requires the coupling
with the central mass, which is displaced from the center, and moves along a
smooth, tightly wound, spiral trajectory. Taga & Iye (1998b) found that the
sharp edge condition is not necessary, and that an eccentric instability develops
in a stellar disk, provided that the central mass is smaller than the disk mass
(about 10%), and it is mobile. The eccentric instability then develops a one-
arm spiral, with an amplitude that is stronger than when the central mass
is fixed to the center. The mechanism is strongly dependent on the softening
used, and should be local to the central parts.

4.4 Other mechanisms

If a normal disk around a black hole is not spontaneously unstable to m = 1
perturbations, the modifications of the stellar distribution function F , and in
particular the depletion in low-angular momentum orbits, leading to the empty
loss-cone phenomenon, can provide the source of instability. If the derivative
of F with respect to J is positive, then spherical near-Keplerian systems are
neutrally stable (allowing the displacement of the nucleus with respect to
central mass), and the flattened non-rotating systems are unstable to m = 1
modes (Tremaine 2005).

Peiris & Tremaine (2003) construct eccentric disk models to represent the
double nucleus in M31, and claim that the inner nuclear disk must be inclined
by at least 20 degrees with respect to the main disk of the galaxy to represent
the data. Although their model is only dynamical, and does not include all
the physics, with self-gravity, etc. , this suggests that the lopsidedness might
be related to a warp or a misalignment. The latter could be the source of
dynamical friction against the bulge, and relatively rapid alignment should
ensue. A possibility is that the bulge is itself misaligned with the main galaxy
disk, which could be due to a recent galaxy interaction (e.g. Ibata et al 2001,
Block et al 2006).

Salow & Statler (2001, 2004) compute a more sophisticated model, including
self-gravity. They populate quasi-periodic orbits for stars, in the rotating frame
with a constant precession speed. The eccentricity of the orbits change sign
with radius, so that the apocenter of the orbits change phase in the plane
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of the nuclear disk (cf fig 23). The resulting best fit model is similar to that
obtained with N-body simulations of a strong m = 1 mode in a cold thin disk
with a central black hole (Bacon et al 2001). In particular the pericenters of
the orbits in the inner and outer disks are in phase opposition. The precession
rate, however, is rapid (Ω = 36.5 km s−1 pc−1).

Fig. 23. (a) Density contours of the best-fit model of the M31 eccentric disk, the
central black hole being at (X,Y)= (0,0); (b) uniformly precessing orbits in the
total potential. (c) the radial variation of the eccentricity e of orbits, as a function
of semi-major axis a: dotted line– the orbit model, with eccentricities changing sign
with radius; full line – as a consequence of disk self-gravity, the eccentricity does
not change sign any longer. ¿From Salow & Statler (2004).

5 Lopsidedness in galaxies in groups, clusters and mergers

5.1 Lopsidedness in galaxies in groups

Tidal encounters between galaxies in groups are more probable given the
higher number density and the consequent frequent interaction between galax-
ies in groups. Further, these have relative velocities similar to the field galaxies,
hence the lopsidedness arising due to a response triggered by tidal encounters
is more likely to occur in these. This is in fact borne out by the observa-
tions of Hickson group galaxies (Rubin et al. 1991) where a large fraction
(> 50%) of galaxies show lopsided rotation curves. This is much higher than
the case of field spiral galaxies where only ∼ 25 % show asymmetric rotation
curves (Rubin et al. 1999, Sofue & Rubin 2001). The observation of rotation
curves of 30 galaxies in 20 Hickson groups (Nishiura et al. 2000) confirms this
higher frequency. In another study involving HI observations, all the five ma-
jor spirals in the nearby Sculptor group of galaxies (Schoenmakers 1999) show
kinematical lopsidedness, and two show morphological elongation or asymme-
try. A multi-wavelength study of two group galaxies NGC 1961 and NGC 2276
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shows evidence for lopsidedness which has been attributed to tidal interactions
(Davis et al. 1997).

The two-dimensional maps of HI have been Fourier-analyzed recently to obtain
the m=1 Fourier amplitudes and phases for a sample of 18 galaxies in the
Eridanus group (Angiras et al. 2006). This is the first quantitative analysis of
asymmetry in the surface density distribution of the HI gas, and is similar to
the Fourier analysis now done routinely in the literature for the near-IR data
representing old stars in galaxies.

The group location of this sample allows us to serendipitously study the lop-
sidedness in a group setting. The galaxies studied show a higher magnitude of
asymmetry than the field galaxies, and also a higher fraction of galaxies show
asymmetry. The average amplitude of lopsidedness measured for the Eridanus
group galaxies is nearly twice that in the field galaxies over the same radial
range of 1.5-2.5 disk scalelengths. Second, nearly 30 % of the sample galaxies
show lopsidedness amplitudes three times larger than the field average of 0.1.
Fig. 24 shows the results for two galaxies UGC 068 and NGC 1325, in the
Eridanus group.

The asymmetry is measured in this case to over twice the radial distance that
is typically covered in the near-IR studies (e.g. Bournaud et al . 2005 b). This
is because the tracer used here is HI which extends farther out than the stars,
and because the sky background limits the Fourier analysis in the near-IR to
∼ 2.5 disk scalelengths.

The A1 values measured from the HI data and the R-band data are available
for four galaxies, and these were compared. It was found that in the radial
region of overlap, the two tracers show a similar value of lopsidedness, see Fig.
25. This confirms that the origin of lopsidedness in HI is of a dynamical origin
and not purely of a gas-dynamical process that only applies to the gas.

A similar Fourier analysis has been done for a sample of 12 galaxies in the Ursa
Major (Angiras et al. 2007) by analyzing the 2-D HI data (Verheijen 1997)
available for these. The average value of lopsided amplitude in the 1.5-2.5 disk
scalelength region in this sample is smaller than in the Eridanus group, and
is closer to the field galaxies case, as shown in Fig. 26. This could reflect the
different spatial distribution of galaxies in the two groups- the ones in the
Ursa Major are distributed along a filament.
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Fig. 24. The lopsided amplitude and phase of the HI surface density distribution
versus radius for the two galaxies UGC068 and NGC 1325 in the Eridanus group,
taken from Angiras et al. (2006). The amplitude increases with radius and the phase
is nearly constant indicating that m=1 is a global mode. The lopsidedness in the HI
can be measured until several disk scalelengths, more than twice the radial distance
possible for the stars.

Fig. 25. A comparison of the lopsided amplitude A1 obtained by analyzing the HI
data and the R-band data for stars for NGC 1953 (left panel) and NGC 1359 (right
panel), from Angiras et al. (2006). In the radial region of overlap the values are
comparable, thus indicating the same origin for the lopsidedness both in stars and
gas. The figures also strikingly illustrate that HI is a much better tracer than stars
for the study of lopsidedness at large radii.

An interesting characteristic of lopsidedness in group galaxies as noted by
Angiras et al. (2006) is that the early-type galaxies show a higher quantitative
lopsidedness than do the late-type galaxies, see Fig. 27. This is opposite to
what is seen in the field galaxies (Bournaud et al. 2005b) and indicates that
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Fig. 26. The histograms denoting the number of galaxies vs. the lopsided amplitude
measured in the 1.5-2.5 disk scalelength range for the Ursa Major Group (left) and
the Eridanus group (right) of galaxies, taken from Angiras et al. (2007). The galaxies
are more lopsided in the Eridanus group, indicating a substantial variation between
groups.

tidal interactions play a dominant role in generating lopsidedness in the group
galaxies. This is not surprising given the high concentration of galaxies in a
group. Tidal interactions would tend to cause a secular evolution of galaxies
to an earlier type and hence when these are the dominant mechanism for
generating lopsidedness, one would expect higher values of lopsidedness for
early-type galaxies, as argued by Bournaud et al. (2005 b).
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Fig. 27. The lopsided amplitude measured between the radial range of 1.5-2.5 disk
scalelengths vs. the galaxy type, from Angiras et al. (2006). The early-type galaxies
show a higher lopsidedness than the late-type galaxies. This is opposite of what is
seen for the field galaxies, see Fig. 5.

A distinguishing feature of asymmetry in the group galaxies is that the values
of the asymmetry as measured by the mean fractional Fourier amplitudes A1,
A2 and A3 for the modes m=1,2 and 3 are found to be comparable (Angiras et
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al. 2007). Also, the derived perturbation potential parameters ǫ1, ǫ2 and ǫ3 are
found to be comparable. Although this last result depends on the model used,
it reinforces the similar result obtained for the Fourier amplitudes which are
directly observed and hence are model-independent (Section 3.1.2). This is in
contrast to the field galaxies where A1 and A2 are comparable and are generally
stronger than A3 and the other higher mode amplitudes (Rix & Zaritsky 1995).
This indicates the importance of multiple, simultaneous tidal interactions that
can occur under the special conditions of a group environment. This needs to
be studied by future dynamical studies including by N-body simulations. Since
tidal interactions are frequent, occurring on a timescale of <∼ 0.5Mpc/300
km s−1 ∼ 3Gyr, the long-term maintenance of lopsidedness is not a problem
in this environment.

5.2 Lopsidedness in galaxies in clusters

The galaxies in clusters may undergo even more frequent encounters than
in the groups because of the generally higher number density of galaxies.
However the relative velocity between galaxies is higher in clusters and hence
the encounters are weaker in strength. The accumulation of a large number
of weak interactions has been called the galaxy harassment (Lake, Kat z, &
Moore 1998). The asymmetry in NGC 4252 including the smoothly varying HI
velocity field along the tidal tail, has been attributed to this effect (Haynes,
Giovanelli & Kent 2007). The amplitude of lopsidedness generated due to
tidal encounters is expected to be weaker in this case because of the quick
encounters. On the other hand, other dynamical processes such as asymmetry
arising due to ram pressure may be specifically applicable in a group or a
cluster setting. This may even be the dominant source of gas asymmetry in
these and can affect the HI gas lying on the outer parts of a galactic disk.
An interesting interplay of these various effects is possible as in NGC 4848 in
the Coma cluster, which shows a lopsided distribution of the molecular gas
(Vollmer et al. 2001). This has been explained by the interaction between the
galactic gas, and the gas removed by ram pressure stripping around 4 × 108

yr ago which is now falling back.

Since the cluster galaxies often show HI deficiency especially in the outer
parts where lopsidedness is generally more common, this could be a potential
problem with detecting lopsidedness in cluster galaxies.

Despite this, in some galaxies of groups and clusters, the gas alone in known to
show a strong asymmetry - as in NGC 4647 (Young et al. 2006). This strong gas
asymmetry has been frequently attributed to ram pressure stripping. However,
the role of the gravitational potential asymmetry in lopsidedness cannot be
neglected, even in these cases.
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5.3 Lopsidedness in centers of advanced mergers

A fairly new regime that is just beginning to be explored is the asymmetry
at the centers of advanced mergers of galaxies. A recent systematic study
was done by Jog & Maybhate (2006), with a view to understand the mass
asymmetry and the relaxation in the central regions of mergers.

Interactions and mergers of galaxies are known to be common and significantly
affect their dynamics and evolution. The outer regions of merger remnants cov-
ering a distance of ∼ few kpc to a few 10 kpc have been well-studied. These
can be fit by an r1/4 profile (class I), an outer exponential (class II) or a no-fit
profile (class III) (Chitre & Jog 2002), and the first two can be explained as
arising due to equal-mass mergers (e.g., Barnes 1992) or unequal-mass mergers
(Bournaud, Jog & Combes 2005 a) respectively, while the third class corre-
sponds to younger remnants. Despite its obvious importance for the evolution
of the central regions, the luminosity distribution in the central regions of
mergers was not studied systematically so far. A few mergers where this has
been studied, such as NGC 3921 (Schweizer 1996), and Arp 163 (Chitre & Jog
2002), show wandering or meandering centres for the consecutive isophotes.

Jog & Maybhate (2006) chose a sample of 12 advanced mergers which showed
signs of recent interaction such as tidal tails or loops but had a merged, com-
mon center and covered all three classes discussed above; and the angular size
of the galaxy was sufficiently large to allow the Fourier analysis by dividing
the image into a few radial bins. The sample was chosen so as to cover the
three classes showing different remnant profiles as described above. The Ks

band images from 2MASS were analyzed using the task ELLIPSE in STSDAS.
The elliptical isophotes were fitted to galaxy images while allowing the center,
ellipticity and the position angle to vary so as to get the best fit. Fig. 28 (top
panel) shows the result for Arp 163. The isophotes are not concentric, instead
the centers (X0,Y0) of consecutive isophotes show a wandering or sloshing
behaviour, indicating an unrelaxed central region.

Another measure of asymmetry is the lopsidedness of the distribution, to ob-
tain this a galaxy image was Fourier-analyzed with respect to a constant center
and the amplitude A1 and the phase p1 of the m = 1 mode were plotted versus
radius- as shown for Arp 163 in the lower panel of Fig. 28. During the Fourier
analysis the center was kept fixed, for the reason as discussed in Section 2.1.2
. The intensity and hence the mass distribution is highly lopsided with the
fractional amplitude for the m=1 mode of ∼ 0.15 within the central 5 kpc.

All the sample galaxies show strong sloshing and lopsidedness in the central
regions. The asymmetry does not seem to significantly depend on the masses of
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Fig. 28. Central region of the merger Arp 163 - The top panel shows the centers of
the isophotes vs. the semi-major axis: the centers show a sloshing pattern indicating
an unrelaxed behaviour. The lower panel shows the Fourier amplitude A1 and the
phase p1 vs. radius for the lopsided mode (m = 1): the lopsided amplitude is large
and the phase fluctuates with radius. This is taken from Jog & Maybhate (2006).

progenitor galaxies - being similar for class I and II cases. However, it is higher
for the mergers in early stages of relaxation (class III). The corresponding
values especially for the central lopsidedness are found to be smaller by a
factor of few for a control sample of non-merger galaxies. This confirms that
the high central asymmetry in mergers is truly due to the merger history.

The ages of remnants are deduced to be ∼ 1-2 Gyr as seen from the remnants
with similar outer disturbed features in the N-body simulations of mergers
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(Bournaud et al. 2004), during which time these are likely to get chosen as
our sample galaxies.

Thus the central asymmetry is long-lived, lasting for ∼ 100 local dynamical
timescales. Hence it can play an important role in the dynamical evolution of
the central regions. First, it can help fuel the central AGN since it provides
a means of outward transport of angular momentum. Second, it can lead to
the secular growth of the bulges via the lopsided modes. These need to be
studied in detail theoretically. Since this predicted evolution is due to the
central asymmetry that is merger-driven, this process could be important in
the hierarchical evolution of galaxies.

6 Related topics

6.1 Relative strengths of lopsidedness (m=1) and bars/spiral arms (m=2)

Nearly all physical mechanisms, such as a tidal encounter or gas accretion,
that can give rise to an m=1 mode will also give rise to an m=2 mode. Which
of these two dominates depends on the detailed parameters of the system.
For example, for a distant encounter, the m=2 mode is stronger. A prograde
encounter is likely to preferentially generate the m=2 mode while a retrograde
encounter favours the generation of a lopsided (m=1) mode (Bournaud et al.
2005 b).

It is well-known that a two-armed spiral pattern is supported as a kinematical
feature over most of the galactic disk, or in the region of nearly flat rotation
curve in general, since the pattern speed given by Ω−κ/2 is nearly constant in
this case (Lindblad 1959). The density wave theory of spiral features is built
around this idea (Rohlfs 1977).

The human eye/ brain likes to notice bisymmetry. This is one reason why the
two-armed spirals have received enormous amount of attention in the theory
of galactic structure and dynamics. This is despite the fact that it has been
known for a long time that a higher m value or a flocculent behaviour is more
commonly observed in galaxies (see e.g., Elmegreen & Elmegreen 1982).

It should be noted that the early observational studies of spiral structure such
as the Hubble atlas (Sandage 1961) used blue filter where the emission from
the young stars stands out, and also the dust extinction plays a major role
in the galaxy image produced. In contrast, the more recent studies using the
near-IR band data, in particular in the Ks band avoid this problem and trace
more accurately the underlying old stellar mass population (e.g., Block et al.
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1994, Rix & Zaritsky 1995). Interestingly, in their recent study leading to
the Large Galaxy Catalog, Jarrett et al. (2003) show that m=1 is the most
common mode seen in the near-IR. They argue that, as noted by Block et al.
(1994), there is theoretical reason to believe that m=1 modes should dominate
the internal structure of spirals.

The question then is, why is there a prevalent notion even amongst professional
astronomers that lopsidedness is unusual in a galaxy while a two-armed spiral
is the norm, which is totally in contrast to the observed case. We think one
reason for this wrong notion could be that the phase of lopsidedness is observed
to be nearly constant (see Section 2.3). Thus the resulting isophotal contours
are oval-shaped or egg-shaped, and their elongation is not striking in the inner
or optical parts of a galaxy, so an untrained eye may miss it. 2 If there were a
strong radial dependence of the phase, then the resulting one-armed structure
as it occurs in M51 or NGC 4564 would be easy to see.

The amplitude of lopsidedness is found to increase with radius for the stars
(Rix & Zaritsky 1995) and for HI gas (Angiras et al. 2006, 2007). This is the
reason why even a low-sensitivity HI map reveals the lopsidedness easily - see
e.g. the images of a face-on galaxy like M101 or an edge-on galaxy like NGC
891 (Baldwin et al. 1980). Thus it is not surprising that lopsidedness was first
detected in the HI maps. The fact that it is now found to be equally ubiquitous
in the older stars as well, is what makes its study even more important and
challenging. For example, it points to a basic dynamical mechanism for the
origin of lopsidedness, and not something based purely on the gas dynamical
processes. An interesting feature regarding observational detection of lopsid-
edness, first noted by Rix & Zaritsky (1995), is that it does not get confused
with the inclination angle, unlike the A2 values.

6.1.1 Observed amplitudes of m=1 and m=2 components

The observed amplitudes A1 and A2 of m=1 and 2 respectively for stars are
generally comparable, and both are much larger than the values for the higher
m modes for the field galaxies (Rix & Zaritsky 1995, Bournaud et al. 2005 b).
Normally m=2 is taken to denote a bar or a spiral arm in the inner or outer
regions respectively, or it can also denote disk ellipticity. The amplitudes for
m=2 have been measured for larger samples (Laurikainen, Salo, & Rautiainen
2002, Buta et al. 2005, Bournaud et al. 2005 b). The average values of A1

and A2 between 1.5 - 2.5 disk scalelengths have been measured for the 149
galaxies in the OSU catalog (see the Appendix in Bournaud et al. 2005 b),
and the two generally show a positive correlation (see Fig. 8 in that paper).
This cannot be explained if the tidal encounters were the main generating

2 On the other hand, a little training or awareness allows one to detect lopsidedness
in galaxies easily, as the authors of this present article have found !
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mechanism since m=2 spiral arms or bars are more easily triggered on direct
orbits where Ω−κ/2 is positive (e.g., Gerin et al. 1990). In contrast, a lopsided
mode is more likely to be triggered or last longer in a retrograde orbit since the
pattern speed of m=1 asymmetries, Ω − κ, is negative in a galactic disk. The
simulations by Thomasson et al. (1989) shows that retrograde tidal encounters
between galaxies lead to the formation of leading one-armed spiral arms, as
in NGC 4622. Observationally very few galaxies show a leading arm. Pasha
(1985) found that only 2 out of the 189 galaxies studied show a leading arm
(NGC 3786, NGC 5426), and each of these happen to be in a pair, which agrees
with the work by Thomasson et al. (1989). It is possible that the pattern speed
of m=1 arms in other galaxies is small - this has to be checked observationally.
As discussed in Section 3.2.3 this can have a bearing on the mechanism for
the origin of lopsidedness. For example, if the pattern speed is small, the
global modes are long-lived (Saha et al. 2007) and do not need to be triggered
frequently.

On the other hand, the galaxies in groups show a higher lopsidedness for
the early-type galaxies, and show a comparable magnitude for all the lower
modes, m=1,2, and 3. The frequent and even concurrent tidal encounters in
this setting are probably responsible for this (see Section 5.2).

The different modes could interact directly but this obvious line of research
has not been followed up much. A non-linear coupling between m=1,3 and
m=2 was proposed by Masset & Tagger (1997) for the central regions. Even
though the m=1 mode is largely seen in the outer galactic disk while the bars
and the spiral structure (m=2) are seen more in the inner parts of a galactic
disk, they can still have a dynamical effect on each other. The heating due to a
bar (m=2) can suppress the further growth of a lopsided mode, as was seen in
the numerical simulations for a purely exponential disk by Saha et al. (2007).
Conversely, the presence of a lopsided mode can lead to a bar dissolution as
has been studied by Debattista & Sambhus (2008). This topic needs more
study and could shed an important light on the dynamical evolution of a disk
due to various non-axisymmetric features.

6.2 Asymmetry in the dark matter halo

The study of disk asymmetry including lopsidedness has triggered many ap-
plications where the asymmetry is used as a tool to gain information about
the shape and the density distribution in the dark matter halo.

The dark matter halo is generally assumed to have a spherical shape, for the
sake of simplicity. This view has been challenged, and there have been studies
which have used various tracers such as the polar rings (Sackett & Sparke
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1990), warps (e.g. Ideta et al. 2000), gas flaring (Olling 1996, Becquaert &
Combes 1997, Narayan, Saha & Jog 2005, Banerjee & Jog 2008), to deduce
the shape of the dark matter halo in galaxies. A summary of topic is given in
Natarajan (2002).

In the tidal picture of the origin of disk lopsidedness, the disk responds to a
distorted dark matter halo. Thus we can use the observed disk asymmetry to
deduce the asymmetry in the galactic plane of the dark matter halo, which
is not visible directly. As discussed in detail in Section 3.2.1, the observed
disk lopsidedness can be used to deduce the halo lopsidedness and indicates
a few % lopsidedness for the halo in a typical galaxy. Similarly, on treating
a self-consistent disk response, and using the disk ellipticity, one can deduce
the ellipticity of the dark matter halo (Jog 2000). The idea of negative disk
response (Jog 1999, 2000) has been applied by Bailin et al. (2007) for a more
realistic radial variation of the ellipticity of the potential to show that the disk
response circularizes the net potential in the central region of a triaxial halo.

The amplitude of lopsidedness is higher in the group galaxies and can there-
fore imply a higher distortion of the halo, ∼ 10 % as shown for the case of
the Eridanus group galaxies (Angiras et al. 2006). The power in the various
m modes is comparable (see Schoenmakers 2000, Angiras et al. 2007). The
values of all three perturbation potentials derived ǫ1, ǫ2, ǫ3 are comparable
(Section 5.1). This can be an important clue to the mechanism for generating
lopsidedness in groups, and perhaps indicates the importance of multiple, si-
multaneous tidal interactions that can occur under the special conditions of a
group environment.

The asymmetry in the dark matter halo of the Galaxy has been studied quan-
titatively as follows. The recent survey of atomic hydrogen gas in the outer
Galaxy (Levine et al. 2006) has revealed a striking asymmetry in the thickness
map of HI gas. The gas in the Northern part flares more with the thickness
higher by a factor of ∼ 2 compared to that in the South, at a galactocentric
radial distance of 30 kpc. This has been modeled by Saha et al (2008), who
obtain the vertical scaleheight for the galactic disk in the gravitational field
of the dark matter halo by solving the vertical force equation and the Poisson
equation together. This model shows that the above asymmetry is best ex-
plained by a lopsided dark matter halo, with a small elliptical distortion that
is out of phase with the lopsidedness.

The centres of dark matter halos are predicted to show lopsidedness as based
on the N-body simulations in the ΛCDM cosmology (Gao & White 2006) and
the size of asymmetry is larger for larger size halos as in clusters of galaxies,
though these models need to be followed by direct predictions which can be
checked against observations as stressed by these authors.
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The Fourier harmonic technique developed mainly to study the disk asym-
metry (Jog 1997, Schoenmakers et al. 1997) has now been applied to the
kinematical data along the minor axis for the dwarf galaxy DDO 47 (Gentile
et al. 2005). This study has shown that the velocity dispersion components
are too small to arise due to a cusp. Hence the galaxy was deduced to have
a genuine core-like density distribution of the dark matter halo in the central
regions.

The asymmetry in the halo is expected to be long-lived because of its colli-
sionless nature. However, a finite pattern speed can reduce this life-time to be
∼ a few Gyr, or much less than the Hubble time (see the discussion in Section
3.2.3).

6.3 Comparison with warps

Spiral galaxies also show a bending of the midplane at large radii, this is
known as the warp. A warp is also a global feature of type m=1 except in the
vertical direction (Binney & Tremaine 1987). Warps are extremely common
and in fact all the main galaxies in the Local group, namely the Galaxy, M31,
M33, LMC are warped. Warps are seen mainly in the HI gas, typically beyond
a 4-5 disk scalelength radius (Briggs 1990) but in many cases are also seen in
stars in a radial region somewhat inside of this (Reshetnikov & Combes 1998).

A tidal encounter in an arbitrary orientation can generate both lopsidedness
as well as warps, as is known, see e.g. Weinberg (1995), and Bournaud et al.
(2004). Individual galaxies often exhibit both these phenomena, and galaxies
with an intermediate angle of inclination allows both to be seen easily as in
NGC 2841 (see Fig. 1b in the present paper). Both the features share some
common properties - namely they are seen preferentially in the outer parts of a
galactic disk, and their long-term maintenance against differential rotation is a
problem. The disk self-gravity resists imposed perturbation in the inner parts,
as denoted by the negative disk response (Section 3.2.1.c). The resulting net
self-consistent disk response shows that the disk will exhibit lopsidedness only
outside of ∼ 2 disk scalelengths (Jog 1999, Jog 2000). A similar calculation
for the perturbation along the vertical direction shows that the onset of warps
in a galactic disk occurs only beyond 4-5 disk scalelengths (Saha & Jog 2006).

We note, however, that warps and lopsided distribution are physically different
features. First, in a lopsided distribution the centre of mass is shifted with
respect to the original centre of mass of the galaxy. On the other hand, in a
standard m=1 S-shaped warp, the mass distribution is symmetric with respect
to the centre of mass and to the symmetry plane of z = 0. Second, the onset of
warps is determined by a somewhat arbitrary threshold of a few degree lifting
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of the mid-plane away from its central value, which is set by the observational
detection limits. On the other hand, a lopsided amplitude is well-determined
quantitatively following the Fourier analysis- although the threshold value of
what constitutes a lopsided galaxy is still fairly arbitrary (see Section 2.2).

6.4 Implications for high redshift galaxies

Lopsidedness is more likely at high redshift, since galaxy interactions are more
frequent. There is multiple observational evidence of more asymmetric galaxies
at high redshift (e.g. Simard et al 2002). Measuring the lopsidedness is however
complex due to the clumpy/non-uniform background distribution in a galaxy
(e.g. Elmegreen et al 2004), and the overall low spatial resolution.

7 Effect of lopsidedness on galaxy evolution

A galactic disk is inherently susceptible to the formation of the lopsided mode
(Section 3). This mode can be long-lived as evident from the high fraction
of galaxies that are observed to show lopsidedness. The dynamical origin and
the evolution of these features is a challenging problem as discussed here. But
apart from that, does the existence of lopsidedness affect the galaxy in any
way? The answer is a resounding yes.

The list of processes whereby a lopsided distribution can affect the evolution
of the galactic disk in a significant way include the following:

1. A lopsided distribution can help in the angular momentum transport in
the disk and can thus contribute to the secular evolution in the disk. This is
especially important given the long-lived nature of the lopsidedness. This can
cause a redistribution of matter as studied by Lynden-Bell & Kalnajs (1972).
This process is especially important at lower radii because the dynamical
timescale is smaller. Hence the net dynamical evolution is likely to occur on
timescales less than the age of the galaxy. The details for this process need to
be worked out.

2. The fueling of the central active galactic nucleus (AGN) can occur due to
the m=1 motion of the central black hole (Section 4.2) and this could be more
effective than the first process above.

3. Lopsidedness could affect the details of galaxy formation. For example, the
accretion of mass as mediated by m=1 would be especially important for the
highly disturbed high redshift galaxies.
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4. The lopsided distribution results in an azimuthal asymmetry in star forma-
tion in a galactic disk. In a lopsided potential, the effective disk surface density
is shown to be a maximum at φ = 00, corresponding to an overdense region,
while there is an underdense region in the opposite direction along φ = 1800.
The fractional increase in surface density at φ = 00 is high ∼ 0.3 − 0.5 for
strongly lopsided galaxies (see Fig. 1, Jog 1997). Thus, the molecular gas in
the overdense region could become unstable and result in enhanced star forma-
tion, as shown for example for the parameters for M101. Further, the enhanced
star formation in the overdense region is argued to give rise to a preferential
formation of massive stars (Jog & Solomon 1992). This will result in more HII
regions in the overdense region. This prediction is exactly in agreement with
observations of more HII regions seen along the SW in M101.

Lopsidedness has also been observed in the Hα emission from the star-forming
regions in dwarf irregular galaxies (Heller et al. 2000). Such asymmetry is
expected to be common in all galaxies and we suggest future work in this area
is necessary.

8 Summary and Future Directions

We have reviewed the spatial and kinematical lopsidedness in a galaxy - both
the observations and dynamics, as seen in the various tracers - stars and gas,
and in the inner and outer regions, and in different settings- field and group
environment.

The lopsidedness is shown to be a common phenomenon. Nearly 30 % of spiral
galaxies show a 10% fractional amplitude in m=1 or the first Fourier mode.
The amplitude can be higher and can go up to 30 % in strongly lopsided
galaxies like M 101. In a group environment, this effect is stronger: all the
galaxies show lopsidedness and the average amplitude of lopsidedness is nearly
twice that in the field case.

We recommend that the future users adopt the fractional Fourier amplitude
A1 as the standard criterion for lopsidedness. Further, the threshold value that
could be adopted could be the average value of 0.1 seen in the field galaxies
in the intermediate radial range of 1.5-2.5 Rexp (Bournaud et al. 2005 b), so
that galaxies showing a higher value can be taken to be lopsided. A uniform
criterion will enable the comparison of amplitudes of lopsidedness in different
galaxies, and also allow a comparison of the fraction of galaxies deduced to be
lopsided in different studies.

A variety of physical mechanisms have been proposed to explain the origin of
the lopsidedness, of which the most promising are the ones involving a tidal
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encounter, gas accretion, and gravitational instability. A unique feature of the
m=1 perturbation in the galactic disk is that it leads to a shift in the centre
of mass in the disk, and this further acts as an indirect force on the original
centre of the disk. The self-gravity of the perturbation decreases the precession
rate by a factor of ∼ 10 compared to free precession. The disk is thus shown to
naturally support a slowly-rotating, global, lopsided mode which is long-lived.
However, the uniqueness of this solution has been proven. Also it is not clear
what would give rise to such slow modes, except gas accretion. A fast pattern
speed as would occur for lopsidedness generated in a tidal encounter cannot
yet be ruled out.

The high fraction of galaxies showing lopsidedness has still not been explained
fully. The N-body simulations for a tidal interaction between galaxies with a
live halo and gas (Bournaud et al. 2005 b) show that the lifetime of the lopsided
mode thus generated is a few Gyr. The other mechanism involving steady
gas accretion would probably generate a one-armed lopsided mode which is
not seen commonly. Satellite accretion could generate the right amount of
lopsidedness but would also thicken the disks more than is seen. It needs to
be checked if a small-mass satellite falling in can generate the right amplitude
distribution of lopsidedness without thickening the disk, and of course if there
are such satellites available to fall in at a steady rate. A measurement of
pattern speed in real galaxies would be extremely useful in constraining the
main mechanism for generating lopsidedness. For example, a tidal encounter
is expected to give rise to a lopsided mode with a small but finite pattern
speed.

In group galaxies, the ongoing continuous tidal interaction can help one get
over the maintenance problem easily. This can explain why nearly all galaxies
in a group are strongly lopsided, and may perhaps explain why these show
equal amplitudes of higher asymmetry modes. This needs to be confirmed by
detailed dynamical studies and simulations.

Some of the open problems in this field include: a measurement of pattern
speed of lopsided mode in real galaxies, the amplitude and thickening of the
disk generated by an accretion of a low-mass satellite, and the study of origin
and evolution of lopsidedness in galaxies in groups, and the evolution timescale
of a m=1 mode in a collisionless dark matter halo. These deal with the origin
and the evolution of lopsidedness in galaxies. The related field of problems
involving the study of the dark matter shape has much promise, and some
work has been started along this direction with models to explain the observed
HI thickness distribution. In the central regions of mergers of galaxies, the
dynamics of the sloshing and lopsidedness seen on scales of ∼ 1 kpc needs to
be investigated. On further small scales, simulations with central black holes
should be carried out to explore the formation of eccentric disks as in M31.
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An even more interesting set of questions has to do with the effect the lopsid-
edness has on the further evolution of the galaxy. These include: the angular
momentum transport, the fuelling of the central active galactic nucleus, en-
hanced star formation in the overdense regions, and the early evolution of a
galaxy mediated by the m=1 mode for the studies of galaxies at high red-
shift, and the coupling between the various modes (bars, lopsidedness etc) in
a galactic disk and its effect on the further dynamical evolution of a galaxy.

In summary, the study of asymmetry is a rich and a challenging area in galactic
structure and dynamics, with lots of open questions - both observational and
theoretical.

Acknowledgments: We are happy to acknowledge the support of the Indo-
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