Back to the article index


Article Contents

ABSTRACT

8.1.STAR-FORMING MOLECULAR CLOUDS
8.1.1.Background
8.1.2.Molecular excitation
8.1.2.1.Summary
8.1.3.Observed properties of molecular gas
8.1.3.1.Self-gravitating GMCs
8.1.3.2.Molecular masses from tau ≫ 1 CO emission
8.1.3.3.Lifetimes of GMCs
8.1.3.4.GMC supersonic internal motions
8.1.3.5.Summary

8.2.STAR FORMATION
8.2.1.Probes of star formation
8.2.2.Infrared emission
8.2.3.Dust optical depth: tau < 1 or tau > 1?
8.2.4.Dust temperature of the emergent luminosity
8.2.5.Star formation rate from LIR
8.2.6.Dust and ISM mass estimates
8.2.7.Effective source size
8.2.8.Luminosity and SFR estimates from submm continuum
8.2.9.Modelling optically-thick dust clouds
8.2.10.Summary

8.3.STAR FORMATION IN GALAXIES - TWO MODES
8.3.1.Quiescent or normal mode of star formation
8.3.2.Dynamically-driven starburst mode
8.3.3.Star formation `laws'
8.3.4.Distinguishing normal star formation and starbursts: concentration and timescales
8.3.5.Starbursts in ULIRGs
8.3.6.Arp 220 - a prototypical ULIRG
8.3.7.An aside: Sgr A* - an extraordinary ISM
8.3.8.Nuclear starburst disks
8.3.9.Maximum-rate starbursts - the dust Eddington limit
8.3.10.AGN - starburst: observational connections
8.3.11.AGN - starburst: theoretical connections

8.4.EVOLUTION OF GALAXIES AT HIGH REDSHIFT
8.4.1.Luminosity and Mass Functions
8.4.2.Environmental correlations

8.5.MODELLING STAR FORMATION AT HIGH REDSHIFT: SAME MODES BUT DIFFERENT FREQUENCY
8.5.1.Cosmic evolution: M* and MISM and star formation luminosities
8.5.2.Need ISM replenishment by accretion
8.5.3.ULIRG starbursts account for high-L tail

8.6.CONCLUSIONS

REFERENCES