
Outskirts of Distant Galaxies In Absorption

Hsiao-Wen Chen

Abstract QSO absorption spectroscopy provides a sensitive probe of both the neu-
tral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps
of gaseous structures around low-redshift galaxies both to lower gas column den-
sities and to higher redshifts. Combining galaxy surveys with absorption-line ob-
servations of gas around galaxies enables comprehensive studies of baryon cycles
in galaxy outskirts over cosmic time. This Chapter presents a review of the empiri-
cal understanding of the cosmic neutral gas reservoir from studies of damped Lyα

absorbers (DLAs). It describes the constraints on the star formation relation and
chemical enrichment history in the outskirts of distant galaxies from DLA studies.
A brief discussion of available constraints on the ionized circumgalactic gas from
studies of lower column density Lyα absorbers and associated ionic absorption tran-
sitions is presented at the end.

1 Introduction

Absorption-line spectroscopy complements emission surveys and provides a pow-
erful tool for studying the diffuse, large-scale baryonic structures in the distant Uni-
verse (e.g., Rauch 1998; Wolfe et al 2005; Prochaska and Tumlinson 2009). De-
pending on the physical conditions of the gas (including gas density, temperature,
ionization state, and metallicity), a high-density region in the foreground is expected
to imprint various absorption transitions of different line strengths in the spectrum
of a background QSO. Observing the absorption features imprinted in QSO spectra
enables a uniform survey of diffuse gas in and around galaxies, as well as detailed
studies of the physical conditions of the gas at redshifts as high as the background
sources can be observed.
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log N(HI) = 21.45 ± 0.05

OVI 1031, 1037 
in the forest

DLA at 
z = 3.39

CIV 1548,1550 
at z < 4.13

LLS

MgII 2796,2803

Lyα forest

pLLS

Fig. 1 Example of the wealth of information for intervening gas revealed in the optical and near-
infrared spectrum of a QSO at z = 4.13. In addition to broad emission lines intrinsic to the QSO,
such as Lyα/N V at ≈ 6200 Å, a forest of Lyα λ 1215 absorption lines is observed blueward of
6200 Å. These Lyα forest lines arise in relatively high gas density regions at zabs . zQSO along
the line of sight. The Lyα absorbers span over 10 decades in neutral hydrogen column densities
(N(H I)), and include (1) neutral damped Lyα absorbers (DLAs), (2) optically thick Lyman limit
systems (LLS), (3) partial LLS (pLLS), and (4) highly ionized Lyα absorbers (see text for a quan-
titative definition of these different classes). The DLAs are characterized by pronounced damping
wings (second panel from the top), while LLS and pLLS are identified based on the apparent flux
discontinuities in QSO spectra (top panel). Many of these strong Lyα absorbers are accompanied
with metal absorption transitions such as the O VI λλ 1031, 1037 doublet transitions which occur
in the Lyα forest, and the C IV λλ 1548, 1550 and Mg II λλ 2796, 2803 doublets. Together, these
metal lines constrain the ionization state and chemical enrichment of the gas
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Figure 1 displays an example of optical and near-infrared spectra of a high-
redshift QSO. The QSO is at redshift zQSO = 4.13, and the spectra are retrieved from
the XQ-100 archive (Lopez et al 2016). At the QSO redshift, multiple broad emis-
sion lines are observed, including the Lyα/N V emission at≈ 6200 Å, C IV emission
at≈ 7900 Å, and C III] emission at≈ 9800 Å. Blueward of the Lyα emission line are
a forest of Lyα λ 1215 absorption lines produced by intervening overdense regions
at zabs . zQSO along the QSO sightline. These overdense regions span a wide range
in H I column density (N(H I)), from neutral interstellar gas of N(H I)≥ 1020.3 cm−2,
to optically opaque Lyman limit systems (LLS) of N(H I)> 1017.2 cm−2, to optically
thin partial LLS (pLLS) with N(H I) = 1015−17.2 cm−2, and to highly ionized Lyα

forest lines with N(H I) = 1012−15 cm−2 (right panel of Fig. 2).
The large N(H I) in the neutral medium produces pronounced damping wings

in the QSO spectrum. These absorbers are commonly referred to as damped Lyα

absorbers (DLAs). An example is shown in the second panel from the top in
Fig. 1. In this particular case, a simultaneous fit to the QSO continuum and the
damping wings (red curve in the second panel from the top) yields a best-fit
log N(H I) = 21.45± 0.05 for the DLA. At intermediate N(H I), LLS and pLLS
are identified based on the apparent flux discontinuities in QSO spectra (top panel).
A significant fraction of these strong Lyα absorbers have been enriched with heavy
elements which produce additional absorption features due to heavy ions in the QSO
spectra. The most prominent features include the O VI λλ 1031, 1037 doublet transi-
tions which occur in the Lyα forest, and the C IV λλ 1548, 1550 and Mg II λλ 2796,
2803 doublets, plus a series of low-ionization transitions such as C II, Si II, and Fe II.
Together, these ionic transitions constrain the ionization state and chemical compo-
sitions of the gas (e.g., Chen and Prochaska 2000; Werk et al 2014).

Combining galaxy surveys with absorption-line observations of gas around galax-
ies enables comprehensive studies of baryon cycles between star-forming regions
and low-density gas over cosmic time. At low redshifts, z . 0.2, deep 21 cm and
CO surveys have revealed exquisite details of the cold gas content (T . 1000 K)
in nearby galaxies, providing both new clues and puzzles in the overall understand-
ing of galaxy formation and evolution. These include extended H I disks around blue
star-forming galaxies with the H I extent≈ 2×what is found for the stellar disk (e.g.,
Swaters et al 2002; Walter et al 2008; Leroy et al 2008), extended H I and molecular
gas in early-type galaxies (e.g., Oosterloo et al 2010; Serra et al 2012) with pre-
dominantly old stellar populations and little or no on-going star formation (Salim
and Rich 2010), and widespread H I streams connecting regular-looking galaxies in
group environments (e.g., Verdes-Montenegro et al 2001; Chynoweth et al 2008).

Figure 2 (left panel) showcases an example of a deep 21 cm image of the
M81 group, a poor group of dynamical mass Mdyn ∼ 1012 M� (Karachentsev and
Kashibadze 2006). Prominent group members include the grand-design spiral galaxy
M81 at the centre, the proto-starburst galaxy M82, and several other lower-mass
satellites (Burbidge and Burbidge 1961). The 21 cm image displays a diverse ar-
ray of gaseous structures in the M81 group, from extended rotating disks, warps,
high velocity clouds (HVCs), tidal tails and filaments, to bridges connecting what
appear to be optically isolated galaxies. High column density gaseous streams of
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Fig. 2 Mapping galaxy outskirts in 21 cm and in QSO absorption-line systems. Left: Deep 21 cm
image of the M81 group, revealing a complex interface between stars and gas in the group. The
observed neutral hydrogen column densities range from N(H I) ∼ 1018 cm−2 in the filamentary
structures to N(H I) > 1021 cm−2 in the star-forming disks of group members (Yun et al 1994;
Chynoweth et al 2008). The 21 cm image reveals a diverse array of gaseous structures in this
galaxy group, but these observations become extremely challenging beyond redshift z≈ 0.2 (e.g.,
Verheijen et al 2007; Fernández et al 2013). Right: The H I column density distribution function
of Lyα absorbers, fN(H I), uncovered at z = 1.9−3.2 along sightlines toward random background
QSOs (adapted from Kim et al 2013). Quasar absorbers in different categories are mapped onto dif-
ferent H I structures both seen and missed in the 21 cm image in the left panel. Specifically, DLAs
probe the star-forming ISM and extended rotating disks, LLS probe the gaseous streams connect-
ing different group members as well as stripped gas and high velocity clouds around galaxies, and
pLLS and strong Lyα absorbers trace ionized gas that is not observed in 21 cm signals. Among the
quasar absorbers, C IV absorption transitions are commonly observed in strong Lyα absorbers of
N(H I)& 1015 cm−2 (see e.g., Kim et al 2013; D’Odorico et al 2016), and Mg II absorption transi-
tions are seen in most high-N(H I) absorbers of N(H I) & 1016 cm−2 (see e.g., Rigby et al 2002).
These metal-line absorbers trace chemically enriched gas in and around galaxies

N(H I) & 1018 cm−2 are seen extending beyond 50 kpc in projected distance from
M81, despite the isolated appearances of M81 and other group members in optical
images. These spatially resolved imaging observations of different gaseous compo-
nents serve as important tests for theoretical models of galaxy formation and evolu-
tion (e.g., Agertz et al 2009; Marasco et al 2016). However, 21 cm imaging observa-
tions are insensitive to warm ionized gas of T ∼ 104 K and become extremely chal-
lenging for galaxies beyond redshift z = 0.2 (e.g., Verheijen et al 2007; Fernández
et al 2013).

QSO absorption spectroscopy extends 21 cm maps of gaseous structures around
galaxies to both lower gas column density and higher redshifts. Based on the char-
acteristic N(H I), direct analogues can be drawn between different types of QSO
absorbers and different gaseous components seen in deep 21 cm images of nearby
galaxies. For example, DLAs probe the neutral gas in the interstellar medium
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(ISM) and extended rotating disks, LLS probe optically thick gaseous streams and
high velocity clouds in galaxy haloes, and pLLS and strong Lyα absorbers of
N(H I) ≈ 1014−17 cm−2 trace ionized halo gas and starburst outflows (e.g., super-
galactic winds in M 82 Lehnert et al 1999) that cannot be reached with 21 cm obser-
vations.

The right panel of Fig. 2 displays the H I column density distribution function,
fN(H I), for all Lyα absorbers uncovered at z = 1.9−3.2 along random QSO sight-
lines (Kim et al 2013). fN(H I), defined as the number of Lyα absorbers per unit ab-
sorption pathlength per unit H I column density interval, is a key statistical measure
of the Lyα absorber population. It represents a cross-section weighted surface den-
sity profile of hydrogen gas in a cosmological volume. With sufficiently high spec-
tral resolution and high signal-to-noise, S/N & 30, QSO absorption spectra probe
tenuous gas with N(H I) as low as N(H I)∼ 1012 cm−2. The steeply declining fN(H I)
with increasing N(H I) shows that the occurrence (or areal coverage) of pLLS and
strong Lyα absorbers of N(H I) ≈ 1014−17 cm−2 is ≈ 10 times higher than that of
optically thick LLS along a random sightline and ≈ 100 times higher than the inci-
dence of DLAs. Such a differential frequency distribution is qualitatively consistent
with the spatial distribution of H I gas recorded in local 21 cm surveys (e.g., Fig. 2,
left panel), where gaseous disks with N(H I) comparable to DLAs cover a much
smaller area on the sky than streams and HVCs with N(H I) comparable to LLS. If a
substantial fraction of optically thin absorbers originate in galaxy haloes, then their
higher incidence implies a gaseous halo of size at least three times what is seen in
deep 21 cm images.

In addition, many of these strong Lyα absorbers exhibit associated transitions
due to heavy ions. In particular, C IV absorption transitions are commonly observed
in strong Lyα absorbers of N(H I)& 1015 cm−2 (see, e.g., Kim et al 2013; D’Odorico
et al 2016), and Mg II absorption transitions are seen in most high-N(H I) absorbers
of N(H I) & 1016 cm−2 (e.g., Rigby et al 2002). While Mg II absorbers are under-
stood to originate in photo-ionized gas of temperature T ∼ 104 K (e.g., Bergeron and
Stasińska 1986), C IV absorbers are more commonly seen in complex, multi-phase
media (e.g., Rauch et al 1996; Boksenberg and Sargent 2015). These metal-line ab-
sorbers therefore offer additional probes of chemically enriched gas in and around
galaxies.

This Chapter presents a brief review of the current state of knowledge on the
outskirts of distant galaxies from absorption-line studies. The review will first fo-
cus on the properties of the neutral gas reservoir probed by DLAs, and then outline
the insights into star formation and chemical enrichment in the outskirts of distant
galaxies from searches of DLA galaxies. A comprehensive review of DLAs is al-
ready available in Wolfe et al (2005). Therefore, the emphasis here focusses on new
findings over the past decade. Finally, a brief discussion will be presented on the
empirical properties and physical understandings of the ionized circumgalactic gas
as probed by strong Lyα and various metal-line absorbers.
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2 Tracking the Neutral Gas Reservoir Over Cosmic Time

DLAs are historically defined as Lyα absorbers with neutral hydrogen column den-
sities exceeding N(H I) = 2×1020 cm−2 (Wolfe et al 2005), corresponding to a sur-
face mass density limit of Σatomic ≈ 2M� pc−2 for atomic gas (including helium).
The large gas surface mass densities revealed in high-redshift DLAs are comparable
to what is seen in 21 cm observations of nearby star-forming galaxies (e.g., Walter
et al 2008; Leroy et al 2008), making DLAs a promising signpost of young galaxies
in the distant Universe (Wolfe et al 1986). In addition, the N(H I) threshold ensures
that the gas is neutral under the metagalactic ionizing radiation field (e.g., Viegas
1995; Prochaska and Wolfe 1996; Prochaska et al 2002). Neutral gas provides the
seeds necessary for sustaining star formation. Therefore, observations of DLAs not
only help establish a census of the cosmic evolution of the neutral gas reservoir (e.g.,
Neeleman et al 2016a), but also offer a unique window into star formation physics
in distant galaxies (e.g., Lanzetta et al 2002; Wolfe and Chen 2006).

While the utility of DLAs for probing the young Universe is clear, these objects
are relatively rare (see the right panel of Fig. 2) and establishing a statistically repre-
sentative sample of these rare systems requires a large sample of QSO spectra. Over
the last decade, significant progress has been made in characterizing the DLA pop-
ulation at z & 2, owing to the rapidly growing spectroscopic sample of high-redshift
QSOs from the Sloan Digital Sky Survey (SDSS; York et al 2000). The blue points
in the right panel of Fig. 2 are based on ∼ 1000 DLAs and ∼ 500 strong LLS iden-
tified at z ≈ 2− 5 in an initial SDSS DLA sample (Noterdaeme et al 2009). The
sample of known DLAs at z & 2 has continued to grow, reaching ∼ 10,000 DLAs
found in the SDSS spectroscopic QSO sample (e.g., Noterdaeme et al 2012).

The large number of known DLAs has led to an accurate characterization of the
neutral gas reservoir at high redshifts. Figure 3a displays the observed N(H I) distri-
bution function, fDLA, based on ∼ 7000 DLAs identified at z ≈ 2−5 (Noterdaeme
et al 2012). The plot shows that fDLA is well represented by a Schechter function
(Schechter 1976) at log N(H I). 22 following

fDLA ≡ fN(H I)(log N(H I)≥ 20.3) ∝

[
N(H I)

N∗(H I)

]α

exp[−N(H I)/N∗(H I)], (1)

with a shallow power-law index of α ≈ −1.3 below the characteristic H I column
density log N∗(H I) ≈ 21.3 and a steep exponential decline at larger N(H I) (Noter-
daeme et al 2009, 2012). At log N(H I) > 22, the observations clearly deviate from
the best-fit Schechter function. However, DLAs are also exceedingly rare in this
high-N(H I) regime. Only eight such strong DLAs have been found in this large
DLA sample (Noterdaeme et al 2012), making measurements of fDLA in the two
highest-N(H I) bins very uncertain. In comparison to fN(H I) established from 21 cm
maps of nearby galaxies (Zwaan et al 2005), the amplitude of fDLA at z & 2 is≈ 2×
higher than fN(H I) at z ≈ 0 but the overall shapes are remarkably similar at both
low- and high-N(H I) regimes (Fig. 3a; see also Sánchez-Ramı́rez et al 2016; Rafel-
ski et al 2016).
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At log N(H I)> 21, numerical simulations have shown that the predicted shape in
fDLA is sensitive to the detailed ISM physics, including the formation of molecules
(H2) and different feedback processes (e.g., Altay et al 2011, 2013; Bird et al
2014). Comparison of the observed and predicted fDLA therefore provides an in-
dependent and critical test for the prescriptions of these physical processes in
cosmological simulations. However, the constant exponentially declining trend at
N(H I) & 2× 1021 cm−2 between low-redshift H I galaxies and high-redshift DLAs
presents a puzzle.

At z = 0, the rapidly declining fN(H I) at N(H I)& N∗(H I) has been interpreted as
due to the conversion of atomic gas to molecular gas (Zwaan and Prochaska 2006;
Braun 2012). As illustrated at the end of this Section and in Fig. 3d, the column
density threshold beyond which the gas transitions from H I to H2 depends strongly
on the gas metallicity, and the mean metallicity observed in the atomic gas decreases
steadily from z≈ 0 to z> 4 (Fig. 3c). Therefore, the conversion to molecules in high-
redshift DLAs is expected to occur at higher N(H I), resulting in a higher N∗(H I)
with increasing redshift. However, this is not observed (e.g., Prochaska and Wolfe
2009; Sánchez-Ramı́rez et al 2016; Rafelski et al 2016; Fig. 3a). Based on spa-
tially resolved 21 cm maps of nearby galaxies with ISM metallicity spanning over
a decade, it has been shown that fN(H I) established individually for these galaxies
does not vary significantly with their ISM metallicity (Erkal et al 2012). Together,
these findings demonstrate that the exponential decline of fDLA at N(H I)& N∗(H I)
is not due to conversion of H I to H2, but the physical origin remains unknown.

Nevertheless, the observed fDLA immediately leads to two important statistical
quantities: (1) the number density of DLAs per unit survey pathlength, obtained by
integrating fDLA over all N(H I) greater than N0 = 2×1020 cm−2 and (2) the cosmic
neutral gas mass density, contained in DLAs, Ωatomic, which is the N(H I)-weighted
integral of fDLA following

Ωatomic ≡ ρgas/ρcrit =
∫

∞

N0

(µ H0/c/ρcrit)N(H I) fDLA d N(H I), (2)

where µ = 1.3 is the mean atomic weight of the gas particles (accounting for the
presence of helium), H0 is the Hubble constant, c is the speed of light, and ρcrit is
the critical density of the Universe (e.g., Lanzetta et al 1991; Wolfe et al 1995). The
shallow power-law index α in the best-fit fDLA, together with a steep exponential
decline at high N(H I) from the Schechter function in Eq. (1), indicates that while
DLAs of N(H I) < N∗(H I) dominate the neutral gas cross-section (and therefore
the number density), strong DLAs of N(H I) ∼ N∗(H I) contribute predominantly
to the neutral mass density in the Universe (e.g., Zwaan et al 2005). A detailed
examination of the differential Ωatomic distribution as a function of N(H I) indeed
confirms that the bulk of neutral gas is contained in DLAs of N(H I)≈ 2×1021 cm−2

(e.g., Noterdaeme et al 2012).
The cosmic evolution of ρgas observed in DLAs, from Eq. (2), is shown in black

points in Fig. 3b. Only measurements based on blind DLA surveys are presented
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Fig. 3 Summary of known DLA properties: (a) evolving neutral hydrogen column density distri-
bution functions, fN(H I) from DLAs at z = 2−3 (Noterdaeme et al 2012) to H I galaxies at z≈ 0
(Zwaan et al 2005); (b) declining cosmic neutral gas mass density with increasing Universe age (or
decreasing redshift) from observations of DLAs (solid points from Noterdaeme et al 2012, open
circles from Prochaska and Wolfe 2009, open squares from Crighton et al 2015, and open triangle
from Neeleman et al 2016a) following Eq. (2), local H I galaxies (green shaded box, a compilation
from Neeleman et al 2016a), and molecular gas (blue shaded boxes, Decarli et al 2016), in com-
parison to increasing cosmic stellar mass density in galaxies with increasing Universe age (grey
asterisks, a compilation from Madau and Dickinson 2014); (c) gas-phase metallicity (Z) relative to
Solar (Z�) as a function of redshift in DLAs (grey squares for individual absorbers and blue points
for N(H I)-weighted mean from Marc Rafelski, Rafelski et al 2012, 2014), IGM at z & 2 (orange
circles, Aguirre et al 2008; Simcoe 2011), ISM of starburst galaxies at z ≈ 2− 4 (light magenta
boxes, Pettini et al 2001; Pettini 2004; Erb et al 2006a; Maiolino et al 2008; Mannucci et al 2009),
intracluster medium in X-ray luminous galaxy clusters at z . 1 (red triangles, Balestra et al 2007),
H I-selected galaxies (green box, Zwaan et al 2005), and stars at z = 0 (dark purple box, Gallazzi
et al 2008); and (d) molecular gas fraction, fH2 versus total surface density of neutral gas scaled
by gas metallicity for high-redshift DLAs in triangles (Noterdaeme et al 2008, 2016), γ-ray burst
host ISM in star symbols (e.g., Noterdaeme et al 2015), and local ISM in the Milky Way (Wolfire
et al 2008) and Large and Small Magellanic Clouds (Tumlinson et al 2002) in dots, blue circles,
and cyan squares, respectively
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in the plot1. These include an early sample of ≈ 700 DLAs at z = 2.5− 5 in the
SDSS Data Release (DR) 5 (open circles; Prochaska and Wolfe 2009), an expanded
sample of ≈ 7000 DLAs in the SDSS DR12 (solid points; Noterdaeme et al 2012),
an expanded high-redshift sample of DLAs at z = 4− 5 (open squares; Crighton
et al 2015), and a sample of ≈ 14 DLAs at z . 1.6 from an exhaustive search in the
Hubble Space Telescope (HST) UV spectroscopic archive (open triangle; Neeleman
et al 2016a).

A range of mean H I mass density at z≈ 0 has been reported from different 21 cm
surveys (see Neeleman et al 2016a for a recent compilation). These measurements
are included in the green box in Fig. 3b. Despite a relatively large scatter between
different 21 cm surveys and between DLA surveys, a steady decline in Ωatomic is ob-
served from z ≈ 4 to z ≈ 0. For comparison, the cosmic evolution of the molecular
gas mass density obtained from a recent blind CO survey (Decarli et al 2016) is also
included as blue-shaded boxes in Fig. 3b, along with the cosmic evolution of stellar
mass density measured in different galaxy surveys, shown in grey asterisks (data
from Madau and Dickinson 2014). Figure 3b shows that the decline in the neutral
gas mass density with decreasing redshift is coupled with an increase in the mean
stellar mass density in galaxies, which is qualitatively consistent with the expecta-
tion that neutral gas is being consumed to form stars. However, it is also clear that
atomic gas alone is insufficient to explain the observed order-of-magnitude gain in
the total stellar mass density from z≈ 3 to z≈ 0, which implies the need for replen-
ishing the neutral gas reservoir with accretion from the intergalactic medium (IGM)
(e.g., Kereš et al 2009; Prochaska and Wolfe 2009). At the same time, new blind
CO surveys have shown that molecular gas contributes roughly an equal amount of
neutral gas mass density as atomic gas observed in DLAs at z . 3 (e.g., Walter et al
2014; Decarli et al 2016), although the uncertainties are still very large. Together
with the knowledge of an extremely low molecular gas fraction in DLAs (see the
discussion on the next page and Fig. 3d), these new CO surveys indicate that previ-
ous estimates of the total neutral gas mass density based on DLAs alone have been
underestimated by as much as a factor of two. An expanded blind CO survey over
a cosmological volume is needed to reduce the uncertainties in the observed molec-
ular gas mass densities at different redshifts, which will cast new insights into the
connections between star formation, the neutral gas reservoir, and the ionized IGM
over cosmic time.

Observations of the chemical compositions of DLAs provide additional clues to
the connection between the neutral gas probed by DLAs and star formation (e.g.,

1 At z . 1.6, DLA surveys require QSO spectroscopy carried out in space and have been limited to
the number of UV-bright QSOs available for absorption line searches. Consequently, the number
of known DLAs from blind surveys is small, ≈ 15 (see Neeleman et al 2016a for a compilation).
To increase substantially the sample of known DLAs at low redshifts, Rao & Turnshek (Rao et al
2006) devised a clever space programme to search for new DLAs in known Mg II absorbers. Their
strategy yielded a substantial gain, tripling the total sample size of z . 1.6 DLAs. However, the
Mg II-selected DLA sample also includes a survey bias that is not well understood. It has been
shown that excluding Mg II-selected DLAs reduces the inferred Ωatomic by more than a factor of
four (e.g., Neeleman et al 2016a). For consistency, only measurements of Ωatomic based on blind
DLA surveys are included in the plot.
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Pettini 2004). In particular, because the gas is predominantly neutral, the dominant
ionization for most heavy elements (such as Mg, Si, S, Fe, Zn, etc.) are in the singly
ionized state and therefore the observed abundances of these low-ionization species
place direct and accurate constraints on the elemental abundances of the gas (e.g.,
Viegas 1995; Prochaska and Wolfe 1996; Vladilo et al 2001; Prochaska et al 2002).
Additional constraints on the dust content and on the sources that drive the chemical
enrichment history in DLAs can be obtained by comparing the relative abundances
of different elements. Specifically, comparing the relative abundances between re-
fractory (such as Cr and Fe) and non-refractory elements (such as S and Zn) indi-
cates the presence of dust in the neutral gas, the amount of which increases with
metallicity (e.g., Meyer et al 1989; Pettini et al 1990; Savage and Sembach 1996;
Wolfe et al 2005). The relative abundances of α- to Fe-peak elements determine
whether core-collapse supernovae (SNe) or SNe Ia dominate the chemical enrich-
ment history, and DLAs typically exhibit an α-element enhanced abundance pattern
(e.g., Lu et al 1996; Pettini et al 1999; Prochaska and Wolfe 1999).

Figure 3c presents a summary of gas metallity (Z) relative to Solar (Z�) measured
for > 250 DLAs at z . 5 (grey squares from Rafelski et al 2012, 2014). The cosmic
mean gas metallicity in DLAs as a function of redshift can be determined based
on a N(H I)-weighted average over an ensemble of DLAs in each redshift bin (blue
points), which is found to increase steadily with decreasing redshift following a
best-fit mean relation of 〈Z/Z� 〉 = [−0.20± 0.03]z− [0.68± 0.09] (dashed blue
line, Rafelski et al 2014). For comparison, the figure also includes measurements
for stars (dark purple box, Gallazzi et al 2008) and H I-selected galaxies (green box,
Zwaan et al 2005) at z = 0, iron abundances in the intracluster medium in X-ray
luminous galaxy clusters at z. 1 (red triangles, Balestra et al 2007), ISM of starburst
galaxies (light magenta boxes) at z≈ 2−3 (Pettini et al 2001; Pettini 2004; Erb et al
2006a) and at z = 3− 4 (Maiolino et al 2008; Mannucci et al 2009), and IGM at
z & 2 (orange circles, Aguirre et al 2008; Simcoe 2011).

It is immediately clear from Fig. 3c that there exists a large scatter in the observed
metallicity in DLAs at all redshifts. In addition, while the cosmic mean metallicity
in DLAs is significantly higher than what is observed in the low-density IGM, it re-
mains lower than what is observed in the star-forming ISM at z = 2−4 and a factor
of ≈ 5 below the mean values observed in stars at z = 0. The chemical enrichment
level in DLAs is also lower than the iron abundances seen in the intracluster medium
at intermediate redshifts. The observed low metallicity relative to the measurements
in and around known luminous galaxies raised the question of whether or not the
DLAs probe preferentially low-metallicity, gas-rich galaxies and are not representa-
tive of more luminous, metal-rich galaxies found in large-scale surveys (e.g., Pettini
2004).

The large scatter in the observed metallicity in DLAs is found to be explained
by a combination of two factors (Chen et al 2005): (i) the mass-metallicity (or
luminosity-metallicity) relation in which more massive galaxies on average exhibit
higher global ISM metallicities (e.g., Tremonti et al 2004; Erb et al 2006a; Neele-
man et al 2013; Christensen et al 2014) and (ii) metallicity gradients commonly seen
in star-forming disks with lower metallicities at larger distances (e.g., Zaritsky et al
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1994; van Zee et al 1998; Sánchez et al 2014; Wuyts et al 2016). If DLAs sample a
representative galaxy population including both low-mass and massive galaxies and
probe both inner and outer disks of these galaxies, then a large metallicity spread is
expected.

The observed low metallicity in DLAs, relative to star-forming ISM, is also un-
derstood as due to a combination of DLAs being a gas cross-section selected sample
and the presence of metallicity gradients in disk galaxies (Chen et al 2005). A cross-
section selected sample contains a higher fraction of absorbers originating in galaxy
outskirts than in the inner regions, and the presence of metallicity gradients indi-
cates that galaxy outskirts have lower metallicities than what is observed in inner
disks (see Sect. 3 and Fig. 4 below for more details). Indeed, including both factors,
a gas cross-section weighting scheme and a metallicity gradient, for local H I galax-
ies resulted in a mean metallicity comparable to what is observed in DLAs (green
box in Fig. 3c; Zwaan et al 2005).

While DLAs exhibit a moderate level of chemical enrichment, searches for
molecular gas in DLAs have yielded only a few detections (e.g., Noterdaeme et al
2008; Jorgenson et al 2014; Noterdaeme et al 2016). Figure 3d displays the observed
molecular gas fraction, which is defined as fH2 ≡ 2N(H2)/[N(H I)+2N(H2)], ver-
sus metallicity-scaled total hydrogen column density for ≈ 100 DLAs at z ≈ 2− 4
(triangles). The DLAs span roughly two decades in N(H I) from N(H I) ≈ 2×
1020 cm−2 to N(H I) ≈ 2.5×1022 cm−2. Strong limits have been placed for fH2 for
the majority of DLAs at fH2 . 10−5 with only ≈ 10% displaying the presence of
H2 and two having fH2 > 0.1. In contrast, the ISM of the Milky Way (MW), at
comparable N(H I), displays a much higher fH2 than the DLAs at high redshifts.

The formation of molecules is understood to depend on two competing factors:
(i) the ISM radiation field which photo-dissociates molecules and (ii) dust which
facilitates molecule formation (e.g., Elmegreen 1993; Cazaux and Spaans 2004).
Dust is considered a more dominant factor because of its dual roles in both forming
molecules and shielding them from the ISM radiation field. In star-forming galax-
ies, the dust-to-gas mass ratio is observed to correlate strongly with ISM gas-phase
metallicity (e.g., Leroy et al 2011; Rémy-Ruyer et al 2014). It is therefore expected
that the observed molecular gas fraction should correlate with gas metallicity (e.g.,
Elmegreen 1989; Krumholz et al 2009; Gnedin et al 2009).

In the MW ISM with metallicity roughly Solar, Z ≈ Z�, the molecular gas frac-
tion is observed to increase sharply from fH2 < 10−4 to fH2 & 0.1 at N(H I) ≈
2×1020 cm−2 (see Wolfire et al 2008). The sharp transition from atomic to molec-
ular is also observed in the ISM of the Large and Small Magellanic Clouds (LMC
and SMC), but occurs at higher gas column densities of N(H I)≈ 1021 cm−2 for the
LMC and N(H I)≈ 3×1021 cm−2 for the SMC (see Tumlinson et al 2002). The ISM
metallicities of LMC and SMC are Z ≈ 0.5Z� and Z ≈ 0.15Z�, respectively. These
observations therefore support a simple metallicity-dependent transitional gas col-
umn density illustrated in Fig. 3d. Following the metallicity-scaling relation, it is
clear that despite a high N(H I), most DLAs do not have sufficiently high metallicity
(and therefore dust content) to facilitate the formation of molecules (Gnedin and
Kravtsov 2010; Gnedin and Draine 2014; Noterdaeme et al 2015). This finding also
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applies to γ-ray burst (GRB) host galaxies (star symbols in Fig. 3d). With few ex-
ceptions (Prochaska et al 2009; Krühler et al 2013; Friis et al 2015, the ISM in most
GRB hosts displays a combination of very high N(H I) and low fH2 (e.g., Tumlin-
son et al 2007; Ledoux et al 2009). The observed absence of H2 in DLAs, together
with a large molecular mass density revealed in blind CO surveys (e.g., Walter et al
2014; Decarli et al 2016), shows that a complete census for the cosmic evolution
of the neutral gas reservoir requires complementary surveys of molecular gas over
a broad redshift range. In addition, as described in Sect. 4 below, the observed low
molecular gas content also has important implications for star formation properties
in metal-deficient, high neutral gas surface density environments.

3 Probing the Neutral Gas Phase in Galaxy Outskirts

Considerable details have been learned about the physical properties and chemical
enrichment in neutral atomic gas from DLA studies. To apply the knowledge of
DLAs for a better understanding of distant galaxies, it is necessary to first iden-
tify DLA galaxies and compare them with the general galaxy population. Searches
for DLA galaxies are challenging, because distant galaxies are faint and because
the relatively small extent of high-N(H I) gas around galaxies places the absorbing
galaxies at small angular distances from the bright background QSOs. Based on a
well-defined H I size-mass relation observed in local H I galaxies (e.g., Broeils and
Rhee 1997; Verheijen and Sancisi 2001; Swaters et al 2002), the characteristic pro-
jected separation (accounting for weighting by cross section) between a DLA and an
L∗ absorbing galaxy is ≈ 16 kpc and smaller for lower-mass galaxies. At z = 1−2,
a projected distance of 16 kpc corresponds to an angular separation of . 2′′, and
greater at lower and higher redshifts.

While fewer DLAs are known at z. 1 (see Sect.2), a large number (≈ 40) of these
low-redshift DLAs have their galaxy counterparts (or candidates) found based on a
combination of photometric and spectroscopic techniques (e.g., Chen and Lanzetta
2003; Rao et al 2003, 2011; Péroux et al 2016). It has been shown based on this
low-redshift DLA galaxy sample that DLAs probe a representative galaxy popula-
tion in luminosity and colour. DLA galaxies are consistent with an H I cross-section
selected sample with a large fraction of DLAs found at projected distance d & 10
kpc from the absorbing galaxies (e.g., Chen and Lanzetta 2003; Rao et al 2011).
In addition to regular disk galaxies, two DLAs have been found in a group envi-
ronment (e.g., Bergeron and Boissé 1991; Chen and Lanzetta 2003; Kacprzak et al
2010; Péroux et al 2011), suggesting that stripped gas from galaxy interactions could
also contribute to the incidence of DLAs. The low-redshift DLA sample is expected
to continue to grow dramatically with new discoveries from the SDSS (e.g., Straka
et al 2015). In contrast, the search for DLA galaxies at z > 2 has been less success-
ful despite extensive efforts (e.g., Warren et al 2001; Møller et al 2002; Péroux et al
2012; Fumagalli et al 2015). To date, only ≈ 12 DLA galaxies have been found at
z > 2 (Krogager et al 2012; Fumagalli et al 2015).
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Fig. 4 Neutral gas kinematics and metallicity revealed by the presence of a DLA in the outskirts of
two L∗ galaxies (adapted from Chen et al 2005). The top row presents a DLA found at d = 7.6 kpc
from a disk galaxy at z= 0.101, which also exhibits widespread CO emission in the disk (Neeleman
et al 2016b). The bottom row presents a DLA at d = 38 kpc from an edge-on disk at z= 0.525. Deep
r-band images of the galaxies are presented in the left panels, which display spatially resolved disk
morphologies and enable accurate measurements of the inclination and orientation of the optical
disk. The middle panels present the optical rotation curves deprojected along the disk plane (points
in shaded area) based on the inclination angle determined from the optical image of each galaxy
(Eq. 3 & 4). If the DLAs occur in extended disks, the corresponding galactocentric distances of the
two galaxies from Eq. (3) are R= 13.6 kpc (top) and R= 38 kpc (bottom). The DLA in the top panel
is resolved into two components of comparable ionic column densities (Som et al 2015) but an
order of magnitude difference in N(H2) (Muzahid et al 2015). The component with a lower N(H2)
appears to be co-rotating with the optical disk (lower DLA data point), while the component with
stronger N(H2) appears to be counter-rotating, possibly due to a satellite (upper DLA data point).
The DLA in the bottom panel displays simpler gas kinematics consistent with an extended rotating
disk out to ≈ 40 kpc. The right panels present the metallicity gradient observed in the gaseous
disks based on comparisons of ISM gas-phase metallicity and metallicity of the DLA beyond
the optical disks. In both cases, the gas metallicity declines with increasing radius according to
∆ Z/∆ R =−0.02 dex kpc−1

In addition to a general characterization of the DLA galaxy population, individ-
ual DLA and galaxy pairs provide a unique opportunity to probe neutral gas in the
outskirts of distant galaxies. Figure 4 shows two examples of constraining the kine-
matics and chemical enrichment in the outskirts of neutral disks from combining
resolved optical imaging and spectroscopy of the galaxy with an absorption-line
analysis of the DLA. In the first example (top row), a DLA of log N(H I) = 19.7 is
found at d = 7.6 kpc from an L∗ galaxy at z = 0.101, which also exhibits widespread
CO emission in the disk (Neeleman et al 2016b). The galaxy disk is resolved in
the ground-based r-band image (upper-left panel), which enables accurate measure-
ments of the disk inclination and orientation (Chen et al 2005). While the observed
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N(H I) falls below the nominal threshold of a DLA, the gas is found to be largely
neutral (e.g., Chen et al 2005; Som et al 2015). In addition, abundant H2 is detected
in the absorbing gas (Muzahid et al 2015). Optical spectra of the galaxy clearly indi-
cate a strong velocity shear along the disk, suggesting an organized rotation motion
(Chen et al 2005) which is confirmed by recent CO observations (Neeleman et al
2016b). At the same time, the DLA is resolved into two components of comparable
ionic column densities (Som et al 2015) but an order of magnitude difference in
N(H2) (Muzahid et al 2015). A rotation curve of the gaseous disk extending beyond
10 kpc (top-centre panel) can be established based on the observed velocity shear
(vobs) and deprojection onto the disk plane following

R
d
=

√
1+ sin2(φ) tan2(i) (3)

and
v =

vobs

cos(φ)sin(i)

√
1+ sin2(φ) tan2(i), (4)

where R is the galactocentric radius along the disk, v is the deprojected rotation
velocity, i is the inclination angle of the disk, and φ is the azimuthal angle from the
major axis of the disk where the DLA is detected (Chen et al 2005, see also Steidel
et al 2002 for an alternative formalism). For the two absorbing components in this
DLA, it is found that the component with a lower N(H2) appears to be co-rotating
with the optical disk (lower DLA data point), while the component with stronger
N(H2) appears to be counter-rotating, possibly due to a satellite (upper DLA data
point). Comparing the ISM gas-phase metallicity and the metallicity of the DLA
shows a possible gas metallicity gradient of ∆ Z/∆ R = −0.02 dex kpc−1 out to
R≈ 14 kpc.

The bottom row of Fig. 4 presents a DLA at d = 38 kpc from an edge-on disk
at z = 0.525. A strong velocity shear is also seen along the disk of this L∗ galaxy.
Because the QSO sightline occurs along the extended edge-on disk, Eq. (3) and
(4) directly lead to R ≈ d and v ≈ vobs for this system. This DLA galaxy presents
a second example for galaxies with an extended rotating disk out to ≈ 40 kpc. At
the same time, the deep r-band image (lower-left panel) from HST suggests that
the disk is warped near the QSO sightline, which is also reflected by the presence
of a disturbed rotation velocity at R > 5 kpc (bottom-centre panel). The metallic-
ity measured in the gas phase (bottom-right panel) displays a similar gradient of
∆ Z/∆ R = −0.02 dex kpc−1 to the galaxy at the top, which is also comparable to
what is seen in the ISM of nearby disk galaxies (e.g., Zaritsky et al 1994; van Zee
et al 1998; Sánchez et al 2014). A declining gas-phase metallicity from the inner
ISM to neutral gas at larger distances appears to hold for most DLA galaxies at
z . 1 and the declining trend continues into ionized halo gas traced by strong LLS
of N(H I) = 1019−20 cm−2 (e.g., Péroux et al 2016).

At z > 2, spatially resolved observations of ISM gas kinematics become sig-
nificantly more challenging, because the effective radii of L∗ galaxies are typically
re = 1−3 kpc (e.g., Law et al 2012), corresponding to . 0.3′′, and smaller for fainter
or lower-mass objects. Star-forming regions in these distant galaxies are barely re-



Outskirts of Distant Galaxies In Absorption 15

solved in ground-based, seeing-limited observations (e.g., Law et al 2007; Förster
Schreiber et al 2009; Wright et al 2009). Beam smearing can result in significant
bias in interpreting the observed velocity shear and distributions of heavy elements
(e.g., Davies et al 2011; Wuyts et al 2016). However, accurate measurements can
be obtained to differentiate ISM metallicities of DLA galaxies from metallicities of
neutral gas beyond the star-forming regions. Using the small sample of known DLA
galaxies at z & 2, a metallicity gradient of ∆ Z/∆ R =−0.02 dex kpc−1 is also found
in these distant star-forming galaxies (Christensen et al 2014; Jorgenson and Wolfe
2014).

4 The Star Formation Relation in the Early Universe

While direct identifications of galaxies giving rise to z > 2 DLAs have proven ex-
tremely challenging, critical insights into the star formation relation in the early
Universe can still be gained from comparing the incidence of DLAs with the spatial
distribution of star formation rate (SFR) per unit area uncovered in deep imaging
data (Lanzetta et al 2002; Wolfe and Chen 2006). Specifically, the SFR per unit area
(ΣSFR) is correlated with the surface mass density of neutral gas (Σgas), following a
Schmidt-Kennicutt relation in nearby galaxies (e.g., Schmidt 1959; Kennicutt 1998).
The global star formation relation, ΣSFR = 2.5×10−4 (Σgas/1M� pc−2)1.4 M� yr−1 kpc−2

(dashed line in Fig. 5), is established using a sample of local spiral galaxies and
nuclear starbursts (solid grey points in Fig. 5) over a broad range of Σgas, from
Σgas ≈ 10M� pc−2 to Σgas ≈ 104 M� pc−2.

Empirical constraints for a Schmidt-Kennicutt relation at high redshifts require
observations of the neutral gas content in star-forming galaxies. Although obser-
vations of individual galaxies in H I emission remain out of reach, the sample of
z = 1−3 galaxies with resolved CO maps is rapidly growing (e.g., Baker et al 2004;
Genzel et al 2010; Tacconi et al 2013). The observed ΣSFR versus Σmolecular for the
high-redshift CO detected sample is shown in open squares in Fig. 5, which occur
at high surface densities of Σmolecular & 100M� pc−2. Considering only Σmolecular
is appropriate for these galaxies, because locally it has been shown that at this
high surface density regime molecular gas dominates (e.g., Martin and Kennicutt
2001; Wong and Blitz 2002; Bigiel et al 2008). In contrast, DLAs probe neutral gas
with N(H I) ranging from N(H I) = 2× 1020 cm−2 to N(H I) ≈ 5× 1022 cm−2. The
range in N(H I) corresponds to a range in surface mass density of atomic gas from
Σatomic ≈ 2M� pc−2 to Σatomic & 200M� pc−2, which is comparable to the global
average of total neutral gas surface mass density in local disk galaxies (e.g., Fig. 5).
Therefore, DLAs offer an important laboratory for investigating the star formation
relation in the distant Universe, and direct constraints can be obtained from searches
of in situ star formation in DLAs.

In principle, the Schmidt-Kennicutt relation can be rewritten in terms of N(H I)
for pure atomic gas following
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Fig. 5 The global star formation relation observed in nearby galaxies and at high redshifts. The
correlation between the SFR per unit area (ΣSFR) and the total surface gas mass density (Σgas),
combining both atomic (H I) and molecular (H2) for nearby spiral and starburst galaxies are shown
in small filled circles (Kennicutt 1998; Graciá-Carpio et al 2008; Leroy et al 2008), together with
the best-fit Schmidt-Kennicutt relation shown by the dashed line (Kennicutt 1998). A reduced star
formation efficiency is observed both in low surface brightness galaxies and in the outskirts of
normal spirals, which are shown in grey star symbols and open triangles, respectively (Wyder et al
2009; Bigiel et al 2010). CO molecules have been detected in many massive starburst galaxies
(Mstar > 2.5×1010 M�) at z = 1−3 (e.g., Baker et al 2004; Genzel et al 2010; Tacconi et al 2013),
which occur at the high surface density regime of the global star formation relation (open squares).
In contrast, searching for in situ star formation in DLAs has revealed a reduced star formation
efficiency in this metal-deficient gas. Specifically, green points and orange shaded area represent
the constraints obtained from comparing the sky coverage of low surface brightness emission with
the incidence of DLAs (Wolfe and Chen 2006; Rafelski et al 2011, 2016). Cyan squares and red
circles represent the limits inferred from imaging searches of galaxies associated with individual
DLAs, and the cyan and red bars represent the limiting ΣSFR based on ensemble averages of the two
samples (Fumagalli et al 2015). The level of star formation observed in high-N(H I) DLAs (green
pentagons and orange shaded area) is comparable to what is seen in nearby low surface brightness
galaxies and in the outskirts of normal spirals. See the main text for a detailed discussion

ΣSFR = K× [N(H I)/N0]
β M� yr−1 kpc−2, (5)

which is justified for regions probed by DLAs with a low molecular gas content
(see Sect. 2 and Fig. 3d). For reference, the local Schmidt-Kennicutt relation has
K = 2.5× 10−4 M� yr−1 kpc−2, β = 1.4, and N0 = 1.25× 1020 cm−2 for a pure
atomic hydrogen gas. Following Eq. (5), the N(H I) distribution function, fN(H I)
(e.g., Fig. 3a), can then be expressed in terms of the ΣSFR distribution function,
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h(ΣSFR), which is the projected proper area per dΣSFR interval per comoving volume
(Lanzetta et al 2002). The ΣSFR distribution function h(ΣSFR) is related to fN(H I)
according to h(ΣSFR)dΣSFR = (H0/c) fN(H I) dN(H I).

This exercise immediately leads to two important observable quantities. First,
the sky covering fraction (CA) of star-forming regions in the redshift range, [z1,z2],
with an observed SFR per unit area in the interval of ΣSFR and ΣSFR + dΣSFR is
determined following

CA[ΣSFR|N(H I)] =
∫ z2

z1

c(1+ z)2

H(z)
h(ΣSFR)dΣSFR dz, (6)

where c is the speed of light and H(z) is the Hubble expansion rate. Equation (6) is
equivalent to fN(H I)dN(H I)dX , where dX ≡ (1+ z)2 H0/H(z)dz is the comoving
absorption pathlength. In addition, the first moment of h(ΣSFR) leads to the comov-
ing SFR density (Lanzetta et al 2002; Hopkins et al 2005),

ρ̇∗(> Σ
min
SFR) =

∫
Σmax

SFR

Σmin
SFR

ΣSFRh(ΣSFR)dΣSFR. (7)

Constraints on the star formation relation at high redshift, namely K and β in Eq. (5),
can then be obtained by comparing fN(H I)-inferred CA and ρ̇∗ with results from
searches of low surface brightness emission in deep galaxy survey data. Further-
more, estimates of missing light in low surface brightness regions can also be ob-
tained using Eq. (7) (e.g., Lanzetta et al 2002; Rafelski et al 2011).

In practice, Eq. (5) is a correct representation only if disks are not well formed
and a spherical symmetry applies to the DLAs. For randomly oriented disks, cor-
rections for projection effects are necessary and detailed formalisms are presented
in Wolfe and Chen (2006) and Rafelski et al (2011). In addition, the inferred sur-
face brightness of in situ star formation in the DLA gas is extremely low after
accounting for the cosmological surface brightness dimming. At z = 2− 3, only
DLAs at the highest-N(H I) end of fN(H I) are expected to be visible in ultra-deep
imaging data (cf. Lanzetta et al 2002; Wolfe and Chen 2006). For example, DLAs
of N(H I) > 1.6× 1021 cm−2 at z ≈ 3 are expected to have V -band (corresponding
roughly to rest-frame 1500 Å at z = 3) surface brightness µV . 28.4 mag arcsec−2,
assuming the local Schmidt-Kennicutt relation. The expected low surface bright-
ness of UV photons from young stars in high-redshift DLAs dictates the galaxy
survey depth necessary to uncover star formation associated with the DLA gas. At
N(H I)> 1.6×1021 cm−2, roughly 3% of the sky (CA ≈ 0.03) is expected to be cov-
ered by extended low surface brightness emission of µV . 28.4 mag arcsec−2. For
comparison, the sky covering fraction of luminous starburst galaxies at z = 2−3 is
less than 0.1%.

Available constraints for the star formation efficiency at z = 1− 3 are shown
in colour symbols in Fig. 5. Specifically, the Hubble Ultra Deep Field (HUDF;
Beckwith et al 2006) V -band image offers sufficient depth for detecting objects
of µV ≈ 28.4 mag arcsec−2. Under the assumption that DLAs originate in regions
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distinct from known star-forming galaxies, an exhaustive search for extended low
surface brightness emission in the HUDF has uncovered only a small number of
these faint objects, far below the expectation from applying the local Schmidt-
Kennicutt relation for DLAs of N(H I) > 1.6× 1021 cm−2 following Eq. (6). Con-
sequently, matching the observed limit on ρ̇∗ from these faint objects with expec-
tations from Eq. (7) has led to the conclusion that the star formation efficiency in
metal-deficient atomic gas is more than 10× lower than expectations from the local
Schmidt-Kennicutt relation (Wolfe and Chen 2006; green pentagons in Fig. 5).

On the other hand, independent observations of DLA galaxies at z = 2−3 have
suggested that these absorbers are associated with typical star-forming galaxies at
high redshifts. These include a comparable clustering amplitude of DLAs and these
galaxies (e.g., Cooke et al 2006), the findings of a few DLA galaxies with mass
and SFR comparable to luminous star-forming galaxies found in deep surveys (e.g.,
Møller et al 2002, 2004; Christensen et al 2007), and detections of a DLA fea-
ture in the ISM of star-forming galaxies (e.g., Pettini et al 2002; Chen et al 2009;
Dessauges-Zavadsky et al 2010). If DLAs originate in neutral gas around known
star-forming galaxies, then these luminous star-forming galaxies should be more
spatially extended than has been realized. Searches for low surface brightness emis-
sion in the outskirts of these galaxies based on stacked images have indeed uncov-
ered extended low surface brightness emission out to more than twice the optical
extent of a single image. However, repeating the exercise of computing the cumula-
tive ρ̇∗ from Eq. (7) has led to a similar conclusion that the star formation efficiency
is more than 10× lower in metal-deficient atomic gas at z = 1−3 than expectations
from the local Schmidt-Kennicutt relation (Rafelski et al 2011, 2016). The results
are shown as the orange shaded area in Fig. 5). In addition, the amount of missing
light in the outskirts of these luminous star-forming galaxies is found to be ≈ 10%
of what is observed in the core (Rafelski et al 2011).

At the same time, imaging searches of individual DLA galaxies have been con-
ducted for ≈ 30 DLAs identified along QSO sightlines that have high-redshift LLS
serving as a natural coronograph to block the background QSO glare, improving
the imaging depth in areas immediate to the QSO sightline (Fumagalli et al 2015).
These searches have yielded only null results, leading to upper limits on the under-
lying surface brightness of the DLA galaxies (cyan squares and red circles in Fig. 5).
While the survey depth is not sufficient for detecting associated star-forming regions
in most DLAs in the survey sample of Fumagalli et al (2015) based on the local
Schmidt-Kennicutt relation, the ensemble average is beginning to place interesting
limits (cyan and red arrows).

The lack of in situ star formation in DLAs may not be surprising given the low
molecular gas content. In the local Universe, it is understood that the Schmidt-
Kennicutt relation is driven primarily by molecular gas mass (Σmolecular), while the
surface density of atomic gas (Σatomic) “saturates” at ∼ 10M� pc−2 beyond which
the gas transitions into the molecular phase (e.g., Martin and Kennicutt 2001; Wong
and Blitz 2002; Bigiel et al 2008). As described in Sect. 2 and Fig. 3d, the tran-
sitional surface density from atomic to molecular is metallicity dependent. There-
fore, the low star formation efficiency observed in DLA gas can be understood as
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a metallicity-dependent Schmidt-Kennicutt relation. This is qualitatively consistent
with the observed low ΣSFR in nearby low surface brightness galaxies (e.g., Wyder
et al 2009; star symbols in Fig. 5) and in the outskirts of normal spirals (e.g., Bigiel
et al 2010; open triangles in Fig. 5), where the ISM is found to be metal-poor (e.g.,
McGaugh 1994; Zaritsky et al 1994; Bresolin et al 2012). Numerical simulations
incorporating a metallicity dependence in the H2 production rate have also con-
firmed that the observed low star formation efficiency in DLAs can be reproduced
in metal-poor gas (e.g., Gnedin and Kravtsov 2010).

A metallicity-dependent Schmidt-Kennicutt relation has wide-ranging implica-
tions in extragalactic research, from the physical origin of DLAs at high redshifts,
to star formation and chemical enrichment histories in different environments, and to
detailed properties of distant galaxies such as morphologies, sizes, and cold gas con-
tent. It is clear from Fig. 5 that there exists a significant gap in the gas surface den-
sities, between Σgas ≈ 10M� pc−2 probed by these direct DLA galaxy searches and
Σgas ≈ 100M� pc−2 probed by CO observations of high-redshift starburst systems
(open squares in Fig. 5). Continuing efforts targeting high-N(H I) DLAs (and there-
fore high Σgas) at sufficient imaging depths are expected to place critical constraints
on the star formation relation in low-metallicity environments at high redshifts. Sim-
ilarly, spatially resolved maps of star formation and neutral gas at z > 1 to mean sur-
face densities of ΣSFR < 0.1M� yr−1 kpc−2 and Σatomic,molecular ≈ 10−100M� pc−2

will bridge the gap of existing observations and offer invaluable insights into the
star formation relation in different environments.

5 From Neutral ISM to the Ionized Circumgalactic Medium

Beyond the neutral ISM, strong Lyα absorbers of N(H I) ≈ 1014−20 cm−2 and as-
sociated metal-line absorbers offer a sensitive probe of the diffuse circumgalactic
medium (CGM) to projected distances d ≈ 100−500 kpc (e.g., Fig. 2). But because
the circumgalactic gas is significantly more ionized in the LLS and lower-N(H I)
regime, measurements of its ionization state and metallicity bear considerable un-
certainties and should be interpreted with caution.

Several studies have attempted to constrain the ionization state and metallicity
of the CGM by considering the relative abundances of different ions at low- and
high-ionization states (e.g., Savage et al 2002; Stocke et al 2006). For example, at-
tributing observed O VI absorbers to cool (T ∼ 104 K), photo-ionized gas irradiated
by the metagalactic ionizing radiation field, the observed column density ratios be-
tween O VI and low-ionization transitions (such as C III and C IV) require extremely
low gas densities of nH ∼ 10−5 cm−3. Combining the inferred low gas density with
observed N(O VI), which are typically & 1014.5 cm−2 in galactic haloes (e.g., Tum-
linson et al 2011), leads to a moderate gas metallicity of & 1/10 Solar and unphysi-
cally large cloud sizes of lc∼ 1 Mpc (e.g., Tripp et al 2001; Savage et al 2002; Stocke
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et al 2006)2. Excluding O VI due to possible origins in shocks or turbulent mixing
layers (e.g., Heckman et al 2002) and considering only relative abundances of low-
ionization species increases estimated gas densities to nH ∼ 10−4−10−3 cm−3. The
inferred cloud sizes remain large with lc ∼ 10−100 kpc, in tension with what is ob-
served locally for the HVCs. The implied thermal pressures in the cool gas phase are
still two orders of magnitude lower than what is expected from pressure equilibrium
with a hot (T ≈ 106 K) medium (e.g., Stocke et al 2013; Werk et al 2014), indicating
that these clouds would be crushed quickly. Considering non-equilibrium conditions
(e.g., Gnat and Sternberg 2007; Oppenheimer and Schaye 2013) and the presence
of local ionizing sources may help alleviate these problems (e.g., Cantalupo 2010),
but the systematic uncertainties are difficult to quantify.

Nevertheless, exquisite details concerning extended halo gas have been learned
over the past decade based on various samples of close galaxy and background
QSO pairs. Because luminous QSOs are rare, roughly one QSO of g . 18 mag per
square degree (e.g., Richards et al 2006), absorption-line studies of the CGM against
background QSO light have been largely limited to one probe per galaxy. Only in
a few cases are multiple QSOs found at d . 300 kpc from a foreground galaxy
(e.g., Norman et al 1996; Keeney et al 2013; Davis et al 2015; Lehner et al 2015;
Bowen et al 2016) for measuring coherence in spatial distribution and kinematics
of extended gas around the galaxy. All of these cases are in the local Universe,
because the relatively large angular extent of these galaxies on the sky increases the
probability of finding more than one background QSO. This local sample has now
been complemented with new studies, utilizing multiply lensed QSOs and close
projected QSO pairs, which provide spatially resolved CGM absorption properties
for a growing sample of galaxies at intermediate redshifts (e.g., Chen et al 2014;
Rubin et al 2015; Zahedy et al 2016).

With one QSO probe per halo, a two-dimensional map of CGM absorption
properties can be established based on an ensemble average of a large sample of
QSO-galaxy pairs (Npair ∼ 100− 1000). Fig.6 summarizes some of the observable
quantities of the CGM. First, panels (a) and (b) at the top display the radial pro-
files of rest-frame absorption equivalent width (Wr) for different absorption transi-
tions, including hydrogen Lyα , low-ionization C II and Si II, intermediate-ionization
Si III, Si IV, and C IV, and high-ionization O VI absorption transitions, colour-coded in
black, red, orange, green, blue, magenta, and dark purple, respectively. For transi-
tions that are not detected, a 2-σ upper limit is shown as a downward arrow. Because
of the large number of data points, the upper limits are shown in pale colours for
clarity. The galaxy sample includes 44 galaxies at z ≈ 0.25 from the COS-Halos
project (open squares; Tumlinson et al 2011, 2013; Werk et al 2013) and ∼ 200
galaxies at z≈ 0.04 from public archives (circles; Liang and Chen 2014), for which
high-quality, ultraviolet QSO spectra are available for constraining the presence or
absence of multiple ions in individual haloes. These galaxies span four decades in
total stellar mass, from Mstar ≈ 107 M� to Mstar ≈ 1011 M�, and a wide range in

2 For comparison, the sizes of extended HVC complexes at d ∼ 10 kpc from the MW disk are a few
to 15 kpc across (e.g., Putman et al 2012). HVCs at larger distances are found to be more compact,
. 2 kpc (e.g., Westmeier et al 2008; Lockman et al 2012; Giovanelli et al 2013).
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Fig. 6 Observed absorption properties of halo gas around galaxies. The top panels display the
radial profiles of rest-frame absorption equivalent width (Wr) versus halo-radius Rh-normalized
projected distance for different absorption transitions. Low-ionization transitions are presented in
panel (a) and high-ionization transitions in panel (b). Lyα data points are presented in both panels
for cross-comparison. The galaxy sample includes 44 galaxies at z ≈ 0.25 from the COS-Halos
project (open squares; Tumlinson et al 2011, 2013; Werk et al 2013) and ∼ 200 galaxies at z ≈
0.04 from public archives (circles; Liang and Chen 2014), for which high-quality, ultraviolet QSO
spectra are available for constraining the presence or absence of multiple ions in individual haloes.
Different transitions are colour-coded to highlight the differences in their spatial distributions. For
transitions that are not detected, a 2-σ upper limit is shown by a downward arrow. No heavy ions
are found beyond d = Rh, while Lyα continues to be seen to larger distances. Panel (c) displays
the ensemble average of gas covering fraction (〈κ〉) as a function of absolute r-band magnitude
(Mr) for Lyα (black symbols), Mg II (orange), and O VI (purple). Star-forming galaxies (triangles)
on average are fainter and exhibit higher covering fractions of hydrogen and chemically enriched
gas probed by both low- and high-ionization species than passive galaxies (circles). Measurements
of Lyα- and O VI-absorbing gas are based on COS-Halos galaxies for Rgas = Rh. Measurements
of Mg II-absorbing gas are based on ≈ 260 star-forming galaxies at z ≈ 0.25 (Chen et al 2010a),
and ∼ 38000 passive luminious red galaxies at z ≈ 0.5 (Huang et al 2016) for Rgas = Rh/3. Panel
(d) illustrates the apparent constant nature of mass-normalized radial profiles of CGM absorption
since z ≈ 3 (e.g., Chen 2012; Liang and Chen 2014). The high-redshift observations are based on
mean C IV absorption in stacked spectra of ∼ 500 starburst galaxies with a mean stellar mass and
dispersion of 〈 log Mstar 〉= 9.9±0.5 (Steidel et al 2010), and the low-redshift observations are for
∼ 200 individual galaxies with 〈 log Mstar 〉= 9.7±1.1 and modest SFR (Liang and Chen 2014)
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SFR, from SFR < 0.1M� yr−1 to SFR > 10M� yr−1. Diffuse gas is observed be-
yond d = 50 kpc around distant galaxies, extending the detection limit of H I gas in
inner galactic haloes from 21 cm observations (e.g., Fig. 2) to lower column density
gas at larger distances and higher redshifts.

While Wr is typically found to decline steadily with increasing d for all transitions
(e.g., Chen 2012; Werk et al 2014), the scatters are large. Including the possibility
that more massive haloes have more spatially extended halo gas, the halo radius
Rh-normalized Wr-d distribution indeed displays substantially reduced scatters in
the radial profiles shown in panels (a) and (b) of Fig. 6. A reduced scatter in the
Rh-normalized Wr-d distribution indicates that galaxy mass plays a dominant role in
driving the extent of halo gas. In addition, it also confirms that accurate associations
between absorbers and absorbing galaxies have been found for the majority of the
systems.

A particularly interesting feature in Fig. 6 is a complete absence of heavy ions
beyond d = Rh, while detections of Lyα continue to larger distances. The absence
of heavy ions at d > Rh, which is observed for a wide range of ionization states,
strongly indicates that chemical enrichment is confined within individual galaxy
haloes. This finding applies to both low-mass dwarfs and massive galaxies. How-
ever, it should also be noted that heavy ions are observed beyond Rh for galaxies
with close neighbours (e.g., Borthakur et al 2013; Johnson et al 2015), suggesting
that environmental effects play a role in distributing heavy elements beyond the en-
riched gaseous haloes of individual galaxies. Comparing panels (a) and (b) of Fig. 6
also shows that within individual galaxy haloes, a global ionization gradient is seen
with more highly ionized gas detected at larger distances. For instance, the observed
Wr declines to < 0.1 Å at d ≈ 0.5Rh for C II and Si II, while C IV and O VI absorbers
of Wr > 0.1 Å continue to be found beyond 0.5Rh.

The observed Wr versus d (or d/Rh) based on a blind survey of absorption fea-
tures in the vicinities of known galaxies also enables measurements of gas cover-
ing fraction3. The mean gas covering fraction (〈κ〉) can be measured by a simple
accounting of the fraction of galaxies in an annular area displaying associated ab-
sorbers with Wr exceeding some detection threshold W0, and uncertainties can be
estimated based on a binomial distribution function. Dividing the sample into dif-
ferent projected distance bins, it is clear from Fig. 6a and b that the fraction of
non-detections increases with increasing projected distance, resulting in a declining
〈κ〉 with increasing d for all transitions observed (see also Chen et al 2010a; Werk
et al 2014; Huang et al 2016).

It is also interesting to examine how 〈κ〉 depends on galaxy properties. Figure 6c
displays 〈κ〉 observed within a fiducial gaseous radius Rgas for star-forming (tri-

3 A blind survey of absorption features around known galaxies differs fundamentally from a blind
survey of galaxies around known absorbers (e.g., Kacprzak et al 2008). By design, a blind galaxy
survey around known absorbers excludes transparent sightlines and does not provide the sample
necessary for measuring the incidence and covering fraction of absorbing species. In addition,
because of limited survey depths, a blind galaxy survey is more likely to find more luminous
members at larger d that are correlated with the true absorbing galaxies which are fainter and
closer to the QSO sightline, resulting in a significantly larger scatter in the Wr versus d distribution
(e.g., Kacprzak et al 2008; Nielsen et al 2013).
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angles) and passive (circles) galaxies. The measurements are made for Lyα (black
symbols), Mg II (orange), and O VI (purple) with a threshold of W0 = 0.1 Å, and
shown in relation to the absolute r-band magnitude (Mr). Error bars represent the
68% confidence interval. The absolute r-band magnitude is a direct observable of
a galaxy and serves as a proxy for its underlying total stellar mass. Measurements
of Lyα- and O VI-absorbing gas are based on COS-Halos galaxies for Rgas = Rh
(see also Johnson et al 2015 for a sample compiled from the literature). Measure-
ments of Mg II-absorbing gas are based on ≈ 260 star-forming galaxies at z ≈ 0.25
(Chen et al 2010a, and ∼ 38000 passive luminous red galaxies at z ≈ 0.5 (Huang
et al 2016) for Rgas = Rh/3 (e.g., Chen and Tinker 2008). The larger sample sizes
led to better constrained 〈κ〉 for Mg II absorbing gas in galactic haloes. In general,
star-forming galaxies on average are fainter, less massive, and exhibit a higher cov-
ering fraction of chemically enriched gas than passive galaxies (see also Johnson
et al 2015). At the same time, the covering fraction of chemically enriched gas is
definitely non-zero around massive quiescent galaxies.

Comparing the radial profiles of CGM absorption at different redshifts offers
additional insights into the evolution history of the CGM, which in turn helps dis-
tinguish between different models for chemical enrichment in galaxy haloes. The
radial profiles of the CGM have been found to evolve little since z ∼ 3 (e.g., Chen
2012), even though the star-forming properties in galaxies have evolved signifi-
cantly. Figure 6d illustrates the apparent constant nature of mass-normalized radial
profiles of C IV absorption in galactic haloes (Liang and Chen 2014). The high-
redshift observations are based on stacked spectra of ∼ 500 starburst galaxies with
a mean stellar mass and dispersion of 〈 log Mstar 〉 = 9.9± 0.5 (Steidel et al 2010)
and a mean SFR of 〈SFR〉 ≈ 30− 60M� yr−1 (e.g., Erb et al 2006b; Reddy et al
2012). The low-redshift galaxy sample contains individual measurements of ∼ 200
galaxies with 〈 log Mstar 〉 = 9.7± 1.1 and more quiescent star-forming activities
of 〈SFR〉 ∼ 1M� yr−1 (Chen 2012; Liang and Chen 2014). The constant mass-
normalized CGM radial profiles between galaxies of very different SFR indicate
that mass (rather than SFR) is a dominant factor that determines the CGM prop-
erties over a cosmic time interval. This is consistent with previous findings that
CGM absorption properties depend strongly on galaxy mass but only weakly on
SFR (e.g., Chen et al 2010b), but at odds with popular models that attribute metal-
line absorbers to starburst-driven outflows (e.g., Steidel et al 2010; Ménard et al
2011).

A discriminating characteristic of starburst-driven outflows is their distinctly
non-spherical distribution in galactic haloes in the presence of a well-formed star-
forming disk. Specifically, galactic-scale outflows are expected to travel preferen-
tially along the polar axis where the gas experiences the least resistance (e.g., Heck-
man et al 1990). In contrast, accretion of the IGM is expected to proceed along
the disk plane with . 10% covering fraction on the sky (e.g., Faucher-Giguère
and Kereš 2011; Fumagalli et al 2011). Such azimuthal dependence of the spatial
distribution of infalling and outflowing gas is fully realized in state-of-the-art cos-
mological zoom-in simulations (e.g., Shen et al 2013; Agertz and Kravtsov 2015).
Observations of z ≈ 0.7 galaxies have shown that at d < 50 kpc the mean Mg II ab-
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Fig. 7 Visual comparisons of the geometric alignment of galaxy major axis relative to the QSO
sightline and the observed CGM absorption strength (by Rebecca Pierce). Top: Observed O VI col-
umn density, N(O VI), versus d for COS-Halos star-forming (in blue) and passive (in red) galaxies
(Tumlinson et al 2011). Bottom: Comparisons of N(O VI) and N(Mg II) for the COS-Halos galaxies
from Werk et al (2013). When spatially resolved images are available, the data points are replaced
with an image panel of the absorbing galaxy. Each panel is 25 proper kpc on a side, and is ori-
ented such that the QSO sightline occurs on the y-axis at the corresponding O VI column density
of the galaxy. Disk alignments cannot be determined for face-on galaxies (minor-to-major axis ra-
tio > 0.7) and galaxies displaying irregular/asymmetric morphologies, which are labeled “F” and
“A”, respectively. Galaxies with the QSO located within 30◦ of the minor axis are labeled ’m’ in
the lower-left corner, while galaxies with the QSO located within 30◦ of the major axis are la-
beled ’M’. Galaxies with the QSO sightline occuring intermediate (30◦−60◦) between the minor
and major axis are labeled “45”. Downward arrows indicate 2-σ upper limits for non-detections,
while upward arrows indicate saturated absorption lines. The COS-Halos galaxy sample provides
a unique opportunity to examine low- and high-ionization halo gas for the same galaxies at once.
Galaxies surrounded by O VI and Mg II absorbing gas clearly exhibit a broad range both in mor-
phology and in disk orientation. In addition, the observed N(Mg II) displays a significantly larger
scatter than N(O VI)
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sorption equivalent width within 45◦ of the minor axis is twice of the mean value
found within 45◦ of the major axis, although such azimuthal dependence is not ob-
served at d > 50 kpc (Bordoloi et al 2011). The observed azimuthal dependence of
the mean Mg II absorption strength is qualitatively consistent with the expectation
that these heavy ions originate in starburst-driven outflows, and the lack of such az-
imuthal dependence implies that starburst outflows are confined to the inner halo of
d . 50 kpc.

Many subsequent studies have generalized this observed azimuthal dependence
at d < 50 kpc to larger distances and attributed absorbers detected near the minor
axis to starburst-driven outflows and those found near the major axis to accretion
(e.g., Bouché et al 2012; Kacprzak et al 2015). However, a causal connection be-
tween the observed absorbing gas and either outflows or accretion remains to be
established. While gas metallicity may serve as a discriminator with the expectation
of starburst outflows being more metal-enriched relative to the low-density IGM, un-
certainties arise due to poorly understood chemical mixing and metal transport (e.g.,
Tumlinson 2006). Incidentally, a relatively strong Mg II absorber has been found at
d ≈ 60 kpc along the minor axis of a starburst galaxy but the metallicity of the ab-
sorbing gas is 10 times lower than what is observed in the ISM (Kacprzak et al
2014), highlighting the caveat of applying gas metallicity as the sole parameter for
distinguishing between accretion and outflows.

Figure 7 presents visual comparisons of the geometric alignment of galaxy ma-
jor axis relative to the QSO sightline and the observed CGM absorption strength.
The figure at the top displays the observed O VI column density, N(O VI), versus d
for COS-Halos galaxies at z ≈ 0.2 (Tumlinson et al 2013). The bottom figure dis-
plays comparisons of N(O VI) and N(Mg II) for these galaxies. The absorption-line
measurements are adopted from Werk et al (2013). When spatially resolved images
are available, the data points are replaced with an image panel of the absorbing
galaxy. Each panel is 25 proper kpc on a side, and is oriented such that the QSO
sightline falls on the y-axis at the corresponding N(O VI) of the galaxy. The relative
alignment between galaxy major axis and the background QSO sightline cannot be
determined, if the galaxies are face-on with a minor-to-major axis ratio > 0.7 or if
the galaxies display irregular/asymmetric morphologies. These galaxies are labeled
“F” and “A”, respectively. For galaxies that clearly display a smooth and elongated
morphology, the orietation of the major axis can be accurately measured. Galaxies
with the QSO located within 30◦ of the minor axis are labeled ’m’, while galaxies
with the QSO located within 30◦ of the major axis are labeled ’M’. Galaxies with the
QSO sightline occuring intermediate (30◦−60◦) between the minor and major axis
are labeled “45”. Star-forming galaxies are colour-coded in blue, and passive galax-
ies in red. Downward arrows indicate 2-σ upper limits for non-detections, while
upward arrows indicate saturated absorption lines.

While the COS-Halos sample is small, particularly when restricting to those
galaxies displaying a smooth, elongated morphology, it provides a unique oppor-
tunity to examine low- and high-ionization halo gas for the same galaxies at once.
Two interesting features are immediately clear in Fig. 7. First, galaxies surrounded
by O VI and Mg II absorbing gas exhibit a broad range both in morphology and in star
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formation history, from compact quiescent galaxies, to regular star-forming disks,
and to interacting pairs. The diverse morphologies in O VI and Mg II absorbing galax-
ies illuminate the challenge and uncertainties in characterizing their relative geomet-
ric orientation to the QSO sightline based on azimuthal angle alone. When consid-
ering only galaxies with smooth and elongated (minor-to-major axis ratio < 0.7)
morphologies, no clear dependence of N(O VI) or N(Mg II) on galaxy orientation
is found. Specifically, nine star-forming galaxies displaying strong O VI absorption
at d < 80 kpc (log N(O VI)) have spatially resolved images available. Two of these
galaxies display disturbed morphologies and four are nearly face-on. The remaining
three galaxies have the inclined disks oriented at 0◦, 45◦, and 90◦ each. For passive
red galaxies, two have spatially resolved images available and both are elongated
and aligned at ≈ 45◦ from the QSO sightline. One displays an associated strong
O VI absorber and the other has no corresponding O VI detections. At d > 80 kpc, the
morphology distribution is similar to those at smaller distances. No strong depen-
dence is found between the presence or absence of a strong O VI absorber and the
galaxy orientation.

In addition, while the observed N(O VI) at d < 100kpc appears to be more
uniformly distributed with a mean and scatter of log N(O VI) = 14.5± 0.3 (Tum-
linson et al 2011), the observed N(Mg II) displays a significantly larger scatter.
Specifically, the face-on galaxy at d ≈ 32 kpc with an associated O VI absorber of
log N(O VI) ≈ 14.7 does not have an associated Mg II absorber detected to a limit
of log N(Mg II) ≈ 12.4. Two quiescent galaxies at z ≈ 20 and 90 kpc (red pan-
els) exhibit saturated Mg II absorption of log N(Mg II) > 13.5 and similarly strong
O VI of log N(O VI) ≈ 14.3. A small scatter implies a more uniformly distributed
medium, while a large scatter implies a more clumpy nature of the absorbing gas or
a larger variation between different galaxy haloes. Such distinct spatial distributions
between low- and high-ionization gas further highlight the complex nature of the
chemically enriched CGM, which depends on more than the geometric alignment of
the galaxies. A three-dimensional model of gas kinematics that takes full advantage
of the detailed morphologies and star formation history of the galaxies is expected
to offer a deeper understanding of the physical origin of chemically enriched gas in
galaxy haloes (e.g., Gauthier and Chen 2012; Chen et al 2014; Diamond-Stanic et al
2016).

6 Summary

QSO absorption spectroscopy provides a sensitive probe of both neutral medium
and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous
structures around low-redshift galaxies both to lower gas column densities and to
higher redshifts. Specifically, DLAs of N(H I)& 2×1020 cm−2 probe neutral gas in
the ISM of distant star-forming galaxies, LLS of N(H I)> 1017 cm−2 probe optically
thick HVCs and gaseous streams in and around galaxies, and strong Lyα absorbers
of N(H I) ≈ 1014−17 cm−2 and associated metal-line absorption transitions, such as
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Mg II, C IV, and O VI, trace chemically enriched, ionized gas and starburst outflows.
Over the last decade, an unprecedentedly large number of ∼ 10000 DLAs have
been identified along random QSO sightlines to provide robust statistical character-
izations of the incidence and mass density of neutral atomic gas at z . 5. Extensive
follow-up studies have yielded accurate measurements of chemical compositions
and molecular gas content for this neutral gas cross-section selected sample from
z ≈ 5 to z ≈ 0 (Sect. 2). Combining galaxy surveys with absorption-line observa-
tions of gas around galaxies has enabled comprehensive studies of baryon cycles
between star-forming regions and low-density gas over cosmic time. DLAs, while
being rare as a result of a small cross-section of neutral medium in the Universe,
have offered a unique window into gas dynamics and chemical enrichment in the
outskirts of star-forming disks (Sect. 3), as well as star formation physics at high
redshifts (Sect. 4). Observations of strong Lyα absorbers and associated ionic tran-
sitions around galaxies have also demonstrated that galaxy mass is a dominant factor
in driving the extent of chemically enriched halo gas and that chemical enrichment is
well confined within galactic haloes for both low-mass dwarfs and massive galaxies
(Sect. 5).

With new observations carried out using new, multiplex instruments, continuing
progress is expected in further advancing our understanding of baryonic cycles in the
outskirts of galaxies over the next few years. These include, but are not limited to:
(1) direct constraints for the star formation relation in different environments (e.g.,
Gnedin and Kravtsov 2010), particularly for star-forming galaxies at z & 2 in low
surface density regimes of ΣSFR < 0.1M� yr−1 kpc−2 and Σgas ≈ 10−100M� pc−2;
(2) an empirical understanding of galaxy environmental effects in distributing heavy
elements to large distances based on deep galaxy surveys carried out in a large num-
ber of QSO fields (e.g., Johnson et al 2015); and (3) a three-dimensional map of gas
flows in the circumgalactic space that combines absorption-line kinematics along
multiple sightlines with optical morphologies of the absorbing galaxies and emis-
sion morphologies of extended gas around the galaxies (e.g., Rubin et al 2011; Chen
et al 2014; Zahedy et al 2016). Wide-field IFUs on existing large ground-based tele-
scopes substantially increase the efficiency in faint galaxy surveys (e.g., Bacon et al
2015) and in revealing extended low surface brightness emission features around
high-redshift galaxies (e.g., Cantalupo et al 2014; Borisova et al 2016). The James
Webb Space Telescope (JWST), which is scheduled to be launched in October 2018,
will expand the sensitivity of detecting faint star-forming galaxies in the early Uni-
verse. Combining deep infrared images from JWST and CO (or dust continuum)
maps from ALMA will lead to critical constraints for the star formation relation in
low surface density regimes.
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