Contents Previous

REFERENCES

  1. Rieger, F.M.; de Oña-Wilhelmi, E.; Aharonian, F.A. TeV astronomy. Front. Phys. 2013, 8, 714–747, doi:https://doi.org/10.1007/s11467-013-0344-610.1007/s11467-013-0344-6.
  2. Funk, S. Ground- and Space-Based Gamma-Ray Astronomy. Annu. Rev. Nucl. Part. Sci. 2015, 65, 245–277, doi:https://doi.org/10.1146/annurev-nucl-102014-02203610.1146/annurev-nucl-102014-022036.
  3. Madejski, G.; Sikora, M. Gamma-Ray Observations of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2016, 54, 725–760. doi:https://doi.org/10.1146/annurev-astro-081913-04004410.1146/annurev-astro-081913-040044.
  4. Thompson, D. Fermi: Monitoring the Gamma-Ray Universe. Galaxies 2018, 6, 117. doi:10.3390/galaxies6040117.
  5. Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Barber, A.S.; et al. Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC. Astrophys. J. 2017, 841, 100, doi:https://doi.org/10.3847/1538-4357/aa729e10.3847/1538-4357/aa729e.
  6. Temme, F.; Adam, J.; Ahnen, M.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Brügge, K.; et al. Long-Term Monitoring of Bright Blazars in the Multi-GeV to TeV Range with FACT. Galaxies 2017, 5, 18. doi:https://doi.org/10.3390/galaxies501001810.3390/galaxies5010018.
  7. Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Armada, A.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; Becker, J.K.; et al. Variable Very High Energy γ-Ray Emission from Markarian 501. Astrophys. J. 2007, 669, 862–883, doi:https://doi.org/10.1086/52138210.1086/521382.
  8. Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; et al. An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304. Astrophys. J. 2007, 664, L71–L74, doi:https://doi.org/10.1086/52063510.1086/520635.
  9. Ackermann, M.; Anantua, R.; Asano, K.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; et al. Minute-timescale >100 MeV γ-Ray Variability during the Giant Outburst of Quasar 3C 279 Observed by Fermi-LAT in 2015 June. Astrophys. J. 2016, 824, L20, doi:https://doi.org/10.3847/2041-8205/824/2/L2010.3847/2041-8205/824/2/L20.
  10. Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. Fast Variability of Tera-Electron Volt γ Rays from the Radio Galaxy M87. Science 2006, 314, 1424–1427, doi:https://doi.org/10.1126/science.113440810.1126/science.1134408.
  11. Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; et al. The 2010 Very High Energy γ-Ray Flare and 10 Years of Multi-wavelength Observations of M 87. Astrophys. J. 2012, 746, 151, doi:https://doi.org/10.1088/0004-637X/746/2/15110.1088/0004-637X/746/2/151.
  12. MAGIC Collaboration; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. Gamma-ray flaring activity of NGC1275 in 2016-2017 measured by MAGIC. Astron. Astrophys. 2018, 617, A91, doi:https://doi.org/10.1051/0004-6361/20183289510.1051/0004-6361/201832895.
  13. Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J.A.; González, J.B.; Bednarek, W.; Bernardini, E.; et al. Black hole lightning due to particle acceleration at subhorizon scales. Science 2014, 346, 1080–1084, doi:https://doi.org/10.1126/science.125618310.1126/science.1256183.
  14. Rieger, F.; Levinson, A. Radio Galaxies at VHE Energies. Galaxies 2018, 6, 116, doi:https://doi.org/10.3390/galaxies604011610.3390/galaxies6040116.
  15. Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Samarai, I.A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array. arXiv 2017, arXiv:1709.07997v2.
  16. Levinson, A. Relativistic Flows in TeV Blazars. Proceedings of Science, 2008. Available online: http://pos.sissa.it/063/002/pdf (accessed on 28 January 2019).
  17. Dermer, C.D.; Finke, J.D.; Menon, G. Black-Hole Engine Kinematics, Flares from PKS 2155-304, and Multiwavelength Blazar Analysis. Proceedings of Science, 2008, arXiv:0810.1055v1.
  18. Rieger, F.M.; Volpe, F. Short-term VHE variability in blazars: PKS 2155-304. Astron. Astrophys. 2010, 520, A23, doi:https://doi.org/10.1051/0004-6361/20101427310.1051/0004-6361/201014273.
  19. Salvati, M.; Spada, M.; Pacini, F. Rapid Variability of Gamma-Ray Blazars: A Model for Markarian 421. Astrophys. J. 1998, 495, L19–L21, doi:https://doi.org/10.1086/31121610.1086/311216.
  20. Begelman, M.C.; Fabian, A.C.; Rees, M.J. Implications of very rapid TeV variability in blazars. Mon. Not. R. Astron. Soc. 2008, 384, L19–L23, doi:https://doi.org/10.1111/j.1745-3933.2007.00413.x10.1111/j.1745-3933.2007.00413.x.
  21. Ghisellini, G.; Tavecchio, F.; Bodo, G.; Celotti, A. TeV variability in blazars: how fast can it be? Mon. Not. R. Astron. Soc. 2009, 393, L16–L20, doi:https://doi.org/10.1111/j.1745-3933.2008.00589.x10.1111/j.1745-3933.2008.00589.x.
  22. Kirk, J.G.; Mochol, I. Charge-starved, Relativistic Jets and Blazar Variability. Astrophys. J. 2011, 729, 104, doi:https://doi.org/10.1088/0004-637X/729/2/10410.1088/0004-637X/729/2/104.
  23. Narayan, R.; Piran, T. Variability in blazars: Clues from PKS 2155-304. Mon. Not. R. Astron. Soc. 2012, 420, 604–612, doi:https://doi.org/10.1111/j.1365-2966.2011.20069.x10.1111/j.1365-2966.2011.20069.x.
  24. Hirotani, K.; Pu, H.Y. Energetic Gamma Radiation from Rapidly Rotating Black Holes. Astrophys. J. 2016, 818, 50, doi:https://doi.org/10.3847/0004-637X/818/1/5010.3847/0004-637X/818/1/50.
  25. Aharonian, F.A.; Barkov, M.V.; Khangulyan, D. Scenarios for Ultrafast Gamma-Ray Variability in AGN. Astrophys. J. 2017, 841, 61, doi:https://doi.org/10.3847/1538-4357/aa704910.3847/1538-4357/aa7049.
  26. Levinson, A.; Rieger, F. Variable TeV Emission as a Manifestation of Jet Formation in M87? Astrophys. J. 2011, 730, 123, doi:https://doi.org/10.1088/0004-637X/730/2/12310.1088/0004-637X/730/2/123.
  27. Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: Jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, L29–L33, doi:https://doi.org/10.1111/j.1745-3933.2009.00635.x10.1111/j.1745-3933.2009.00635.x.
  28. Barkov, M.V.; Aharonian, F.A.; Bogovalov, S.V.; Kelner, S.R.; Khangulyan, D. Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. Astrophys. J. 2012, 749, 119, doi:https://doi.org/10.1088/0004-637X/749/2/11910.1088/0004-637X/749/2/119.
  29. Timmer, J.; Koenig, M. On generating power law noise. Astron. Astrophys. 1995, 300, 707.
  30. Emmanoulopoulos, D.; McHardy, I.M.; Papadakis, I.E. Generating artificial light curves: revisited and updated. Mon. Not. R. Astron. Soc. 2013, 433, 907–927, doi:https://doi.org/10.1093/mnras/stt76410.1093/mnras/stt764.
  31. Sobolewska, M.A.; Siemiginowska, A.; Kelly, B.C.; Nalewajko, K. Stochastic Modeling of the Fermi/LAT γ-Ray Blazar Variability. Astrophys. J. 2014, 786, 143, doi:https://doi.org/10.1088/0004-637X/786/2/14310.1088/0004-637X/786/2/143.
  32. Kelly, B.C.; Becker, A.C.; Sobolewska, M.; Siemiginowska, A.; Uttley, P. Flexible and Scalable Methods for Quantifying Stochastic Variability in the Era of Massive Time-domain Astronomical Data Sets. Astrophys. J. 2014, 788, 33, doi:https://doi.org/10.1088/0004-637X/788/1/3310.1088/0004-637X/788/1/33.
  33. Feigelson, E.D.; Babu, G.J.; Caceres, G.A. Autoregressive Times Series Methods for Time Domain Astronomy. Front. Phys. 2018, 6, 80, doi:https://doi.org/10.3389/fphy.2018.0008010.3389/fphy.2018.00080.
  34. Moreno, J.; Vogeley, M.S.; Richards, G.T. AGN Variability Analysis Handbook; PASP submitted 2018, arXiv:1811.00154.
  35. Vio, R.; Kristensen, N.R.; Madsen, H.; Wamsteker, W. Time series analysis in astronomy: Limits and potentialities. Astron. Astrophys. 2005, 435, 773–780, doi:https://doi.org/10.1051/0004-6361:2004215410.1051/0004-6361:20042154.
  36. HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; et al. VHE γ-ray emission of PKS 2155-304: spectral and temporal variability. Astron. Astrophys. 2010, 520, A83, doi:https://doi.org/10.1051/0004-6361/20101448410.1051/0004-6361/201014484.
  37. Chakraborty, N.; Cologna, G.; Kastendieck, M.A.; Rieger, F.; Romoli, C.; Wagner, S.J.; Jacholkowska, A.; Taylor, A.; for the H.E.S.S. Collaboration. Rapid variability at very high energies in Mrk 501. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; International Cosmic Ray Conference; Volume 34, p. 872.
  38. Chevalier, J.; Kastendieck, M.A.; Rieger, F.M.; Maurin, G.; Lenain, J.P.; Lamanna, G. Long term variability of the blazar PKS 2155-304. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; International Cosmic Ray Conference; Volume 34, p. 829.
  39. HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A.G.; Andersson, T.; Angüner, E.O.; Arrieta, M.; Aubert, P.; et al. Characterizing the γ-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT. Astron. Astrophys. 2017, 598, A39, doi:https://doi.org/10.1051/0004-6361/20162941910.1051/0004-6361/201629419.
  40. Uttley, P.; McHardy, I.M. The flux-dependent amplitude of broadband noise variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 2001, 323, L26–L30, doi:https://doi.org/10.1046/j.1365-8711.2001.04496.x10.1046/j.1365-8711.2001.04496.x.
  41. Uttley, P.; McHardy, I.M.; Vaughan, S. Non-linear X-ray variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 2005, 359, 345–362, doi:https://doi.org/10.1111/j.1365-2966.2005.08886.x10.1111/j.1365-2966.2005.08886.x.
  42. Romoli, C.; Chakraborty, N.; Dorner, D.; Taylor, A.; Blank, M. Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501. Galaxies 2018, 6, 135, doi:https://doi.org/10.3390/galaxies604013510.3390/galaxies6040135.
  43. Sinha, A.; Shukla, A.; Saha, L.; Acharya, B.S.; Anupama, G.C.; Bhattacharjee, P.; Britto, R.J.; Chitnis, V.R.; Prabhu, T.P.; Singh, B.B.; et al. Long-term study of Mkn 421 with the HAGAR Array of Telescopes. Astron. Astrophys. 2016, 591, A83, doi:https://doi.org/10.1051/0004-6361/20162815210.1051/0004-6361/201628152.
  44. Shah, Z.; Mankuzhiyil, N.; Sinha, A.; Misra, R.; Sahayanathan, S.; Iqbal, N. Log-normal flux distribution of bright Fermi blazars. Res. Astron. Astrophys. 2018, 18, 141, doi:https://doi.org/10.1088/1674-4527/18/11/14110.1088/1674-4527/18/11/141.
  45. Ioka, K.; Nakamura, T. A Possible Origin of Lognormal Distributions in Gamma-Ray Bursts. Astrophys. J. 2002, 570, L21–L24, doi:https://doi.org/10.1086/34081510.1086/340815.
  46. Giebels, B.; Degrange, B. Lognormal variability in BL Lacertae. Astron. Astrophys. 2009, 503, 797–799, doi:https://doi.org/10.1051/0004-6361/20091230310.1051/0004-6361/200912303.
  47. McHardy, I. X-Ray Variability of AGN and Relationship to Galactic Black Hole Binary Systems; Belloni, T., Ed.; Lecture Notes in Physics; Springer Verlag: Berlin, Germany, 2010, Volume 794, p. 203. doi:https://doi.org/10.1007/978-3-540-76937-8_810.1007/978-3-540-76937-8_8.
  48. Lyubarskii, Y.E. Flicker noise in accretion discs. Mon. Not. R. Astron. Soc. 1997, 292, 679. doi:https://doi.org/10.1093/mnras/292.3.67910.1093/mnras/292.3.679.
  49. King, A.R.; Pringle, J.E.; West, R.G.; Livio, M. Variability in black hole accretion discs. Mon. Not. R. Astron. Soc. 2004, 348, 111–122, doi:https://doi.org/10.1111/j.1365-2966.2004.07322.x10.1111/j.1365-2966.2004.07322.x.
  50. Arévalo, P.; Uttley, P. Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems. Mon. Not. R. Astron. Soc. 2006, 367, 801–814, doi:https://doi.org/10.1111/j.1365-2966.2006.09989.x10.1111/j.1365-2966.2006.09989.x.
  51. Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67–76,
  52. Sinha, A.; Khatoon, R.; Misra, R.; Sahayanathan, S.; Mandal, S.; Gogoi, R.; Bhatt, N. The flux distribution of individual blazars as a key to understand the dynamics of particle acceleration. Mon. Not. R. Astron. Soc. 2018, 480, L116–L120, doi:https://doi.org/10.1093/mnrasl/sly13610.1093/mnrasl/sly136.
  53. Kirk, J.G.; Rieger, F.M.; Mastichiadis, A. Particle acceleration and synchrotron emission in blazar jets. Astron. Astrophys. 1998, 333, 452–458,
  54. Chevalier, J.; Sanchez, D.A.; Serpico, P.D.; Lenain, J.P.; Maurin, G. Variability studies and modeling of the blazar PKS 2155-304 in the light of a decade of multi-wavelength observations. Mon. Not. R. Astron. Soc. 2019, 484, 749–759, doi:https://doi.org/10.1093/mnras/stz02710.1093/mnras/stz027.
  55. Chatterjee, R.; Bailyn, C.D.; Bonning, E.W.; Buxton, M.; Coppi, P.; Fossati, G.; Isler, J.; Maraschi, L.; Urry, C.M. Similarity of the Optical-Infrared and γ-Ray Time Variability of Fermi Blazars. Astrophys. J. 2012, 749, 191, doi:https://doi.org/10.1088/0004-637X/749/2/19110.1088/0004-637X/749/2/191.
  56. Nakagawa, K.; Mori, M. Time Series Analysis of Gamma-Ray Blazars and Implications for the Central Black-hole Mass. Astrophys. J. 2013, 773, 177, doi:https://doi.org/10.1088/0004-637X/773/2/17710.1088/0004-637X/773/2/177.
  57. Kushwaha, P.; Sinha, A.; Misra, R.; Singh, K.P.; de Gouveia Dal Pino, E.M. Gamma-Ray Flux Distribution and Nonlinear Behavior of Four LAT Bright AGNs. Astrophys. J. 2017, 849, 138, doi:https://doi.org/10.3847/1538-4357/aa8ef510.3847/1538-4357/aa8ef5.
  58. Goyal, A.; Stawarz, Ł.; Zola, S.; Marchenko, V.; Soida, M.; Nilsson, K.; Ciprini, S.; Baran, A.; Ostrowski, M.; Wiita, P.J.; et al. Stochastic Modeling of Multiwavelength Variability of the Classical BL Lac Object OJ 287 on Timescales Ranging from Decades to Hours. Astrophys. J. 2018, 863, 175, doi:https://doi.org/10.3847/1538-4357/aad2de10.3847/1538-4357/aad2de.
  59. McHardy, I.M.; Koerding, E.; Knigge, C.; Uttley, P.; Fender, R.P. Active galactic nuclei as scaled-up Galactic black holes. Nature 2006, 444, 730–732, doi:https://doi.org/10.1038/nature0538910.1038/nature05389.
  60. Kataoka, J.; Takahashi, T.; Wagner, S.J.; Iyomoto, N.; Edwards, P.G.; Hayashida, K.; Inoue, S.; Madejski, G.M.; Takahara, F.; Tanihata, C.; et al. Characteristic X-Ray Variability of TeV Blazars: Probing the Link between the Jet and the Central Engine. Astrophys. J. 2001, 560, 659–674, doi:https://doi.org/10.1086/32244210.1086/322442.
  61. Finke, J.D.; Becker, P.A. Fourier Analysis of Blazar Variability. Astrophys. J. 2014, 791, 21, doi:https://doi.org/10.1088/0004-637X/791/1/2110.1088/0004-637X/791/1/21.
  62. Finke, J.D.; Becker, P.A. Fourier Analysis of Blazar Variability: Klein-Nishina Effects and the Jet Scattering Environment. Astrophys. J. 2015, 809, 85, doi:https://doi.org/10.1088/0004-637X/809/1/8510.1088/0004-637X/809/1/85.
  63. Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; et al. Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-Ray Blazar PG 1553+113. Astrophys. J. 2015, 813, L41, doi:https://doi.org/10.1088/2041-8205/813/2/L4110.1088/2041-8205/813/2/L41.
  64. Sobacchi, E.; Sormani, M.C.; Stamerra, A. A model for periodic blazars. Mon. Not. R. Astron. Soc. 2017, 465, 161–172, doi:https://doi.org/10.1093/mnras/stw268410.1093/mnras/stw2684.
  65. Tavani, M.; Cavaliere, A.; Munar-Adrover, P.; Argan, A. The Blazar PG 1553+113 as a Binary System of Supermassive Black Holes. Astrophys. J. 2018, 854, 11, doi:https://doi.org/10.3847/1538-4357/aaa3f410.3847/1538-4357/aaa3f4.
  66. Sandrinelli, A.; Covino, S.; Dotti, M.; Treves, A. Quasi-periodicities at Year-like Timescales in Blazars. Astron. J. 2016, 151, 54, doi:https://doi.org/10.3847/0004-6256/151/3/5410.3847/0004-6256/151/3/54.
  67. Sandrinelli, A.; Covino, S.; Treves, A.; Lindfors, E.; Raiteri, C.M.; Nilsson, K.; Takalo, L.O.; Reinthal, R.; Berdyugin, A.; Fallah Ramazani, V.; et al. Gamma-ray and optical oscillations of 0716+714, MRK 421, and BL Lacertae. Astron. Astrophys. 2017, 600, A132, doi:https://doi.org/10.1051/0004-6361/20163028810.1051/0004-6361/201630288.
  68. Prokhorov, D.A.; Moraghan, A. A search for cyclical sources of γ-ray emission on the period range from days to years in the Fermi-LAT sky. Mon. Not. R. Astron. Soc. 2017, 471, 3036–3042, doi:https://doi.org/10.1093/mnras/stx174210.1093/mnras/stx1742.
  69. Zhang, P.f.; Yan, D.h.; Liao, N.h.; Wang, J.c. Revisiting Quasi-periodic Modulation in γ-Ray Blazar PKS 2155-304 with Fermi Pass 8 Data. Astrophys. J. 2017, 835, 260, doi:https://doi.org/10.3847/1538-4357/835/2/26010.3847/1538-4357/835/2/260.
  70. Zhang, P.F.; Yan, D.H.; Zhou, J.N.; Fan, Y.Z.; Wang, J.C.; Zhang, L. A γ-ray Quasi-periodic Modulation in the Blazar PKS 0301-243? Astrophys. J. 2017, 845, 82, doi:https://doi.org/10.3847/1538-4357/aa7ecd10.3847/1538-4357/aa7ecd.
  71. Bhatta, G. Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. arXiv 2018, arXiv:1808.06067.
  72. Valtonen, M.J.; Zola, S.; Ciprini, S.; Gopakumar, A.; Matsumoto, K.; Sadakane, K.; Kidger, M.; Gazeas, K.; Nilsson, K.; Berdyugin, A.; et al. Primary Black Hole Spin in OJ 287 as Determined by the General Relativity Centenary Flare. Astrophys. J. 2016, 819, L37, doi:https://doi.org/10.3847/2041-8205/819/2/L3710.3847/2041-8205/819/2/L37.
  73. Graham, M.J.; Djorgovski, S.G.; Stern, D.; Glikman, E.; Drake, A.J.; Mahabal, A.A.; Donalek, C.; Larson, S.; Christensen, E. A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 2015, 518, 74–76, doi:https://doi.org/10.1038/nature1414310.1038/nature14143.
  74. Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. doi:https://doi.org/10.1038/287307a010.1038/287307a0.
  75. Komossa, S. Observational evidence for binary black holes and active double nuclei. Mem. Soc. Astron. Ital. 2006, 77, 733.
  76. Rieger, F.M. Supermassive binary black holes among cosmic gamma-ray sources. Astrophys. Space Sci. 2007, 309, 271–275, doi:https://doi.org/10.1007/s10509-007-9467-y10.1007/s10509-007-9467-y.
  77. Merritt, D. Dynamics and Evolution of Galactic Nuclei; Princeton University Press: Princeton, NJ, USA, 2013.
  78. Krause, M.G.H.; Shabala, S.S.; Hardcastle, M.J.; Bicknell, G.V.; Böhringer, H.; Chon, G.; Nawaz, M.A.; Sarzi, M.; Wagner, A.Y. How frequent are close supermassive binary black holes in powerful jet sources? Mon. Not. R. Astron. Soc. 2019, 482, 240–261, doi:https://doi.org/10.1093/mnras/sty255810.1093/mnras/sty2558.
  79. Farris, B.D.; Duffell, P.; MacFadyen, A.I.; Haiman, Z. Binary Black Hole Accretion from a Circumbinary Disk: Gas Dynamics inside the Central Cavity. Astrophys. J. 2014, 783, 134, doi:https://doi.org/10.1088/0004-637X/783/2/13410.1088/0004-637X/783/2/134.
  80. Bowen, D.B.; Campanelli, M.; Krolik, J.H.; Mewes, V.; Noble, S.C. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks. Astrophys. J. 2017, 838, 42, doi:https://doi.org/10.3847/1538-4357/aa63f310.3847/1538-4357/aa63f3.
  81. Vaughan, S.; Uttley, P.; Markowitz, A.G.; Huppenkothen, D.; Middleton, M.J.; Alston, W.N.; Scargle, J.D.; Farr, W.M. False periodicities in quasar time-domain surveys. Mon. Not. R. Astron. Soc. 2016, 461, 3145–3152, doi:https://doi.org/10.1093/mnras/stw141210.1093/mnras/stw1412.
  82. Covino, S.; Sandrinelli, A.; Treves, A. Gamma-ray quasi-periodicities of blazars. A cautious approach. Mon. Not. R. Astron. Soc. 2019, 482, 1270–1274, doi:https://doi.org/10.1093/mnras/sty272010.1093/mnras/sty2720.
  83. Benlloch, S.; Wilms, J.; Edelson, R.; Yaqoob, T.; Staubert, R. Quasi-periodic Oscillation in Seyfert Galaxies: Significance Levels. The Case of Markarian 766. Astrophys. J. 2001, 562, L121–L124, doi:https://doi.org/10.1086/33825210.1086/338252.
  84. Ait Benkhali, F.; Hofmann, W.; Rieger, F.M.; Chakraborty, N. Evaluating Quasi-Periodic Variations in the γ-ray Lightcurves of Fermi-LAT Blazars. Astron. Astrophys. 2019, submitted.
  85. Dorner, D.; Lauer, R.J.; FACT Collaboration.; Adam, J.; Ahnen, M.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; et al. First study of combined blazar light curves with FACT and HAWC. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016; American Institute of Physics Conference Series; Volume 1792, p. 050020. doi:https://doi.org/10.1063/1.496896610.1063/1.4968966.
  86. Holgado, A.M.; Sesana, A.; Sandrinelli, A.; Covino, S.; Treves, A.; Liu, X.; Ricker, P. Pulsar timing constraints on the Fermi massive black hole binary blazar population. Mon. Not. R. Astron. Soc. 2018, 481, L74–L78, doi:https://doi.org/10.1093/mnrasl/sly15810.1093/mnrasl/sly158.
  87. Camenzind, M.; Krockenberger, M. The lighthouse effect of relativistic jets in blazars - A geometric origin of intraday variability. Astron. Astrophys. 1992, 255, 59–62.
  88. Gracia, J.; Peitz, J.; Keller, C.; Camenzind, M. Evolution of bimodal accretion flows. Mon. Not. R. Astron. Soc. 2003, 344, 468–472, doi:https://doi.org/10.1046/j.1365-8711.2003.06832.x10.1046/j.1365-8711.2003.06832.x.
  89. Rieger, F.M. On the Geometrical Origin of Periodicity in Blazar-type Sources. Astrophys. J. 2004, 615, L5–L8, doi:https://doi.org/10.1086/42601810.1086/426018.
  90. Zhou, J.; Wang, Z.; Chen, L.; Wiita, P.J.; Vadakkumthani, J.; Morrell, N.; Zhang, P.; Zhang, J. A 34.5 day quasi-periodic oscillation in γ-ray emission from the blazar PKS 2247-131. Nat. Commun. 2018, 9, 4599, doi:https://doi.org/10.1038/s41467-018-07103-210.1038/s41467-018-07103-2.
  91. Hayashida, N.; Hirasawa, H.; Ishikawa, F.; Lafoux, H.; Nagano, M.; Nishikawa, D.; Ouchi, T.; Ohoka, H.; Ohnishi, M.; Sakaki, N.; et al. Observations of TeV Gamma Ray Flares from Markarian 501 with the Telescope Array Prototype. Astrophys. J. 1998, 504, L71–L74, doi:https://doi.org/10.1086/31157410.1086/311574.
  92. Osone, S. Study of 23 day periodicity of Blazar Mkn501 in 1997. Astropart. Phys. 2006, 26, 209–218, doi:https://doi.org/10.1016/j.astropartphys.2006.06.00410.1016/j.astropartphys.2006.06.004.
  93. Rieger, F.M.; Mannheim, K. Implications of a possible 23 day periodicity for binary black hole models in Mkn 501. Astron. Astrophys. 2000, 359, 948–952,
  94. Artymowicz, P.; Lubow, S.H. Mass Flow through Gaps in Circumbinary Disks. Astrophys. J. 1996, 467, L77. doi:https://doi.org/10.1086/31020010.1086/310200.
  95. Hayasaki, K.; Mineshige, S.; Sudou, H. Binary Black Hole Accretion Flows in Merged Galactic Nuclei. Publ. Astron. Soc. Jpn. 2007, 59, 427–441, doi:https://doi.org/10.1093/pasj/59.2.42710.1093/pasj/59.2.427.
  96. Czerny, B.; Nikołajuk, M.; Piasecki, M.; Kuraszkiewicz, J. Black hole masses from power density spectra: Determinations and consequences. Mon. Not. R. Astron. Soc. 2001, 325, 865–874, doi:https://doi.org/10.1046/j.1365-8711.2001.04522.x10.1046/j.1365-8711.2001.04522.x.
  97. Fan, J.H.; Lin, R.G. The variability analysis of PKS 2155-304. Astron. Astrophys. 2000, 355, 880–884,
  98. Piner, B.G.; Pant, N.; Edwards, P.G. The Jets of TeV Blazars at Higher Resolution: 43 GHz and Polarimetric VLBA Observations from 2005 to 2009. Astrophys. J. 2010, 723, 1150–1167, doi:https://doi.org/10.1088/0004-637X/723/2/115010.1088/0004-637X/723/2/1150.

Contents Previous