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1. PROBABILITIES

Classical or a priori probabilities are defined in terms of the possible outcomes of atrial, recognized in
advance as equally probable. In the toss of a coin, the probability of getting a head is 1/2: the number of
outcomes that give ahead, 1, divided, by the total number of possible outcomes, head or tail, 2. In the
toss of adie, the probability of getting one dot is 1/6: the number of outcomes that give one dot, 1,
divided by the total number of possible outcomes, one through six dots, 6. In general, the probability of
eventais

na) = :% (A.D)

where a is the number of equally probable outcomes that satisfy criteriaa, and n is the total number of
equally probable outcomes.

In the examples just given, the outcomes are mutually exclusive; i.e., only one outcomeis possible at a
time. If events a and b are mutually exclusive, then

plaorh) = pla) +plb), (A2
and
plnota) = 1 — pla). (A.3)

For the toss of a coin, p(head or tail) = p(head) + p(tail) = 1, and p(not head) = 1 - p(head) = 1/2. For the
toss of adie, p(1 dot or 2 dots) = p(1 dot) + p(2 dots) = 1/3, and p(not 1 dot) = 1 - p(1 dot) = 5/6.

In these examples, the outcomes also are statistically independent; i.e., the occurrence of one event does
not affect that of another. If events a and b are statistically independent, then

plaand b) = pla)p(b). (A.4)

The probability of obtaining heads in each of two tosses of acoinis (1/2)(1/2) = 1/4. The probability of
obtaining asingle dot in each of two tosses of adieis (1/6)(1/6) = 1/36.

Events are conditional if the probability of one event depends on the occurrence of another. If the
probability that b will occur, given that a has occurred, is p(b/a), then the probability that both will occur
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is
plaand b) = pla)plbfa). (A5

For example, the probability of drawing two aces from a deck of cardsis (4/52)(3/51) = 1/221. If thefirst
card were put back into the deck and the deck reshuffled, then the probability of drawing the second ace
would not be conditioned on the drawing of the first, and the probability would be (4/52)(4/52) = 1/169,
in accord with Eqg. A .4.

Here are some rules of thumb for dealing with compound events, when the events are both mutually
exclusive and statistically independent:

p(neither anord) = p{notaand notbh)

(A.6)
= [1—=pla)][l — plb)]

pleithera or bbutnot both) = plaand notbh, ornot aand b)

= pla)[l = p(b)] + |1 — pla)|p(b)

pleither aorborboth) = 1 — p(neitheranor b).  (A.8)

| M=t Il Cﬂntentsl
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2. PROBABILITY DISTRIBUTIONS

Suppose we were to toss an unbiased coin 4 times in succession. What is the probability, P(K), of
obtaining k heads? There are 16 different ways the coins might land; each is equally probable. Let's write
down all 16 but group them according to how many heads appear, using the binary notation 1 = heads, O
=tals:

Sequence No. heads P(k)

0000 0 P(0) = 1/16

1000
0100
0010
0001

P(1) = 4/16 = 1/4

e

1100
1010
1001
0110
0101
0011

P(2) = 6/16 = 3/8

N DN N DN DNDN

1110
1101
1011
0111

P(3) = 4/16 = 14

W w w w

1111 4 P(4) = 1/16

From Eq. A. 1, the probability of a given sequenceis 1/16. From Eqg. A.2, the probability of obtaining the
sequence 1000, 0100, 0010, or 0001, i.e., asequence in which 1 head appears, is 1/16 + 1/16 + 1/16 +
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1/16 = 1/4. The third column lists these probabilities, P(k).

The results of these calculations can be summarized by plotting P(k) as a function of k, as shown in Fig.
A.1. Such aplot is called atheoretical probability distribution. The peak value, k = 2, is the most
probable value. Since the curve is symmetric about k = 2, this value also must be the mean value. One
can compute the mean or expectation value of k by adding the number of heads obtained for each of the
sequences shown in the table and dividing by 16, or - and this is the same thing - by weighting each
possible value of k by the probability of obtaining that value, P(k), and computing the sum:

4
kY= kP(k). (A9
fe=0

'.l"E'_

3/E =
.

Iy - 4 : 1

T

o —

X
-

I8

\
y

Figure A.1. The probability, P(k), of obtaining k headsin 4
tosses of an unbiased coin. This theoretical probability
distribution is discrete; it is defined only for the integer
vauesk=0, 1, 2, 3, or 4. A smooth line is drawn through the
points only to make it easier to visualize the trend. The
distribution has a mean value 2 and a standard deviation 1.

The value of thissumis (0)(1/16) + (1)(1/4) + (2)(3/8) + (3)(1/4) + (4)(1/16) =0+ /4 + 3/4 + 3/4 + 1/4
= 2, as expected. Note that

4
Y P(k)=1. (A.10)
fe=1]

file:/l/E[/moe/HTML/Berg/Berg2.html (2 of 5) [11/04/2003 4:46:38 PM]


file:///E|/moe/HTML/Berg/Figures/figure1.jpeg

Probabilities and Probability Distributions - H.C. Berg

The probability of obtaining 0, 1, 2, 3, or 4 headsis 1. The distribution is properly normalized.

Note also that if aisaconstant (does not depend on the variable k),

4 4
{@y=Y-aPk)=a¥ P =qa (A1)

k=0 k=0
and
4 4
(ak)y =3 akP(k)=ad _ kP(k)=a{k). (A.12
k=0 k=0
It is useful to have some measure of the width or spread of a distribution about its mean. One might
compute <k - >, the expectation value of the deviation of k from the mean p = <k>, but the answer

aways comes out 0. It makes more sense to compute the expectation value of the square of the deviation,
namely

al= {[.ﬂ'—;.!]')'::l = {A'j—fj-!nfu'-l—j-!j::l. (A.13)

This quantity is called the variance. Its square root, o, is called the standard deviation. Since p = <k> and
u2 = <k>2 are constants, Eq. A.13 can be simplified. It follows from Egs. A.11 and A.12 that

a? = (K2 — 2uik) + p® = (K) — (k)2 (A1)

where
4
Ky = Y_EP(k); - (Al5)
k=1

For the distribution of Fig. A.1, <k2> = (0)(1/16) + (1) (1/4) + (4)(3/8) + (9)(1/4) + (16)(1/16) =0 + 1/4 +
6/4+9/4+1=5<k>2=4,andg2=5-4=1.

It isinstructive to sit down and actually flip a coin 4 times in succession, count the number of heads, and
then repeat the experiment a large number of times. One can then construct an experimental probability
distribution, with P(0) equal to the number of experiments that give O heads divided by the total number
of experiments, P(1) equal to the number of experiments that give 1 head divided by the total number of
experiments, etc. Two such distributions are shown in Fig. A.2. Inthefirst (x), the total number of

file:/l/E[/moe/HTML/Berg/Berg2.html (3 of 5) [11/04/2003 4:46:38 PM]



Probabilities and Probability Distributions - H.C. Berg

experiments was 10. In the second (0), the total number was 100.
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Figure A.2. Two experimental probability distributions. In
one (x), acoin was flipped 4 timesin 10 successive
experiments; the mean value is 2.30, the standard deviation is
1.22. In the other (0), acoin was flipped 4 timesin 100
successive experiments; the mean value is 2.04, the standard
deviation 1.05. The dashed curve is the theoretical probability
distribution of Fig. A.1.

If you do not like flipping coins, you can build a probability machine of the sort shownin Fig. A.3. If the
machineislevel and well made, the probability that a ball bounces to the right or the left on striking the
next pinis 1/2. The number of successivetrialsis equal to the number of rows of pins. If you drop 100
balls through this machine, they will pile up in the bins at the bottom, forming a distribution like the one
shown in Fig. A.2. Or do the experiments on a computer: ask for arandom number uniformly distributed
between 0 and 1; if the number isless than or equal to 1/2, call it a head; if it is greater than 1/2, call it a
tail. The data shown in Fig. A.2 were generated in this way.

The theoretical expectations are more closely met the larger the number of samples. What is the
likelihood that the deviations between the experimental distributions and the theoretical distribution,
evident in Fig. A.2, occur by chance? By how much are the mean values of the experimental distributions
likely to differ from the mean value predicted by the theory? Questions of this kind often are encountered
in the laboratory. They are dealt with in books on data reduction and error analysis and will not be
pursued here.
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Figure A.3. A probability machine of 4 rows. A ball dropped
on the center pin of the top row bounces to the right or left
and executes arandom walk as it moves from row to row,
arriving finally at one of the bins at the bottom. The rows and
binsare numberedn=1,2,3,4andk=0, 1, 2, 3, 4,
respectively; nis the bounce number and k is the number of
bounces made to the right.
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3. THE BINOMIAL DISTRIBUTION

What if we flip abiased coin, with the probability of ahead p and the probability of atail g= 1- p? The
probability of agiven sequence, e.g., 100010 ..., in which k heads appear in nflipsis, by Eq. A.4, pqaqpq
o

li'Jl'!' 'rj"-L_A 250 s (A6)

There are atotal of 2" possible sequences. Only some of these give k heads and n - k tails. Their number
IS

n! n
Bin — k)! (.ﬂ) 01

where 0!, whenever it appears in the denominator, is understood to be 1.

Since any one or another of these sequences will do, the probability that exactly k heads occur in n flips
IS, by Eq. A.2.

P{kin,p) = (r) ,i',l'l* |“,I""_'I1 ; (A.18)

s
Thisisthe binomial distribution. The coefficient (ﬁ:) isthe binomial coefficient, the number of
combinations of n thingstaken k and n - k at atime. Y ou have seen it before in algebra in the binomial
theorem:

(a +B)" = Z (:) ath” ko (AL9)

k=0

We can use the binomial theorem to show that the binomial distribution is normalized:

i Plk:n, p) = Z (:_)p'!‘rjl""_'!' ={p+q"=1"=1. (A.20)
fe=0)

fe=()
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As an example, let's work out the case of 4 flips of an unbiased coin. If p= q= 1/2, then pkg"k = (1/2)n =
(1/2)4 = 1/16 for all values of k, and the probabilities P(0;4,1/2), ..., P(4;4,1/2) are equal to the binomial

coefficients (g), oo (j) times this factor. Since

we obtain the probabilities 1/16, 1/4, 3/8, 1/4, and 1/16, as before.
The expectation value of kis

" i

: t n! Ve
-.':|'I1|:I = Z EFP{k;n, p)= Z A.ﬁ"[ﬂ“——uﬂwﬁﬁ i '!'. (A.21)
I!\._l:_l [ [l

k=0

To evaluate this, note that the k = 0 term is 0 and that k/k! = 1/(k - 1)!, so that

ey ik k vk
=2 G

k=1

Next, factor out np:

“’."1'::! = rapi (e 1)) Ji:l'!‘_l|f,l""_'!‘
\ (k= D){n— k)! :

Finally, change variables by substitutingm= k- l1ands=n- 1:
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k) = i.l;,lz 2t g

. ml{s — m)!

o,
T—

&
= TP Z (:3) O

=0 :
The sum in this expression is the same as the one in Eq. A.20; only the labels have been changed. Thus,
By = npl +, (A2

One can evaluate the expectation value of k2 in a similar fashion by two successive changes in variables
and show that

(K) = (np)* + npq.  (A23)
Thevariance of k, Eq. A.14, is
ap = (Y — (kY = npg, ~(A.29)
and its standard deviation is

o, = (npg)¥2.  (A.25)

An example of the binomial distribution isgiven in Fig. A.4, which shows the theoretical distribution
P(k;10,1/6). Thisisthe probability of obtaining a given side k timesin 10 throws of adie.
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Figure A.4. The binomial distribution for n =10, p = 1/6. The
mean value is 1.67, the standard deviation 1.18.
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4. THE GAUSSIAN DISTRIBUTION

In many of the problems dealt with in this book, the number of trials, n, isvery large. A small molecule
undergoing diffusion, for example, stepsto the right or left millions of times in a microsecond, not 4
timesin afew seconds, as the ball in the apparatus of Fig. A.3. There are two asymptotic limits of the
binomial distribution. One, the Gaussian, or normal, distribution, is obtained when the probability of a
success, p, isfinite, i.e., if np -> oo asn -> oo, The other, the Poisson distribution, is obtained if pisvery
small, so small that np remains finite as n -> oa.

The derivation of the Gaussian distribution involves the use of Stirling's approximation for the factorials
of the binomial coefficients:

nle (2rn) 3 (nfe)®,  (A.26)
where e is the base of the natural logarithms. The result is

|

—(k=—p) f20? o
ERENTEL dl:, (A.27)

P(kin,p) = Pk, o)dk =

where pu= <k> = np and o = (<k2> - <k>2)V2 = (npq) Y2, as before. P(k; p, o) dk is the probability that k
will be found between k and k + dk, where dk isinfinitesimal. The distribution is continuous rather than
discrete. Expectation values are found by taking integrals rather than sums. The distribution is symmetric
about the mean, 4, and itswidth is determined by . The area of the distributionis 1, so itsheight is
inversely proportional to .

If wedefineu = (k- 1) /g, i.e, plot the distribution with the abscissa in units of g and the origin at |,
then

Pik)dk — Plu)du =

|. __I_' 5
[';]‘ﬁl]l-."l-:'t w2y, (A.28)

P(u) is called the normal curve of error; it isshown in Fig. A.5. As an exercise, use your tables of
definite integrals and show that

[M P{u)du = 1, (A.29)

. ]
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fL uP{u)du =0, (A.30)

and

f w2P(u)du = 1.  (A.31)

-

Eq. A.30 can be done by inspection: P(u) is an even function of u, so uP(u) must be an odd function of u.
The distribution P(u) is normalized, its mean value is 0, and its variance and standard deviation are 1.

oA

— Q&

g BELIN
of atwo | I

b 9% B, of ared —l-ll |

- i — 5, 7%, o gred — a ..___l

Figure A.5. The normal curve of error: the Gaussian
distribution plotted in units of the standard deviation o with
itsorigin at the mean value . The area under the curveis 1.
Half the areafalls between u = + 0.67.
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5. THE POISSON DISTRIBUTION

As noted above, the Poisson distribution is obtained as an asymptotic limit of the binomial distribution
when pisvery small. Theresultis

[}
Plk:p) = bmer, (A2

where 1= np, as before, and 0! is understood to be 1. This distribution is determined by one rather than
two constants: @ = (npg)Y2, but q=1-p = 1, sog = (np)V2 = p¥2, The standard deviation is equal to the
sgquare-root of the mean. The Poisson distribution is discrete: P(0; 1) = eHisthe probability of O
successes, given that the mean number of successesis |, etc. The probability of 1 or more successesis1 -
P(0; W) =1 - el Thedistribution P(k; 1.67) isshownin Fig. A.6.

2.4 =
e f\x
O Y A
[ ! 1]
o ' X
e C Eqr l"._l
Q .q.
AN
a1 = ‘\.\\
| \-_ '_'—\—.-__..*,_...__‘.._._*
':':. 2 a & 8 19
&

Figure A.6. The Poisson distribution P(k;1.67). The mean
valueis 1.67, the standard deviation 1.29. The curveissimilar
to the binomial distribution shownin Fig. A.4, butitis

defined for values of k > 10. For example, P(20;1.67) = 2.2 X
1015,
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