
Probabilities and Probability Distributions - H.C. Berg

Published in "Random Walks in Biology", 1983, Princeton University Press 

PROBABILITIES AND PROBABILITY 
DISTRIBUTIONS

Howard C. Berg

Table of Contents 

 PROBABILITIES 

 PROBABILITY DISTRIBUTIONS 

 THE BINOMIAL DISTRIBUTION 

 THE GAUSSIAN DISTRIBUTION 

 THE POISSON DISTRIBUTION 

 

file:///E|/moe/HTML/Berg/Berg_contents.html [11/04/2003 4:46:36 PM]



Probabilities and Probability Distributions - H.C. Berg

  

1. PROBABILITIES

Classical or a priori probabilities are defined in terms of the possible outcomes of a trial, recognized in 
advance as equally probable. In the toss of a coin, the probability of getting a head is 1/2: the number of 
outcomes that give a head, 1, divided, by the total number of possible outcomes, head or tail, 2. In the 
toss of a die, the probability of getting one dot is 1/6: the number of outcomes that give one dot, 1, 
divided by the total number of possible outcomes, one through six dots, 6. In general, the probability of 
event a is 

 (A.1) 

where a is the number of equally probable outcomes that satisfy criteria a, and n is the total number of 
equally probable outcomes. 

In the examples just given, the outcomes are mutually exclusive; i.e., only one outcome is possible at a 
time. If events a and b are mutually exclusive, then 

 (A.2) 

and 

 (A.3) 

For the toss of a coin, p(head or tail) = p(head) + p(tail) = 1, and p(not head) = 1 - p(head) = 1/2. For the 
toss of a die, p(1 dot or 2 dots) = p(1 dot) + p(2 dots) = 1/3, and p(not 1 dot) = 1 - p(1 dot) = 5/6. 

In these examples, the outcomes also are statistically independent; i.e., the occurrence of one event does 
not affect that of another. If events a and b are statistically independent, then 

 (A.4) 

The probability of obtaining heads in each of two tosses of a coin is (1/2)(1/2) = 1/4. The probability of 
obtaining a single dot in each of two tosses of a die is (1/6)(1/6) = 1/36. 

Events are conditional if the probability of one event depends on the occurrence of another. If the 
probability that b will occur, given that a has occurred, is p(b/a), then the probability that both will occur 
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is 

 (A.5) 

For example, the probability of drawing two aces from a deck of cards is (4/52)(3/51) = 1/221. If the first 
card were put back into the deck and the deck reshuffled, then the probability of drawing the second ace 
would not be conditioned on the drawing of the first, and the probability would be (4/52)(4/52) = 1/169, 
in accord with Eq. A.4. 

Here are some rules of thumb for dealing with compound events, when the events are both mutually 
exclusive and statistically independent: 

 (A.6) 

 (A.7) 

 (A.8) 
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2. PROBABILITY DISTRIBUTIONS

Suppose we were to toss an unbiased coin 4 times in succession. What is the probability, P(k), of 
obtaining k heads? There are 16 different ways the coins might land; each is equally probable. Let's write 
down all 16 but group them according to how many heads appear, using the binary notation 1 = heads, 0 
= tails: 

Sequence No. heads P(k) 

0000 0 P(0) = 1/16 

  

1000 1 

0100 1 P(1) = 4/16 = 1/4 

0010 1 

0001 1 

  

1100 2 

1010 2 

1001 2 

0110 2 P(2) = 6/16 = 3/8 

0101 2 

0011 2 

  

1110 3 

1101 3 

1011 3 P(3) = 4/16 = 1/4 

0111 3 

  

1111 4 P(4) = 1/16 

From Eq. A. 1, the probability of a given sequence is 1/16. From Eq. A.2, the probability of obtaining the 
sequence 1000, 0100, 0010, or 0001, i.e., a sequence in which 1 head appears, is 1/16 + 1/16 + 1/16 + 
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1/16 = 1/4. The third column lists these probabilities, P(k). 

The results of these calculations can be summarized by plotting P(k) as a function of k, as shown in Fig. 
A.1. Such a plot is called a theoretical probability distribution. The peak value, k = 2, is the most 
probable value. Since the curve is symmetric about k = 2, this value also must be the mean value. One 
can compute the mean or expectation value of k by adding the number of heads obtained for each of the 
sequences shown in the table and dividing by 16, or - and this is the same thing - by weighting each 
possible value of k by the probability of obtaining that value, P(k), and computing the sum: 

 (A.9) 

 
Figure A.1. The probability, P(k), of obtaining k heads in 4 
tosses of an unbiased coin. This theoretical probability 
distribution is discrete; it is defined only for the integer 
values k = 0, 1, 2, 3, or 4. A smooth line is drawn through the 
points only to make it easier to visualize the trend. The 
distribution has a mean value 2 and a standard deviation 1. 

The value of this sum is (0)(1/16) + (1)(1/4) + (2)(3/8) + (3)(1/4) + (4)(1/16) = 0 + 1/4 + 3/4 + 3/4 + 1/4 
= 2, as expected. Note that 

 (A.10) 
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The probability of obtaining 0, 1, 2, 3, or 4 heads is 1. The distribution is properly normalized. 

Note also that if a is a constant (does not depend on the variable k), 

 (A.11) 

and 

 (A.12) 

It is useful to have some measure of the width or spread of a distribution about its mean. One might 
compute <k - µ>, the expectation value of the deviation of k from the mean µ = <k>, but the answer 
always comes out 0. It makes more sense to compute the expectation value of the square of the deviation, 
namely 

 (A.13) 

This quantity is called the variance. Its square root, , is called the standard deviation. Since µ = <k> and 
µ2 = <k>2 are constants, Eq. A.13 can be simplified. It follows from Eqs. A.11 and A.12 that 

 (A.14) 

where 

 (A.15) 

For the distribution of Fig. A.1, <k2> = (0)(1/16) + (1) (1/4) + (4)(3/8) + (9)(1/4) + (16)(1/16) = 0 + 1/4 + 

6/4 + 9/4 + 1 = 5, <k>2 = 4, and 2 = 5 - 4 = 1. 

It is instructive to sit down and actually flip a coin 4 times in succession, count the number of heads, and 
then repeat the experiment a large number of times. One can then construct an experimental probability 
distribution, with P(0) equal to the number of experiments that give 0 heads divided by the total number 
of experiments, P(1) equal to the number of experiments that give 1 head divided by the total number of 
experiments, etc. Two such distributions are shown in Fig. A.2. In the first (x), the total number of 
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experiments was 10. In the second (o), the total number was 100. 

 
Figure A.2. Two experimental probability distributions. In 
one (x), a coin was flipped 4 times in 10 successive 
experiments; the mean value is 2.30, the standard deviation is 
1.22. In the other (o), a coin was flipped 4 times in 100 
successive experiments; the mean value is 2.04, the standard 
deviation 1.05. The dashed curve is the theoretical probability 
distribution of Fig. A.1. 

If you do not like flipping coins, you can build a probability machine of the sort shown in Fig. A.3. If the 
machine is level and well made, the probability that a ball bounces to the right or the left on striking the 
next pin is 1/2. The number of successive trials is equal to the number of rows of pins. If you drop 100 
balls through this machine, they will pile up in the bins at the bottom, forming a distribution like the one 
shown in Fig. A.2. Or do the experiments on a computer: ask for a random number uniformly distributed 
between 0 and 1; if the number is less than or equal to 1/2, call it a head; if it is greater than 1/2, call it a 
tail. The data shown in Fig. A.2 were generated in this way. 

The theoretical expectations are more closely met the larger the number of samples. What is the 
likelihood that the deviations between the experimental distributions and the theoretical distribution, 
evident in Fig. A.2, occur by chance? By how much are the mean values of the experimental distributions 
likely to differ from the mean value predicted by the theory? Questions of this kind often are encountered 
in the laboratory. They are dealt with in books on data reduction and error analysis and will not be 
pursued here. 
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Figure A.3. A probability machine of 4 rows. A ball dropped 
on the center pin of the top row bounces to the right or left 
and executes a random walk as it moves from row to row, 
arriving finally at one of the bins at the bottom. The rows and 
bins are numbered n = 1, 2, 3, 4 and k = 0, 1, 2, 3, 4, 
respectively; n is the bounce number and k is the number of 
bounces made to the right. 
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3. THE BINOMIAL DISTRIBUTION

What if we flip a biased coin, with the probability of a head p and the probability of a tail q = 1 - p? The 
probability of a given sequence, e.g., 100010 ..., in which k heads appear in n flips is, by Eq. A.4, pqqqpq 
..., or 

 (A.16) 

There are a total of 2n possible sequences. Only some of these give k heads and n - k tails. Their number 
is 

 (A.17) 

where 0!, whenever it appears in the denominator, is understood to be 1. 

Since any one or another of these sequences will do, the probability that exactly k heads occur in n flips 
is, by Eq. A.2. 

 (A.18) 

This is the binomial distribution. The coefficient  is the binomial coefficient, the number of 
combinations of n things taken k and n - k at a time. You have seen it before in algebra in the binomial 
theorem: 

 (A.19) 

We can use the binomial theorem to show that the binomial distribution is normalized: 

 (A.20) 
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As an example, let's work out the case of 4 flips of an unbiased coin. If p = q = 1/2, then pkqn-k = (1/2)n = 
(1/2)4 = 1/16 for all values of k, and the probabilities P(0;4,1/2), ..., P(4;4,1/2) are equal to the binomial 

coefficients , ... ,  times this factor. Since 

 

and 

 

we obtain the probabilities 1/16, 1/4, 3/8, 1/4, and 1/16, as before. 

The expectation value of k is 

 (A.21) 

To evaluate this, note that the k = 0 term is 0 and that k/k! = 1/(k - 1)!, so that 

 

Next, factor out np: 

 

Finally, change variables by substituting m = k - 1 and s = n - 1: 
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The sum in this expression is the same as the one in Eq. A.20; only the labels have been changed. Thus, 

 (A.22) 

One can evaluate the expectation value of k2 in a similar fashion by two successive changes in variables 
and show that 

 (A.23) 

The variance of k, Eq. A.14, is 

 (A.24) 

and its standard deviation is 

 (A.25) 

An example of the binomial distribution is given in Fig. A.4, which shows the theoretical distribution 
P(k;10,1/6). This is the probability of obtaining a given side k times in 10 throws of a die. 
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Figure A.4. The binomial distribution for n = 10, p = 1/6. The 
mean value is 1.67, the standard deviation 1.18. 
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4. THE GAUSSIAN DISTRIBUTION

In many of the problems dealt with in this book, the number of trials, n, is very large. A small molecule 
undergoing diffusion, for example, steps to the right or left millions of times in a microsecond, not 4 
times in a few seconds, as the ball in the apparatus of Fig. A.3. There are two asymptotic limits of the 
binomial distribution. One, the Gaussian, or normal, distribution, is obtained when the probability of a 
success, p, is finite, i.e., if np ->  as n -> . The other, the Poisson distribution, is obtained if p is very 
small, so small that np remains finite as n -> . 

The derivation of the Gaussian distribution involves the use of Stirling's approximation for the factorials 
of the binomial coefficients: 

 (A.26) 

where e is the base of the natural logarithms. The result is 

 (A.27) 

where µ = <k> = np and  = (<k2> - <k>2)1/2 = (npq)1/2, as before. P(k; µ, ) dk is the probability that k 
will be found between k and k + dk, where dk is infinitesimal. The distribution is continuous rather than 
discrete. Expectation values are found by taking integrals rather than sums. The distribution is symmetric 
about the mean, µ, and its width is determined by . The area of the distribution is 1, so its height is 
inversely proportional to . 

If we define u = (k - µ) / , i.e., plot the distribution with the abscissa in units of  and the origin at µ, 
then 

 (A.28) 

P(u) is called the normal curve of error; it is shown in Fig. A.5. As an exercise, use your tables of 
definite integrals and show that 

 (A.29) 

file:///E|/moe/HTML/Berg/Berg4.html (1 of 2) [11/04/2003 4:46:39 PM]



Probabilities and Probability Distributions - H.C. Berg

 (A.30) 

and 

 (A.31) 

Eq. A.30 can be done by inspection: P(u) is an even function of u, so uP(u) must be an odd function of u. 
The distribution P(u) is normalized, its mean value is 0, and its variance and standard deviation are 1. 

 
Figure A.5. The normal curve of error: the Gaussian 
distribution plotted in units of the standard deviation  with 
its origin at the mean value µ. The area under the curve is 1. 
Half the area falls between u = ± 0.67. 
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5. THE POISSON DISTRIBUTION

As noted above, the Poisson distribution is obtained as an asymptotic limit of the binomial distribution 
when p is very small. The result is 

 (A.32) 

where µ = np, as before, and 0! is understood to be 1. This distribution is determined by one rather than 
two constants:  = (npq)1/2, but q = 1 - p  1, so  = (np)1/2 = µ1/2. The standard deviation is equal to the 
square-root of the mean. The Poisson distribution is discrete: P(0; µ) = e-µ is the probability of 0 
successes, given that the mean number of successes is µ, etc. The probability of 1 or more successes is 1 - 
P(0; µ) = 1 - e-µ. The distribution P(k; 1.67) is shown in Fig. A.6. 

 
Figure A.6. The Poisson distribution P(k;1.67). The mean 
value is 1.67, the standard deviation 1.29. The curve is similar 
to the binomial distribution shown in Fig. A.4, but it is 
defined for values of k > 10. For example, P(20;1.67) = 2.2 x 
10-15. 
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