4.3 Luminosity
The principal energy source of PGs is the release of binding energy in
nuclear reactions at the centres of hot young stars. A crude estimate of
the luminosity of a young galaxy can be obtained by simply considering the
energy required to convert a fraction Z of hydrogen into metals, based
on the metalicities of old stars in the Milky Way, for which
Z 0.01. A
PG of mass 1011 M
, with a star-forming phase
lasting 1 Gyr (equivalent to a SFR of about 100 M
yr-1) has a net bolometric luminosity
6 x 1037
W. This makes PGs 10-100 times brighter than
nearby bright spiral galaxies in which stars are being formed at a rate
of a few M
yr-1. At z = 5 this corresponds to an
optical (4500 Å) flux of 10-18 W m-2 - at least
100 times fainter than the terrestrial night-sky background at
these wavelengths; while in the near-infrared (1-5 µm) the Earth's
atmosphere is ~ 1000 times brighter than at optical wavelengths,
making PGs at least 105 fainter than the sky! For these
reasons PGs are
unlikely to be masquerading in existing catalogues of bright galaxies and can
only hope to be detected by the largest telescopes.
4.4 Spectral Energy Distribution
In recent years significant progress has been made in reliably modelling
the evolution of stellar populations in galaxies (e.g.
Charlot et
al. 1996).
The basic approach, known as ``isochrone synthesis'',
involves computing the evolutionary tracks of stellar populations for an
instantaneous star burst (i.e. with no age dispersion) incorporating
a finite rate of star formation. In this way the distribution of stars of
various masses and ages can be modelled smoothly with time and isochrone
synthesis models are found to reproduce well the observations of stellar
populations in nearby galaxies if they formed more than a few Gyrs ago.
This technique has been widely used to predict the major spectral
characteristics of young galaxies
1 Gyr after formation. Figure 3
shows the resultant spectral energy distributions for a galaxy forming
stars at a rate of 1 M
yr-1 observed after
ellapsed periods ranging from 4 x 107 yrs to 1010
yrs. The
essential characteristic of Figure 3 is that
genuinely young
galaxies radiate an almost constant energy density from 0.1-2.0
µm. The rise in the relative emission at longer wavelengths as the
stellar population ages is due to the
death of massive hot stars, whose lifetime (t) varies with mass (M) as
t
(M/M
)-2 x
1010 yrs, which evolve into
cooler red giant stars and supernovae. One important consequence of the flat
spectral energy distribution
is that the measured optical or near-infrared flux of a PG is a direct
measure of the instantaneous SFR within the system.
![]() |
Figure 3. The spectral energy distribution expressed as
power per unit frequency interval computed from stellar
population synthesis code (see text) for a galaxy with mass
1011 M![]() ![]() ![]() |
In addition to the stellar continuum emission, young star forming regions
within the Milky Way and other nearby galaxies exhibit intense line
radiation, principally the hydrogen recombination lines of Lyman at
1215 Å and the Balmer line H
at 6562 Å. The Lyman
line is shown in absorption in Figure 3, but in
star-forming regions these
lines are seen in emission associated with the ionised hydrogen in the
surrounding gas which constitutes
the star-forming nebulae. The intensity of these lines is a measure of the
ambient ionizing UV flux from young hot stars and can also be used as a
tracer of star formation to estimate the SFR in an
independent way from the spectral energy distribution
(Kennicutt et
al. 1987).
In conclusion, although predictions are sketchy, there are certain characteristics which PGs are likely to have that one can highlight: PGs should not be rare objects and can be identified in the optical or near-infrared by their flat continuum emission or intense line radiation. On the other hand, despite being intrinsically luminous objects, at least compared to normal galaxies, the likely formation redshift of PGs dictates that they are almost certainly faint and possibly of low-surface brightness, making them very difficult to detect.