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STATISTICS AND THE TREATMENT OF 
EXPERIMENTAL DATA

W. R. Leo

Statistics plays an essential part in all the sciences as it is the tool which allows the scientist to treat the 
uncertainties inherent in all measured data and to eventually draw conclusions from the results. For the 
experimentalist, it is also a design and planning tool. Indeed, before performing any measurement, one 
must consider the tolerances required of the apparatus, the measuring times involved, etc., as a function 
of the desired precision on the result. Such an analysis is essential in order to determine its feasibility in 
material, time and cost. 

Statistics, of course, is a subject unto itself and it is neither fitting nor possible to cover all the principles 
and techniques in a book of this type. We have therefore limited ourselves to those topics most relevant 
for experimental nuclear and particle physics. Nevertheless, given the (often underestimated) importance 
of statistics we shall try to give some view of the general underlying principles along with examples, 
rather than simple "recipes" or "rules of thumb". This hopefully will be more useful to the physicist in the 
long run, if only because it stimulates him to look further. We assume here an elementary knowledge of 
probability and combinatorial theory. 
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1. Characteristics of Probability Distributions 

Statistics deals with random processes. The outcomes of such processes, for example, the throwing of a 
die or the number of disintegrations in a particular radioactive source in a period of time T, fluctuate 
from trial to trial such that it is impossible to predict with certainty what the result will be for any given 
trial. Random processes are described, instead, by a probability density function which gives the 
expected frequency of occurrence for each possible outcome. More formally, the outcome of a random 
process is represented by a random variable x, which ranges over all admissible values in the process. If 
the process is the throwing of a single die, for instance, then x may take on the integer values 1 to 6. 
Assuming the die is true, the probability of an outcome x is then given by the density function P(x) = 1/6, 
which in this case happens to be the same for all x. The random variable x is then said to be distributed as 
P(x). 

Depending on the process, a random variable may be continuous or discrete. In the first case, it may take 
on a continuous range of values, while in the second only a finite or denumerably infinite number of 
values is allowed. If x is discrete, P(xi) then gives the frequency at each point xi. If x is continuous, 

however, this interpretation is not possible and only probabilities of finding x in finite intervals have 
meaning. The distribution P(x) is then a continuous density such that the probability of finding x between 
the interval x and x + dx is P(x)dx. 
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1.1 Cumulative Distributions 

Very often it is desired to know the probability of finding x between certain limits, e.g, P(x1  x  x2). 

This is given by the cumulative or integral distribution 

 (1) 

where we have assumed P(x) to be continuous. If P(x) is discrete, the integral is replaced by a sum, 

 (2) 

By convention, also, the probability distribution is normalized to 1, i.e., 

 (3) 

if x is continuous or 

 (4) 

if x is discrete. This simply says that the probability of observing one of the possible outcomes in a given 
trial is defined as 1. It follows then that P(xi) or  P(x)dx cannot be greater than 1 or less than 0. 
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1.2 Expectation Values 

An important definition which we will make use of later is the expectation value of a random variable or 
a random variable function. If x is a random variable distributed as P(x), then 

 (5) 

is the expected value of x. The integration in (5) is over all admissible x. This, of course, is just the 
standard notion of an average value. For a discrete variable, (5) becomes a sum 

 (6) 

Similarly, if f(x) is a function of x, then 

 (7) 

is the expected value of f(x). 

To simplify matters in the remainder of this section, we will present results assuming a continuous 
variable. Unless specified otherwise, the discrete case is found by replacing integrals with a summation. 

file:///E|/moe/HTML/Leo/Stats1_2.html [10/21/2003 2:12:08 PM]



Statistics and the Treatment of Experimental Data

   

1.3 Distribution Moments. The Mean and Variance 

A probability distribution may be characterized by its moments. The rth moment of x about some fixed 
point x0 is defined as the expectation value of (x - x0)r where r is an integer. An analogy may be drawn 

here with the moments of a mass distribution in mechanics. In such a case, P(x) plays the role of the mass 
density. 

In practice, only the first two moments are of importance. And, indeed, many problems are solved with 
only a knowledge of these two quantities. The most important is the first moment about zero, 

 (8) 

This can be recognized as simply the mean or average of x. If the analogy with mass moments is made, 
the mean thus represents the ``center of mass'' of the probability distribution. 

It is very important here to distinguish the mean as defined in (Equation 8) from the mean which one 
calculates from a set of repeated measurements. The first refers to the theoretical mean, as calculated 
from the theoretical distribution, while the latter is an experimental mean taken from a sample. As we 
shall see in Sect. 4.2, the sample mean is an estimate of the theoretical mean. Throughout the remainder 
of this chapter, we shall always use the Greek letter µ todesignate the theoretical mean. 

The second characteristic quantity is the second moment about the mean (also known as the second 
central moment), 

 (9) 

This is commonly called the variance and is denoted as 2. The square root of the variance, , is known 
as the standard deviation. As can be seen from (9), the variance is the average squared deviation of x 
from the mean. The standard deviation, , thus measures the dispersion or width of the distribution and 
gives us an idea of how much the random variable x fluctuates about its mean. Like µ, (9) is the 
theoretical variance and should be distinguished from the sample variance to be discussed in Section 4. 

Further moments, of course, may also be calculated, such as the third moment about the mean. This is 
known as the skewness and it gives a measure of the distribution's symmetry or asymmetry. It is 
employed on rare occasions, but very little information is generally gained from this moment or any of 
the following ones. 
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1.4 The Covariance 

Thus far we have only considered the simple case of single variable probability distributions. In the more 
general case, the outcomes of a process may be characterized by several random variables, x, y, z..... The 
process is then described by a multivariate distribution P(x, y, z, . . .). An example is a playing card 
which is described by two variables: its denomination and its suit. 

For multivariate distributions, the mean and variance of each separate random variable x, y,... are defined 
in the same way as before (except that the integration is over all variables). In addition a third important 
quantity must be defined: 

 (10) 

where µx, and µy are the means of x and y respectively. Equation (10) is known as the covariance of x 

and y and it is defined for each pair of variables in the probability density. Thus, if we have a trivariate 
distribution P(x, y, z), there are three covariances: cov(x, y), cov(x, z) and cov(y, z). 

The covariance is a measure of the linear correlation between the two variables. This is more often 
expressed as the correlation coefficient which is defined as 

 (11) 

where x and y are the standard deviations of x and y. The correlation coefficient varies between -1 and 

+1 where the sign indicates the sense of the correlation. If the variables are perfectly correlated linearly, 
then | | = 1. If the variables are independent (1) then  = 0. Care must be taken with the converse of this 
last statement, however. If  is found to be 0, then x and y can only be said to be linearly independent. It 
can be shown, in fact, that if x and y are related parabolically, (e.g., y = x2), then  = 0. 

1 The mathematical definition of independence is that the joint probability is a separable function, i.e., 
P(x, y) = P1(x) P2(y) 
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2. SOME COMMON PROBABILITY DISTRIBUTIONS

While there are many different probability distributions, a large number of problems in physics are 
described or can be approximately described by a surprisingly small group of theoretical distributions. 
Three, in particular, the binomial, Poisson and Gaussian distributions find a remarkably large domain of 
application. Our aim in this section is to briefly survey these distributions and describe some of their 
mathematical properties. 
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2.1 The Binomial Distribution 

Many problems involve repeated, independent trials of a process in which the outcome of a single trial is 
dichotomous, for example, yes or no, heads or tails, hit or miss, etc. Examples are the tossing of a coin N 
times, the number of boys born to a group of N expectant mothers, or the number of hits scored after 
randomly throwing N balls at a small, fixed target. 

More generally, let us designate the two possible outcomes as success and failure. We would then like to 
know the probability of r successes (or failures) in N tries regardless of the order in which they occur. If 
we assume that the probability of success does not change from one trial to the next, then this probability 
is given by the binomial distribution, 

 (12) 

where p is the probability of success in a single trial. 

Equation (12) is a discrete distribution and Fig. 1 shows its form for various values of N and p. Using (8) 
and (9), the mean and variance many be calculated to yield 

 (13) 
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Fig. 1. Binomial distribution 
for various values of N and p. 

 (14) 

It can be shown that (12) is normalized by summing P(r) from r = 0 to r = N. Here it will be noticed that 
P(r) is nothing but the rth term of the binomial expansion (whence the name!), so that 

 (15) 

Finding the cumulative distribution between limits other than 0 and N is somewhat more complicated, 
however, as no analytic form for the sum of terms exist. If there are not too many, the individual terms 
may be calculated separately and then summed. Otherwise, tabulations of the cumulative binomial 
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distribution may be used. 

In the limit of large N and not too small p, the binomial distribution may be approximated by a Gaussian 
distribution with mean and variance given by (13) and (14). For practical calculations, using a Gaussian 
is usually a good approximation when N is greater than about 30 and p  0.05. It is necessary, of course, 
to ignore the discrete character of the binomial distribution when using this approximation (although 
there are corrections for this). If p is small (  0.05), such that the product Np is finite, then the binomial 
distribution is approximated by the Poisson distribution discussed in the next section. 
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2.2 The Poisson Distribution 

The Poisson distribution occurs as the limiting form of the binomial distribution when the probability p -
> 0 and the number of trials N -> , such that the mean µ = Np, remains finite. The probability of 
observing r events in this limit then reduces to 

 (16) 

Like (12), the Poisson distribution is discrete. It essentially describes processes for which the single trial 
probability of success is very small but in which the number of trials is so large that there is nevertheless 
a reasonable rate of events. Two important examples of such processes are radioactive decay and particle 
reactions. 

To take a concrete example, consider a typical radioactive source such as 137Cs which has a half-life of 
27 years. The probability per unit time for a single nucleus to decay is then  = ln 2/27 = 0.026/year = 
8.2 x 10-10 s-1. A small probability indeed! However, even a 1 µg sample of 137Cs will contain about 
1015 nuclei. Since each nucleus constitutes a trial, the mean number of decays from the sample will be µ 
= Np = 8.2 x 105 decays/s. This satisfies the limiting conditions described above, so that the probability 
of observing r decays is given by (16). Similar arguments can also be made for particle scattering. 

Note that in (16), only the mean appears so that knowledge of N and p is not always necessary. This is 
the usual case in experiments involving radioactive processes or particle reactions where the mean 
counting rate is known rather than the number of nuclei or particles in the beam. In many problems also, 
the mean per unit dimension , e.g. the number of reactions per second, is specified and it is desired to 
know the probability of observing r events in t units, for example, t = 3 s. An important point to note is 
that the mean in (16) refers to the mean number in t units. Thus, µ = t. In these types of problems we 
can rewrite (16) as 

 (17) 
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Fig. 2. Poisson distribution for various values of µ. 

An important feature of the Poisson distribution is that it depends on only one parameter: µ. [That µ is 
indeed the mean can be verified by using (8)]. From (9), we also the find that 

 (18) 

that is the variance of the Poisson distribution is equal to the mean. The standard deviation is then  = 

µ. This explains the use of the square roots in counting experiments. 

Figure 2 plots the Poisson distribution for various values of µ. Note that the distribution is not symmetric. 
The peak or maximum of the distribution does not, therefore, correspond to the mean. However, as µ 
becomes large, the distribution becomes more and more symmetric and approaches a Gaussian form. For 
µ  20, a Gaussian distribution with mean µ and variance 2 = µ, in fact, becomes a relatively good 
approximation and can be used in place of the Poisson for numerical calculations. Again, one must 
neglect the fact that we are replacing a discrete distribution by a continuous one. 
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2.3 The Gaussian or Normal Distribution 

The Gaussian or normal distribution plays a central role in all of statistics and is the most ubiquitous distribution 
in all the sciences. Measurement errors, and in particular, instrumental errors are generally described by this 
probability distribution. Moreover, even in cases where its application is not strictly correct, the Gaussian often 
provides a good approximation to the true governing distribution. 

The Gaussian is a continuous, symmetric distribution whose density is given by 

 (19) 

The two parameters µ and 2 can be shown to correspond to the mean and variance of the distribution by applying 
(8) and (9). 

 
Fig. 3. The Gaussian distribution for various . The standard 
deviation determines the width of the distribution. 

The shape of the Gaussian is shown in Fig. 3 which illustrates this distribution for various . The significance of  
as a measure of the distribution width is clearly seen. As can be calculated from (19), the standard deviation 
corresponds to the half width of the peak at about 60% of the full height. In some applications, however, the full 
width at half maximum (FWHM) is often used instead. This is somewhat larger than  and can easily be shown to 
be 

 (20) 

This is illustrated in Fig. 4. In such cases, care should be taken to be clear about which parameter is being used. 
Another width parameter which is also seen in the Literature is the full-width at one-tenth maximum (FWTM). 
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Fig. 4. Relation between the standard deviation a and the full width 
at half-maximum (FWHM). 

The integral distribution for the Gaussian density, unfortunately, cannot be calculated analytically so that one must 
resort to numerical integration. Tables of integral values are readily found as well. These are tabulated in terms of 
a reduced Gaussian distribution with µ = 0 and 2 = 1. All Gaussian distributions may be transformed to this 
reduced form by making the variable transformation 

 (21) 

where µ and  are the mean and standard deviation of the original distribution. It is a trivial matter then to verify 
that z is distributed as a reduced Gaussian. 

 
Fig. 5. The area contained between the limits µ ± 1 , µ ± 2  and µ ± 3  in a Gaussian distribution. 

An important practical note is the area under the Gaussian between integral intervals of . This is shown in Fig. 5. 
These values should be kept in mind when interpreting measurement errors. The presentation of a result as x ±  
signifies, in fact, that the true value has  68% probability of lying between the limits x -  and x +  or a 95% 
probability of lying between x - 2  and x + 2 , etc. Note that for a 1  interval, there is almost a 1/3 probability that 
the true value is outside these limits! If two standard deviations are taken, then, the probability of being outside is 
only  5%, etc. 
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2.4 The Chi-Square Distribution 

As we will see in Section 7, the chi-square distribution is particularly useful for testing the goodness-of-
fit of theoretical formulae to experimental data. Mathematically, the chi-square is defined in the 
following manner. Suppose we have a set of n independent random variables, xi, distributed as Gaussian 

densities with theoretical means µi and standard deviations i, respectively. The sum 

 (22) 

is then known as the chi-square. This is more often designated by the Greek letter 2; however, to avoid 
confusion due to the exponent we will use u = 2 instead. Since xi is a random variable, u is also a 

random variable and it can be shown to follow the distribution 

 (23) 

where v is an integer and (v / 2) is the gamma function. The integer v is known as the degrees of freedom 
and is the sole parameter of the distribution. Its value thus determines the form of the distribution. The 
degrees of freedom can be interpreted as a parameter related to the number of independent variables in 
the sum (22). 
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Fig. 6. The chi-square distribution for various values of the 
degree of freedom parameter v. 

Figure 6 plots the chi-square distribution for various values of v. The mean and variance of (23) can also 
be shown to be 

 (24) 

To see what the chi-square represents, let us examine (22) more closely. Ignoring the exponent for a 
moment, each term in the sum is just the deviation of xi from its theoretical mean divided by its expected 

dispersion. The chi-square thus characterizes the fluctuations in the data xi. If indeed the xi are distributed 

as Gaussians with the parameters indicated, then on the average, each ratio should be about 1 and the chi-
square, u = v. For any given set of xi, of course, there will be a fluctuation of u from this mean with a 

probability given by (23). The utility of this distribution is that it can be used to test hypotheses. By 
forming the chi-square between measured data and an assumed theoretical mean, a measure of the 
reasonableness of the fluctuations in the measured data about this hypothetical mean can be obtained. If 
an improbable chi-square value is obtained, one must then begin questioning the theoretical parameters 
used. 
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3. MEASUREMENT ERRORS AND THE MEASUREMENT PROCESS

Measurements of any kind, in any experiment, are always subject to uncertainties or errors, as they are 
more often called. We will argue in this section that the measurement process is, in fact, a random 
process described by an abstract probability distribution whose parameters contain the information 
desired. The results of a measurement are then samples from this distribution which allow an estimate of 
the theoretical parameters. In this view, measurement errors can be seen then as sampling errors. 

Before going into this argument, however, it is first necessary to distinguish between two types of errors: 
systematic and random. 
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3.1 Systematic Errors 

Systematic errors are uncertainties in the bias of the data. A simple example is the zeroing of an 
instrument such as a voltmeter. If the voltmeter is not correctly zeroed before use, then all values 
measured by the voltmeter will be biased, i.e., offset by some constant amount or factor. However, even 
if the utmost care is taken in setting the instrument to zero, one can only say that it has been zeroed to 
within some value. This value may be small, but it sets a limit on the degree of certainty in the 
measurements and thus to the conclusions that can be drawn. 

An important point to be clear about is that a systematic error implies that all measurements in a set of 
data taken with the same instrument are shifted in the same direction by the same amount - in unison. 
This is in sharp contrast to random errors where each individual measurement fluctuates independently of 
the others. Systematic errors, therefore, are usually most important when groups of data points taken 
under the same conditions are being considered. Unfortunately, there is no consistent method by which 
systematic errors may be treated or analyzed. Each experiment must generally be considered individually 
and it is often very difficult just to identify the possible sources let alone estimate the magnitude of the 
error. Our discussion in the remainder of this chapter, therefore, will not be concerned with this topic. 
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3.2 Random Errors 

In contrast to systematic errors, random errors may be handled by the theory of statistics. These 
uncertainties may arise from instrumental imprecisions, and/or, from the inherent statistical nature of the 
phenomena being observed. Statistically, both are treated in the same manner as uncertainties arising 
from the finite sampling of an infinite population of events. The measurement process, as we have 
suggested, is a sampling process much like an opinion poll. The experimenter attempts to determine the 
parameters of a population or distribution too large to measure in its entirety by taking a random sample 
of finite size and using the sample parameters as an estimate of the true values. 

This point of view is most easily seen in measurements of statistical processes, for example, radioactive 
decay, proton-proton scattering, etc. These processes are all governed by the probabilistic laws of 
quantum mechanics, so that the number of disintegrations or scatterings in a given time period is a 
random variable. What is usually of interest in these processes is the mean of the theoretical probability 
distribution. When a measurement of the number of decays or scatterings per unit time is made, a sample 
from this distribution is taken, i.e., the variable x takes on a value x1. Repeated measurements can be 

made to obtain x2, x3, etc. This, of course, is equivalent to tossing a coin or throwing a pair of dice and 

recording the result. From these data, the experimenter may estimate the value of the mean. Since the 
sample is finite, however, there is an uncertainty on the estimate and this represents our measurement 
error. Errors arising from the measurement of inherently random processes are called statistical errors. 

Now consider the measurement of a quantity such as the length of a table or the voltage between two 
electrodes. Here the quantities of interest are well-defined numbers and not random variables. How then 
do these processes fit into the view of measurement as a sampling process? What distribution is being 
sampled? 

To take an example, consider an experiment such as the measurement of the length of a table with say, a 
simple folding ruler. Let us make a set of repeated measurements reading the ruler as accurately as 
possible. (The reader can try this himself!). It will then be noticed that the values fluctuate about and 
indeed, if we plot the frequency of the results in the form of a histogram, we see the outlines of a definite 
distribution beginning to take form. The differing values are the result of many small factors which are 
not controlled by the experimenter and which may change from one measurement to the next, for 
example, play in the mechanical joints, contractions and expansions due to temperature changes, failure 
of the experimenter to place the zero at exactly the same point each time, etc. These are all sources of 
instrumental error, where the term instrument also includes the observer! The more these factors are 
taken under control, of course, the smaller will be the magnitude of the fluctuations. The instrument is 
then said to be more precise. In the limit of an ideal, perfect instrument, the distribution then becomes a -
function centered at the true value of the measured quantity. In reality, of course, such is never the case. 
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The measurement of a fixed quantity, therefore, involves taking a sample from an abstract, theoretical 
distribution determined by the imprecisions of the instrument. In almost all cases of instrumental errors, it 
can be argued that the distribution is Gaussian. Assuming no systematic error, the mean of the Gaussian 
should then be equal to the true value of the quantity being measured and the standard deviation 
proportional to the precision of the instrument. 

Let us now see how sampled data are used to estimate the true parameters. 
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4. SAMPLING AND PARAMETER ESTIMATION. THE MAXIMUM 
LIKELIHOOD METHOD

Sampling is the experimental method by which information can be obtained about the parameters of an 
unknown distribution. As is well known from the debate over opinion polls, it is important to have a 
representative and unbiased sample. For the experimentalist, this means not rejecting data because they 
do not ``look right''. The rejection of data, in fact, is something to be avoided unless there are 
overpowering reasons for doing so. 

Given a data sample, one would then like to have a method for determining the best value of the true 
parameters from the data. The best value here is that which minimizes the variance between the estimate 
and the true value. In statistics, this is known as estimation. The estimation problem consists of two parts: 
(1) determining the best estimate and (2) determining the uncertainty on the estimate. There are a number 
of different principles which yield formulae for combining data to obtain a best estimate. However, the 
most widely accepted method and the one most applicable to our purposes is the principle of maximum 
likelihood. We shall very briefly demonstrate this principle in the following sections in order to give a 
feeling for how the results are derived. The reader interested in more detail or in some of the other 
methods should consult some of the standard texts given in the bibliography. Before treating this topic, 
however, we will first define a few terms. 
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4.1 Sample Moments 

Let x1, x2, x3, . . . . ., xn be a sample of size n from a distribution whose theoretical mean is µ and variance 
2. This is known as the sample population. The sample mean,  is then defined as 

 (25) 

which is just the arithmetic average of the sample. In the limit n -> , this can be shown to approach the 
theoretical mean, 

 (26) 

Similarly, the sample variance, which we denote by s2 is 

 (27) 

which is the average of the squared deviations. In the limit n -> , this also approaches the theoretical 
variance 2. 

In the case of multivariate samples, for example, (x1, y1), (x2, y2), . . ., the sample means and variances 

for each variable are calculated as above. In an analogous manner, the sample covariance can be 
calculated by 

 (28) 

In the limit of infinite n, (28), not surprisingly, also approaches the theoretical covariance (10). 
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4.2 The Maximum Likelihood Method 

The method of maximum likelihood is only applicable if the form of the theoretical distribution from 
which the sample is taken is known. For most measurements in physics, this is either the Gaussian or 
Poisson distribution. But, to be more general, suppose we have a sample of n independent observations 
x1, x2, . . . ,xn, from a theoretical distribution f(x | ) where  is the parameter to be estimated. The 

method then consists of calculating the likelihood function, 

 (29) 

which can be recognized as the probability for observing the sequence of values x1, x2, . . ., xn. The 

principle now states that this probability is a maximum for the observed values. Thus, the parameter  
must be such that L is a maximum. If L is a regular function,  can be found by solving the equation, 

 (30) 

If there is more than one parameter, then the partial derivatives of L with respect to each parameter must 
be taken to obtain a system of equations. Depending on the form of L, it may also be easier to maximize 
the logarithm of L rather than L itself. Solving the equation 

 (31) 

then yields results equivalent to (30). The solution, , is known as the maximum likelihood estimator for 
the parameter . In order to distinguish the estimated value from the true value, we have used a caret 
over the parameter to signify it as the estimator. 

It should be realized now that  is also a random variable, since it is a function of the xi. If a second 

sample is taken,  will have a different value and so on. The estimator is thus also described by a 
probability distribution. This leads us to the second half of the estimation problem: What is the error on 

? This is given by the standard deviation of the estimator distribution We can calculate this from the 
likelihood function if we recall that L is just the probability for observing the sampled values x1, x2,. . ., 

xn. Since these values are used to calculate , L is related to the distribution for . Using (9), the variance 

is then 
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 (32) 

This is a general formula, but, unfortunately, only in a few simple cases can an analytic result be 
obtained. An easier, but only approximate method which works in the limit of large numbers, is to 
calculate the inverse second derivative of the log-likelihood function evaluated at the maximum, 

 (33) 

If there is more than one parameter, the matrix of the second derivatives must be formed, i.e., 

 (34) 

The diagonal elements of the inverse matrix then give the approximate variances, 

 (35) 

A technical point which must be noted is that we have assumed that the mean value of  is the theoretical 
. This is a desirable, but not essential property for an estimator, guaranteed by the maximum likelihood 

method only for infinite n. Estimators which have this property are non-biased. We will see one example 
in the following sections in which this is not the case. Equation (32), nevertheless, remains valid for all 

, since the error desired is the deviation from the true mean irrespective of the bias. 

Another useful property of maximum likelihood estimators is invariance under transformations. If u = f(

), then the best estimate of u can be shown to be  = f( ). 

Let us illustrate the method now by applying it to the Poisson and Gaussian distributions. 
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4.3 Estimator for the Poisson Distribution 

Suppose we have n measurements of samples, x1, x2, x3, . . ., xn, from a Poisson distribution with mean µ. 

The likelihood function for this case is then 

 (36) 

To eliminate the product sign, we take the logarithm 

 (37) 

Differentiating and setting the result to zero, we when find 

 (38) 

which yields the solution 

 (39) 

Equation (39), of course, is just the sample mean. This is of no great surprise, but it does confirm the 
often unconscious use of (39). 

The variance of  can be found by using (33); however, in this particular case, we will use a different 
way. From (9) we have the definition 

 (40) 

Applying this to the sample mean and rearranging the terms, we thus have 

 (41) 
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Expanding the square of the sum, we find 

 (42) 

If now the expectation value is taken, the cross term vanishes, so that 

 (43) 

As the reader may have noticed, (43) was derived without reference to the Poisson distribution, so that 
(43) is, in fact, a general result: the variance of the sample mean is given by the variance of the parent 
distribution, whatever it may be, divided by the sample size. 

For a Poisson distribution, 2 = µ, so that the error on the estimated Poisson mean is 

 (44) 

where have substituted the estimated value  for the theoretical µ. 
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4.4 Estimators for the Gaussian Distribution 

For a sample of n points, all taken from the same Gaussian distribution, the likelihood function is 

 (45) 

Once again, taking the logarithm, 

 (46) 

Taking the derivatives with respect to µ and 2 and setting them to 0, we then have 

 (47) 

and 

 (48) 

Solving (47) first yields 

 (49) 

The best estimate of the theoretical mean for a Gaussian is thus the sample mean, which again comes as 
no great surprise. From the general result in (43), the uncertainty on the estimator is thus 

 (50) 

This is usually referred to as the standard error of the mean. Note that the error depends on the sample 
number as one would expect. As n increases, the estimate  becomes more and more precise. When only 
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one measurement is made, n = 1, ( ) reduces to . For a measuring device, a thus represents the 
precision of the instrument. 

For the moment, however,  is still unknown. Solving (48) for 2 yields the estimator 

 (51) 

where we have replaced µ by its solution in (49). This, of course, is just the sample variance. 

For finite values of n, however, the sample variance turns out to be a biased estimator, that is the 
expectation value of s2 does not equal the true value, but is offset from it by a constant factor. It is not 
hard to show, in fact, that E[s2] = 2 - 2 / n = (n - 1) 2 / n. Thus for n very large, s2 approaches the true 
variance as desired; however, for small n, 2 is underestimated by s2 The reason is quite simple: for small 
samples, the occurrence of large values far from the mean is rare, so the sample variance tends to be 
weighted more towards smaller values. For practical use, a somewhat better estimate therefore, would be 
to multiply (51) by the factor n / (n - 1), 

 (52) 

Equation (52) is unbiased, however, it is no longer the best estimate in the sense that its average 
deviation from the true value is somewhat greater than that for (51). The difference is small however, so 
that (52) still provides a good estimate. Equation (52) then is the recommended formula for estimating 
the variance Note that unlike the mean, it is impossible to estimate the standard deviation from one 
measurement because of the (n - 1) term in the denominator. This makes sense, of course, as it quite 
obviously requires more than one point to determine a dispersion! 

The variance of 2 in (52) may also be shown to be 

 (53) 

and the standard deviation of  

 (54) 
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4.5 The Weighted Mean 

We have thus far discussed the estimation of the mean and standard deviation from a series of 
measurements of the same quantity with the same instrument. It often occurs, however, that one must 
combine two or more measurements of the same quantity with differing errors. A simple minded 
procedure would be to take the average of the measurements. This, unfortunately, ignores the fact that 
some measurements are more precise than others and should therefore be given more importance. A 
more valid method would be to weight each measurement in proportion to its error. The maximum 
likelihood method allows us to determine the weighting function to use. 

From a statistics point of view, we have a sample x1, x1, . . , xn, where each value is from a Gaussian 

distribution having the same mean µ but a different standard deviation i. The likelihood function is thus 

the same as (45), but with  replaced by i. Maximizing this we then find the weighted mean 

 (55) 

Thus the weighting factor is the inverse square of the error, i.e., 1 / i
2. This corresponds to our logic as 

the smaller the i, the larger the weight and vice-versa. 

Using (33), the error on the weighted mean can now be shown to be 

 (56) 

Note that if all the i are the same, the weighted mean reduces to the normal formula in (49) and the error 

on the mean to (50). 
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5. EXAMPLES OF APPLICATIONS

5.1 Mean and Error from a Series of Measurements 

Example 1. Consider the simple experiment proposed in Sect. 3.2 to measure the length of an object. 
The following results are from such a measurement: 

17.62 17.62 17.615 17.62 17.61 

17.61 17.62 17.625 17.62 17.6 

17.61 17.615 17.61 17.605 17.61 

What is the best estimate for the length of this object? 

Since the errors in the measurement are instrumental, the measurements are Gaussian distributed. From 
(49), the best estimate for the mean value is then 

 = 17.61533 

while (52) gives the standard deviation 

 = 5.855 x 10-3. 

This can now be used to calculate the standard error of the mean (50), 

( ) =  / 15 = 0.0015. 

The best value for the length of the object is thus 

x = 17.616 ± 0.002. 

Note that the uncertainty on the mean is given by the standard error of the mean and not the standard 
deviation! 
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5.2 Combining Data with Different Errors 

Example 2. It is necessary to use the lifetime of the muon in a calculation. However, in searching 
through the literature, 7 values are found from different experiments: 

2.198 ± 0.001 µs 2.203 ± 0.004 µs 2.202 ± 0.003 µs 

2.197 ± 0.005 µs 2.198 ± 0.002 µs 2.1966 ± 0.0020 µs 

2.1948 ± 0.0010 µs 

What is the best value to use? 

One way to solve this problem is to take the measurement with the smallest error; however, there is no 
reason for ignoring the results of the other measurements. Indeed, even though the other experiments are 
less precise, they still contain valid information on the lifetime of the muon. To take into account all 
available information we must take the weighted mean. This then yields then mean value 

 = 2.19696 

with an error 

 ( ) = 0.00061. 

Note that this value is smaller than the error on any of the individual measurements. The best value for 
the lifetime is thus 

 = 2.1970 ± 0.0006 µs. 
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5.3 Determination of Count Rates and Their Errors 

Example 3. Consider the following series of measurements of the counts per minute from a detector 
viewing a 22Na source, 

2201 2145 2222 2160 2300 

What is the decay rate and its uncertainty? 

Since radioactive decay is described by a Poisson distribution, we use the estimators for this distribution 
to find 

 =  = 2205.6 and 

 ( ) = (  / n) = (2205.6 / 5) = 21. 

The count rate is thus 

Count Rate = (2206 ± 21) counts/mm. 

It is interesting to see what would happen if instead of counting five one-minute periods we had counted 
the total 5 minutes without stopping. We would have then observed a total of 11028 counts. This 
constitutes a sample of n = 1. The mean count rate for 5 minutes is thus 11208 and the error on this,  = 

 11208 = 106. To find the counts per minute, we divide by 5 (see the next section) to obtain 2206 ± 21, 
which is identical to what was found before. Note that the error taken was the square root of the count 
rate in 5 minutes. A common error to be avoided is to first calculate the rate per minute and then take the 
square root of this number. 
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5.4 Null Experiments. Setting Confidence Limits When No Counts Are Observed 

Many experiments in physics test the validity of certain theoretical conservation laws by searching for 
the presence of specific reactions or decays forbidden by these laws. In such measurements, an 
observation is made for a certain amount of time T. Obviously, if one or more events are observed, the 
theoretical law is disproven. However, if no events are observed, the converse cannot be said to be true. 
Instead a limit on the life-time of the reaction or decay is set. 

Let us assume therefore that the process has some mean reaction rate . Then the probability for 
observing no counts in a time period T is 

 (57) 

This, now, can also be interpreted as the probability distribution for  when no counts are observed in a 
period T. We can now ask the question: What is the probability that  is less 0? From (1), 

 (58) 

where we have normalized (57) with the extra factor T. This probability is known as the confidence level 
for the interval between 0 to 0. To make a strong statement we can choose a high confidence level (CL), 

for example, 90%. Setting (58) equal to this probability then gives us the value of 0, 

 (59) 

For a given confidence level, the corresponding interval is, in general, not unique and one can find other 
intervals which yield the same integral probability. For example, it might be possible to integrate (57) 
from some lower limit ' to infinity and still obtain the same area under the curve. The probability that 
the true  is greater than ' is then also 90%. As a general rule, however, one should take those limits 
which cover the smallest range in . 

Example 4. A 50 g sample of 82Se is observed for 100 days for neutrinoless double beta decay, a 
reaction normally forbidden by lepton conservation. However, current theories suggest that this might 
occur. The apparatus has a detection efficiency of 20%. No events with the correct signature for this 
decay are observed. Set an upper limit on the lifetime for this decay mode. 
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Choosing a confidence limit of 90%, (59) yields 

  0 = -1 / (100 x 0.2) ln (1 - 0.9) = 0.115 day-1, 

where we have corrected for the 20% efficiency of the detector. This limit must now be translated into a 
lifetime per nucleus. For 50 g, the total number of nuclei is 

N = (Na / 82) x 50 = 3.67 x 1023, 

which implies a limit on the decay rate per nucleus of 

  0.115 / (3.67 x 1023) = 3.13 x 10-25 day-1. 

The lifetime is just the inverse of  which yields 

  8.75 x 1021 years   90% CL, 

where we have converted the units to years. Thus, neutrinoless double beta decay may exist but it is 
certainly a rare process! 
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5.5 Distribution of Time Intervals Between Counts 

A distribution which we will make use of later is the distribution of time intervals between events from a 
random source. Suppose we observe a radioactive source with a mean rate . The probability of 
observing no counts in a period T is then given by (57). In a manner similar to Section 5.4, we can 
interpret (57) as the probability density for the time interval T during which no counts are observed. 
Normalizing (57), we obtain the distribution 

 (60) 

for the time T between counts. Equation (60) is just an exponential distribution and can, in fact, be 
measured. 
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6. PROPAGATION OF ERRORS

We have seen in the preceding sections how to calculate the errors on directly measured quantities. Very 
often, however, it is necessary to calculate other quantities from these data. Clearly, the calculated result 
will then contain an uncertainty which is carried over from the measured data. 

To see how the errors are propagated, consider a quantity u = f(x, y) where x and y are quantities having 
errors x and y, respectively. To simplify the algebra, we only consider a function of two variables here; 

however, the extension to more variables will be obvious. We would like then to calculate the standard 
deviation u as a function of x and y. The variance u

2 can be defined as 

 (61) 

To first order, the mean  may be approximated by f( , ). This can be shown by expanding f(x, y) 
about ( , ) Now, to express the deviation of u in terms of the deviations in x and y, let us expand (u - 

) to first order 

 (62) 

where the partial derivatives are evaluated at the mean values. Squaring (62) and substituting into (61) 
then yields 

 (63) 

Now taking the expectation value of each term separately and making use of the definitions (8, 9) and 
(10), we find 

 (64) 

The errors therefore are added quadratically with a modifying term due to the covariance. Depending on 
its sign and magnitude, the covariance can increase or decrease the errors by dramatic amounts. In 
general most measurements in physics experiments are independent or should be arranged so that the 
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covariance will be zero. Equation (64) then reduces to a simple sum of squares. Where correlations can 
arise, however, is when two or more parameters are extracted from the same set of measured data. While 
the raw data points are independent, the parameters will generally be correlated. One common example 
are parameters resulting from a fit. The correlations can be calculated in the fitting procedure and all 
good computer fitting programs should supply this information. An example is given in Section 7.2. If 
these parameters are used in a calculation, the correlation must be taken into account. A second example 
of this type which might have occurred to the reader is the estimation of the mean and variance from a set 
of data. Fortunately, it can be proved that the estimators (49) and (52) are statistically independent so that 
 = 0! 
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6.1 Examples 

As a first example let us derive the formulas for the sum, difference, product and ratio of two quantities x 
and y with errors x and y. 

i.  Error of a Sum: u = x + y 

 (65) 

ii.  Error of a Difference: u = x - y 

 (66) 

If the covariance is 0, the errors on both a sum and difference then reduce to the same sum of squares. 
The relative error, u/u, however, is much larger for the case of a difference since u is smaller. This 

illustrates the disadvantage of taking differences between two numbers with errors. If possible, therefore, 
a difference should always be directly measured rather than calculated from two measurements! 

iii.  Error of a Product: u = xy 

 

Dividing the left side by u2 and the right side by x2 y2, 

 (67) 

iv.  Error of a Ratio: u = x/y 

 

Dividing both sides by u2 as in (iii), we find 
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 (68) 

which, with the exception of the sign of the covariance term is identical to the formula for a product. 
Equation (68) is generally valid when the relative errors are not too large. For ratios of small numbers, 
however, (68) is inapplicable and some additional considerations are required. This is treated in detail by 
James and Roos [Ref. 1]. 

Example 5. The classical method for measuring the polarization of a particle such as a proton or neutron 
is to scatter it from a suitable analyzing target and to measure the asymmetry in the scattered particle 
distribution. One can, for example, count the number of particles scattered to the left of the beam at 
certain angle and to the right of the beam at the same corresponding angle. If R is the number scattered to 
the right and L the number to the left, the asymmetry is then given by 

 

Calculate the error on  as a function of the counts R and L. 

This is a straight forward application of (64). Taking the derivatives of , we thus find 

 

 

where the total number of counts Ntot = R + L. The error is thus 

 

The covariance is obviously 0 here since the measurements are independent. The errors on R and L are 
now given by the Poisson distribution, so that R

2 = R and L
2 = L. Substituting into the above, then 

yields 
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If the asymmetry is small such that R  L  Ntot / 2, we have the result that 
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7. CURVE FITTING

In many experiments, the functional relation between two or more variables describing a physical 
process, y = f(x1, x2, ...), is investigated by measuring the value of y for various of x1, x2, . . .It is then 

desired to find the parameters of a theoretical curve which best describe these points. For example, to 
determine the lifetime of a certain radioactive source, measurements of the count rates, N1, N2, . . ., Nn, at 

various times, t1, t2, . . . , t1, could be made and the data fitted to the expression 

 (69) 

Since the count rate is subject to statistical fluctuations, the values Ni will have uncertainties i = Ni 

and will not all lie along a smooth curve. What then is the best curve or equivalently, the best values for 
 and N0 and how do we determine them? The method most useful for this is the method of least 

squares. 
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7.1 The Least Squares Method 

Let us suppose that measurements at n points, xi, are made of the variable yi with an error i (i = 1, 2, . . ., 

n), and that it is desired to fit a function f(x; a1, a1, . . ., am) to these data where a1, a1, . . ., am, are 

unknown parameters to be determined. Of course, the number of points must be greater than the number 
of parameters. The method of least squares states that the best values of aj are those for which the sum 

 (70) 

is a minimum. Examining (70) we can see that this is just the sum of the squared deviations of the data 
points from the curve f(xi) weighted by the respective errors on yi. The reader might also recognize this 

as the chi-square in (22). for this reason, the method is also sometimes referred to as chi-square 
minimization. Strictly speaking this is not quite correct as yi must be Gaussian distributed with mean f(xi; 

aj) and variance i
2 in order for S to be a true chi-square. However, as this is almost always the case for 

measurements in physics, this is a valid hypothesis most of the time. The least squares method, however, 
is totally general and does not require knowledge of the parent distribution. If the parent distribution is 
known the method of maximum likelihood may also be used. In the case of Gaussian distributed errors 
this yields identical results. 

To find the values of aj, one must now solve the system of equations 

 (71) 

Depending on the function f(x), (71) may or may not yield on analytic solution. In general, numerical 
methods requiring a computer must be used to minimize S. 

Assuming we have the best values for aj, it is necessary to estimate the errors on the parameters. For this, 

we form the so-called covariance or error matrix, Vij, 

 (72) 

where the second derivative is evaluated at the minimum. (Note the second derivatives form the inverse 
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of the error matrix). The diagonal elements Vij can then be shown to be the variances for ai, while the off-

diagonal elements Vij represent the covariances between ai and aj. Thus, 

 (73) 

and so on. 
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7.2 Linear Fits. The Straight Line 

In the case of functions linear in their parameters aj, i.e., there are no terms which are products or ratios 

of different aj, (71) can be solved analytically. Let us illustrate this for the case of a straight line 

 (74) 

where a and b are the parameters to be determined. Forming S, we find 

 (75) 

Taking the partial derivatives with respect to a and b, we then have the equations 

 (76) 

To simplify the notation, let us define the terms 

 (77) 

Using these definitions, (76) becomes 

 (78) 
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This then leads to the solution, 

 (79) 

Our work is not complete, however, as the errors on a and b must also be determined. Forming the 
inverse error matrix, we then have 

 where (80) 

 

Inverting (80), we find 

 (81) 

so that 

 (82) 

To complete the process, now, it is necessary to also have an idea of the quality of the fit. Do the data, in 
fact, correspond to the function f(x) we have assumed? This can be tested by means of the chi-square. 
This is just the value of S at the minimum. Recalling Section 2.4, we saw that if the data correspond to 
the function and the deviations are Gaussian, S should be expected to follow a chi-square distribution 
with mean value equal to the degrees of freedom, . In the above problem, there are n independent data 
points from which m parameters are extracted. The degrees of freedom is thus  = n - m. In the case of a 
linear fit, m = 2, so that  = n - 2. We thus expect S to be close to  = n - 2 if the fit is good. A quick and 
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easy test is to form the reduced chi-square 

 (83) 

which should be close to 1 for a good fit. 

A more rigorous test is to look at the probability of obtaining a 2 value greater than S, i.e., P( 2  S). 
This requires integrating the chi-square distribution or using cumulative distribution tables. In general, if 
P( 2  S) is greater than 5%, the fit can be accepted. Beyond this point, some questions must be asked. 

An equally important point to consider is when S is very small. This implies that the points are not 
fluctuating enough. Barring falsified data, the most likely cause is an overestimation of the errors on the 
data points, if the reader will recall, the error bars represent a 1  deviation, so that about 1/3 of the data 
points should, in fact, be expected to fall outside the fit! 

Example 6. Find the best straight line through the following measured points 

x 0 1 2 3 4 5 

y 0.92 4.15 9.78 14.46 17.26 21.90 

 0.5 1.0 0.75 1.25 1.0 1.5 

Applying (75) to (82), we find 

a = 4.227 b = 0.878 

(a) = 0.044 (b) = 0.203 and 
cov(a, b) = - 0.0629. 

To test the goodness-of-fit, we must look at the chi-square 

2 = 2.078 

for 4 degrees of freedom. Forming the reduced chi-square, 2 /   0.5, we can see already that his is a 
good fit. If we calculate the probability P( 2 > 2.07) for 4 degrees of freedom, we find P  97.5% which 
is well within acceptable limits. 

Example 7. For certain nonlinear functions, a linearization may be affected so that the method of linear 

file:///E|/moe/HTML/Leo/Stats7_2.html (3 of 5) [10/21/2003 2:12:19 PM]



Statistics and the Treatment of Experimental Data

least squares becomes applicable. One case is the example of the exponential, (69), which we gave at the 
beginning of this section. Consider a decaying radioactive source whose activity is measured at intervals 
of 15 seconds. The total counts during each period are given below. 

t [s] 1 15 30 45 60 75 90 105 120 135 

N [cts] 106 80 98 75 74 73 49 38 37 22 

What is the lifetime for this source? 

The obvious procedure is to fit (69) to these data in order to determine . Equation (69), of course, is 
nonlinear, however it can be linearized by taking the logarithm of both sides. This then yields 

 

Setting y = ln N, a = -1/  and b = ln N0, we see that this is just a straight line, so that our linear least-

squares procedure can be used. One point which we must be careful about, however, is the errors. The 

statistical errors on N, of course, are Poissonian, so that (N) = N. In the fit, however, it is the 
logarithm of N which is being used. The errors must therefore be transformed using the propagation of 
errors formula; we then have 

 

Using (75) to (82) now, we find 

a = - 1/  = - 0.008999 (a) = 0.001 

b = ln N0 = 4.721 (b) = 0.064. 

The lifetime is thus 

 = 111 ± 12 s. 

The chi-square for this fit is 2 = 15.6 with 8 degrees of freedom. The reduced chi-square is thus 15.6/8 
 1.96, which is somewhat high. If we calculate the probability P( 2 > 15)  0.05, however, we find 

that the fit is just acceptable. The data and the best straight line are sketched in Fig. 7 on a semi-log plot. 
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While the above fit is acceptable, the relatively large chi-square should, nevertheless, prompt some 
questions. For example, in the treatment above, background counts were ignored. An improvement in our 
fit might therefore be obtained if we took this into account. If we assume a constant background, then the 
equation to fit would be 

N(t) = N0 exp(-t / ) + C. 

 
Fig. 7. Fit to data of Example 7. Note that the error bars of 
about 1/3 of the points do not touch the fitted line. This is 
consistent with the Gaussian nature of the measurements. 
Since the region defined by the errors bars (± 1 ) comprises 
68% of the Gaussian distribution (see Fig. 5), there is a 32% 
chance that a measurement will exceed these limits! 

Another hypothesis could be that the source has more than one decay component in which case the 
function to fit would be a sum of exponentials. These forms unfortunately cannot be linearized as above 
and recourse must be made to nonlinear methods. In the special case described above, a non-iterative 
procedure [Refs: 2, 3, 4, 5, 6] exists which may also be helpful. 
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7.3 Linear Fits When Both Variables Have Errors 

In the previous examples, it was assumed that the independent variables xi were completely free of 

errors. Strictly speaking, of course, this is never the case, although in many problems the errors on x are 
small with respect to those on y so that they may be neglected. In cases where the errors on both 
variables are comparable, however, ignoring the errors on x leads to incorrect parameters and an 
underestimation of their errors. For these problems the effective variance method may be used. Without 
deriving the result which is discussed by Lybanon [Ref. 7] and Orear [Ref. 8] for Gaussian distributed 

errors, the method consists of simply replacing the variance i
2 in (70) by 

 (84) 

where x and y, are the errors on x and y respectively. Since the derivative is normally a function of the 

parameters aj, S is nonlinear and numerical methods must be used to minimize S. 
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7.4 Nonlinear Fits 

As we have already mentioned, nonlinear fits generally require a numerical procedure for minimizing S. 
Function minimization or maximization (2) is a problem in itself and a number of methods have been 
developed for this purpose. However, no one method can be said to be applicable to all functions, and, 
indeed, the problem often is to find the right method for the function or functions in question. A 
discussion of the different methods available, of course, is largely outside the scope of this book. 
However, it is nevertheless worthwhile to briefly survey the most used methods so as to provide the 
reader with a basis for more detailed study and an idea of some of the problems to be expected. For 
practical purposes, a computer is necessary and we strongly advise the reader to find a ready-made 
program rather than attempt to write it himself. More detailed discussions may be found in [Refs: 9, 10, 
11]. 

Function Minimization Techniques. Numerical minimization methods are generally iterative in nature, 
i.e., repeated calculations are made while varying the parameters in some way, until the desired 
minimum is reached. The criteria for selecting a method, therefore, are speed and stability against 
divergences. In general, the methods can be classified into two broad categories: grid searches and 
gradient methods. 

The grid methods are the simplest. The most elementary procedure is to form a grid of equally spaced 
points in the variables of interest and evaluate the function at each of these points. The point with the 
smallest value is then the approximate minimum. Thus, if F(x) is the function to minimize, we would 
evaluate F at x0, x0 + x, x0 + 2 x, etc. and choose the point x' for which F is smallest. The size of the grid 

step, x, depends on the accuracy desired. This method, of course, can only be used over a finite range of 
x and in cases where x ranges over infinity it is necessary to have an approximate idea of where the 
minimum is. Several ranges may also be tried. 

The elementary grid method is intrinsically stable, but it is quite obviously inefficient and time 
consuming. Indeed, in more than one dimension, the number of function evaluations becomes 
prohibitively large even for a computer! (In contrast to the simple grid method is the Monte Carlo or 
random search. Instead of equally spaced points, random points are generated according to some 
distribution, e.g., a uniform density.) 

More efficient grid searches make use of variable stepping methods so as to reduce the number of 
evaluations while converging onto the minimum more rapidly. A relatively recent technique is the 
simplex method [Ref. 12]. A simplex is the simplest geometrical figure in n dimensions having n + 1 
vertices. In n = 2 dimensions, for example, the simplex is a triangle while in n = 3 dimensions, the 
simplex is a tetrahedron, etc. The method takes on the name simplex because it uses n + 1 points at each 
step. As an illustration, consider a function in two dimensions, the contours of which are shown in Fig. 8. 
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The method begins by choosing n + 1 = 3 points in some way or another, perhaps at random. A simplex 
is thus formed as shown in the figure. The point with the highest value is denoted as PH, while the lowest 

is PL. The next step is to replace PH with a better point. To do this, PH is reflected through the center of 

gravity of all points except PH, i.e., the point 

 (85) 

This yields the point P* =  + (  - PH). If F(P*) < F(PL), a new minimum has been found and an attempt 

is made to do even better by trying the point P** = 2(  - PH). The best point is then kept. If F(P*) > 

F(PH) the reflection is brought backwards to P** =  - 1/2 (  - PH). If this is not better than PH, a new 

simplex is formed with points at Pi = (Pi + PL) / 2 and the procedure restarted. In this manner, one can 

imagine the triangle in Fig. 8 ``falling'' to the minimum. The simplex technique is a good method since it 
is relatively insensitive to the type of function, but it can also be rather slow. 

 
Fig. 8. The simplex method for function minimization. 

Gradient methods are techniques which make use of the derivatives of the function to be minimized. 
These can either be calculated numerically or supplied by the user if known. One obvious use of the 
derivatives is to serve as guides pointing in the direction of decreasing F. This idea is used in techniques 
such as the method of steepest descent. A more widely used technique, however, is Newton's method 
which uses the derivatives to form a second-degree Taylor expansion of the function about the point x0, 
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 (86) 

In n dimensions, this is generalized to 

F(x)  F(x0) + gT (x - x0) + 1/2 (x - x0)T  (x - x0) (87) 

where gi is the vector of first derivatives ðF / ðxi and Gij the matrix of second derivatives ð2F / ðxi ðxj. 

The matrix G is also called the Hessian. In essence, the method approximates the function around x0 by a 

quadratic surface. Under this assumption, it is very easy to calculate the minimum of the n dimensional 
parabola analytically, 

xmin = x0 - -1 g . (88) 

This, of course, is not the true minimum of the function; but by forming a new parabolic surface about 
xmin and calculating its minimum, etc., a convergence to the true minimum can be obtained rather 

rapidly. The basic problem with the technique is that it requires  to be everywhere positive definite, 
otherwise at some point in the iteration a maximum may be calculated rather than a minimum, and the 
whole process diverges. This is more easily seen in the one-dimensional case in (86). If the second 
derivative is negative, then, we clearly have an inverted parabola rather than the desired well-shape 
figure. 

Despite this defect, Newton's method is quite powerful and algorithms have been developed in which the 
matrix  is artificially altered whenever it becomes negative. In this manner, the iteration continues in 
the right direction until a region of positive-definiteness is reached. Such variations are called quasi-
Newton methods. 

The disadvantage of the Newton methods is that each iteration requires an evaluation of the matrix  and 
its inverse. This, of course, becomes quite costly in terms of time. This problem has given rise to another 
class of methods which either avoid calculating G or calculate it once and then ``update'' G with some 
correcting function after each iteration. These methods are described in more detail by James [Ref. 11]. 

In the specific case of least squares minimization, a common procedure used with Newton's method is to 
linearize the fitting function. This is equivalent to approximating the Hessian in the following manner. 
Rewriting (70) as 

 (89) 
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where sk = [yk - f(xk)] / k, the Hessian becomes 

 (90) 

The second term in the sum can be considered as a second order correction and is set to zero. The 
Hessian is then 

 (91) 

This approximation has the advantage of ensuring positive-definiteness and the result converges to the 
correct minimum. However, the covariance matrix will not in general converge to the correct covariance 
values, so that the errors as determined by this matrix may not be correct. 

As the reader can see, it is not a trivial task to implement a nonlinear least squares program. For this 
reason we have advised the use of a ready-made program. A variety of routines may be found in the 
NAG library [Ref. 13], for example. A very powerful program allowing the use of a variety of 
minimization methods such a simplex, Newton, etc., is Minuit [Ref. 14] which is available in the CERN 
program library. This library is distributed to many laboratories and universities. 

Local vs Global Minima. Up to now we have assumed that the function F contains only one minimum. 
More generally, of course, an arbitrary function can have many local minima in addition to a global, 
absolute minimum. The methods we have described are all designed to locate a local minimum without 
regard for any other possible minima. It is up to the user to decide if the minimum obtained is indeed 
what he wants. It is important, therefore, to have some idea of what the true values are so as to start the 
search in the right region. Even in this case, however, there is no guarantee that the process will converge 
onto the closest minimum. A good technique is to fix those parameters which are approximately known 
and vary the rest. The result can then be used to start a second search in which all the parameters are 
varied. Other problems which can arise are the occurrence of overflow or underflow in the computer. 
This occurs very often with exponential functions. Here good starting values are generally necessary to 
obtain a result. 

Errors. While the methods we have discussed allow us to find the parameter values which minimize the 
function S, there is no prescription for calculating the errors on the parameters. A clue, however, can be 
taken from the linear one-dimensional case. Here we saw the variance of a parameter  was given by the 
inverse of the second derivative (92), 
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 (92) 

If we expand S in Taylor series about the minimum 

 (93) 

At the point  = * + , we thus find that 

 (94) 

Thus the error on  corresponds to the distance between the minimum and where the S distribution 
increases by 1. 

This can be generalized to the nonlinear case where the S distribution is not generally parabolic around 
the minimum. Finding the errors for each parameter then implies finding those points for which the S 
value changes by 1 from the minimum. If S has a complicated form, of course, this is not always easy to 
determine and once again, a numerical method must be used to solve the equation. If the form of S can be 
approximated by a quadratic surface, then, the error matrix in (73) can be calculated and inverted as in 
the linear case. This should then give an estimate of the errors and covariances. 

2 A minimization can be turned into a maximization by simply adding a minus sign in front of the 
function and vice-versa. Back. 
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8. SOME GENERAL RULES FOR ROUNDING-OFF NUMBERS FOR 
FINAL PRESENTATION

As a final remark in this chapter, we will suggest here a few general rules for the rounding off of 
numerical data for their final presentation. 

The number of digits to be kept in a numerical result is determined by the errors on that result. For 
example, suppose our result after measurement and analysis is calculated to be x = 17.615334 with an 
error (x) = 0.0233. The error, of course, tells us that the result is uncertain at the level of the second 
decimal place, so that all following digits have absolutely no meaning. The result therefore should be 
rounded-off to correspond with the error. 

Rounding off also applies to the calculated error. Only the first significant digit has any meaning, of 
course, but it is generally a good idea to keep two digits (but not more) in case the results are used in 
some other analysis. The extra digit then helps avoid a cumulative round-off error. In the example above, 
then, the error is rounded off to  = 0.0233 -> 0.023; the result, x, should thus be given to three decimal 
places. 

A general method for rounding off numbers is to take all digits to be rejected and to place a decimal point 
in front. Then 

1.  if the fraction thus formed is less than 0.5, the least significant digit is kept as is, 

2.  if the fraction is greater than 0.5, the least significant digit is increased by 1, 

3.  if the fraction is exactly 0.5, the number is increased if the least significant digit is odd and kept if 
it is even. 

In the example above, three decimal places are to be kept. Placing a decimal point in front of the rejected 
digits then yields 0.334. Since this is less than 0.5, the rounded result is x = 17.615 ± 0.023. 

One thing which should be avoided is rounding off in steps of one digit at a time. For example, consider 
the number 2.346 which is to be rounded-off to one decimal place. Using the method above, we find 
2.346 -> 2.3. Rounding-off one digit at a time, however, yields 2.346 -> 2.35 -> 2.4! 
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