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STATISTICS AND THE TREATMENT OF
EXPERIMENTAL DATA

W. R. Leo

Statistics plays an essential part in al the sciences asit is the tool which allows the scientist to treat the
uncertainties inherent in all measured data and to eventually draw conclusions from the results. For the
experimentalist, it is also adesign and planning tool. Indeed, before performing any measurement, one

must consider the tolerances required of the apparatus, the measuring times involved, etc., as afunction
of the desired precision on the result. Such an analysisis essential in order to determine itsfeasibility in
material, time and cost.

Statistics, of course, isasubject unto itself and it is neither fitting nor possible to cover all the principles
and techniques in a book of thistype. We have therefore limited ourselves to those topics most relevant
for experimental nuclear and particle physics. Nevertheless, given the (often underestimated) importance
of statistics we shall try to give some view of the general underlying principles along with examples,
rather than simple "recipes’ or "rules of thumb". This hopefully will be more useful to the physicist in the
long run, if only because it stimulates him to look further. We assume here an elementary knowledge of
probability and combinatorial theory.
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1. Characteristics of Probability Distributions

Statistics deals with random processes. The outcomes of such processes, for example, the throwing of a
die or the number of disintegrationsin a particular radioactive source in a period of time T, fluctuate
fromtria totrial such that it isimpossible to predict with certainty what the result will be for any given
trial. Random processes are described, instead, by a probability density function which gives the
expected frequency of occurrence for each possible outcome. More formally, the outcome of arandom
process is represented by arandom variable x, which ranges over all admissible valuesin the process. If
the process is the throwing of asingle die, for instance, then x may take on the integer values 1 to 6.
Assuming the dieis true, the probability of an outcome x is then given by the density function P(x) = 1/6,
which in this case happens to be the same for al x. The random variable x is then said to be distributed as
P(X).

Depending on the process, arandom variable may be continuous or discrete. In the first case, it may take
on a continuous range of values, while in the second only afinite or denumerably infinite number of
valuesisalowed. If x is discrete, P(x;) then gives the frequency at each point ;. If x is continuous,

however, thisinterpretation is not possible and only probabilities of finding x in finite intervals have
meaning. The distribution P(X) is then a continuous density such that the probability of finding x between
theinterval x and x + dx is P(x)dx.
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1.1 Cumulative Distributions

Very often it isdesired to know the probability of finding x between certain limits, e.g, P(x; £ X £ X).
Thisis given by the cumulative or integral distribution

Pz, < 2 < q) = [ CP(z)dz, (1)
F |
where we have assumed P(x) to be continuous. If P(x) is discrete, the integral is replaced by a sum,
P(z1 S 2. < 22) =) P(zi). (2
i=1
By convention, also, the probability distribution isnormalized to 1, i.e,,

/P[.z-]n’.z- =35 (3
if X is continuous or
> Pla)=1 (@

If xisdiscrete. This simply says that the probability of observing one of the possible outcomesin agiven
trial is defined as 1. It follows then that P(x;) or I P(x)dx cannot be greater than 1 or less than 0.
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1.2 Expectation Values

An important definition which we will make use of later is the expectation value of arandom variable or
arandom variable function. If x isarandom variable distributed as P(x), then

Be)= [2P@)de

Is the expected value of x. Theintegration in (5) is over all admissible x. This, of course, isjust the
standard notion of an average value. For a discrete variable, (5) becomes a sum

Elz] = Z.E'; P{z3). (6)
Similarly, if f(x) isafunction of x, then

Bl@) = [ 1) Payde @

is the expected value of f(x).

To simplify mattersin the remainder of this section, we will present results assuming a continuous
variable. Unless specified otherwise, the discrete case is found by replacing integrals with a summation.
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1.3 Distribution Moments. The Mean and Variance

A probability distribution may be characterized by its moments. The rth moment of x about some fixed
point Xg is defined as the expectation value of (X - Xo)" wherer isan integer. An analogy may be drawn

here with the moments of a mass distribution in mechanics. In such a case, P(x) plays the role of the mass
density.

In practice, only the first two moments are of importance. And, indeed, many problems are solved with
only aknowledge of these two quantities. The most important is the first moment about zero,

p= Elz] = /.z- P{z)dz. (8

This can be recognized as smply the mean or average of x. If the analogy with mass moments is made,
the mean thus represents the " center of mass" of the probability distribution.

It is very important here to distinguish the mean as defined in (Equation 8) from the mean which one
calculates from a set of repeated measurements. The first refers to the theoretical mean, as calculated
from the theoretical distribution, while the latter is an experimental mean taken from a sample. Aswe
shall seein Sect. 4.2, the sample mean is an estimate of the theoretical mean. Throughout the remainder

of this chapter, we shall always use the Greek letter 1 todesignate the theoretical mean.

The second characteristic quantity is the second moment about the mean (also known as the second
central moment),

o = E[(z ~ p)?] = f[.a- - P(z)de. (9

Thisis commonly called the variance and is denoted as a2. The square root of the variance, o, is known
asthe standard deviation. As can be seen from (9), the variance is the average squared deviation of x
from the mean. The standard deviation, , thus measures the dispersion or width of the distribution and
gives us an idea of how much the random variable x fluctuates about its mean. Like |, (9) isthe
theoretical variance and should be distinguished from the sample variance to be discussed in Section 4.

Further moments, of course, may also be calculated, such as the third moment about the mean. Thisis
known as the skewness and it gives a measure of the distribution's symmetry or asymmetry. It is
employed on rare occasions, but very little information is generally gained from this moment or any of
the following ones.
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1.4 The Covariance

Thus far we have only considered the ssmple case of single variable probability distributions. In the more
genera case, the outcomes of a process may be characterized by several random variables, X, y, z.... The
process is then described by a multivariate distribution P(x, y, z, . . .). An example isaplaying card
which is described by two variables: its denomination and its suit.

For multivariate distributions, the mean and variance of each separate random variable x, v,... are defined
in the same way as before (except that the integration is over all variables). In addition athird important
quantity must be defined:

cov{z,y) = Ellz = p){y — py)],  (20)

where L, and b, are the means of x and y respectively. Equation (10) is known as the covariance of x

and y and it is defined for each pair of variablesin the probability density. Thus, if we have atrivariate
distribution P(x, y, 2), there are three covariances. cov(x, Y), cov(X, z) and cov(y, 2).

The covariance is ameasure of the linear correlation between the two variables. Thisis more often
expressed as the correlation coefficient which is defined as

_cov(z, y)
P 720, (11)

where o, and o, are the standard deviations of x and y. The correlation coefficient varies between -1 and

+1 where the sign indicates the sense of the correlation. If the variables are perfectly correlated linearly,

then JP| = 1. If the variables are independent (1) then P = 0. Care must be taken with the converse of this
last statement, however. If P isfound to be O, then x and y can only be said to be linearly independent. It

can be shown, in fact, that if x and y are related parabolicaly, (e.g., y = x2), thenP = 0.

1 The mathematical definition of independence is that the joint probability is a separable function, i.e.,
P(x, y) = P1(X) Px(y)
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2. SOME COMMON PROBABILITY DISTRIBUTIONS

While there are many different probability distributions, alarge number of problemsin physics are
described or can be approximately described by a surprisingly small group of theoretical distributions.
Three, in particular, the binomial, Poisson and Gaussian distributions find a remarkably large domain of
application. Our aim in this section isto briefly survey these distributions and describe some of their
mathematical properties.
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2.1 The Binomial Distribution

Many problems involve repeated, independent trials of a process in which the outcome of asingletrial is
dichotomous, for example, yes or no, heads or tails, hit or miss, etc. Examples are the tossing of acoin N
times, the number of boys born to a group of N expectant mothers, or the number of hits scored after
randomly throwing N balls at asmall, fixed target.

More generally, let us designate the two possible outcomes as success and failure. We would then like to
know the probability of r successes (or failures) in N tries regardless of the order in which they occur. If
we assume that the probability of success does not change from one trial to the next, then this probability
Is given by the binomial distribution,

i

P(r) = i = Vo (12

ri (N —r)
where p isthe probability of successin asingletrial.

Equation (12) isadiscrete distribution and Fig. 1 showsitsform for various values of N and p. Using (8)
and (9), the mean and variance many be calculated to yield

o= Z r Plr).=Ng (13)
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Fig. 1. Binomial distribution
for various values of N and p.

=Y (r —w)*P(r) = Np(1-p). - (19

It can be shown that (12) is normalized by summing P(r) fromr = 0tor = N. Hereit will be noticed that
P(r) is nothing but the rth term of the binomial expansion (whence the name!), so that

. _ _
PR ot ottt U B3 RS RN E

Finding the cumulative distribution between limits other than 0 and N is somewhat more complicated,
however, as no analytic form for the sum of terms exist. If there are not too many, the individual terms
may be calculated separately and then summed. Otherwise, tabulations of the cumulative binomial
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distribution may be used.

In the limit of large N and not too small p, the binomial distribution may be approximated by a Gaussian
distribution with mean and variance given by (13) and (14). For practical calculations, using a Gaussian
is usually agood approximation when N is greater than about 30 and p = 0.05. It is necessary, of course,
to ignore the discrete character of the binomial distribution when using this approximation (although
there are corrections for this). If pissmall (= 0.05), such that the product Np is finite, then the binomial
distribution is approximated by the Poisson distribution discussed in the next section.

| M=t Il Ccmtents" F’revi-:ll_EI
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2.2 The Poisson Distribution

The Poisson distribution occurs as the limiting form of the binomial distribution when the probability p -
> 0 and the number of trials N -> oo, such that the mean = Np, remains finite. The probability of
observing r eventsin thislimit then reduces to

e F

P(r) = (16)

Like (12), the Poisson distribution is discrete. It essentially describes processes for which the single trial
probability of successisvery small but in which the number of trialsis so large that there is nevertheless
areasonable rate of events. Two important examples of such processes are radioactive decay and particle
reactions.

To take a concrete example, consider atypical radioactive source such as 13’Cs which has a half-life of
27 years. The probability per unit time for a single nucleus to decay isthen A = In 2/27 = 0.026/year =
8.2x 101051 A small probability indeed! However, even a 1 ug sample of 137Cswill contain about
1015 nuclei. Since each nucleus constitutes atrial, the mean number of decays from the sample will be p
= Np = 8.2 x 10° decays/s. This satisfies the limiting conditions described above, so that the probability
of observing r decaysis given by (16). Similar arguments can also be made for particle scattering.

Note that in (16), only the mean appears so that knowledge of N and p is not always necessary. Thisis
the usual case in experiments involving radioactive processes or particle reactions where the mean
counting rate is known rather than the number of nuclei or particlesin the beam. In many problems also,
the mean per unit dimension A, e.g. the number of reactions per second, is specified and it is desired to
know the probability of observing r eventsin t units, for example, t = 3 s. An important point to noteis
that the mean in (16) refers to the mean number in t units. Thus, p = At. In these types of problems we
can rewrite (16) as

(17)

P _l—.'\'\l'
P(r) = [:'ur:l.l :

r!

file:/l/E[/moe/HTML/Leo/Stats2_2.html (1 of 2) [10/21/2003 2:12:10 PM]



Statistics and the Treatment of Experimental Data

i i
|:|.E..| B =0s UEI‘ p=l
. Fi
aet] 04t
nz--| ozt
1. |
]'_'_ = | Rebii
0 2 & 0 2 &
L ! wa by
oz past o
ik ‘
|
|| il, = ||| |]JJ _____ -
0 2 & 6 8 Wi 5 02 4L B B WS EN

Fig. 2. Poisson distribution for various values of L.

An important feature of the Poisson distribution is that it depends on only one parameter: . [That pis
indeed the mean can be verified by using (8)]. From (9), we also the find that

o =p, . (18)

that is the variance of the Poisson distribution is equal to the mean. The standard deviation istheno =
v L. This explains the use of the square roots in counting experiments.

Figure 2 plots the Poisson distribution for various values of . Note that the distribution is not symmetric.
The peak or maximum of the distribution does not, therefore, correspond to the mean. However, as
becomes large, the distribution becomes more and more symmetric and approaches a Gaussian form. For
I = 20, a Gaussian distribution with mean p and variance g2 = |, in fact, becomes arelatively good
approximation and can be used in place of the Poisson for numerical calculations. Again, one must
neglect the fact that we are replacing a discrete distribution by a continuous one.

| M=t Il Ccmtents" F’revi-:lusl
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2.3 The Gaussian or Normal Distribution

The Gaussian or normal distribution plays a central role in al of statistics and is the most ubiquitous distribution
in al the sciences. Measurement errors, and in particular, instrumental errors are generally described by this
probability distribution. Moreover, even in cases where its application is not strictly correct, the Gaussian often
provides a good approximation to the true governing distribution.

The Gaussian is a continuous, symmetric distribution whose density is given by

PR Yl [z — p)?
Plz) ﬁ@lh]} (_—fn-’- ) (29

The two parameters 1 and o2 can be shown to correspond to the mean and variance of the distribution by applying
(8) and (9).

Fig. 3. The Gaussian distribution for various . The standard
deviation determines the width of the distribution.

The shape of the Gaussian is shown in Fig. 3 which illustrates this distribution for various . The significance of o

as ameasure of the distribution width is clearly seen. As can be calculated from (19), the standard deviation
corresponds to the half width of the peak at about 60% of the full height. In some applications; however, the full
width at half maximum (FWHM) is often used instead. Thisis somewhat larger than o and can easily be shown to
be

FWHM = 20v2In2 = 2.35a. (20

Thisisillustrated in Fig. 4. In such cases, care should be taken to be clear about which parameter is being used.
Another width parameter which is also seen in the Literature is the full-width at one-tenth maximum (FWTM).
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FWHM

Fig. 4. Relation between the standard deviation a and the full width
at half-maximum (FWHM).

The integral distribution for the Gaussian density, unfortunately, cannot be calculated analytically so that one must
resort to numerical integration. Tables of integral values are readily found as well. These are tabulated in terms of

areduced Gaussian distribution with g =0 and g2 = 1. All Gaussian distributions may be transformed to this
reduced form by making the variable transformation

= SN o
7

where y and o are the mean and standard deviation of the original distribution. It isatrivial matter then to verify
that zis distributed as areduced Gaussian.

7
I\

B+O W peT (TR { M 2 u+3c W we+3c

Fig. 5. The area contained between the limits u + 1, u+ 25 and p £ 3z in a Gaussian distribution.

An important practical noteis the area under the Gaussian between integral intervals of @. Thisis shownin Fig. 5.
These values should be kept in mind when interpreting measurement errors. The presentation of aresultasx+ o
signifies, in fact, that the true value has == 68% probability of lying between the limits x - o and X + @ or a 95%
probability of lying between x - 2o and x + 2, etc. Note that for a 1z interval, there isalmost a 1/3 probability that
the true value is outside these limits! If two standard deviations are taken, then, the probability of being outsideis
only == 5%, etc.
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2.4 The Chi-Squar e Distribution

Aswe will seein Section 7, the chi-square distribution is particularly useful for testing the goodness-of-

fit of theoretical formulae to experimental data. Mathematically, the chi-square is defined in the
following manner. Suppose we have a set of n independent random variables, x;, distributed as Gaussian

densities with theoretical means |; and standard deviations oj, respectively. The sum

]

e Z (.z-; ;JH)‘ (22)

i

i=1

is then known as the chi-square. Thisis more often designated by the Greek letter ¥2; however, to avoid
confusion due to the exponent we will use u = 2 instead. Since x; isarandom variable, uisaso a

random variable and it can be shown to follow the distribution

r.} [.._I-'I_::]—l. - e "..].
P(u) = (1 /2] . 1{}.11[ n'l.f_]‘ (23)
2" v /2)
where v is an integer and ¥(v/ 2) is the gamma function. The integer v is known as the degrees of freedom
and is the sole parameter of the distribution. Its value thus determines the form of the distribution. The

degrees of freedom can be interpreted as a parameter related to the number of independent variablesin
the sum (22).

Chi=sgquare
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Fig. 6. The chi-square distribution for various values of the
degree of freedom parameter v.

Figure 6 plots the chi-sguare distribution for various values of v. The mean and variance of (23) can also
be shown to be

0 =1, g% =2p: .. (24)

To see what the chi-square represents, let us examine (22) more closely. Ignoring the exponent for a
moment, each term in the sum isjust the deviation of x; from its theoretical mean divided by its expected
dispersion. The chi-square thus characterizes the fluctuations in the data x;. If indeed the x; are distributed
as Gaussians with the parameters indicated, then on the average, each ratio should be about 1 and the chi-
square, u = v. For any given set of x;, of course, there will be afluctuation of u from this mean with a
probability given by (23). The utility of thisdistribution isthat it can be used to test hypotheses. By
forming the chi-square between measured data and an assumed theoretical mean, a measure of the
reasonableness of the fluctuations in the measured data about this hypothetical mean can be obtained. If
an improbable chi-square value is obtained, one must then begin questioning the theoretical parameters
used.

| M=t Il Ccmtents" F’revi-:lusl
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3. MEASUREMENT ERRORS AND THE MEASUREMENT PROCESS

Measurements of any kind, in any experiment, are always subject to uncertainties or errors, asthey are
more often called. We will argue in this section that the measurement processis, in fact, arandom
process described by an abstract probability distribution whose parameters contain the information
desired. The results of a measurement are then samples from this distribution which allow an estimate of
the theoretical parameters. In this view, measurement errors can be seen then as sampling errors.

Before going into this argument, however, it isfirst necessary to distinguish between two types of errors:
systematic and random.
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3.1 Systematic Errors

Systematic errors are uncertainties in the bias of the data. A simple example is the zeroing of an
instrument such as a voltmeter. If the voltmeter is not correctly zeroed before use, then all values
measured by the voltmeter will be biased, i.e., offset by some constant amount or factor. However, even
if the utmost care is taken in setting the instrument to zero, one can only say that it has been zeroed to
within some value. This value may be small, but it sets alimit on the degree of certainty in the
measurements and thus to the conclusions that can be drawn.

Animportant point to be clear about is that a systematic error implies that all measurements in a set of
data taken with the same instrument are shifted in the same direction by the same amount - in unison.
Thisisin sharp contrast to random errors where each individual measurement fluctuates independently of
the others. Systematic errors, therefore, are usually most important when groups of data points taken
under the same conditions are being considered. Unfortunately, there is no consistent method by which
systematic errors may be treated or analyzed. Each experiment must generally be considered individually
and it is often very difficult just to identify the possible sources | et alone estimate the magnitude of the
error. Our discussion in the remainder of this chapter, therefore, will not be concerned with this topic.
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3.2 Random Errors

In contrast to systematic errors, random errors may be handled by the theory of statistics. These
uncertainties may arise from instrumental imprecisions, and/or, from the inherent statistical nature of the
phenomena being observed. Statistically, both are treated in the same manner as uncertainties arising
from the finite sampling of an infinite population of events. The measurement process, as we have
suggested, is a sampling process much like an opinion poll. The experimenter attempts to determine the
parameters of a population or distribution too large to measure in its entirety by taking a random sample
of finite size and using the sample parameters as an estimate of the true values.

This point of view is most easily seen in measurements of statistical processes, for example, radioactive
decay, proton-proton scattering, etc. These processes are all governed by the probabilistic laws of
guantum mechanics, so that the number of disintegrations or scatteringsin a given time period isa
random variable. What is usually of interest in these processes is the mean of the theoretical probability
distribution. When a measurement of the number of decays or scatterings per unit time is made, a sample
from this distribution is taken, i.e., the variable x takes on a value x,. Repeated measurements can be

made to obtain x,, X3, €tc. This, of course, is equivalent to tossing a coin or throwing apair of dice and

recording the result. From these data, the experimenter may estimate the value of the mean. Since the
sample isfinite, however, there is an uncertainty on the estimate and this represents our measurement
error. Errors arising from the measurement of inherently random processes are called statistical errors.

Now consider the measurement of a quantity such as the length of atable or the voltage between two
electrodes. Here the quantities of interest are well-defined numbers and not random variables. How then
do these processes fit into the view of measurement as a sampling process? What distribution is being
sampled?

To take an example, consider an experiment such as the measurement of the length of atable with say, a
simple folding ruler. Let us make a set of repeated measurements reading the ruler as accurately as
possible. (The reader can try this himself!). It will then be noticed that the val ues fluctuate about and
indeed, if we plot the frequency of the resultsin the form of a histogram, we see the outlines of a definite
distribution beginning to take form. The differing values are the result of many small factors which are
not controlled by the experimenter and which may change from one measurement to the next, for
example, play in the mechanical joints, contractions and expansions due to temperature changes, failure
of the experimenter to place the zero at exactly the same point each time, etc. These are all sources of
instrumental error, where the term instrument also includes the observer! The more these factors are
taken under control, of course, the smaller will be the magnitude of the fluctuations. The instrument is
then said to be more precise. In the limit of an ideal, perfect instrument, the distribution then becomes af-
function centered at the true value of the measured quantity. In reality, of course, such is never the case.
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The measurement of afixed quantity, therefore, involves taking a sample from an abstract, theoretical
distribution determined by the imprecisions of the instrument. In almost all cases of instrumental errors, it
can be argued that the distribution is Gaussian. Assuming no systematic error, the mean of the Gaussian
should then be equal to the true value of the quantity being measured and the standard deviation
proportional to the precision of the instrument.

L et us now see how sampled data are used to estimate the true parameters.

| =t Il Ccmtents" F’revin:lusl
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4. SAMPLING AND PARAMETER ESTIMATION. THE MAXIMUM
LIKELIHOOD METHOD

Sampling is the experimental method by which information can be obtained about the parameters of an
unknown distribution. Asiswell known from the debate over opinion polls, it isimportant to have a
representative and unbiased sample. For the experimentalist, this means not rejecting data because they
do not “"look right". The rejection of data, in fact, is something to be avoided unless there are
overpowering reasons for doing so.

Given adata sample, one would then like to have a method for determining the best value of the true
parameters from the data. The best value here is that which minimizes the variance between the estimate
and the true value. In statistics, thisis known as estimation. The estimation problem consists of two parts:
(1) determining the best estimate and (2) determining the uncertainty on the estimate. There are a number
of different principles which yield formulae for combining data to obtain a best estimate. However, the
most widely accepted method and the one most applicable to our purposes is the principle of maximum
likelihood. We shall very briefly demonstrate this principle in the following sectionsin order to give a
feeling for how the results are derived. The reader interested in more detail or in some of the other
methods should consult some of the standard texts given in the bibliography. Before treating this topic,
however, we will first define afew terms.
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4.1 Sample Moments

Let Xq, Xo, X3, + -« , X be asample of size n from a distribution whose theoretical mean is L and variance
2. Thisis known as the sample population. The sample mean, # isthen defined as

k=
T = j—z.z-;. (25)
b=

which isjust the arithmetic average of the sample. In the limit n -> oo, this can be shown to approach the
theoretical mean,

|
= lim — » &, 26
p= lim “; (26)
Similarly, the sample variance, which we denote by 2 is

] |- s ]
8w E (z; — E)°, (27)
ns
i=1

which isthe average of the squared deviations. In the limit n -> oq, this also approaches the theoretical
variance o2.

In the case of multivariate samples, for example, (X1, Y1), (X5, ¥2), . . ., the sample means and variances

for each variable are calculated as above. In an analogous manner, the sample covariance can be
calculated by

coviz,y) = %Z[Er — )5 — i). (28)
i=1

Inthe limit of infinite n, (28), not surprisingly, aso approaches the theoretical covariance (10).

| M=t Il Ccmtents" F’revi-:lusl
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4.2 The Maximum Likelihood M ethod

The method of maximum likelihood is only applicable if the form of the theoretical distribution from
which the sample is taken is known. For most measurements in physics, thisis either the Gaussian or
Poisson distribution. But, to be more general, suppose we have a sample of n independent observations
X1, Xos « - . X, from atheoretical distribution f(x | #) where # isthe parameter to be estimated. The

method then consists of calculating the likelihood function,
L(B|z) = flz1|@) flzz]|@) ... flz:]0), (29)

which can be recognized as the probability for observing the sequence of values x4, X, . . ., X,. The

principle now states that this probability is a maximum for the observed values. Thus, the parameter #
must be such that L isamaximum. If L isaregular function, # can be found by solving the equation,

d L S
il

0. (30

If there is more than one parameter, then the partial derivatives of L with respect to each parameter must
be taken to obtain a system of equations. Depending on the form of L, it may also be easier to maximize
the logarithm of L rather than L itself. Solving the equation

d{ln L)

=0 (31
i

then yields results equivalent to (30). The solution, : , Isknown as the maximum likelihood estimator for
the parameter #. In order to distinguish the estimated value from the true value, we have used a caret
over the parameter to signify it as the estimator.

It should be realized now that B is also arandom variable, since it is afunction of the x;. If a second
sampleis taken, ; will have a different value and so on. The estimator is thus also described by a
probability distribution. This leads us to the second half of the estimation problem: What is the error on

ﬁ? Thisis given by the standard deviation of the estimator distribution We can calculate this from the
likelihood function if we recall that L isjust the probability for observing the sampled values Xy, X,. -

Xn. Since these values are used to calculate § , L isrelated to the distribution for i . Using (9), the variance
IS then
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a(f) = [[F}—H]*’L[H‘ r)dzydeg ... dz,. (32

Thisisageneral formula, but, unfortunately, only in afew simple cases can an analytic result be
obtained. An easier, but only approximate method which works in the limit of large numbers, isto
calculate the inverse second derivative of the log-likelihood function evaluated at the maximum,

2, AT AN
rr‘[ﬁi']:—(r = ) A

il 2
If there is more than one parameter, the matrix of the second derivatives must be formed, i.e.,

7% 1n L
Vi i 8, i)

The diagonal elements of the inverse matrix then give the approximate variances,

a2 (8] ~ (U~ 1,..

i

(35

A technical point which must be noted is that we have assumed that the mean value of ; is the theoretical
#. Thisisadesirable, but not essential property for an estimator, guaranteed by the maximum likelihood
method only for infinite n. Estimators which have this property are non-biased. We will see one example
in the following sections in which thisis not the case. Equation (32), nevertheless, remains valid for all

)
B, since the error desired is the deviation from the true mean irrespective of the bias.

Another useful property of maximum likelihood estimatorsis invariance under transformations. If u = f(
oy
#), then the best estimate of u can be shown to be # = f(8).

Let usillustrate the method now by applying it to the Poisson and Gaussian distributions.

| M=t Il Ccmtents" F’revi-:lusl
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4.3 Estimator for the Poisson Distribution

Suppose we have n measurements of samples, X, Xo, X3, - - ., X4, from a Poisson distribution with mean .
Thelikelihood function for this case is then

LBt e
Liple) = H 1—1 expl—u) = exp{—nu) + H } (36)
=1 Tt =1 i

To eliminate the product sign, we take the logarithm

LD=Inli=—nu+ Z xiln g — Zln x;). (37)

Differentiating and setting the result to zero, we when find

dl* l
oy =M r. =0 (38
I’-!rj-! ? + JI-! Z :

which yields the solution

=~ Y=z @

Equation (39), of course, isjust the sample mean. Thisis of no great surprise, but it does confirm the
often unconscious use of (39).

The variance of % can be found by using (33); however, in this particular case, we will use adifferent
way. From (9) we have the definition

o?(z) = E[(z — p)?]. ~~ (40)

Applying thisto the sample mean and rearranging the terms, we thus have

El(z - 1) [( > i )]—”%f:'uz.a-;—nm—”%f:'t{Z[.a-;—;a:l}ﬂJ- g
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Expanding the square of the sum, we find
> (2 —p)] Z[E — ) +ZZ[E — )z —p) - (42)

If now the expectation value is taken, the cross term vanishes, so that

o) —f Z[E —w) = Zf (2;— )] = “ﬁ:—ﬂ—. (43)

Asthe reader may have noticed, (43) was derived without reference to the Poisson distribution, so that
(43) is, in fact, a general result: the variance of the sample mean is given by the variance of the parent
distribution, whatever it may be, divided by the sample size.

For a Poisson distribution, @2 = , so that the error on the estimated Poisson mean is

'_

aji) = '—4_11."”— f'E S
nl [n "~ Vn

where have substituted the estimated value 3 for the theoretical .
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4.4 Estimatorsfor the Gaussian Distribution

For a sample of n points, all taken from the same Gaussian distribution, the likelihood function is

F 2 e M i D
L H ﬂﬁth]} [_T] : (45)

i=1

Once again, taking the logarithm,
L* =L = — In(2r0?) ——Z[* —H° @)

Taking the derivatives with respect to p and o2 and setting them to 0, we then have

dL*
i

L =0 @)

and

itL* n | ry < 2 -1
R 1 i o 4
: i e > ( ) 0. (49

il 2o

Solving (47) first yields

= e 4 T, (49)

The best estimate of the theoretical mean for a Gaussian is thus the sample mean, which again comes as
no great surprise. From the general result in (43), the uncertainty on the estimator is thus

7
F(E).= = 2-(50)

Jn

Thisisusually referred to as the standard error of the mean. Note that the error depends on the sample
number as one would expect. As n increases, the estimate % becomes more and more precise. When only
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one measurement ismade, n = 1, a(*) reduces to . For ameasuring device, athus represents the
precision of the instrument.

For the moment, however, a is still unknown. Solving (48) for o2 yields the estimator

_Z[z — ) Z[E kgt (51)

where we have replaced i by its solution in (49). This, of course, is just the sample variance.

For finite values of n, however, the sample variance turns out to be a biased estimator, that isthe
expectation value of s? does not equal the true value, but is offset from it by a constant factor. It is not
hard to show, in fact, that E[s?] = g2 - a2/ n=(n- 1) @2/ n. Thusfor n very large, s? approaches the true

variance as desired; however, for small n, 2 is underestimated by s? The reason is quite simple: for small
samples, the occurrence of large values far from the mean is rare, so the sample variance tends to be
weighted more towards smaller values. For practical use, a somewhat better estimate therefore, would be
to multiply (51) by thefactor n/ (n- 1),

o Ty, |
52 2wy x) : (52)
n—1

Equation (52) is unbiased, however, it is no longer the best estimate in the sense that its average
deviation from the true value is somewhat greater than that for (51). The difference is small however, so
that (52) still provides a good estimate. Equation (52) then is the recommended formulafor estimating
the variance Note that unlike the mean, it isimpossible to estimate the standard deviation from one
measurement because of the (n - 1) term in the denominator. This makes sense, of course, asit quite
obviously requires more than one point to determine a dispersion!

The variance of G2in (52) may also be shown to be

P | 2
P (02) = ey 2L T (5D)

n—-1 n—1
and the standard deviation of &

F(F) = il ~ J 7 154)

V2m—1) - /2n— 1)
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4.5 The Weighted M ean

We have thus far discussed the estimation of the mean and standard deviation from a series of
measurements of the same quantity with the same instrument. It often occurs, however, that one must
combine two or more measurements of the same quantity with differing errors. A simple minded
procedure would be to take the average of the measurements. This, unfortunately, ignores the fact that
some measurements are more precise than others and should therefore be given more importance. A
more valid method would be to weight each measurement in proportion to its error. The maximum
likelihood method allows us to determine the weighting function to use.

From a statistics point of view, we have asample x4, X4, . . , X5, Where each value is from a Gaussian
distribution having the same mean p but a different standard deviation a;. The likelihood function is thus
the same as (45), but with o replaced by o;. Maximizing this we then find the weighted mean

DS 7L/
FE TR

s 'EI'

Thus the weighting factor is the inverse square of the error, i.e., 1/ ;2. This corresponds to our logic as
the smaller the oj, the larger the weight and vice-versa.

Using (33), the error on the weighted mean can now be shown to be

) = =77 (56)

Note that if all the o; are the same, the weighted mean reduces to the normal formulain (49) and the error
on the mean to (50).

| M=t Il Ccmtents" F’revi-:ll_EI
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5. EXAMPLES OF APPLICATIONS

5.1 Mean and Error from a Series of M easur ements

Example 1. Consider the simple experiment proposed in Sect. 3.2 to measure the length of an object.
The following results are from such a measurement:

17.62 17.62 17.615 17.62 1.7:67,
17.61 17.62 17.625 17.62 17.6
17.61 17.615 17.61 17.605 17.61

What is the best estimate for the length of this object?

Since the errors in the measurement are instrumental, the measurements are Gaussian distributed. From
(49), the best estimate for the mean value is then

% =17.61533

while (52) gives the standard deviation
¢ =5.855x 103,

This can now be used to calculate the standard error of the mean (50),
a(%) = & /v15=0.0015.

The best value for the length of the object isthus

x=17.616 + 0.002.

Note that the uncertainty on the mean is given by the standard error of the mean and not the standard
deviation!
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5.2 Combining Data with Different Errors

Example 2. It is necessary to use the lifetime of the muon in a calculation. However, in searching
through the literature, 7 values are found from different experiments:

2.198 + 0.001 s 2.203 + 0.004 s 2.202 + 0.003 s
2.197 + 0.005 pis 2.198 + 0.002 pis 2.1966 + 0.0020 pis
2.1948 + 0.0010 pis

What is the best value to use?

One way to solve this problem is to take the measurement with the smallest error; however, thereis no
reason for ignoring the results of the other measurements. Indeed, even though the other experiments are
less precise, they still contain valid information on the lifetime of the muon. To take into account all
available information we must take the weighted mean. This then yields then mean value

r = 2.19696
with an error

o (7) = 0.00061.

Note that this value is smaller than the error on any of the individual measurements. The best value for
the lifetimeis thus

r =2.1970 * 0.0006 ps.

| M=t Il Cﬂntents" F’revin:-ual
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5.3 Determination of Count Ratesand Their Errors

Example 3. Consider the following series of measurements of the counts per minute from a detector
viewing a22Na source,

2201 2145 2222 2160 2300

What is the decay rate and its uncertainty?

Since radioactive decay is described by a Poisson distribution, we use the estimators for this distribution
to find

g‘,-, = x = 2205.6 and

o () =¥(% / n) =/ (2205.6/5) = 21.
The count rate is thus

Count Rate = (2206 + 21) counts/mm.

It isinteresting to see what would happen if instead of counting five one-minute periods we had counted
the total 5 minutes without stopping. We would have then observed atotal of 11028 counts. This
constitutes a sample of n = 1. The mean count rate for 5 minutes is thus 11208 and the error on this, o =

v/ 11208 = 106. To find the counts per minute, we divide by 5 (see the next section) to obtain 2206 + 21,
which isidentical to what was found before. Note that the error taken was the square root of the count
rate in 5 minutes. A common error to be avoided isto first calculate the rate per minute and then take the
square root of this number.

H-E:::-::tl Ccmtentsl F’revi-:ll_EI
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5.4 Null Experiments. Setting Confidence Limits When No Counts Are Observed

Many experiments in physicstest the validity of certain theoretical conservation laws by searching for
the presence of specific reactions or decays forbidden by these laws. In such measurements, an
observation is made for a certain amount of time T. Obviously, if one or more events are observed, the
theoretical law is disproven. However, if no events are observed, the converse cannot be said to be true.
Instead a limit on the life-time of the reaction or decay is set.

L et us assume therefore that the process has some mean reaction rate 4. Then the probability for
observing no countsin atime period T is

F(0|A) = exp(—AT).  (57)

This, now, can also be interpreted as the probability distribution for A when no counts are observed in a
period T. We can now ask the question: What is the probability that A isless 45? From (1),

L

P{A < Ao) f-m Texp(—AT)dA =1 — exp(—AgT),  (58)
0

where we have normalized (57) with the extra factor T. This probability is known as the confidence level
for theinterval between 0to *Aj. To make a strong statement we can choose a high confidence level (CL),

for example, 90%. Setting (58) equal to this probability then gives us the value of A,

Ao = —Tl_ In{1 —CL). . (59)

For a given confidence level, the corresponding interval is, in general, not unique and one can find other
intervals which yield the same integral probability. For example, it might be possible to integrate (57)
from some lower limit A’ to infinity and still obtain the same area under the curve. The probability that
the true A isgreater than A’ isthen also 90%. As ageneral rule, however, one should take those limits
which cover the smallest range in A.

Example 4. A 50 g sample of 82Se is observed for 100 days for neutrinoless double beta decay, a
reaction normally forbidden by Iepton conservation. However, current theories suggest that this might
occur. The apparatus has a detection efficiency of 20%. No events with the correct signature for this
decay are observed. Set an upper limit on the lifetime for this decay mode.
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Choosing a confidence limit of 90%, (59) yields
Az Ay=-1/(100x0.2) In(1-0.9) =0.115day 1,

where we have corrected for the 20% efficiency of the detector. This limit must now be translated into a
lifetime per nucleus. For 50 g, the total number of nuclei is

N = (N,/ 82) x 50 = 3.67 x 1023,
which implies alimit on the decay rate per nucleus of
A = 0115/ (3.67 x 1023) = 3.13 x 1025 day-1.
The lifetimeisjust the inverse of A which yields

r = 8.75x 1021 years 90% CL,

where we have converted the units to years. Thus, neutrinoless double beta decay may exist but it is
certainly arare process!

| M=t Il Ccmtents" F’revi-:lusl
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5.5 Distribution of Time I ntervals Between Counts

A distribution which we will make use of later is the distribution of time intervals between events from a
random source. Suppose we observe a radioactive source with amean rate A. The probability of
observing no countsin aperiod T is then given by (57). In amanner similar to Section 5.4, we can

interpret (57) as the probability density for the time interval T during which no counts are observed.
Normalizing (57), we obtain the distribution

P = Xexp(AT) - #60)

for the time T between counts. Equation (60) is just an exponential distribution and can, in fact, be
measured.
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6. PROPAGATION OF ERRORS

We have seen in the preceding sections how to calculate the errors on directly measured quantities. Very
often, however, it is necessary to calculate other quantities from these data. Clearly, the calculated result
will then contain an uncertainty which is carried over from the measured data.

To see how the errors are propagated, consider a quantity u = f(X, y) where x and y are quantities having
errors g, and o, respectively. To simplify the algebra, we only consider afunction of two variables here;

however, the extension to more variables will be obvious. We would like then to calcul ate the standard
deviation o, asafunction of o, and oy. The variance g2 can be defined as

ol Bi{u= @), (61)

2l

To first order, the mean 1 may be approximated by f(*, ). This can be shown by expanding f(x, y)
about (%, v) Now, to express the deviation of u interms of the deviationsin x and y, let us expand (u -
1) to first order

(u— i) =[x —T) ﬂ‘ + (y — 1) _-"r
i

Ty (62)

where the partial derivatives are evaluated at the mean values. Squaring (62) and substituting into (61)
then yields

dfy2 B

El(u— )"~ E [[.a-—.a-r’(m)#[y—mﬂ(ﬁ)#fw-—.z-nu—rﬂf””f NG

itr iy

Now taking the expectation value of each term separately and making use of the definitions (8, 9) and
(10), wefind

) ) A 7, 1f o
T:(i) f‘-';-l—(r_—f) -|—*"{{J1.[i! ]r_,l"r_,l" (64)
it i1y ix dy’

The errors therefore are added quadratically with a modifying term due to the covariance. Depending on
its sign and magnitude, the covariance can increase or decrease the errors by dramatic amounts. In
general most measurements in physics experiments are independent or should be arranged so that the
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covariance will be zero. Equation (64) then reduces to a simple sum of squares. Where correlations can
arise, however, iswhen two or more parameters are extracted from the same set of measured data. While
the raw data points are independent, the parameters will generally be correlated. One common example
are parameters resulting from afit. The correlations can be calculated in the fitting procedure and all
good computer fitting programs should supply thisinformation. An exampleis given in Section 7.2. If
these parameters are used in a calculation, the correlation must be taken into account. A second example
of this type which might have occurred to the reader is the estimation of the mean and variance from a set
of data. Fortunately, it can be proved that the estimators (49) and (52) are statistically independent so that
P=0!
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6.1 Examples

Asafirst example let us derive the formulas for the sum, difference, product and ratio of two quantities x
and y with errors g, and oy,

I. Errorof aSum: u=x+y
frf - l’Tf- A= f’j + 2eov{z,y). (65)

li. Error of aDifferencei u=x-y

]

i — fFj + frj — 2eoviz,y). (66)

4!

If the covariance is O, the errors on both a sum and difference then reduce to the same sum of squares.
The relative error, o /u, however, is much larger for the case of adifference since uis smaller. This

illustrates the disadvantage of taking differences between two numbers with errors. If possible, therefore,
adifference should always be directly measured rather than cal culated from two measurements!

lii. Error of aProduct: u=xy

£l
&

gl ~ ylal 4 .E'jﬂj + 2ecoviz, y)xy.
Dividing the |eft side by u2 and the right side by x2 y2,

E o E fe E b Lo . {—'{:ﬂ. [E 'iﬂ : (67)

2 32 y? ry
iv. Error of aRatio: u=xly

3

2igt 4 R L
o, =y oty o, —2coviz,ylry .

£l
=
el

Dividing both sides by u2 asiin (iii), we find
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]
% 92 Ty 5 eov(n.y) g

R T Ty

which, with the exception of the sign of the covariance term isidentical to the formulafor a product.
Equation (68) is generally valid when the relative errors are not too large. For ratios of small numbers,
however, (68) isinapplicable and some additional considerations are required. Thisistreated in detail by
James and Roos [Ref. 1].

Example 5. The classical method for measuring the polarization of a particle such as a proton or neutron
IS to scatter it from a suitable analyzing target and to measure the asymmetry in the scattered particle
distribution. One can, for example, count the number of particles scattered to the left of the beam at
certain angle and to the right of the beam at the same corresponding angle. If Ris the number scattered to
the right and L the number to the left, the asymmetry is then given by

H— L
R+ L

- —

Calculate the error on £ as afunction of the counts Rand L.

Thisisastraight forward application of (64). Taking the derivatives of £, we thus find

R » RLT. . ik
G6R - R+IL ' (R¥1I)2  NZ

is l n—-L 2

Y e Y Al (R+ L2~  NZ'

where the total number of counts Ny; = R+ L. The error is thus

AR LL® Y LR
=) = agd R T Targ Y L
-‘II’LL -\’l:L-L

ol

The covariance is obviously 0 here since the measurements are independent. The errorson Rand L are
now given by the Poisson distribution, so that or?2 = Rand G, 2 = L. Substituting into the above, then

yields
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LR+ RL) . ~RL
e T

Lok Liwl.

a’(z)

If the asymmetry issmall such that R = L = Ny / 2, we have the result that

—

|
ﬂ’[.—.-] s ‘Il.lll m.
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7. CURVE FITTING

In many experiments, the functional relation between two or more variables describing a physical
process, y = f(Xq, Xy, ...), isinvestigated by measuring the value of y for various of Xy, X,, . . .Itisthen
desired to find the parameters of atheoretical curve which best describe these points. For example, to

determine the lifetime of a certain radioactive source, measurements of the count rates, Ny, N,, . . ., N, a
various times, tq, t,, . . ., t;, could be made and the data fitted to the expression

N(E) = Ny exp({—1 /). (69)

Since the count rate is subject to statistical fluctuations, the values N; will have uncertainties o; = v N

and will not all lie along a smooth curve. What then is the best curve or equivalently, the best values for
7 and N and how do we determine them? The method most useful for thisis the method of least

squares.
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7.1 The Least Squares Method

L et us suppose that measurements at n points, x;, are made of the variabley; withanerrorg; (i =1, 2, . . .,
n), and that it is desired to fit afunction f(x; a;, &y, . . ., &) to these datawhere ay, a4, . . ., a,,, are

unknown parameters to be determined. Of course, the number of points must be greater than the number
of parameters. The method of |east squares states that the best values of & are those for which the sum

5= ['r’“ e ”"'T (70)

i=1 T

Isaminimum. Examining (70) we can see that thisis just the sum of the squared deviations of the data
points from the curve f(x;) weighted by the respective errors on y;. The reader might also recognize this

asthe chi-sguare in (22). for this reason, the method is a so sometimes referred to as chi-square
minimization. Strictly speaking thisis not quite correct asy; must be Gaussian distributed with mean f(x;;
a) and variance ;2 in order for Sto be atrue chi-square. However, asthisis almost always the case for

measurements in physics, thisis avalid hypothesis most of the time. The least squares method, however,
istotally general and does not require knowledge of the parent distribution. If the parent distribution is
known the method of maximum likelihood may also be used. In the case of Gaussian distributed errors
thisyields identical results.

To find the values of a;, one must now solve the system of equations

i’ =36
iy

Depending on the function f(x), (71) may or may not yield on analytic solution. In general, numerical
methods requiring a computer must be used to minimize S

Assuming we have the best values for g, it is necessary to estimate the errors on the parameters. For this,

we form the so-called covariance or error matrix, Vjj,

I &S
Vil = = :
(X )i 2 dha;

(72)

where the second derivative is evaluated at the minimum. (Note the second derivatives form the inverse
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of the error matrix). The diagonal elements V;; can then be shown to be the variances for g;, while the off-
diagonal elements V;; represent the covariances between g and g. Thus,

frf' cov(l,2) cov(l,3)
a2 cov(2,3)
1y : : a3

%

(73)

and so on.

| ==t Il Ccmtents" F’revin:-I_JSI
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7.2 Linear Fits. The Straight Line

In the case of functions linear in their parameters a;, i.e., there are no terms which are products or ratios
of different &;, (71) can be solved analytically. Let usillustrate this for the case of a straight line

y=flz)=az+b, (74

where a and b are the parameters to be determined. Forming S we find

y; — ar; — b)?
CEEp s nb it B RS o

i

Taking the partial derivatives with respect to a and b, we then have the equations

gs Z[ur—na — bz, i o

Ja

|'

(76)

89 - Z[i}'r—m —M_“
b~

|'

To simplify the notation, let us define the terms

T T

i a2
( —Z% e P N )

T B iy

— - !
Z l.‘FrT' Z f‘-’r"
Using these definitions, (76) becomes

H—E+aD+b4) = 0,
(78)

2H—C'+aAd+bB) = 0.
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This then leads to the solution,

FB —CA D' — EA
o A T Wl bl s e )
e — A= e — A

Our work is not complete, however, as the errors on a and b must also be determined. Forming the
inverse error matrix, we then have

1 Y VAl ( Ay -'::l.’: ) where (80)

B o A L %8 | L &8
- 2 Jaih

so that
4 Aaq H
7i{a)] = e A — :
l[[ lon.— !-l'_’: Bl)— A=
!ll f)
as(b) = — = ; (82)

/ b= i — = - L
L [I'-! «‘] -'.!l |_ _.'!_::_:: i -'.!_l._:: B — 42

To complete the process, now, it is necessary to also have an idea of the quality of the fit. Do the data, in
fact, correspond to the function f(x) we have assumed? This can be tested by means of the chi-square.
Thisisjust the value of S at the minimum. Recalling Section 2.4, we saw that if the data correspond to
the function and the deviations are Gaussian, S should be expected to follow a chi-square distribution
with mean value equal to the degrees of freedom, 4. In the above problem, there are n independent data
points from which m parameters are extracted. The degrees of freedom isthus i = n - m. In the case of a
linear fit, m= 2, so that ¥ =n - 2. We thus expect Sto becloseto i = n- 2if thefit isgood. A quick and

file:/l/E[/moe/HTML/Leo/Stats7_2.html (2 of 5) [10/21/2003 2:12:19 PM]



Statistics and the Treatment of Experimental Data

easy test isto form the reduced chi-sgquare
AR RN )

which should be close to 1 for a good fit.

A morerigorous test isto look at the probability of obtaining aX2 value greater than S, i.e., P(X2 = 9).
Thisrequires integrating the chi-square distribution or using cumulative distribution tables. In general, if
P(¥2 = S isgreater than 5%, the fit can be accepted. Beyond this point, some questions must be asked.

An equally important point to consider iswhen Sisvery small. Thisimplies that the points are not
fluctuating enough. Barring falsified data, the most likely cause is an overestimation of the errors on the
data points, if the reader will recall, the error bars represent a 1o deviation, so that about 1/3 of the data
points should, in fact, be expected to fall outside the fit!

Example 6. Find the best straight line through the following measured points

X0 il: 2 3 4 S
y 092 4.15 9.78 14.46 17.26 21.90
g ‘0.5 1.0 0.75 1.25 1.0 15

Applying (75) to (82), we find
a=4.227 b=0.878

(@) =0.044 o(b)=0.203 and
cov(a, b) = - 0.0629.

To test the goodness-of-fit, we must ook at the chi-square

X2=2.078

for 4 degrees of freedom. Forming the reduced chi-square, ¥2 / ¥ = 0.5, we can see already that hisisa

good fit. If we calculate the probability P(X2 > 2.07) for 4 degrees of freedom, we find P = 97.5% which
Iswell within acceptable limits.

Example 7. For certain nonlinear functions, alinearization may be affected so that the method of linear
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least squares becomes applicable. One case is the example of the exponential, (69), which we gave at the
beginning of this section. Consider a decaying radioactive source whose activity is measured at intervals
of 15 seconds. The total counts during each period are given below.

t[s] 1 155 80+ 45 605 Far 490 - £105 120 135
N [cts] 106 80~ ‘98 = 75. 4. T3 =49 " 38 37 22

What is the lifetime for this source?

The obvious procedure is to fit (69) to these data in order to determine r. Equation (69), of course, is
nonlinear, however it can be linearized by taking the logarithm of both sides. Thisthen yields

=1
In & = — + In V.
T.

Settingy =In N, a=-1/r and b = In Np, we see that thisisjust a straight line, so that our linear |east-
sguares procedure can be used. One point which we must be careful about, however, isthe errors. The

statistical errors on N, of course, are Poissonian, so that o(N) = VN. In the fit, however, it isthe
logarithm of N which is being used. The errors must therefore be transformed using the propagation of
errors formula; we then have

B (ﬂ”]l-"‘r )"ﬂj[_,ﬁr.] y!

N=N"1
N2

AN
Using (75) to (82) now, we find
=-1/r =-0.008999 g(a) =0.001
b=InNyg=4.721 c(b) =0.064.
The lifetimeisthus
r=111+12s.
The chi-square for thisfit is ¥2 = 15.6 with 8 degrees of freedom. The reduced chi-square is thus 15.6/8

= 1.96, which is somewhat high. If we calculate the probability P(¥2 > 15) = 0.05, however, we find
that the fit is just acceptable. The data and the best straight line are sketched in Fig. 7 on a semi-log plot.
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While the above fit is acceptable, the relatively large chi-square should, nevertheless, prompt some
guestions. For example, in the treatment above, background counts were ignored. An improvement in our

fit might therefore be obtained if we took thisinto account. If we assume a constant background, then the
equation to fit would be

N(t) = Ngexp(-t/ ) + C.

&
T

Counts/ 15 s

10!

o B 30 45 60 75 90 105 1@ 130
Time

Fig. 7. Fit to data of Example 7. Note that the error bars of
about 1/3 of the points do not touch the fitted line. Thisis
consistent with the Gaussian nature of the measurements.
Since the region defined by the errors bars (£ 1o) comprises
68% of the Gaussian distribution (see Fig. 5), thereisa 32%

chance that a measurement will exceed these limits!

Another hypothesis could be that the source has more than one decay component in which case the
function to fit would be a sum of exponentials. These forms unfortunately cannot be linearized as above
and recourse must be made to nonlinear methods. I1n the special case described above, a non-iterative
procedure [Refs: 2, 3, 4, 5, 6] exists which may also be helpful.

| M=t Il Cﬂntents" F’revin:-ual
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7.3 Linear Fits When Both VariablesHaveErrors

In the previous examples, it was assumed that the independent variables x; were completely free of

errors. Strictly speaking, of course, thisis never the case, although in many problems the errorson x are
small with respect to those on y so that they may be neglected. In cases where the errors on both
variables are comparable, however, ignoring the errors on x leads to incorrect parameters and an
underestimation of their errors. For these problems the effective variance method may be used. Without
deriving the result which is discussed by Lybanon [Ref. 7] and Orear [Ref. 8] for Gaussian distributed

errors, the method consists of simply replacing the variance ;2 in (70) by

] ] '!r -.:I ]
ol —+ o) + (%) g% - (6d)

where o, and Gy, are the errors on x and y respectively. Since the derivative is normally afunction of the
parameters g, Sis nonlinear and numerical methods must be used to minimize S
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7.4 Nonlinear Fits

Aswe have already mentioned, nonlinear fits generally require a numerical procedure for minimizing S
Function minimization or maximization (2) is a problem in itself and a number of methods have been
developed for this purpose. However, no one method can be said to be applicable to al functions, and,
indeed, the problem oftenisto find the right method for the function or functions in question. A
discussion of the different methods available, of course, islargely outside the scope of this book.
However, it is nevertheless worthwhile to briefly survey the most used methods so as to provide the
reader with abasis for more detailed study and an idea of some of the problems to be expected. For
practical purposes, a computer is necessary and we strongly advise the reader to find a ready-made
program rather than attempt to write it himself. More detailed discussions may be found in [Refs: 9, 10,

11].

Function Minimization Techniques. Numerical minimization methods are generally iterative in nature,
I.e., repeated calculations are made while varying the parameters in some way, until the desired
minimum is reached. The criteriafor selecting a method, therefore, are speed and stability against
divergences. In general, the methods can be classified into two broad categories: grid searches and
gradient methods.

The grid methods are the simplest. The most elementary procedure isto form agrid of equally spaced
pointsin the variables of interest and evaluate the function at each of these points. The point with the
smallest value is then the approximate minimum. Thus, if F(X) is the function to minimize, we would
evaluate F at Xq, Xg + 8, Xg + 28X, etc. and choose the point X' for which F is smallest. The size of the grid

step, &ix, depends on the accuracy desired. This method, of course, can only be used over afinite range of
x and in cases where x ranges over infinity it is necessary to have an approximate idea of where the
minimum is. Several ranges may also be tried.

The elementary grid method isintrinsically stable, but it is quite obviously inefficient and time
consuming. Indeed, in more than one dimension, the number of function evaluations becomes
prohibitively large even for acomputer! (In contrast to the simple grid method is the Monte Carlo or
random search. Instead of equally spaced points, random points are generated according to some
distribution, e.g., auniform density.)

More efficient grid searches make use of variable stepping methods so as to reduce the number of
evaluations while converging onto the minimum more rapidly. A relatively recent techniqueisthe
simplex method [Ref. 12]. A simplex is the simplest geometrical figure in n dimensions having n + 1
vertices. In n =2 dimensions, for example, the ssmplex isatriangle whilein n = 3 dimensions, the
simplex is atetrahedron, etc. The method takes on the name simplex because it usesn + 1 points at each
step. Asan illustration, consider a function in two dimensions, the contours of which are shown in Fig. 8.

file:/l/E[/moe/HTML/Leo/Stats7_4.html (1 of 5) [10/21/2003 2:12:21 PM]



Statistics and the Treatment of Experimental Data

The method begins by choosing n + 1 = 3 pointsin some way or another, perhaps at random. A simplex
is thus formed as shown in the figure. The point with the highest value is denoted as Py, while the lowest

ISP, . The next step isto replace Py with abetter point. To do this, Py is reflected through the center of
gravity of all points except Py, i.e., the point

; I
Thisyieldsthe point P* = § + (7 - Py). If F(P) < F(P_), anew minimum has been found and an attempt
is made to do even better by trying the point P** = 2(§ - Pyy). The best point is then kept. If F(P*) >
F(Py) the reflection is brought backwardsto P** = - 1/2 (F - Py). If thisis not better than Py, anew
simplex isformed with points at P; = (P; + P ) / 2 and the procedure restarted. In this manner, one can

imagine the trianglein Fig. 8 ““falling" to the minimum. The simplex technique is a good method since it
isrelatively insensitive to the type of function, but it can also be rather slow.

Fig. 8. The ssmplex method for function minimization.

Gradient methods are techniques which make use of the derivatives of the function to be minimized.
These can either be calculated numerically or supplied by the user if known. One obvious use of the
derivativesisto serve as guides pointing in the direction of decreasing F. Thisideais used in techniques
such as the method of steepest descent. A more widely used technique, however, is Newton's method
which uses the derivatives to form a second-degree Taylor expansion of the function about the point X,
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F{z) ~ F{zg) + d—f (2 — 2p) + = —=| (x —x0)".

— 86
il 2 0 (86)

Tyl

| §°F :
p2
r? |

In ndimensions, thisis generalized to
F(X) = F(Xo) + g7 (X-X0) + U2 (X -X)T & (X-%Xg)  (87)

where g; is the vector of first derivatives 8F / 8 and G;; the matrix of second derivatives 82F / 8x; 0x;.
The matrix G is also called the Hessian. In essence, the method approximates the function around xg by a

guadratic surface. Under this assumption, it is very easy to calculate the minimum of the n dimensional
parabola analytically,

Xmin = X0 - E'l g. (88)

This, of course, is not the true minimum of the function; but by forming anew parabolic surface about
Xmin @nd calculating its minimum, etc., a convergence to the true minimum can be obtained rather

rapidly. The basic problem with the technique is that it requires & to be everywhere positive definite,
otherwise at some point in the iteration a maximum may be calculated rather than a minimum, and the
whole process diverges. Thisis more easily seen in the one-dimensional casein (86). If the second
derivative is negative, then, we clearly have an inverted parabola rather than the desired well-shape
figure.

Despite this defect, Newton's method is quite powerful and algorithms have been developed in which the
matrix & is artificialy altered whenever it becomes negative. In this manner, the iteration continuesin
the right direction until aregion of positive-definiteness is reached. Such variations are called quasi-
Newton methods.

The disadvantage of the Newton methods is that each iteration requires an evaluation of the matrix & and
itsinverse. This, of course, becomes quite costly in terms of time. This problem has given rise to another
class of methods which either avoid calculating G or calculate it once and then update” G with some
correcting function after each iteration. These methods are described in more detail by James [Ref. 11].

In the specific case of |east squares minimization, a common procedure used with Newton's method is to
linearize the fitting function. Thisis equivalent to approximating the Hessian in the following manner.
Rewriting (70) as

5= Zaf (89)

k
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where s = [y - f(x)] / gy, the Hessian becomes
5 g o

]
- Sy
Oz, 355 . 0E 08 ZA: :

(90)

R 5 i) Z'} ils) i ';‘Zﬂh'!' ils) i1 LT

. P . L8k S P P Sy
dride;  dri g i T~ dz; Oz ;i

The second term in the sum can be considered as a second order correction and is set to zero. The
Hessian is then

f-:';_.. o fz sy i1sy (91)

dr; Ox;

This approximation has the advantage of ensuring positive-definiteness and the result converges to the
correct minimum. However, the covariance matrix will not in general converge to the correct covariance
values, so that the errors as determined by this matrix may not be correct.

Asthe reader can see, it isnot atrivia task to implement a nonlinear least squares program. For this
reason we have advised the use of aready-made program. A variety of routines may be found in the
NAG library [Ref. 13], for example. A very powerful program allowing the use of avariety of

minimization methods such a simplex, Newton, etc., is Minuit [Ref. 14] which is available in the CERN
program library. Thislibrary is distributed to many laboratories and universities.

L ocal vs Global Minima. Up to now we have assumed that the function F contains only one minimum.
More generally, of course, an arbitrary function can have many local minimain addition to a global,
absolute minimum. The methods we have described are all designed to locate alocal minimum without
regard for any other possible minima. It is up to the user to decide if the minimum obtained isindeed
what he wants. It isimportant, therefore, to have some idea of what the true values are so as to start the
search in the right region. Even in this case, however, there is no guarantee that the process will converge
onto the closest minimum. A good technique is to fix those parameters which are approximately known
and vary the rest. The result can then be used to start a second search in which all the parameters are
varied. Other problems which can arise are the occurrence of overflow or underflow in the computer.
This occurs very often with exponential functions. Here good starting values are generally necessary to
obtain aresult.

Errors. While the methods we have discussed allow usto find the parameter values which minimize the
function S there is no prescription for calculating the errors on the parameters. A clue, however, can be
taken from the linear one-dimensional case. Here we saw the variance of a parameter # was given by the
inverse of the second derivative (92),
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1g25 |~

]

s g (92)

If we expand Sin Taylor series about the minimum

L 48 :
S(8) = S(O7) + 57570~ 67)°
Z (Hr= (93)

| ,
= S8+ —(0— &)=
L"F_l
At the point # = #* + g, we thus find that

S +a)=58{)+1.. (99

Thus the error on # corresponds to the distance between the minimum and where the Sdistribution
increases by 1.

This can be generalized to the nonlinear case where the Sdistribution is not generally parabolic around
the minimum. Finding the errors for each parameter then implies finding those points for which the S
value changes by 1 from the minimum. If Shas a complicated form, of course, thisis not always easy to
determine and once again, a numerical method must be used to solve the equation. If the form of Scan be
approximated by a quadratic surface, then, the error matrix in (73) can be calculated and inverted asin
the linear case. This should then give an estimate of the errors and covariances.

2 A minimization can be turned into a maximization by simply adding a minus sign in front of the
function and vice-versa. Back.

| M=t Il Ccmtents" F’revi-:lusl
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8. SOME GENERAL RULES FOR ROUNDING-OFF NUMBERS FOR
FINAL PRESENTATION

Asafina remark in this chapter, we will suggest here afew genera rules for the rounding off of
numerical datafor their final presentation.

The number of digits to be kept in a numerical result is determined by the errors on that result. For
example, suppose our result after measurement and analysis is calculated to be x = 17.615334 with an
error o(x) = 0.0233. The error, of course, tells us that the result is uncertain at the level of the second
decimal place, so that all following digits have absolutely no meaning. The result therefore should be
rounded-off to correspond with the error.

Rounding off also appliesto the calculated error. Only the first significant digit has any meaning, of
course, but it is generally a good ideato keep two digits (but not more) in case the results are used in
some other analysis. The extra digit then helps avoid a cumulative round-off error. In the example above,
then, the error is rounded off to o = 0.0233 -> 0.023; the result, x, should thus be given to three decimal
places.

A general method for rounding off numbersisto take all digits to be rejected and to place a decimal point
in front. Then

1. if the fraction thus formed is less than 0.5, the least significant digit iskept asis,
2. if thefraction is greater than 0.5, the least significant digit isincreased by 1,

3. if thefraction is exactly 0.5, the number isincreased if the least significant digit is odd and kept if
itiseven.

In the example above, three decimal places are to be kept. Placing a decimal point in front of the rejected
digits then yields 0.334. Since thisis less than 0.5, the rounded result isx = 17.615 + 0.023.

One thing which should be avoided is rounding off in steps of one digit at atime. For example, consider
the number 2.346 which isto be rounded-off to one decimal place. Using the method above, we find
2.346 -> 2.3. Rounding-off one digit at atime, however, yields 2.346 -> 2.35 -> 2.4

| M=t Il Cﬂntents" F’revin:-ual
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. Frodesen, A.G., Skjeggstad, O., Tofte, H. Probability and Satisticsin Particle Physics
(Universitets - Forlaget, Oslo, Norway 1979)

. Gibra, I.N. Probability and Satistical Inference for Scientists and Engineers (Prentice-Hall, New
York 1973)

. Hahn, G.J, Shapiro, S.: Satistical Models in Engineering (John Wiley & Sons, New Y ork 1967)

. Meyers, S.L.: Data Analysis for Scientists (John Wiley & Sons, New Y ork 1976)
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