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Abstract

Topological defects are ubiquitous in condensed{matter physics but only hypothetical in the early

universe. In spite of this, even an indirect evidence for one of these cosmic objects would revolu-

tionize our vision of the cosmos. We give here an introduction to the subject of cosmic topological

defects and their possible observable signatures. Beginning with a review of the basics of general

defect formation and evolution, we then focus on mainly two topics in some detail: conducting

strings and vorton formation, and some speci�c imprints in the cosmic microwave background

radiation from simulated cosmic strings.
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Chapter 1

Topological Defects in Cosmology

1.1 Introduction

On a cold day, ice forms quickly on the surface of a pond. But it does not grow as a smooth,

featureless covering. Instead, the water begins to freeze in many places independently, and the

growing plates of ice join up in random fashion, leaving zig{zag boundaries between them. These

irregular margins are an example of what physicists call \topological defects" { defects because

they are places where the crystal structure of the ice is disrupted, and topological because an

accurate description of them involves ideas of symmetry embodied in topology, the branch of

mathematics that focuses on the study of continuous surfaces.

Current theories of particle physics likewise predict that a variety of topological defects would

almost certainly have formed during the early evolution of the universe. Just as water turns to ice

(a phase transition) when the temperature drops, so the interactions between elementary particles

run through distinct phases as the typical energy of those particles falls with the expansion of

the universe. When conditions favor the appearance of a new phase, it generally crops up in

many places at the same time, and when separate regions of the new phase run into each other,

topological defects are the result. The detection of such structures in the modern universe would

provide precious information on events in the earliest instants after the Big Bang. Their absence,

on the other hand, would force a major revision of current physical theories.

The aim of this set of Lectures is to introduce the reader to the subject of topological defects

in cosmology. We begin with a review of the basics of defect formation and evolution, to get a

grasp of the overall picture. We will see that defects are generically predicted to exist in most

interesting models of high energy physics trying to describe the early universe. The basic elements

of the standard cosmology, with its successes and shortcomings, are covered elsewhere in this

volume, so we will not devote much space to them here. We will then focus on some speci�c

topics. We will �rst treat conducting cosmic strings and one of their most important predictions

for cosmology, namely, the existence of equilibrium con�gurations of string loops, dubbed vortons.

We will then pass on to study some key signatures that a network of defects would produce on

the cosmic microwave background (CMB) radiation, e.g., the CMB bispectrum of the temperature
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anisotropies from a simulated model of cosmic strings. Miscellaneous topics also reviewed below

are, for example, the way in which these cosmic entities lead to large{scale structure formation

and some astrophysical footprints left by the various defects, and we will discuss the possibility

of isolating their e�ects by astrophysical observations. Also, we will brie
y consider gravitational

radiation from strings, as well as the relation of cosmic defects to the well{known defects formed

in condensed{matter systems like liquid crystals, etc.

Many areas of modern research directly related to cosmic defects are not covered in these

notes. The subject has grown so wide, so fast, that the best thing we can do is to refer the

reader to some of the excellent recent literature already available. So, have a look, for example,

to the report by Achucarro & Vachaspati [2000] for a treatment of semilocal and electroweak

strings1, and to [Vachaspati, 2001] for a review of certain topological defects, like monopoles,

domain walls and, again, electroweak strings, virtually not covered here. For conducting defects,

cosmic strings in particular, see for example [Gangui & Peter, 1998] for a brief overview of many

di�erent astrophysical and cosmological phenomena, and the comprehensive colorful lecture notes

by Carter [1997] on the dynamics of branes with applications to conducting cosmic strings and

vortons. If your are in cosmological structure formation, Durrer [2000] presents a good review of

modern developments on global topological defects and their relation to CMB anisotropies, while

Magueijo & Brandenberger [2000] give a set of imaginative lectures with an update on local string

models of large-scale structure formation and also baryogenesis with cosmic defects.

If you ever wondered whether you could have a pocket device, the size of a cellular phone say, to

produce \topological defects" on demand [Chuang, 1994], then the proceedings of the school held

aux Houches on topological defects and non-equilibrium dynamics, edited by Bunkov & Godfrin

[2000], are for you; the ensemble of lectures in this volume give an exhaustive illustration of the

interdisciplinary of topological defects and their relevance in various �elds of physics, like low{

temperature condensed{matter, liquid crystals, astrophysics and high{energy physics.

Finally, all of the above (and more) can be found in the concise review by Hindmarsh &

Kibble [1995], particularly concerned with the physics and cosmology of cosmic strings, and in the

monograph by Vilenkin & Shellard [2000] on cosmic strings and other topological defects.

1.1.1 How defects form

A central concept of particle physics theories attempting to unify all the fundamental interactions

is the concept of symmetry breaking. As the universe expanded and cooled, �rst the gravitational

interaction, and subsequently all other known forces would have begun adopting their own identi-

ties. In the context of the standard hot Big Bang theory the spontaneous breaking of fundamental

symmetries is realized as a phase transition in the early universe. Such phase transitions have

several exciting cosmological consequences and thus provide an important link between particle

physics and cosmology.

1Animations of semilocal and electroweak string formation and evolution can be found at
http://www.nersc.gov/~borrill/
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There are several symmetries which are expected to break down in the course of time. In each

of these transitions the space{time gets `oriented' by the presence of a hypothetical force �eld

called the `Higgs �eld', named for Peter Higgs, pervading all the space. This �eld orientation

signals the transition from a state of higher symmetry to a �nal state where the system under

consideration obeys a smaller group of symmetry rules. As an every{day analogy we may consider

the transition from liquid water to ice; the formation of the crystal structure ice (where water

molecules are arranged in a well de�ned lattice), breaks the symmetry possessed when the system

was in the higher temperature liquid phase, when every direction in the system was equivalent. In

the same way, it is precisely the orientation in the Higgs �eld which breaks the highly symmetric

state between particles and forces.

Having built a model of elementary particles and forces, particle physicists and cosmologists are

today embarked on a diÆcult search for a theory that uni�es all the fundamental interactions. As

we mentioned, an essential ingredient in all major candidate theories is the concept of symmetry

breaking. Experiments have determined that there are four physical forces in nature; in addition

to gravity these are called the strong, weak and electromagnetic forces. Close to the singularity

of the hot Big Bang, when energies were at their highest, it is believed that these forces were

uni�ed in a single, all{encompassing interaction. As the universe expanded and cooled, �rst the

gravitational interaction, then the strong interaction, and lastly the weak and the electromagnetic

forces would have broken out of the uni�ed scheme and adopted their present distinct identities

in a series of symmetry breakings.

Theoretical physicists are still struggling to understand how gravity can be united with the

other interactions, but for the uni�cation of the strong, weak and electromagnetic forces plausible

theories exist. Indeed, force{carrying particles whose existence demonstrated the fundamental

uni�cation of the weak and electromagnetic forces into a primordial \electroweak" force { the

W and Z bosons { were discovered at CERN, the European accelerator laboratory, in 1983. In

the context of the standard Big Bang theory, cosmological phase transitions are produced by the

spontaneous breaking of a fundamental symmetry, such as the electroweak force, as the universe

cools. For example, the electroweak interaction broke into the separate weak and electromagnetic

forces when the observable universe was 10�12 seconds old, had a temperature of 1015 degrees

Kelvin, and was only one part in 1015 of its present size. There are also other phase transitions

besides those associated with the emergence of the distinct forces. The quark-hadron con�nement

transition, for example, took place when the universe was about a microsecond old. Before this

transition, quarks { the particles that would become the constituents of the atomic nucleus {

moved as free particles; afterward, they became forever bound up in protons, neutrons, mesons

and other composite particles.

As we said, the standard mechanism for breaking a symmetry involves the hypothetical Higgs

�eld that pervades all space. As the universe cools, the Higgs �eld can adopt di�erent ground

states, also referred to as di�erent vacuum states of the theory. In a symmetric ground state, the

Higgs �eld is zero everywhere. Symmetry breaks when the Higgs �eld takes on a �nite value (see



4

Figure 1.1: Temperature{dependent e�ective potential for a �rst{order phase transition for the
Higgs �eld. For very high temperatures, well above the critical one Tc, the potential possesses just
one minimum for the vanishing value of the Higgs �eld. Then, when the temperature decreases,
a whole set of minima develops (it may be two or more, discrete or continuous, depending of the
type of symmetry under consideration). Below Tc, the value � = 0 stops being the global minimum
and the system will spontaneously choose a new (lower) one, say � = � exp(i�) (for complex �) for
some angle � and nonvanishing �, amongst the available ones. This choice signals the breakdown
of the symmetry in a cosmic phase transition and the generation of random regions of con
icting
�eld orientations �. In a cosmological setting, the merging of these domains gives rise to cosmic
defects.

Figure 1.1).

Kibble [1976] �rst saw the possibility of defect formation when he realized that in a cooling

universe phase transitions proceed by the formation of uncorrelated domains that subsequently

coalesce, leaving behind relics in the form of defects. In the expanding universe, widely separated

regions in space have not had enough time to `communicate' amongst themselves and are therefore

not correlated, due to a lack of causal contact. It is therefore natural to suppose that di�erent

regions ended up having arbitrary orientations of the Higgs �eld and that, when they merged

together, it was hard for domains with very di�erent preferred directions to adjust themselves and

�t smoothly. In the interfaces of these domains, defects form. Such relic `
aws' are unique examples

of incredible amounts of energy and this feature attracted the minds of many cosmologists.

1.1.2 Phase transitions and �nite temperature �eld theory

Phase transitions are known to occur in the early universe. Examples we mentioned are the quark

to hadron (con�nement) transition, which QCD predicts at an energy around 1 GeV, and the

electroweak phase transition at about 250 GeV. Within grand uni�ed theories (GUT), aiming to

describe the physics beyond the standard model, other phase transitions are predicted to occur at

energies of order 1015 GeV; during these, the Higgs �eld tends to fall towards the minima of its
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potential while the overall temperature of the universe decreases as a consequence of the expansion.

A familiar theory to make a bit more quantitative the above considerations is the �j�j4 theory,

L =
1

2
j@��j2 + 1

2
m2

0j�j2 �
�

4!
j�j4 ; (1.1)

with m2
0 > 0. The second and third terms on the right hand side yield the usual `Mexican hat'

potential for the complex scalar �eld. For energies much larger than the critical temperature, Tc,

the �elds are in the so{called `false' vacuum: a highly symmetric state characterized by a vacuum

expectation value hj�ji = 0. But when energies decrease the symmetry is spontaneously broken:

a new `true' vacuum develops and the scalar �eld rolls down the potential and sits onto one of the

degenerate new minima. In this situation the vacuum expectation value becomes hj�ji2 = 6m2
0=�.

Research done in the 1970's in �nite{temperature �eld theory [Weinberg, 1974; Dolan & Jackiw,

1974; Kirzhnits & Linde, 1974] has led to the result that the temperature{dependent e�ective

potential can be written down as

VT (j�j) = �1
2
m2(T )j�j2 + �

4!
j�j4 (1.2)

with T 2
c = 24m2

0=�, m
2(T ) = m2

0(1� T 2=T 2
c ), and hj�ji2 = 6m2(T )=�. We easily see that when T

approaches Tc from below the symmetry is restored, and again we have hj�ji = 0. In condensed{

matter jargon, the transition described above is second{order [Mermin, 1979].2

1.1.3 The Kibble mechanism

The model described in the last subsection is an example in which the transition may be second{

order. As we saw, for temperatures much larger than the critical one the vacuum expectation value

of the scalar �eld vanishes at all points of space, whereas for T < Tc it evolves smoothly in time

towards a non vanishing hj�ji. Both thermal and quantum 
uctuations in
uence the new value

taken by hj�ji and therefore it has no reasons to be uniform in space. This leads to the existence

of domains wherein the hj�(~x)ji is coherent and regions where it is not. The consequences of this

fact are the subject of this subsection.

Phase transitions can also be �rst{order proceeding via bubble nucleation. At very high energies

the symmetry breaking potential has hj�ji = 0 as the only vacuum state. When the temperature

goes down to Tc a set of vacua, degenerate to the previous one, develops. However this time the

transition is not smooth as before, for a potential barrier separates the old (false) and the new

(true) vacua (see, e.g. Figure 1.1). Provided the barrier at this small temperature is high enough,

compared to the thermal energy present in the system, the �eld � will remain trapped in the

false vacuum state even for small (< Tc) temperatures. Classically, this is the complete picture.

However, quantum tunneling e�ects can liberate the �eld from the old vacuum state, at least in

2In a �rst{order phase transition the order parameter (e.g.,


j�j
�
in our case) is not continuous. It may proceed

by bubble nucleation [Callan & Coleman, 1977; Linde, 1983b] or by spinoidal decomposition [Langer, 1992]. Phase
transitions can also be continuous second{order processes. The `order' depends sensitively on the ratio of the
coupling constants appearing in the Lagrangian.
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some regions of space: there is a probability per unit time and volume in space that at a point ~x

a bubble of true vacuum will nucleate. The result is thus the formation of bubbles of true vacuum

with the value of the �eld in each bubble being independent of the value of the �eld in all other

bubbles. This leads again to the formation of domains where the �elds are correlated, whereas no

correlation exits between �elds belonging to di�erent domains. Then, after creation the bubble

will expand at the speed of light surrounded by a `sea' of false vacuum domains. As opposed

to second{order phase transitions, here the nucleation process is extremely inhomogeneous and

hj�(~x)ji is not a continuous function of time.

Let us turn now to the study of correlation lengths and their rôle in the formation of topological

defects. One important feature in determining the size of the domains where hj�(~x)ji is coherent
is given by the spatial correlation of the �eld �. Simple �eld theoretic considerations [see, e.g.,

Copeland, 1993] for long wavelength 
uctuations of � lead to di�erent functional behaviors for the

correlation function G(r) � h�(r1)�(r2)i, where we noted r = jr1 � r2j. What is found depends

radically on whether the wanted correlation is computed between points in space separated by

a distance r much smaller or much larger than a characteristic length ��1 = m(T ) ' p� jh�ij,
known as the correlation length. We have

G(r) '
8><
>:

Tc

4�r
exp(� r

�
) r >> �

T 2

2�2
r << � :

(1.3)

This tells us that domains of size � � m�1 arise where the �eld � is correlated. On the other

hand, well beyond � no correlations exist and thus points separated apart by r >> � will belong

to domains with in principle arbitrarily di�erent orientations of the Higgs �eld. This in turn leads,

after the merging of these domains in a cosmological setting, to the existence of defects, where

�eld con�gurations fail to match smoothly.

However, when T ! Tc we have m ! 0 and so � ! 1, suggesting perhaps that for all

points of space the �eld � becomes correlated. This fact clearly violates causality. The existence

of particle horizons in cosmological models (proportional to the inverse of the Hubble parameter

H�1) constrains microphysical interactions over distances beyond this causal domain. Therefore

we get an upper bound to the correlation length as � < H�1 � t.

The general feature of the existence of uncorrelated domains has become known as the Kibble

mechanism [Kibble, 1976] and it seems to be generic to most types of phase transitions.

1.1.4 A survey of topological defects

Di�erent models for the Higgs �eld lead to the formation of a whole variety of topological defects,

with very di�erent characteristics and dimensions. Some of the proposed theories have symmetry

breaking patterns leading to the formation of `domain walls' (mirror re
ection discrete symmetry):

incredibly thin planar surfaces trapping enormous concentrations of mass{energy which separate

domains of con
icting �eld orientations, similar to two{dimensional sheet{like structures found
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Figure 1.2: In a simple model of symmetry breaking, the initial symmetric ground state of the
Higgs �eld (yellow dot) can fall into the left- or right-hand valley of a double-well energy potential
(light and dark dots). In a cosmic phase transition, regions of the new phase appear randomly
and begin to grow and eventually merge as the transition proceeds toward completion (middle).
Regions in which the symmetry has broken the same way can coalesce, but where regions that
have made opposite choices encounter each other, a topological defect known as a domain wall
forms (right). Across the wall, the Higgs �eld has to go from one of the valleys to the other (in
the left panel), and must therefore traverse the energy peak. This creates a narrow planar region
of very high energy, in which the symmetry is locally unbroken.

in ferromagnets. Within other theories, cosmological �elds get distributed in such a way that

the old (symmetric) phase gets con�ned into a �nite region of space surrounded completely by

the new (non{symmetric) phase. This situation leads to the generation of defects with linear

geometry called `cosmic strings'. Theoretical reasons suggest these strings (vortex lines) do not

have any loose ends in order that the two phases not get mixed up. This leaves in�nite strings

and closed loops as the only possible alternatives for these defects to manifest themselves in the

early universe3.

With a bit more abstraction scientists have even conceived other (semi) topological defects,

called `textures'. These are conceptually simple objects, yet, it is not so easy to imagine them for

they are just global �eld con�gurations living on a three{sphere vacuum manifold (the minima

of the e�ective potential energy), whose non linear evolution perturbs spacetime. Turok [1989]

was the �rst to realize that many uni�ed theories predicted the existence of peculiar Higgs �eld

con�gurations known as (texture) knots, and that these could be of potential interest for cosmology.

Several features make these defects interesting. In contrast to domain walls and cosmic strings,

textures have no core and thus the energy is more evenly distributed over space. Secondly, they are

unstable to collapse and it is precisely this last feature which makes these objects cosmologically

relevant, for this instability makes texture knots shrink to a microscopic size, unwind and radiate

3`Monopole' is another possible topological defect; we defer its discussion to the next subsection. Cosmic strings
bounded by monopoles is yet another possibility in GUT phase transitions of the kind, e.g., G! K� U(1)! K.
The �rst transition yields monopoles carrying a magnetic charge of the U(1) gauge �eld, while in the second
transition the magnetic �eld in squeezed into 
ux tubes connecting monopoles and antimonopoles [Langacker & Pi,
1980].
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away all their energy. In so doing, they generate a gravitational �eld that perturbs the surrounding

matter in a way which can seed structure formation.

1.1.5 Conditions for their existence: topological criteria

Let us now explore the conditions for the existence of topological defects. It is widely accepted that

the �nal goal of particle physics is to provide a uni�ed gauge theory comprising strong, weak and

electromagnetic interactions (and some day also gravitation). This uni�ed theory is to describe

the physics at very high temperatures, when the age of the universe was slightly bigger than

the Planck time. At this stage, the universe was in a state with the highest possible symmetry,

described by a symmetry groupG, and the Lagrangian modeling the system of all possible particles

and interactions present should be invariant under the action of the elements of G.

As we explained before, the form of the �nite temperature e�ective potential of the system is

subject to variations during the cooling down evolution of the universe. This leads to a chain of

phase transitions whereby some of the symmetries present in the beginning are not present anymore

at lower temperatures. The �rst of these transitions may be described as G!H, where now H

stands for the new (smaller) unbroken symmetry group ruling the system. This chain of symmetry

breakdowns eventually ends up with SU(3)�SU(2)�U(1), the symmetry group underlying the

`standard model' of particle physics.

A broken symmetry system (with a Mexican-hat potential for the Higgs �eld) may have many

di�erent minima (with the same energy), all related by the underlying symmetry. Passing from

one minimum to another is included as one of the symmetries of the original group G, and the

system will not change due to one such transformation. If a certain �eld con�guration yields the

lowest energy state of the system, transformations of this con�guration by the elements of the

symmetry group will also give the lowest energy state. For example, if a spherically symmetric

system has a certain lowest energy value, this value will not change if the system is rotated.

The system will try to minimize its energy and will spontaneously choose one amongst the

available minima. Once this is done and the phase transition achieved, the system is no longer

ruled by G but by the symmetries of the smaller group H. So, if G!H and the system is in one

of the lowest energy states (call it S1), transformations of S1 to S2 by elements of G will leave the

energy unchanged. However, transformations of S1 by elements of H will leave S1 itself (and not

just the energy) unchanged. The many distinct ground states of the system S1; S2; : : : are given

by all transformations of G that are not related by elements in H. This space of distinct ground

states is called the vacuum manifold and denotedM.

M is the space of all elements of G in which elements related by transformations in H

have been identi�ed. Mathematicians call it the coset space and denote it G=H. We

then haveM = G=H.

The importance of the study of the vacuum manifold lies in the fact that it is precisely the

topology ofM what determines the type of defect that will arise. Homotopy theory tells us how
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to mapM into physical space in a non{trivial way, and what ensuing defect will be produced. For

instance, the existence of non contractible loops inM is the requisite for the formation of cosmic

strings. In formal language this comes about whenever we have the �rst homotopy group �1(M) 6=
1, where 1 corresponds to the trivial group. If the vacuum manifold is disconnected we then have

�0(M) 6= 1, and domain walls are predicted to form in the boundary of these regions where the

�eld � is away from the minimum of the potential. Analogously, if �2(M) 6= 1 it follows that the

vacuum manifold contains non contractible two{spheres, and the ensuing defect is a monopole.

Textures arise when M contains non contractible three{spheres and in this case it is the third

homotopy group, �3(M), the one that is non trivial. We summarize this in Table 1.1 .

�0(M) 6=1 M disconnected Domain Walls

�1(M) 6=1 non contractible loops inM Cosmic Strings

�2(M) 6=1 non contractible 2{spheres inM Monopoles

�3(M) 6=1 non contractible 3{spheres inM Textures

Table 1.1: The topology ofM determines the type of defect that will arise.

1.2 Defects in the universe

Generically topological defects will be produced if the conditions for their existence are met. Then

for example if the unbroken group H contains a disconnected part, like an explicit U(1) factor

(something that is quite common in many phase transition schemes discussed in the literature),

monopoles will be left as relics of the transition. This is due to the fundamental theorem on the

second homotopy group of coset spaces [Mermin, 1979], which states that for a simply{connected

covering group G we have4

�2(G=H) �= �1(H0) ; (1.4)

with H0 being the component of the unbroken group connected to the identity. Then we see that

since monopoles are associated with unshrinkable surfaces in G=H, the previous equation implies

their existence if H is multiply{connected. The reader may guess what the consequences are for

GUT phase transitions: in grand uni�ed theories a semi{simple gauge group G is broken in several

stages down to H = SU(3)�U(1). Since in this case �1(H) �= Z, the integers, we have �2(G=H) 6=
1 and therefore gauge monopole solutions exist [Preskill, 1979].

4The isomor�sm between two groups is noted as �=. Note that by using the theorem we therefore can reduce
the computation of �2 for a coset space to the computation of �1 for a group. A word of warning: the focus here is
on the physics and the mathematically{oriented reader should bear this in mind, especially when we will become a
bit sloppy with the notation. In case this happens, consult the book [Steenrod, 1951] for a clear exposition of these
matters.
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1.2.1 Local and global monopoles and domain walls

Monopoles are yet another example of stable topological defects. Their formation stems from

the fact that the vacuum expectation value of the symmetry breaking Higgs �eld has random

orientations (h�ai pointing in di�erent directions in group space) on scales greater than the horizon.
One expects therefore to have a probability of order unity that a monopole con�guration will

result after the phase transition (cf. the Kibble mechanism). Thus, about one monopole per

Hubble volume should arise and we have for the number density nmonop � 1=H�3 � T 6
c =m

3
P ,

where Tc is the critical temperature and mP is Planck mass, when the transition occurs. We also

know the entropy density at this temperature, s � T 3
c , and so the monopole to entropy ratio

is nmonop=s ' 100(Tc=mP )
3. In the absence of non{adiabatic processes after monopole creation

this constant ratio determines their present abundance. For the typical value Tc � 1014 GeV we

have nmonop=s � 10�13. This estimate leads to a present 
monoph
2 ' 1011, for the superheavy

monopoles mmonop ' 1016 GeV that are created5. This value contradicts standard cosmology and

the presently most attractive way out seems to be to allow for an early period of in
ation: the

massive entropy production will hence lead to an exponential decrease of the initial nmonop=s ratio,

yielding 
monop consistent with observations.6 In summary, the broad{brush picture one has in

mind is that of a mechanism that could solve the monopole problem by `weeping' these unwanted

relics out of our sight, to scales much bigger than the one that will eventually become our present

horizon today.

Note that these arguments do not apply for global monopoles as these (in the absence of gauge

�elds) possess long{range forces that lead to a decrease of their number in comoving coordinates.

The large attractive force between global monopoles and antimonopoles leads to a high annihilation

probability and hence monopole over{production does not take place. Simulations performed by

Bennett & Rhie [1990] showed that global monopole evolution rapidly settles into a scale invariant

regime with only a few monopoles per horizon volume at all times.

Given that global monopoles do not represent a danger for cosmology one may proceed in

studying their observable consequences. The gravitational �elds of global monopoles may lead to

matter clustering and CMB anisotropies. Given an average number of monopoles per horizon of

� 4, Bennett & Rhie [1990] estimate a scale invariant spectrum of 
uctuations (Æ�=�)H � 30G�2

at horizon crossing7. In a subsequent paper they simulate the large{scale CMB anisotropies and,

5These are the actual �gures for a gauge SU(5) GUT second{order phase transition. Preskill [1979] has shown
that in this case monopole antimonopole annihilation is not e�ective to reduce their abundance. Guth & Weinberg
[1983] did the case for a �rst{order phase transition and drew qualitatively similar conclusions regarding the excess
of monopoles.

6The in
ationary expansion reaches an end in the so{called reheating process, when the enormous vacuum
energy driving in
ation is transferred to coherent oscillations of the in
aton �eld. These oscillations will in turn
be damped by the creation of light particles (e.g., via preheating) whose �nal fate is to thermalise and reheat the
universe.

7The spectrum of density 
uctuations on smaller scales has also been computed. They normalize the spectrum
at 8h�1 Mpc and agreement with observations lead them to assume that galaxies are clustered more strongly than
the overall mass density, this implying a `biasing' of a few [see Bennett, Rhie & Weinberg, 1993 for details].
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upon normalization with COBE{DMR, they get roughly G�2 � 6 � 10�7 in agreement with a

GUT energy scale � [Bennett & Rhie, 1993]. However, as we will see in the CMB sections below,

current estimates for the angular power spectrum of global defects do not match the most recent

observations, their main problem being the lack of power on the degree angular scale once the

spectrum is normalized to COBE on large scales.

Let us concentrate now on domain walls, and brie
y try to show why they are not welcome in

any cosmological context (at least in the simple version we here consider { there is always room

for more complicated (and contrived) models). If the symmetry breaking pattern is appropriate

at least one domain wall per horizon volume will be formed. The mass per unit surface of these

two-dimensional objects is given by � �1=2�3, where � as usual is the coupling constant in the

symmetry breaking potential for the Higgs �eld. Domain walls are generally horizon{sized and

therefore their mass is given by � �1=2�3H�2. This implies a mass energy density roughly given

by �DW � �3t�1 and we may readily see now how the problem arises: the critical density goes

as �crit � t�2 which implies 
DW (t) � (�=mP )
2�t. Taking a typical GUT value for � we get


DW (t � 10�35sec) � 1 already at the time of the phase transition. It is not hard to imagine that

today this will be at variance with observations; in fact we get 
DW (t � 1018sec) � 1052. This

indicates that models where domain walls are produced are tightly constrained, and the general

feeling is that it is best to avoid them altogether [see Kolb & Turner, 1990 for further details; see

also Dvali et al., 1998, Pogosian & Vachaspati, 2000 8 and Alexander et al., 1999 for an alternative

solution].

1.2.2 Are defects in
ated away?

It is important to realize the relevance that the Kibble's mechanism has for cosmology; nearly every

sensible grand uni�ed theory (with its own symmetry breaking pattern) predicts the existence of

defects. We know that an early era of in
ation helps in getting rid of the unwanted relics. One

could well wonder if the very same Higgs �eld responsible for breaking the symmetry would not

be the same one responsible for driving an era of in
ation, thereby diluting the density of the

relic defects. This would get rid not only of (the unwanted) monopoles and domain walls but also

of any other (cosmologically appealing) defect. Let us follow [Brandenberger, 1993] and sketch

why this actually does not occur. Take �rst the symmetry breaking potential of Eq. (1.2) at

zero temperature and add to it a harmless �{independent term 3m4=(2�). This will not a�ect the

dynamics at all. Then we are led to

V (�) =
�

4!

�
�2 � �2

�2
; (1.5)

8Animations of monopoles colliding with domain walls can be found in `LEP' page at
http://theory.ic.ac.uk/~LEP/figures.html
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with � = (6m2=�)1=2 the symmetry breaking energy scale, and where for the present heuristic

digression we just took a real Higgs �eld. Consider now the equation of motion for �,

�� ' �@V
@�

= � �
3!
�3 +m2� � m2� ; (1.6)

for � << � very near the false vacuum of the e�ective Mexican hat potential and where, for sim-

plicity, the expansion of the universe and possible interactions of � with other �elds were neglected.

The typical time scale of the solution is � ' m�1. For an in
ationary epoch to be e�ective we

need � >> H�1, i.e., a suÆciently large number of e{folds of slow{rolling solution. Note, however,

that after some e{folds of exponential expansion the curvature term in the Friedmann equation

becomes subdominant and we have H2 ' 8�G V (0)=3 ' (2�m2=3)(�=mP )
2. So, unless � > mP ,

which seems unlikely for a GUT phase transition, we are led to � << H�1 and therefore the

amount of in
ation is not enough for getting rid of the defects generated during the transition by

hiding them well beyond our present horizon.

Recently, there has been a large amount of work in getting defects, particularly cosmic strings,

after post-in
ationary preheating. Reaching the latest stages of the in
ationary phase, the in
aton

�eld oscillates about the minimum of its potential. In doing so, parametric resonance may transfer

a huge amount of energy to other �elds leading to cosmologically interesting nonthermal phase

transitions. Just like thermal 
uctuations can restore broken symmetries, here also, these large


uctuations may lead to the whole process of defect formation again. Numerical simulations

employing potentials similar to that of Eq. (1.5) have shown that strings indeed arise for values

� � 1016 GeV [Tkachev et al., 1998, Kasuya & Kawasaki, 1998]. Hence, preheating after in
ation

helps in generating cosmic defects.

1.2.3 Cosmic strings

Cosmic strings are without any doubt the topological defect most thoroughly studied, both in

cosmology and solid{state physics (vortices). The canonical example, also describing 
ux tubes in

superconductors, is given by the Lagrangian

L = �1
4
F��F

�� +
1

2
jD��j2 � �

4!

�
j�j2 � �2

�2
; (1.7)

with F�� = @[�A�], where A� is the gauge �eld and the covariant derivative is D� = @� + ieA�,

with e the gauge coupling constant. This Lagrangian is invariant under the action of the Abelian

group G = U(1), and the spontaneous breakdown of the symmetry leads to a vacuum manifoldM
that is a circle, S1, i.e., the potential is minimized for � = � exp(i�), with arbitrary 0 � � � 2�.

Each possible value of � corresponds to a particular `direction' in the �eld space.

Now, as we have seen earlier, due to the overall cooling down of the universe, there will be

regions where the scalar �eld rolls down to di�erent vacuum states. The choice of the vacuum is

totally independent for regions separated apart by one correlation length or more, thus leading to

the formation of domains of size � � ��1. When these domains coalesce they give rise to edges in
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Figure 1.3: The complex scalar Higgs �eld evolves in a temperature-dependent potential V (�). At
high temperatures (violet surface) the vacuum expectation value of the �eld lies at the bottom of
V . For lower temperatures, the potential adopts the \Mexican hat" form (yellow surface) and the
�eld spontaneously chooses one amongst the new available (degenerate) lowest energy states (the
violet circle along the valley of the hat). This isolates a single value/direction for the phase of the
�eld, spontaneously breaking the symmetry possessed by the system at high energies. Di�erent
regions of the universe, with no causal connection, will end up having arbitrarily di�erent directions
for the �eld (arrows on the right). As separate regions of broken symmetry merge, it is not always
possible for the �eld orientations to match. It may happen that a closed loop in physical space
intersects regions where the Higgs phase varies from 0 to 2� (red arrows, corresponding to the red
dashed-line on the left panel). In that situation, a cosmic string will pass somewhere inside the
loop. On the contrary, green arrows (and green dashed-line on the left panel) show a situation
where no string is formed after the phase transition.

the interface. If we now draw a imaginary circle around one of these edges and the angle � varies by

2� then by contracting this loop we reach a point where we cannot go any further without leaving

the manifoldM. This is a small region where the variable � is not de�ned and, by continuity, the

�eld should be � = 0. In order to minimize the spatial gradient energy these small regions line up

and form a line{like defect called cosmic string.

The width of the string is roughly m�1
� � (

p
��)�1, m� being the Higgs mass. The string mass

per unit length, or tension, is � � �2. This means that for GUT cosmic strings, where � � 1016

GeV, we have G� � 10�6. We will see below that the dimensionless combination G�, present

in all signatures due to strings, is of the right order of magnitude for rendering these defects

cosmologically interesting.

There is an important di�erence between global and gauge (or local) cosmic strings: local

strings have their energy con�ned mainly in a thin core, due to the presence of gauge �elds A�

that cancel the gradients of the �eld outside of it. Also these gauge �elds make it possible for

the string to have a quantized magnetic 
ux along the core. On the other hand, if the string

was generated from the breakdown of a global symmetry there are no gauge �elds, just Goldstone
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PHYSICAL SPACE
3 - DIMENSIONAL 
PHYSICAL SPACE

Figure 1.4: We can now extend the mechanism shown in the previous �gure to the full three-
dimensional space. Regions of the various planes that were traversed by strings can be superposed
to show the actual location of the cosmic string (left panel). The �gure on the right panel shows
why we are sure a string crosses the plane inside the loop in physical space (the case with red
arrows in the previous �gure). Continuity of the �eld imposes that if we gradually contract this
loop the direction of the �eld will be forced to wind \faster". In the limit in which the loop reduces
to a point, the phase is no longer de�ned and the vacuum expectation value of the Higgs �eld has to
vanish. This corresponds to the central tip of the Mexican hat potential in the previous �gure and
is precisely the locus of the false vacuum. Cosmic strings are just that, narrow, extremely massive
line-like regions in physical space where the Higgs �eld adopts its high-energy false vacuum state.

bosons, which, being massless, give rise to long{range forces. No gauge �elds can compensate the

gradients of � this time and therefore there is an in�nite string mass per unit length.

Just to get a rough idea of the kind of models studied in the literature, consider the case

G = SO(10) that is broken to H = SU(5)� Z2. For this pattern we have �1(M) = Z2, which is

clearly non trivial and therefore cosmic strings are formed [Kibble et al., 1982].9

1.2.4 String loops and scaling

We saw before the reasons why gauge monopoles and domain walls were a bit of a problem for

cosmology. Essentially, the problem was that their energy density decreases more slowly than the

critical density with the expansion of the universe. This fact resulted in their contribution to


def (the density in defects normalized by the critical density) being largely in excess compared

to 1, hence in blatant con
ict with modern observations. The question now arises as to whether

the same might happened with cosmic strings. Are strings dominating the energy density of the

universe? Fortunately, the answer to this question is no; strings evolve in such a way to make their

density �strings / �2t�2. Hence, one gets the same temporal behavior as for the critical density. The

result is that 
strings � G� � (�=mP )
2 � 10�6 for GUT strings, i.e., we get an interestingly small

9In the analysis one uses the fundamental theorem stating that, for a simply{connected Lie group G breaking
down to H, we have �1(G=H) �= �0(H); see [Hilton, 1953].
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Figure 1.5: Global string interactions leading to loop formation. Whenever two string segments
intersect, they reconnect or intercommute (green and red strings { upper part of the �gure).
Analogously, if a string intersects itself, it can break o� a closed loop (green string { bottom part
of the �gure). In both cases, the interacting string segments �rst su�er a slight deformation (due
to the long{range forces present for global strings), they subsequently fuse and �nally exchange
partners. A ephemeral unstable amount of energy in the form of a small loop remains in the
middle where the energy is high enough to place the Higgs �eld in the false vacuum. It then
quickly collapses, radiating away its energy. The situation is roughly the same for local strings, as
simulations have shown.

enough, constant fraction of the critical density of the universe and strings never upset standard

observational cosmology.

Now, why this is so? The answer is simply the eÆcient way in which a network of strings

looses energy. The evolution of the string network is highly nontrivial and loops are continuously

chopped o� from the main in�nite strings as the result of (self) intersections within the in�nite{

string network. Once they are produced, loops oscillate due to their huge tension and slowly decay

by emitting gravitational radiation. Thus, energy is transferred from the cosmic string network to

radiation.10

It turns out from simulations that most of the energy in the string network (roughly a 80%)

is in the form of in�nite strings. Soon after formation one would expect long strings to have the

form of random-walk with characteristic step given by the correlation length �. Also, the typical

distance between long string segments should also be of order �. Monte Carlo simulations show

that these strings are Brownian on suÆciently large scales, which means that the length ` of a

10High{resolution cosmic string simulations can be found in the Cambridge cosmology page at
http://www.damtp.cam.ac.uk/user/gr/public/cs evol.html
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string is related to the end-to-end distance d of two given points along the string (with d� �) in

the form

` = d2=�: (1.8)

What remains of the energy is given in the form of closed loops with no preferred length scale (a

scale invariant distribution) which implies that the number density of loops having sizes between

R and R + dR follows just from dimensional analysis

dnloops / dR

R4
(1.9)

which is just another way of saying that nloops / 1=R3, loops behave like normal nonrelativistic

matter. The actual coeÆcient, as usual, comes from string simulations.

There are both analytical and numerical indications in favor of the existence of a stable \scaling

solution" for the cosmic string network. After generation, the network quickly evolves in a self

similar manner with just a few in�nite string segments per Hubble volume and Hubble time. A

heuristic argument for the scaling solution due to Vilenkin [1985] is as follows.

If we take �(t) to be the mean number of in�nite string segments per Hubble volume, then the

energy density in in�nite strings �strings = �s is

�s(t) = �(t)�2t�2 = �(t)�t�2: (1.10)

Now, � strings will typically have � intersections, and so the number of loops nloops(t) = nl(t)

produced per unit volume will be proportional to �2. We �nd

dnl � �2R�4dR: (1.11)

Hence, recalling now that the loop sizes grow with the expansion like R / t we have

dnl(t)

dt
� p�2t�4 (1.12)

where p is the probability of loop formation per intersection, a quantity related to the intercommut-

ing probability, both roughly of order 1. We are now in a position to write an energy conservation

equation for strings plus loops in the expanding universe. Here it is

d�s
dt

+
3

2t
�s � �ml

dnl
dt
� ��tdnl

dt
(1.13)

where ml = �t is just the loop mass and where the second on the left hand side is the dilution term

3H�s for an expanding radiation{dominated universe. The term on the right hand side amounts to

the loss of energy from the long string network by the generation of small closed loops. Plugging

Eqs. (1.10) and (1.12) into (1.13) Vilenkin �nds the following kinetic equation for �(t)

d�

dt
� �

2t
� �p�

2

t
(1.14)

with p � 1. Thus if � � 1 then d�=dt < 0 and � tends to decrease in time, while if � � 1 then

d�=dt > 0 and � increases. Hence, there will be a stable solution with � � a few.
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1.2.5 Global textures

Whenever a global non{Abelian symmetry is spontaneously and completely broken (e.g. at a

grand uni�cation scale), global defects called textures are generated. Theories where this global

symmetry is only partially broken do not lead to global textures, but instead to global monopoles

and non{topological textures. As we already mentioned global monopoles do not su�er the same

constraints as their gauge counterparts: essentially, having no associated gauge �elds, the long{

range forces between pairs of monopoles lead to the annihilation of their eventual excess and as

a result monopoles scale with the expansion. On the other hand, non{topological textures are

a generalization that allows the broken subgroup H to contain non{Abelian factors. It is then

possible to have �3 trivial as in, e.g., SO(5)!SO(4) broken by a vector, for which case we have

M = S4, the four{sphere [Turok, 1989]. Having explained this, let us concentrate in global

topological textures from now on.

Textures, unlike monopoles or cosmic strings, are not well localized in space. This is due to the

fact that the �eld remains in the vacuum everywhere, in contrast to what happens for other defects,

where the �eld leaves the vacuum manifold precisely where the defect core is. Since textures do

not possess a core, all the energy of the �eld con�guration is in the form of �eld gradients. This

fact is what makes them interesting objects only when coming from global theories: the presence

of gauge �elds A� could (by a suitable reorientation) compensate the gradients of � and yield

D�� = 0, hence canceling out (gauging away) the energy of the con�guration11.

One feature endowed by textures that really makes these defects peculiar is their being unstable

to collapse. The initial �eld con�guration is set at the phase transition, when � develops a nonzero

vacuum expectation value. � lives in the vacuum manifoldM and winds around M in a non{

trivial way on scales greater than the correlation length, � <� t. The evolution is determined by the

nonlinear dynamics of �. When the typical size of the defect becomes of the order of the horizon,

it collapses on itself. The collapse continues until eventually the size of the defect becomes of the

order of ��1, and at that point the energy in gradients is large enough to raise the �eld from its

vacuum state. This makes the defect unwind, leaving behind a trivial �eld con�guration. As a

result � grows to about the horizon scale, and then keeps growing with it. As still larger scales come

across the horizon, knots are constantly formed, since the �eld � points in di�erent directions onM
in di�erent Hubble volumes. This is the scaling regime for textures, and when it holds simulations

show that one should expect to �nd of order 0.04 unwinding collapses per horizon volume per

Hubble time [Turok, 1989]. However, unwinding events are not the most frequent feature [Borrill

et al., 1994], and when one considers random �eld con�gurations without an unwinding event the

number raises to about 1 collapse per horizon volume per Hubble time.

11This does not imply, however, that the classical dynamics of a gauge texture is trivial. The evolution of
the �{A� system will be determined by the competing tendencies of the global �eld to unwind and of the gauge
�eld to compensate the � gradients. The result depends on the characteristic size L of the texture: in the range
m�1� << L << m�1A � (e�)�1 the behavior of the gauge texture resembles that of the global texture, as it should,

since in the limit mA very small (e! 0) the gauge texture turns into a global one [Turok & Zadrozny, 1990].
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1.2.6 Evolution of global textures

We mentioned earlier that the breakdown of any non{Abelian global symmetry led to the formation

of textures. The simplest possible example involves the breakdown of a global SU(2) by a complex

doublet �a, where the latter may be expressed as a four{component scalar �eld, i.e., a = 1 : : : 4.

We may write the Lagrangian of the theory much in the same way as it was done in Eq. (1.7),

but now we drop the gauge �elds (thus the covariant derivatives become partial derivatives). Let

us take the symmetry breaking potential as follows, V (�) = �
4
(j�j2 � �2)2. The situation in which

a global SU(2) in broken by a complex doublet with this potential V is equivalent to the theory

where SO(4) is broken by a four{component vector to SO(3), by making �a take on a vacuum

expectation value. We then have the vacuum manifoldM given by SO(4)/SO(3) = S3, namely, a

three{sphere with �a�a = �2. As �3(S
3) 6= 1 (in fact, �3(S

3) = Z) we see we will have non{trivial
solutions of the �eld �a and global textures will arise.

As usual, variation of the action with respect to the �eld �a yields the equation of motion

�b
00
+ 2

a0

a
�b

0 �r2�b = �a2 @V
@�b

; (1.15)

where primes denote derivatives with respect to conformal time and r is computed in comoving

coordinates. When the symmetry in broken three of the initially four degrees of freedom go into

massless Goldstone bosons associated with the three directions tangential to the vacuum three{

sphere. The `radial' massive mode that remains (m� �
p
��) will not be excited, provided we

concentrate on length scales much larger than m�1
� .

To solve for the dynamics of the �eld �b, two di�erent approaches have been implemented in the

literature. The �rst one faces directly the full equation (1.15), trying to solve it numerically. The

alternative to this exploits the fact that, at temperatures smaller than Tc, the �eld is constrained

to live in the true vacuum. By implementing this fact via a Lagrange multiplier12 we get

r�r��
b = �r

��cr��c
�2

�b ; �2 = �2 ; (1.16)

with r� the covariant derivative operator. Eq. (1.16) represents a non{linear sigma model for the

interaction of the three massless modes [Rajaraman, 1982]. This last approach is only valid when

probing length scales larger than the inverse of the mass m�1
� . As we mentioned before, when

this condition is not met the gradients of the �eld are strong enough to make it leave the vacuum

manifold and unwind.

The approach (cf. Eqs. (1.16)) is suitable for analytic inspection. In fact, an exact 
at space

solution was found assuming a spherically symmetric ansatz. This solution represents the collapse

and subsequent conversion of a texture knot into massless Goldstone bosons, and is known as the

spherically symmetric self{similar (SSSS) exact unwinding solution. We will say no more here

with regard to the this solution, but just refer the interested reader to the original articles [see,

12In fact, in the action the coupling constant � of the `Mexican hat' potential is interpreted as the Lagrange
multiplier.
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e.g., Turok & Spergel, 1990; Notzold, 1991]. Simulations taking full account of the energy stored

in gradients of the �eld, and not just in the unwinding events, like in Eq. (1.15), were performed,

for example, in [Durrer & Zhou, 1995]. 13

1.3 Currents along strings

In the past few years it has become clear that topological defects, and in particular strings, will be

endowed with a considerably richer structure than previously envisaged. In generic grand uni�ed

models the Higgs �eld, responsible for the existence of cosmic strings, will have interactions with

other fundamental �elds. This should not surprise us, for well understood low energy particle

theories include �eld interactions in order to account for the well measured masses of light fermions,

like the familiar electron, and for the masses of gauge bosons W and Z discovered at CERN in

the eighties. Thus, when one of these fundamental (electromagnetically charged) �elds present in

the model condenses in the interior space of the string, there will appear electric currents 
owing

along the string core.

Even though these strings are the most attractive ones, the fact of them having electromagnetic

properties is not actually fundamental for understanding the dynamics of circular string loops. In

fact, while in the uncharged and non current-carrying case symmetry arguments do not allow

us to distinguish the existence of rigid rotations around the loop axis, the very existence of a

small current breaks this symmetry, marking a de�nite direction, which allows the whole loop

con�guration to rotate. This can also be viewed as the existence of spinning particle{like solutions

trapped inside the core. The stationary loop solutions where the string tension gets balanced by

the angular momentum of the charges is what Davis and Shellard [1988] dubbed vortons.

Vorton con�gurations do not radiate classically. Because they have loop shapes, implying

periodic boundary conditions on the charged �elds, it is not surprising that these con�gurations

are quantized. At large distances these vortons look like point masses with quantized electric charge

(actually they can have more than a hundred times the electron charge) and angular momentum.

They are very much like particles, hence their name. They are however very peculiar, for their

characteristic size is of order of their charge number (around a hundred) times their thickness,

which is essentially some fourteen orders of magnitude smaller than the classical electron radius.

Also, their mass is often of the order of the energies of grand uni�cation, and hence vortons would

be some twenty orders of magnitude heavier than the electron.

But why should strings become conducting in the �rst place? The physics inside the core of the

string di�ers somewhat from outside of it. In particular the existence of interactions among the

Higgs �eld forming the string and other fundamental �elds, like that of charged fermions, would

make the latter loose their masses inside the core. Then, only small energies would be required

to produce pairs of trapped fermions and, being e�ectively massless inside the string core, they

would propagate at the speed of light. These zero energy fermionic states, also called zero modes,

13Simulations of the collapse of `exotic' textures can be found at http://camelot.mssm.edu/~ats/texture.html
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endow the string with currents and in the case of closed loops they provide the mechanical angular

momentum support necessary for stabilizing the contracting loop against collapse.

1.3.1 Goto{Nambu Strings

Our aim now is to introduce extra �elds into the problem. The simple Lagrangian we saw in

previous sections was a good approximation for ideal structureless strings, known under the name

of Goto{Nambu strings [Goto, 1971; Nambu, 1970]. Additional �elds coupled with the string{

forming Higgs �eld often lead to interesting e�ects in the form of generalized currents 
owing

along the string core.

But before taking into full consideration the internal structure of strings we will start by setting

the scene with the simple Abelian Higgs model (which describes scalar electrodynamics) in order

to �x the notation etc. This is a prototype of gauge �eld theory with spontaneous symmetry

breaking G = U(1) ! f1g. The Lagrangian reads [Higgs, 1964]

L
H
= �1

2
[D��][D��]

� � 1

4
(F (�)

�� )
2 � ��

8
(j�j2 � �2)2; (1.17)

with gauge covariant derivative D� = @� + iqA(�)
� , antisymmetric tensor F (�)

�� = r�A
(�)
� � r�A

(�)
�

for the gauge vector �eld A(�)
� , and complex scalar �eld � = j�jei� with gauge coupling q.

The �rst solutions for this theory were found by Nielsen & Olesen [1973]. A couple of relevant

properties are noteworthy:

� the mass per unit length for the string is � = U � �2. For GUT local strings this gives

� � 1022g=cm, while one �nds � � �2 ln(r=m�1
s ) ! 1 if strings are global, due to the

absence of compensating gauge �elds. This divergence is in general not an issue, because

global strings only in few instances are isolated; in a string network, a natural cuto� is the

distance to the neighboring string.

� There are essentially two characteristic mass scales (or inverse length scales) in the problem:

ms � �
1=2
� � and mv � q�, corresponding to the inverse of the Compton wavelengths of the

scalar (Higgs) and vector (A(�)
� ) particles, respectively.

� There exists a sort of screening of the energy, called `Higgs screening', implying a �nite

energy con�guration, thanks to the way in which the vector �eld behaves far from the string

core: A� ! (1=qr)d�=d� ; for r !1.

After a closed path around the vortex one has �(2�) = �(0), which implies that the winding

phase � should be an integer times the cylindrical angle �, namely � = n�. This integer n is

dubbed the `winding number'. In turn, from this fact it follows that there exists a tube of

quantized `magnetic' 
ux, given by

�
B
=
I
~A: ~d` =

1

q

Z 2�

0

d�

d�
d� =

2�n

q
(1.18)
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Figure 1.6: Higgs �eld and energy pro�les for Goto{Nambu cosmic strings. The left panel shows
the amplitude of the Higgs �eld around the string. The �eld vanishes at the origin (the false
vacuum) and attains its asymptotic value (normalized to unity in the �gure) far away from the
origin. The phase of the scalar �eld (changing from 0 to 2�) is shown by the shading of the surface.
In the right panel we show the energy density of the con�guration. The maximum value is reached
at the origin, exactly where the Higgs is placed in the false vacuum. [Hindmarsh & Kibble, 1995].

In the string there is a sort of competing e�ect between the �elds: the gauge �eld acts in a

repulsive manner; the 
ux doesn't like to be con�ned to the core and B lines repel each other. On

the other hand, the scalar �eld behaves in an attractive way; it tries to minimize the area where

V (�) 6= 0, that is, where the �eld departs from the true vacuum.

Finally, we can mention a few condensed{matter `cousins' of Goto{Nambu strings: 
ux tubes in

superconductors [Abrikosov, 1957] for the nonrelativistic version of gauge strings (� corresponds

to the Cooper pair wave function). Also, vortices in super
uids, for the nonrelativistic version

of global strings (� corresponds to the Bose condensate wave function). Moreover, the only two

relevant scales of the problem we mentioned above are the Higgs mass ms and the gauge vector

mass mv. Their inverse give an idea of the characteristic scales on which the �elds acquire their

asymptotic solutions far away from the string `location'. In fact, the relevant core widths of the

string are given by m�1
s and m�1

v . It is the comparison of these scales that draws the dividing line

between two qualitatively di�erent types of solutions. If we de�ne the parameter � = (ms=mv)
2,

superconductivity theory says that � < 1 corresponds to Type I behavior while � > 1 corresponds

to Type II. For us, � < 1 implies that the characteristic scale for the vector �eld is smaller than

that for the Higgs �eld and so magnetic �eld B 
ux lines are well con�ned in the core; eventually,

an n{vortex string with high winding number n stays stable. On the contrary, � > 1 says that the

characteristic scale for the vector �eld exceeds that for the scalar �eld and thus B 
ux lines are

not con�ned; the n{vortex string will eventually split into n vortices of 
ux 2�=q. In summary:

� = (
ms

mv
)2
�
< 1 n�vortex stable (B 
ux lines con�ned in core) � Type I
> 1 Unstable : splitting into n vortices of 
ux 2�=q � Type II

(1.19)
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1.3.2 Witten strings

The �rst model giving rise to scalar superconductivity in strings was proposed by Witten [1985].

His is a toy Abelian U(1)�U(1) model, in which two complex scalar �elds, together with their

associated gauge vector �elds, interact through a term in the potential. In a way analogous to

the structureless strings, one of the U(1) gauge groups is broken to produce standard strings. The

other U(1) factor is the responsible for the current-carrying capabilities of the defect.

So, we now add a new set of terms, corresponding to a new complex scalar �eld �, to the

Lagrangian of Eq. (1.17). This new scalar �eld will be coupled to the also new vector �eld A(�)
�

(eventually the photon �eld), with coupling constant e (e2 � 1=137). The extra Lagrangian for

the current is

Lcurrent = �1
2
[D��][D��]

� � 1

4
(F (�)

�� )
2 � V

�;�
(1.20)

with the additional interaction potential

V�;� = f(j�j2 � v2)j�j2 + ��
4
j�j4 (1.21)

and where, as usual, D�� = (@� + ieA(�)
� )� and F (�)

�� = r�A
(�)
� � r�A

(�)
� . Remark that the

complete potential term of the full theory under consideration now is the sum of Eq. (1.21) and

the potential term of Eq. (1.17). The �rst thing one does, then, is to try and �nd the minimum of

this full potential V (�;�). It turns out that, provided the parameters are chosen as �2 > v2 and

f 2v4 < 1
8
�����

4, one gets the minimum of the potential for j�j = � and j�j = 0. In particular we

have V (j�j = �; j�j = 0) < V (j�j = 0; j�j 6= 0) and the group U(1) associated with A(�)
� remains

unbroken. In the case of electromagnetism, this tells us that outside of the core, where the Higgs

�eld takes on its true vacuum value j�j = �, electromagnetism remains a symmetry of the theory,

in agreement with the standard model. Hence, there exists a solution where (�; A(�)
� ) result in the

Nielsen{Olesen vortex and where the new �elds (�; A(�)
� ) vanish.

This is ok for the exterior region of the string, where the Higgs �eld attains its true vacuum.

However, inside the core we have j�j = 0 and the full potential reduces to

V�=0 =
��
8
�4 � fv2j�j2 + ��

4
j�j4 (1.22)

Here, a vanishing � is not the value that minimizes the potential inside the string core. On the

contrary, within the string the value j�j =
q
2f=�� v 6= 0 is favored. Thus, a certain nonvanishing

amplitude for this new �eld exists in the center of the string and slowly decreases towards the

exterior, as it should to match the solution we wrote in the previous paragraph. In sum, the

conditions in the core favor the formation of a �-condensate. In a way analogous to what we saw

for the Nielsen{Olesen vortex, now the new gauge group U(1), associated with A(�)
� , is broken.

Then, it was � = j�jei' and now the phase '(t; z) is an additional internal degree of freedom of

the theory: the Goldstone boson carrying U(1) charge (eventually, electric charge) up and down

the string.
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Figure 1.7: Pro�les for the di�erent �elds around a conducting cosmic strings [Peter, 1992]. The
�gure shows the Higgs �eld (noted with the rescaled function X(r)), exactly as in the left panel
of Figure 1.6. The pro�le Q(r) is essentially (the �{component of) the gauge vector �eld A(�)

� ,
whose gradient helps in canceling the otherwise divergent energy density of the (global) string and
concentrates the energy of the con�guration inside a narrow core, as in the right panel of Figure
1.6. The pro�le Y(r) is a rescaled function for the amplitude of the current{carrier �eld �. Its
form shows clearly the existence of a boson condensate in the core of the string, signaling the 
ow
of a current along the string. Finally, P(r) is essentially the electromagnetic �eld A(�)

z with its
standard logarithmic divergence.

Let us now concentrate on the currents and �eld pro�les. For the new local group U(1), the

current can be computed as

J � =
ÆLcurrent
ÆA(�)

�

=
i

2
e��

$

@� �� e2A(�)�j�j2 (1.23)

Given the form for the `current carrier' �eld � we get

J � = eJ� with J� = �j�j2(@�'+ eA(�)�) (1.24)

From the classical Euler{Lagrange equation for �, J� is conserved and well-de�ned even in the

global or neutral case (i.e., when the coupling e = 0).

Now, let us recall the symmetry of the problem under consideration. The string is taken

along the vertical z{axis and we are studying a stationary 
ow of current. Hence, the current J�

cannot depend on internal coordinates a = t; z (by `internal' one generally means internal to the

worldsheet of the string).

Conventionally, one takes the phase varying linearly with time and position along the string

' = !t� kz and solves the full set of Euler{Lagrange equations, as in Peter [1992]. In so doing,
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one can write, along the core, Ja = �j�j2P a and, in turn, Pa(r) = Pa(0)P (r) for each one of

the internal coordinates, this way separating the value at the origin of the con�guration from a

common (for both coordinates) r{dependent solution P with the condition P (0) = 1. In this

way, one can de�ne the parameter w (do not confuse with !) such that w = P 2
z (0) � P 2

t (0) or,

equivalently, P aPa = wP 2. Then the current satis�es JaJa = j�j4wP 2.

The parameter w is important because from its sign one can know in which one of a set of

qualitatively di�erent regimes we are working. Actually, w leads to the following classi�cation

[Carter, 1997]

w

8<
:
> 0 magnetic regime 9 reference frame where Ja is pure spatial

< 0 electric regime 9 reference frame where Ja is mainly charge density

= 0 null

(1.25)

From the solution of the �eld equations one gets the standard logarithmic behavior for Pz =

@z'+ eA(�)
z / ln(r) far from the (long) string. This is the expected logarithmic divergence of the

electromagnetic potential around an in�nite current{carrier wire with `dc' current I that gives rise

to a magnetic �eld B(�) / 1=r (see Figure 1.7).

1.3.3 Superconducting strings !

One of the most amazing things of the strings we are now treating is the fact that, provided some

general conditions (e.g., the appropriate relation between the free parameters of the model) are

satis�ed, these objects can turn into superconductors. So, under the conditions that the eA� term

dominates in the expression for the current J z, we can write

J z = �e2j�j2Az (1.26)

which is no other than the London equation [London & London, 1935]. From it, recalling the

Faraday's law of the set of Maxwell equations, we can take derivatives on both sides to get

@tJ z = e2j�j2Ez: (1.27)

Then, the current grows up linearly in time with an amplitude proportional to the electric �eld.

This behavior is exactly the one we would expect for a superconductor [Tinkham, 1995]. In

particular, the equation signals the existence of persistent currents. To see it, just compare with

the corresponding equation for a wire of �nite conductivity J z = �Ez. One clearly sees in this

equation that when the applied electric �eld is turned o�, after a certain characteristic time, the

current stops. On the contrary, in Eq. (1.27), when the electric �eld vanishes, the current does

not stop but stays constant, i.e., it persists 
owing along the string.

At suÆciently low temperatures certain materials undergo a phase transition to a new (super-

conducting) phase, characterized notably by the absence of resistance to the passage of currents.

Unlike in these theories, no critical temperature is invoked in here, except for the temperature at

which the condensate forms inside the string, the details of the phase transition being of secondary
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importance. Moreover, no gap in the excitation spectrum is present, unlike in the solid{state case

where the amount of energy required to excite the system is of the order of that to form a Cooper

pair, and hence the existence of the gap.

The very same considerations of the above paragraphs are valid for fermion (massless) zero

modes along the string [Witten, 1985]. In fact, a generic prediction of these models is the existence

of a maximum current above which the current{carrying ability of the string saturates. In his

pioneering paper, Witten pointed out that for a fermion of charge q and mass in vacuum m, its

Fermi momentum along the string should be below its mass (in natural units). If this were not

the case, i.e., if the momenta of the fermions exceeded this maximum value, then it would be

energetically favorable for the particle to jump out of the core of the string [Gangui et al., 1999].

This implies that the current saturates and reaches a maximum value

Jmax � qmc2

2��h
(1.28)

If we take electrons as the charge carriers, then one gets currents of size Jmax � tens of amp�eres,

interesting but nothing exceptional (standard superconducting materials at low temperature reach

thousands of amp�eres and more). On the other hand, if we focus in the early universe and consider

that the current is carried by GUT superheavy fermions, whose normal mass would be around

1016 GeV, then currents more like Jmax � 1020A are predicted. Needless to say, these currents are

enormous, even by astrophysical standards!

Und Meissner..? It has long been known that superconductors exclude static magnetic �elds

from their interior. This is an e�ect called the Meissner e�ect, known since the 1930s and that was

later explained by the BCS (or Bardeen-Cooper-Schrie�er) theory in 1957. One can well wonder

what the situation is in our present case, i.e., do current{carrying cosmic strings show this kind of

behavior?

To answer this question, let us write Amp�ere's law (in the Coulomb, or radiation, gauge �r� �A =

0)

r2Az = �4�J z (1.29)

Also, let us rewrite the London equation

J z = �e2j�j2Az (1.30)

Putting these two equations together we �nd

r2Az = ��2Az (1.31)

where we wrote the electromagnetic penetration depth � � (ej�(0)j)�1.
Roughly, for Cartesian coordinates, if we take x̂ perpendicular to the surface, we have Az /

e�x=�, which is nothing but the expected exponential decrease of the vector potential inside the

core [Meissner, 1933]. [to be more precise, in the string case we expect r2Pa = e2j�j2Pa, with
Pa = @a'+ eAa].
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For a lump of standard metal a penetration depth of roughly � � 10�5cm is ok. In the string

case, however,

� � e�1j�(0)j�1 � e�1v�1 (1.32)

which is roughly the Compton wavelength of A�. Now, recall that we had v�1 > ��1, and that

��1 was the characteristic (Compton) size of the string core. Hence we �nally get that � can

be bigger than the size of the string { unlike what happens with standard condensed{matter

superconductors, electromagnetic �elds can penetrate the string core!

1.3.4 Macroscopic string description

Let us recapitulate brie
y the microphysics setting before we see its connection with the macro-

scopic string description we will develop below. We consider a Witten{type bosonic superconduc-

tivity model in which the fundamental Lagrangian is invariant under the action of a U(1)�U(1)
symmetry group. The �rst U(1) is spontaneously broken through the usual Higgs mechanism in

which the Higgs �eld � acquires a non{vanishing vacuum expectation value. Hence, at an energy

scale ms � �1=2� � (we will call ms = m hereafter) we are left with a network of ordinary cosmic

strings with tension and energy per unit length T � U � m2, as dictated by the Kibble mechanism.

The Higgs �eld is coupled not only with its associated gauge vector but also with a second

charged scalar boson �, the current carrier �eld, which in turn obeys a quartic potential. A

second phase transition breaks the second U(1) gauge (or global, in the case of neutral currents)

group and, at an energy scale � m�, the generation of a current{carrying condensate in the vortex

makes the tension no longer constant, but dependent on the magnitude of the current, with the

general feature that T � m2 � U , breaking therefore the degeneracy of the Nambu{Goto strings

(more below). The fact that j�j 6= 0 in the string results in that either electromagnetism (in the

case that the associated gauge vector A(�)
� is the electromagnetic potential) or the global U(1) is

spontaneously broken in the core, with the resulting Goldstone bosons carrying charge up and

down the string.

Macroscopic quantities

So, let us de�ne the relevant macroscopic quantities needed to �nd the string equation of state.

For that, we have to �rst express the energy momentum tensor as follows

T �
� = �2g�� ÆL

Æg��
+ Æ��L: (1.33)

One then calculates the macroscopic quantities internal to the string worldsheet (recall `internal'

means coordinates t; z)

�T ab = 2�
Z
rdrT ab �Ja = 2�

Z
rdrJa for a; b = t; z (1.34)

The macroscopic charge density/current intensity is de�ned as

C = 2�
Z
rdr

q
jJaJaj = 2�

q
jwj

Z
rdrj�j2P (1.35)
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Figure 1.8: Variation of the relevant macroscopic quantities with the state parameter. In the left
panel we show the variation of the amplitude of the macroscopic (integrated) charge density (for
w < 0) and current intensity (for w > 0) along the string core versus the state parameter, as

de�ned by � � sgn(w)
q
jwj. In the right panel one can see the corresponding variations of the

integrated energy per unit length (upper set of curves) and tension (lower set of curves) for the
string. Both the neutral (e = 0) and the charged cases are shown with, in the latter case, a rather
exaggerated value of the coupling, in order to distinguish the curves in each set [Peter, 1992].

Now, the state parameter is � � sgn(w)
q
jwj. For vanishing coupling e we have w � k2 � !2 and

� yields the energy of the carrier (in the case w < 0) or its momentum (w > 0).

We get the energy per unit length U and the tension of the string T by diagonalizing �T ab

U = �T tt T = � �T zz (1.36)

As shown in Figure (1.8) the general string dynamics in the neutral case does not get much

modi�ed when the electromagnetic e-coupling is included. Nevertheless, a couple of main features

are worth to note:

� In the magnetic regime there is saturation. In this situation (w > 0) the current intensity C

reaches a maximum value and, at the same time, T passes through a minimum.

� In the electric regime there is a phase frequency threshold. In this case (w < 0) the charge

density of the conducting string diverges C ! 1 and the tension tends to vanish T ! 0+.

An analytic treatment shows that C / (w +m2
�)

�1, with m2
� = 2f(�2 � v2). Note that this

threshold changes with the coupling, when e is very large.

� We always �nd T > 0 in w > 0 case. Hence, there is no place for springs, a conjecture �rst

announced by Peter [1993]. Note that T diminishes just a few percent, and then the current

saturates. If this were not the case, c2T = T=U would be negative and this would imply

instabilities [Carter, 1989]. Hence, there would be no static equilibrium con�gurations.
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Macroscopic description

Now, let us focus on the macroscopic string description. For a local U(1) we have

J � =
ÆLcurrent
ÆA

(�)
�

= +eJ� (1.37)

[to stick to usual notation in the literature, we are now changing e ! �e in our expressions of

previous sections]. In this equation we have the conserved Noether current

J� = j�j2(@�'� eA(�)
� ) (1.38)

Now, recall that A(�)
� varies little inside the core, as the penetration depth was bigger than the

string core radius. We can then integrate to �nd the macroscopic current

Ia = 2 ~K(@a'� eA(�)
a ) = 2 ~K'ja with ~K =

1

2

Z
dxdyj�j2 (1.39)

which is well{de�ned even for electromagnetic coupling e! 0.

The macroscopic dynamics is describable in terms of a Lagrangian function L(w) depending
only on the internal degrees of freedom of the string. Now it is ''s gradient that characterizes

local state of string through

w = �0

ab'ja'jb with 
ab = g��x

�
;ax

�
;b (1.40)

where 
ab is the induced metric on the worldsheet. The latter is given in terms of the back-

ground spacetime metric g�� with respect to the 4{dimensional background coordinates x� of the

worldsheet. We use a comma to denote simple partial di�erentiation with respect to the world-

sheet coordinates �a and using Latin indices for the worldsheet coordinates �1 = � (spacelike),

�0 = � (timelike). As we saw above, the gauge covariant derivative 'ja is expressible in the pres-

ence of a background electromagnetic �eld with Maxwellian gauge covector A(�)
� (A� hereafter) by

'ja = ';a�eA�x
�
;a. So, now a key rôle is played by the squared of the gradient of ' in characterizing

the local state of the string through w.

The dynamics of the system is determined by the Lagrangian L(w). Note there is no explicit

appearance of ' in L. From it we get the conserved particle current vector za, such that

za;a = 0 with za = � @L
@('ja)

(1.41)

Let's de�ne �dL=dw = 1
2
K�1. Matching Eqns. (1.41) and (1.39), viz. za(macro)

:
= Ia(micro)

we �nd

� @L
@('ja)

= �dL
dw

@w

@('ja)
=

1

2
K�12�0'ja = �0

K 'ja
:
= 2 ~K'ja (1.42)

which allows us to see the interpretation of the quantity K�1. In fact, we have K�1 / ~K /
amplitude of �-condensate. When w ! 0 (null) we have K ! 1. (with �0 the zero current limit

of ~K).
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1.3.5 The dual formalism

The usual procedure for treating a speci�c cosmic string dynamical problem consists in writing and

varying an action which is assumed to be the integral over the worldsheet of a Lagrangian function

depending on the internal degrees of freedom of the worldsheet. In particular, for the structureless

string, this is taken to be the Goto{Nambu action, i.e. the integral over the surface of the constant

string tension. In more general cases, various functions have been suggested that supposedly apply

to various microscopic �eld con�gurations. They share the feature that the description is achieved

by means of a scalar function ', identi�ed with the phase of a physical �eld trapped on the string,

whose squared gradient, namely the state parameter w, has values which completely determine

the dynamics through a Lagrangian function L(w). This description has the pleasant feature that

it is easily understandable, given the clear physical meaning of '. However, as we shall see, there

are instances for which it is not so easily implemented and for which an alternative, equally valid,

dual formalism is better adapted [Carter, 1989].

Macroscopic equation of state

But �rst, let us concentrate on the macroscopic equation of state. At this point, it is clear that

conducting strings have a considerably richer structure than Goto{Nambu strings. In particular,

Witten strings have and internal structure with its own equation of state U = U(T ). This, in turn,

allows us to compute the characteristic perturbations speeds [Carter, 1989] :

� A transverse (wiggle) speed c2T = T=U for extrinsic perturbations of the worldsheet.

� A longitudinal (`woggle') speed c2L = �dT=dU for sound-type perturbations within the world-

sheet.

Of course, these characteristic speeds are not de�ned for a structureless Goto{Nambu string, but

are fully meaningful for any other model. Numerical results for Witten strings by Peter [1992]

yield cL < cT, i.e. the regime is supersonic.

We will now explore the di�erent ans�atze proposed in the literature over the years. Clearly, the

simplest case is that one without any currents, namely the Goto{Nambu action. In the present

formalism it is expressed by the action

SGN = �m2
Z p�
d�2 (1.43)

which is proportional to string worldsheet area. The corresponding Lagrangian is given simply by

LGN = �m2 and its equation of state results U = T = m2.

The �rst thing that comes to the mind when trying to extend this simple action to the case

including currents is of course to add a small (linear) term proportional to the state parameter

w, which itself includes the relevant information on the currents. Hence, a �rst try would be

Llinear = �m2� w
2
. It turns out that this simple model is also self{dual (with �linear = �m2� �

2
, to

be precised below) and the equation of state resulting is (for both electric and magnetic regimes)
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U + T = 2m2. However, it follows that cT < cL = 1, i.e., the model is subsonic and this goes at

odds with the numerical results for Witten strings.

2nd try: keeping with minimal modi�cations autour the Goto{Nambu solution, another,

Kaluza{Klein inspired, model was proposed: LKK = �mpm2 + w. This model is also self{dual

and the resulting equation of state is UT = m4. Moreover, in the limit of small currents it repro-

duces the linear model of the last paragraph. However, this time both characteristic perturbation

speeds are equal and smaller than unity, cT = cL < 1, i.e. the model is transonic and this fact

disquali�es it for modeling Witten strings.

At this point, one may think that there is an additional relevant parameter in the theory, the

scale associated with the current{carrier mass, which we shall note m� (= m�). It is only by

introducing this extra mass scale that the precise numerical solutions for Witten strings can be

recovered. Two models were proposed, the �rst one with

Lrational = �m2 � w

2
(1 +

w

m2
�

)�1 (1.44)

for which we get the amplitude of the �{condensate K�1 = (1 + w
m2

�

)�2 (recall that it was K�1 /R
dxdyj�j2 and C /

q
jwj R dxdyj�j2). This ansatz �ts well the w ! �m2

� divergence in the

macroscopic charge density C [see Figure (1.8)] and it is the best choice for spacelike currents.

The second model is given by

Llog = �m2 � m2
�

2
ln(1 +

w

m2
�

) (1.45)

and we get K�1 = (1 + w
m2

�

)�1. This one is the best for timelike currents and is OK for spacelike

currents as well [Carter & Peter, 1995].

These two two{scale models we will employ below to study the dynamics of conducting string

loops and the in
uence of electromagnetic self{corrections on this dynamics at �rst order between

the current and the self{generated electromagnetic �eld. But before that, let us introduce the

formal framework we need for the job.

The dual formalism

Here we will derive in parallel expressions for the currents and state parameters in two repre-

sentations, which are dual to each other. This will not be speci�c to superconducting vacuum

vortex defects, but is generally valid to the wider category of elastic string models [Carter, 1989].

In this formalism one works with a two{dimensional worldsheet supported master function �(�)

considered as the dual of L(w), these functions depending respectively on the squared magnitude

of the gauge covariant derivative of the scalar potentials  and ' as given by

� = ~�
0

ab ja jb  ! w = �

0

ab'ja'jb ; (1.46)

where �
0
and ~�

0
are adjustable, respectively positive and negative, dimensionless normalization

constants that, as we will see below, are related to each other. The arrow in the previous equation
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stands to mean an exact correspondence between quantities appropriate to each dual representa-

tion.

In Eq. (1.46) the scalar potentials  and ' are such that their gradients are orthogonal to each

other, namely


ab'ja jb = 0 ; (1.47)

implying that if one of the gradients, say 'ja is timelike, then the other one, say  ja, will be

spacelike, which explains the di�erent signs of the dimensionless constants �
0
and ~�

0
.

Whether or not background electromagnetic and gravitational �elds are present, the dynamics

of the system can be described in the two equivalent dual representations which are governed by

the master function � and the Lagrangian scalar L, that are functions only of the state parameters

� and w, respectively. The corresponding conserved current vectors, na and za, in the worldsheet,

will be given according to the Noetherian prescription

na = � @�

@ ja
 ! za = � @L

@'ja
: (1.48)

This implies

K�n
a = ~�

0
 ja  ! Kza = �

0
'ja ; (1.49)

where we use the induced metric for internal index raising, and where K and K� can be written as

K�1� = �2d�
d�

 ! K�1 = �2dL
dw

: (1.50)

As it will turn out, the equivalence of the two mutually dual descriptions is ensured provided the

relation

K� = �K�1; (1.51)

holds. This means one can de�ne K in two alternative ways, depending on whether it is seen it as

a function of � or of L. We shall therefore no longer use the function K� in what follows.

Based on Eq. (1.47) that expresses the orthogonality of the scalar potentials we can conveniently

write the relation between  and ' as follows

'ja = K
p�~�

0p
�
0

�ab 
jb ; (1.52)

where � is the antisymmetric surface measure tensor (whose square is the induced metric, �ab�
b
c =


ac). From this and using Eq. (1.46) we easily get the relation between the state variables,

w = K2�: (1.53)

Both the master function � and the LagrangianL are related by a Legendre type transformation

that gives

� = L+K� : (1.54)

The functions L and � can be seen [Carter, 1997] to provide values for the energy per unit length U
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Equations of state for both regimes

regime U T � and w current

electric �� �L < 0 timelike

magnetic �L �� > 0 spacelike

Table 1.2: Values of the energy per unit length U and tension T depending on the timelike or
spacelike character of the current, expressed as the negative values of either � or L.

and the tension T of the string depending on the signs of the state parameters � and w. (Originally,

analytic forms for these functions L and � were derived as best �ts to the eigenvalues of the stress{

energy tensor in microscopic �eld theories). The necessary identi�cations are summarized in Table

1.2.

This way of identifying the energy per unit length and tension with the Lagrangian and master

functions also provides the constraints on the validity of these descriptions: the range of variation

of either w or � follows from the requirement of local stability, which is equivalent to the demand

that the squared speeds c 2
E
= T=U and c 2

L
= �dT=dU of extrinsic and longitudinal (sound type)

perturbations be positive. This is thus characterized by the unique relation

L
�
> 0 >

dL
d�

; (1.55)

which should be equally valid in both the electric and magnetic ranges. Having de�ned the

internal quantities, we now turn to the actual dynamics of the worldsheet and prove explicitly the

equivalence between the two descriptions.

Equivalence between L and �

The dynamical equations for the string model can be obtained either from the master function

� or from the Lagrangian L in the usual way, by applying the variation principle to the surface

action integrals

S� =
Z
d� d�

p�
 �(�); (1.56)

and

SL =
Z
d� d�

p�
 L(w); (1.57)

(where 
 � detf
abg) in which the independent variables are either the scalar potential  or

the phase �eld ' on the worldsheet and the position of the worldsheet itself, as speci�ed by the

functions x�f�; �g.
Independently of the detailed form of the complete system, one knows in advance, as a conse-

quence of the local or global U(1) phase invariance group, that the corresponding Noether currents
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will be conserved, namely

(
p�
 na);a = 0  ! (

p�
 za);a = 0 : (1.58)

For a closed string loop, this implies (by Green's theorem) the conservation of the corresponding


ux integrals

N =
I
d�a�abn

b  ! Z =
I
d�a�abz

b ; (1.59)

meaning that for any circuit round the loop one will obtain the same value for the integer numbers

N and Z, respectively. Z is interpretable as the integral value of the number of carrier particles in

the loop, so that in the charge coupled case, the total electric charge of the loop will be Q = Ze.

Moreover, the angular momentum of the closed loop turns out to be simply J = ZN .

The loop is also characterized by a second independent integer number N whose conservation

is trivially obvious. Thus we have the topologically conserved numbers de�ned by

2�Z =
I
d =

I
d�a ja =

I
d�a ;a

 !

2�N =
I
d' =

I
d�a'ja =

I
d�a';a ; (1.60)

where it is clear that N , being related to the phase of a physical microscopic �eld, has the mean-

ing of what is usually referred to as the winding number of the string loop. The last equalities in

Eqs. (1.60) follow just from explicitly writing the covariant derivative ja and noting that the circula-

tion integral multiplying A� vanishes. Note however that, although Z and N have a clearly de�ned

meaning in terms of underlying microscopic quantities, because of Eqs. (1.59) and (1.60), the roles

of the dynamically and topologically conserved integer numbers are interchanged depending on

whether we derive our equations from � or from its dual L.
As usual, the stress momentum energy density distributions T̂ ��

� and T̂ ��
L on the background

spacetime are derivable from the action by varying the actions with respect to the background

metric, according to the speci�cations

T̂ ��
� �

2p�g
ÆS�
Æg��

� 2p�g
@(
p�g �)
@g��

; (1.61)

and

T̂ ��
L �

2p�g
ÆSL
Æg��

� 2p�g
@(
p�gL)
@g��

: (1.62)

This leads to expressions of the standard form, i.e. expressible as an integral over the string itself

p�g T̂ �� =
Z
d� d�

p�
 Æ(4) [x� � x�f�; �g] T �� (1.63)

in which the surface stress energy momentum tensors on the worldsheet (from which the surface

energy density U and the string tension T are obtainable as the negatives of its eigenvalues) can

be seen to be given by

T
��
� = ���� +K�1!�!�  ! T

��
L = L��� + Kc�c� ; (1.64)
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where the (�rst) fundamental tensor of the worldsheet is given by

��� = 
abx�;ax
�
;b (1.65)

and the corresponding rescaled currents !� and c� are obtained by setting

n� =
q
�~�

0
!�  ! z� =

p
�
0
c� : (1.66)

Plugging Eqs. (1.66) into Eqs. (1.64), and using Eqs. (1.51), (1.53) and (1.54), we �nd that the

two stress{energy tensors coincide:

T
��
L = T

��
� � T

��
: (1.67)

This is indeed what we were looking for since the dynamical equations for the case at hand, namely

���r�T
��

= 0; (1.68)

which hold for the uncoupled case, are then strictly equivalent whether we start with the action

S� or with SL.

Inclusion of Electromagnetic Corrections

Implementing electromagnetic corrections [Carter, 1997b], even at the �rst order, is not an easy

task as can already be seen by the much simpler case of a charged particle for which a mass renor-

malization is required even before going on calculating anything in e�ect related to electromagnetic

�eld. The same applies in the current{carrying string case, and the required renormalization now

concerns the master function �. However, provided this renormalization is adequately performed,

inclusion of electromagnetic corrections, at �rst order in the coupling between the current and the

self{generated electromagnetic �eld, then becomes a very simple matter of shifting the equation

of state, everything else being left unchanged. Let us see how this works explicitly.

De�ning K��
� � ����

�
�r��

�
� the second fundamental tensor of the worldsheet, the equations of

motion of a charge coupled string read

T
��
K��

� =?�� F��j
�; (1.69)

where ?�� is the tensor of orthogonal projection to the worldsheet (?�
�= g�� � ���), F�� = 2r[�A�]

is the external electromagnetic tensor and j� stands for the electromagnetic current 
owing along

the string, namely in our case

j� = rez� � qc�; (1.70)

with r the e�ective charge of the current carrier in unit of the electron charge e (working here in

units where e2 ' 1=137).

Before going on, let us explain a bit the last equations. The above Eq. (1.69) is no other than

an extrinsic equation of motion that governs the evolution of the string worldsheet in the presence

of an external �eld. In fact we readily recognize the external force density acting on the worldsheet

f� = F�� j
�, just a Lorentz{type force with j� the corresponding surface current.
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Let us also give a simple example where the above seemingly complicated equation of motion

proves to be something very well known to all of us. In fact, the above is the two{dimensional

analogue of Newton's second law. For a point particle of mass m the Lagrangian is L = �m,

which implies that its stress energy momentum tensor is given by �T �� = mu�u� (with u�u� = �1,
for the unit tangent vector u� of the particle's worldline). Then, the �rst fundamental tensor is

��� = �u�u�. From this it follows that the second fundamental tensor can be constructed, giving

K �
�� = u�u� _u

�. Hence, the extrinsic equation of motion yields m _u� =?�
� f

�, i.e., the external to

the worldline force ?�
� f

� being equal to the mass times the acceleration [Carter, 1997b].

As we mentioned, we are now interested in Eq. (1.69) which is the natural generalization to

two dimensions of Newton's second law. But now we want to include self interactions. The self

interaction electromagnetic �eld on the worldsheet itself can be evaluated [Witten, 1985] and one

�nds

A�
���
string

= �j� = �qc�; (1.71)

with

� = 2 ln(m�
��); (1.72)

where �� is an infrared cuto� scale to compensate for the asymptotically logarithmic behavior of

the electromagnetic potential and m� the ultraviolet cuto� corresponding to the e�ectively �nite

thickness of the charge condensate, i.e., the Compton wavelength of the current-carrier m�1
� . In

the practical situation of a closed loop, �� should at most be taken as the total length of the loop.

The contribution of the self �eld of Eq. (1.71) in the equations of motion (1.69) was calculated

by Carter [1997b] and the result is interpretable as a renormalization of the stress energy tensor.

That is, the result including electromagnetic corrections is recovered if, in Eq. (1.61), one uses

�! � +
1

2
�q2� (1.73)

instead of �. So, electromagnetic corrections are simply taken into account in the dual formalism

employing the master function �(�) unlike the case if we used L(w). In fact, it is not always

possible to invert the above relation to get an appropriate replacement for the Lagrangian. That

the correction enters through a simple modi�cation of �(�) and not of L(w) is understandable if
one remembers that � is the amplitude of the current, so that a perturbation in the electromagnetic

�eld acts on the current linearly, so that an expansion in the electromagnetic �eld and current

yields, to �rst order in q, �! � + 1
2
j�A

�, which transforms easily into Eq. (1.73).

One example of the implementation of the above formalism is the study of circular conducting

cosmic string loops [Carter, Peter & Gangui, 1997]. In fact, the mechanics of strings developed

above allows a complete study of the conditions under which loops endowed with angular momen-

tum will present an e�ective centrifugal potential barrier. Under certain conditions, this barrier will

prevent the loop collapse and, if saturation is avoided, one would expect that loops will eventually

radiate away their excess energy and settle down into a vorton type equilibrium state.

If this were the whole story then we would of course be in a big problem, for these vortons, as

stable objects, would not decay and would most probably be too abundant to be compatible with
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Figure 1.9: Variation of the equation of state with the electromagnetic self{correction �q2. It
relates the energy per unit length U (upper set of curves) and the tension T (lower set of curves),
both in units of m2

�, the current{carrier mass, and is plotted against �, which is the (sign pre-
serving) square root of the state parameter w. Values used for this correction are in the set
[0; 0:1; 0:5; 1; 2; 5; 7; 8; 9; 10; 20], and the �gure is calculated for � = (m=m�)

2 = 1. Increasing the
value of �q2 enlarges the corresponding curve in such a way that for very large values (in this
particular example, it is for for �q2 � 7), the tension on the magnetic side becomes negative before
saturation is reached [Gangui, Peter & Boehm, 1998].

the standard cosmology. It may however be possible that in realistic models of particle physics the

currents could not survive subsequent phase transitions so that vortons could dissipate. Another

way of getting rid of (at least some of) the excess of abundance of these objects is to take account

of the electromagnetic self interactions in the macroscopic state of the conducting string: as we

said above, the electromagnetic �eld in the vicinity of the string will interact with the very same

string current that generated it, with the resulting e�ect of modifying its macroscopic equation of

state (see Figure 1.9). These modi�cations make a departure of the resulting vorton distribution

from that expected otherwise, diminishing their relic abundance.

1.3.6 The Future of the Loops

Loops are formed through string interactions. Their shape is arbitrary and they will (like their

progenitors) move relativistically and emit gravitational radiation. This will make the loops shrink

while the currents (the rotation of the current carriers), initially weak, will begin to a�ect the

dynamics at some point. Also, the string tension will try to minimize the bending, leading to a

�nal state of a circular and rotating ring.

Once a string loop has reached the state of a ring, it still has to be decided whether it'll become

a vorton (an equilibrium con�guration) or not. In [Carter, Peter & Gangui, 1997] and [Gangui,

Peter & Boehm, 1998] we studied the dynamics of circular rings, including the possibility that the
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Figure 1.10: Variations of the self potential � with the ring's circumference ` = 2�r and the
electromagnetic self coupling (�q2 in the text). The red curve stands for various values of �q2 < 0:1
for which they are indistinguishable, and in the \safe" zone vorton{forming case; the minimum
value of � is then M , the vorton mass. � for �q2 = 1 is represented as the black line, where
it is clear that we now are in a zone where the potential has a minimum (new value for M) but
now terminates at some point. Finally the blue curve represents the potential for �q2 = 10, an
unrealistically large value, and this time the curve terminates even before reaching a minimum:
this is a situation in which all loops with such parameters will eventually decay [Gangui, Peter &
Boehm, 1998].

current be charged, so that even the contributions of the electric and magnetic �elds surrounding

and generated by the string were considered. This dynamics was describable in terms of a very

limited number of variables, namely the ring total mass M , its rotation velocity, and the number

of charges it carried. Given this, it was found that a typical loop of radius r lives in a potential

�(r) whose functional form depends on the Lagrangian L of Eq. (1.45) and looks like the one

shown in Figure 1.10

M2 _r2 =M2 � �2: (1.74)

From this the force it exerts onto itself can be derived. What is represented there is the force

strength, in arbitrary units of energy, exerted on the loop by itself as a function of its circumference.

The loop evolution follows that of the potential: it �rst goes down (therefore shrinking) until

it reaches the valley in the bottom of which the force vanishes, then its inertia makes it climb up

again on the opposite direction where the force now tends to stop its shrinking (centrifugal barrier).

At this point, two possibilities arise, depending on the initial mass available. Either this mass is

not too big, less than the value of the energy where the potential ends (see the black curve), or it

exceeds this energy: in the former case, the loop will bounce back and eventually oscillate around

the equilibrium position at the bottom of the valley (in order to stabilize itself there, the loop will

loose some energy in the form of radiation); in the latter case, it will shrink so much that its size



38

will eventually approach the limit (its Compton length) where quantum e�ects will disintegrate

away the ring into a burst of particles. Note the divergence for very large values of the radius r.

This is nothing but the evidence that an in�nite amount of energy is needed to enlarge in�nitely

the loop, a sort of con�nement e�ect. In the Figure 1.10 we also see how the magnitude of the

electromagnetic corrections, when strings are coupled with electric and magnetic �elds, tends to

reduce the number of surviving vortons: a stable con�guration (red line) for a weak coupling may

become unstable and collapse if its initial mass is too big for intermediate couplings (black line),

or it will do so regardless of its mass in the strong coupling case (blue line).

1.4 Structure formation from defects

1.4.1 Cosmic strings

In this section we will provide just a quick description of the remarkable cosmological features

of cosmic strings. Many of the proposed observational tests for the existence of cosmic strings

are based on their gravitational interactions. In fact, the gravitational �eld around a straight

static string is very unusual [Vilenkin, 1981]. As is well known, the Newtonian limit of Einstein

�eld equations with source term given by T �
� = diag(�;�p1;�p2;�p3) in terms of the Newtonian

potential � is given by r2� = 4�G(�+ p1+ p2+ p3), just a statement of the well known fact that

pressure terms also contribute to the `gravitational mass'. For an in�nite string in the z{direction

one has p3 = ��, i.e., strings possess a large relativistic tension (negative pressure). Moreover,

averaging on the string core results in vanishing pressures for the x and y directions yielding

r2� = 0 for the Poisson equation. This indicates that space is 
at outside of an in�nite straight

cosmic string and therefore test particles in its vicinity should not feel any gravitational attraction.

In fact, a full general relativistic analysis con�rms this and test particles in the space around

the string feel no Newtonian attraction; however there exists something unusual, a sort of wedge

missing from the space surrounding the string and called the `de�cit angle', usually noted �, that

makes the topology of space around the string that of a cone. To see this, consider the metric of

a source with energy{momentum tensor [Vilenkin 1981, Gott 1985]

T �
� = Æ(x)Æ(y)diag(�; 0; 0; T ) : (1.75)

In the case with T = � (a rather simple equation of state) this is the e�ective energy{momentum

tensor of an unperturbed string with string tension � as seen from distances much larger than the

thickness of the string (a Goto{Nambu string). However, real strings develop small{scale structure

and are therefore not well described by the Goto{Nambu action. When perturbations are taken

into account T and � are no longer equal and can only be interpreted as e�ective quantities for an

observer who cannot resolve the perturbations along its length. And in this case we are left without

an e�ective equation of state. Carter [1990] has proposed that these `noisy' strings should be such

that both its speeds of propagation of perturbations coincide. Namely, the transverse (wiggle)

speed cT = (T=�)1=2 for extrinsic perturbations should be equal to the longitudinal (woggle) speed
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Figure 1.11: Cosmic strings a�ect surrounding spacetime by removing a small angular wedge,
creating a conelike geometry (left). Space remains 
at everywhere, but a circular path around the
string encompasses slightly less than 360 degrees. The de�cit angle is tiny, about 10�5 radian.
To an observer, the presence of a cosmic string would be betrayed by its e�ect on the trajectory
of passing light rays, which are de
ected by an amount equal to the de�cit angle. The resultant
gravitational lensing reveals itself in the doubling of images of objects behind the string (right
panel).

cL = (�dT=d�)1=2 for sound{type perturbations. This requirement yields the new equation of

state

�T = �20 (1.76)

and, when this is satis�ed, it describes the energy-momentum tensor of a wiggly string as seen by

an observer who cannot resolve the wiggles or other irregularities along the string [Carter 1990,

Vilenkin 1990].

The gravitational �eld around the cosmic string [neglecting terms of order (G�)2] is found by

solving the linearized Einstein equations with the above T �
� . One gets

h00 = h33 = 4G(�� T ) ln(r=r0); (1.77)

h11 = h22 = 4G(�+ T ) ln(r=r0); (1.78)

where h�� = g�� � ��� is the metric perturbation, the radial distance from the string is r =

(x2 + y2)1=2, and r0 is a constant of integration.

For an ideal, straight, unperturbed string, the tension and mass per unit length are T = � = �0

and one gets

h00 = h33 = 0; h11 = h22 = 8G�0 ln(r=r0): (1.79)
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By a coordinate transformation one can bring this metric to a locally 
at form

ds2 = dt2 � dz2 � dr2 � (1� 8G�0)r
2d�2; (1.80)

which describes a conical and 
at (Euclidean) space with a wedge of angular size � = 8�G�0 (the

de�cit angle) removed from the plane and with the two faces of the wedge identi�ed.

Wakes and gravitational lensing

We saw above that test particles14 at rest in the spacetime of the straight string experience no

gravitational force, but if the string moves the situation radically changes. Two particles initially

at rest while the string is far away, will suddenly begin moving towards each other after the string

has passed between them. Their head{on velocities will be proportional to � or, more precisely,

the particles will get a boost v = 4�G�0vs
 in the direction of the surface swept out by the string.

Here, 
 = (1� v2s)�1=2 is the Lorentz factor and vs the velocity of the moving string. Hence, the

moving string will built up a wake of particles behind it that may eventually form the `seed' for

accreting more matter into sheet{like structures [Silk & Vilenkin 1984].

Also, the peculiar topology around the string makes it act as a cylindric gravitational lens that

may produce double images of distant light sources, e.g., quasars. The angle between the two

images produced by a typical GUT string would be / G� and of order of a few seconds of arc,

independent of the impact parameter and with no relative magni�cation between the images [see

Cowie & Hu, 1987, for a recent observational attempt].

The situation gets even more interesting when we allow the string to have small{scale structure,

which we called wiggles above, as in fact simulations indicate. Wiggles not only modify the string's

e�ective mass per unit length, �, but also built up a Newtonian attractive term in the velocity

boost in
icted on nearby test particles. To see this, let us consider the formation of a wake behind

a moving wiggly string. Assuming the string moves along the x{axis, we can describe the situation

in the rest frame of the string. In this frame, it is the particles that move, and these 
ow past the

string with a velocity vs in the opposite direction. Using conformally Minkowskian coordinates we

can express the relevant components of the metric as

ds2 = (1 + h00)[dt
2 � (dx2 + dy2)]; (1.81)

where the missing wedge is reproduced by identifying the half-lines y = �4�G�x, x � 0. The

linearized geodesic equations in this metric can be written as

2�x = �(1� _x2 � _y2)@xh00; (1.82)

2�y = �(1� _x2 � _y2)@yh00; (1.83)

14If one takes into account the own gravitational �eld of the particle living in the spacetime around a cosmic string,
then the situation changes. In fact, the presence of the conical `singularity' introduced by the string distorts the
particle's own gravitational �eld and results in the existence of a weak attractive force proportional to G2�m2=r2,
where m is the particle's mass [Linet, 1986].
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Figure 1.12: By de
ecting the trajectory of ordinary matter, strings o�er an interesting means
of forming large-scale structure. A string sweeping through a distribution of interstellar dust will
draw particles together in its wake, giving them lateral velocities of a few kilometers per second.
The trail of the moving string will become a planar region of high-density matter, which, after
gravitational collapse, could turn into thin, sheetlike distributions of galaxies [Image courtesy of
Pedro Avelino and Paul Shellard].

where over{dots denote derivatives with respect to t. Working to �rst order in G�, the second of

these equations can be integrated over the unperturbed trajectory x = vst, y = y0. Transforming

back to the frame in which the string has a velocity vs yields the result for the velocity impulse in

the y{direction after the string has passed [Vachaspati & Vilenkin, 1991; Vollick, 1992]

v = �2�G(�� T )
vs


� 4�G�vs
 (1.84)

The second term is the velocity impulse due to the conical de�cit angle we saw above. This term

will dominate for large string velocities, case in which big planar wakes are predicted. In this case,

the string wiggles will produce inhomogeneities in the wake and may easy the fragmentation of

the structure. The `top{down' scenario of structure formation thus follows naturally in a universe

with fast-moving strings. On the contrary, for small velocities, it is the �rst term that dominates

over the de
ection of particles. The origin of this term can be easily understood [Vilenkin &

Shellard, 2000]. From Eqn. (1.77), the gravitational force on a non{relativistic particle of mass m

is F � mG(� � T )=r. A particle with an impact parameter r is exposed to this force for a time

�t � r=vs and the resulting velocity is v � (F=m)�t � G(�� T )=vs.
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1.4.2 Textures

During the radiation era, and when the correlation length is already growing with the Hubble

radius, the texture �eld has energy density �texture � (r�)2 � �2=H�2, and remains a �xed

fraction of the total density �c � t�2 yielding 
texture � G�2. This is the scaling behavior for

textures and thus we do not need to worry about textures dominating the universe.

But as we already mentioned, textures are unstable to collapse, and this collapse generates per-

turbations in the metric of spacetime that eventually lead to large scale structure formation. These

perturbations in turn will a�ect the photon geodesics leading to CMB anisotropies, the clearest

possible signature to probe the existence of these exotic objects being the appearance of hot and

cold spots in the microwave maps. Due to their scaling behavior, the density 
uctuations induced

by textures on any scale at horizon crossing are given by (Æ�=�)H � G�2. CMB temperature

anisotropies will be of the same amplitude. Numerically{simulated maps, with patterns smoothed

over 10Æ angular scales, by Bennett & Rhie [1993] yield, upon normalization to the COBE{DMR

data, a dimensionless value G�2 � 10�6, in good agreement with a GUT phase transition energy

scale. It is fair to say, however, that the texture scenario is having problems in matching current

data on smaller scales [see, e.g., Durrer, 2000].

1.5 CMB signatures from defects

If cosmic defects have really formed in the early universe and some of them are still within our

present horizon today, the anisotropies in the CMB they produce would have a characteristic

signature. Strings, for example, would imprint the background radiation in a very particular way

due to the Doppler shift that the background radiation su�ers when a string intersects the line

of sight. The conical topology of space around the string will produce a di�erential redshift of

photons passing on di�erent sides of it, resulting in step{like discontinuities in the e�ective CMB

temperature, given by �T
T
� 8�G�vs
 with, as before, 
 = (1� v2s)�1=2 the Lorentz factor and vs

the velocity of the moving string. This `stringy' signature was �rst studied by Kaiser & Stebbins

[1984] and Gott [1985] (see Figure 1.13).

Anisotropies of the CMB are directly related to the origin of structure in the universe. Galax-

ies and clusters of galaxies eventually formed by gravitational instability from primordial den-

sity 
uctuations, and these same 
uctuations left their imprint on the CMB. Recent balloon [de

Bernardis, et al., 2000; Hanany, et al., 2000] and ground-based interferometer [Halverson, et al.,

2001] experiments have produced reliable estimates of the power spectrum of the CMB tempera-

ture anisotropies. While they helped eliminate certain candidate theories for the primary source

of cosmic perturbations, the power spectrum data is still compatible with the theoretical estimates

of a relatively large variety of models, such as �CDM, quintessence models or some hybrid models

including cosmic defects.

There are two main classes of models of structure formation {passive and active models. In
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Figure 1.13: The Kaiser-Stebbins e�ect for cosmic strings. A string network evolves into a self-
similar scaling regime, perturbing matter and radiation during its evolution. The e�ect on the
CMB after recombination leads to distinct steplike discontinuities on small angular scales that
were �rst studied by Kaiser & Stebbins [1984]. The left panel shows a simulated patch of the sky
that �ts in one of the pixels of the COBE experiment. Hence, higher resolution observatories are
needed in order to detect strings. The right panel shows a patch on the CMB sky of order 20'
across. However, recent studies indicate that this clean tell-tale signal gets obscured at subdegree
angular scales due to the temperature 
uctuations generated before recombination. [Magueijo &
Ferreira 1997].

passive models, density inhomogeneities are set as initial conditions at some early time, and while

they subsequently evolve as described by Einstein{Boltzmann equations, no additional perturba-

tions are seeded. On the other hand, in active models the sources of density perturbations are

time{dependent.

All speci�c realizations of passive models are based on the idea of in
ation. In simplest in
a-

tionary models it is assumed that there exists a weakly coupled scalar �eld �, called the in
aton,

which \drives" the (quasi) exponential expansion of the universe. The quantum 
uctuations of

� are stretched by the expansion to scales beyond the horizon, thus \freezing" their amplitude.

In
ation is followed by a period of thermalization, during which standard forms of matter and

energy are formed. Because of the spatial variations of � introduced by quantum 
uctuations,

thermalization occurs at slightly di�erent times in di�erent parts of the universe. Such 
uctua-

tions in the thermalization time give rise to density 
uctuations. Because of their quantum nature

and because of the fact that initial perturbations are assumed to be in the vacuum state and hence

well described by a Gaussian distribution, perturbations produced during in
ation are expected

to follow Gaussian statistics to a high degree [Gangui, Lucchin, Matarrese & Mollerach, 1994], or

either be products of Gaussian random variables. This is a fairly general prediction that will be
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tested shortly with MAP and more thoroughly in the future with Planck.15

Active models of structure formation are motivated by cosmic topological defects with the most

promising candidates being cosmic strings. As we saw in previous sections, it is widely believed

that the universe underwent a series of phase transitions as it cooled down due to the expansion.

If our ideas about grand uni�cation are correct, then some cosmic defects should have formed

during phase transitions in the early universe. Once formed, cosmic strings could survive long

enough to seed density perturbations. Defect models possess the attractive feature that they have

no parameter freedom, as all the necessary information is in principle contained in the underlying

particle physics model. Generically, perturbations produced by active models are not expected to

be Gaussian distributed [Gangui, Pogosian & Winitzki, 2001a].

1.5.1 CMB power spectrum from strings

The narrow main peak and the presence of the second and the third peaks in the CMB angular

power spectrum, as measured by BOOMERANG, MAXIMA and DASI [de Bernardis, et al.,

2000; Hanany, et al., 2000; Halverson, et al., 2001], is an evidence for coherent oscillations of the

photon{baryon 
uid at the beginning of the decoupling epoch [see, e.g., Gangui, 2001]. While

such coherence is a property of all passive model, realistic cosmic string models produce highly

incoherent perturbations that result in a much broader main peak. This excludes cosmic strings

as the primary source of density 
uctuations unless new physics is postulated, e.g. models with a

varying speed of light [Avelino & Martins, 2000]. In addition to purely active or passive models,

it has been recently suggested that perturbations could be seeded by some combination of the two

mechanisms. For example, cosmic strings could have formed just before the end of in
ation and

partially contributed to seeding density 
uctuations. It has been shown [Contaldi, et al., 1999;

Battye & Weller, 2000; Bouchet, et al., 2001] that such hybrid models can be rather successful in

�tting the CMB power spectrum data.

Calculating CMB anisotropies sourced by topological defects is a rather diÆcult task. In

in
ationary scenario the entire information about the seeds is contained in the initial conditions

for the perturbations in the metric. In the case of cosmic defects, perturbations are continuously

seeded over the period of time from the phase transition that had produced them until today.

The exact determination of the resulting anisotropy requires, in principle, the knowledge of the

energy{momentum tensor [or, if only two point functions are being calculated, the unequal time

correlators, Pen, Seljak, & Turok, 1997] of the defect network and the products of its decay at

all times. This information is simply not available! Instead, a number of clever simpli�cations,

based on the expected properties of the defect networks (e.g. scaling), are used to calculate the

source. The latest data from BOOMERANG and MAXIMA experiments clearly disagree with the

predictions of these simple models of defects [Durrer, Gangui & Sakellariadou, 1996].

The shape of the CMB angular power spectrum is determined by three main factors: the

15Useful CMB resources can be found at http://www.mpa-garching.mpg.de/~banday/CMB.html
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Figure 1.14: The CMB power spectrum produced by the wiggly string model of [Pogosian &
Vachaspati, 1999] in a closed universe with 
total = 1:3, 
baryon = 0:05, 
CDM = 0:35, 
� = 0:9,
and H0 = 65 km s�1Mpc�1 [Pogosian, 2000].

geometry of the universe, coherence and causality. The curvature of the universe directly a�ects

the paths of light rays coming to us from the surface of last scattering. In a closed universe, because

of the lensing e�ect induced by the positive curvature, the same physical distances between points

on the sky would correspond to larger angular scales. As a result, the peak structure in the CMB

angular power spectrum would shift to larger angular scales or, equivalently, to smaller values of

the multipoles `'s.

The prediction of the cosmic string model of [Pogosian & Vachaspati, 1999] for 
total = 1:3 is

shown in Figure 1.14. As can be seen, the main peak in the angular power spectrum can be matched

by choosing a reasonable value for 
total. However, even with the main peak in the right place the

agreement with the data is far from satisfactory. The peak is signi�cantly wider than that in the

data and there is no sign of a rise in power at l � 600 as the actual data seems to suggest [Hanany, et

al., 2000]. The sharpness and the height of the main peak in the angular spectrum can be enhanced

by including the e�ects of gravitational radiation [Contaldi, Hindmarsh & Magueijo, 1999] and

wiggles [Pogosian & Vachaspati, 1999]. More precise high{resolution numerical simulations of

string networks in realistic cosmologies with a large contribution from 
� are needed to determine

the exact amount of small{scale structure on the strings and the nature of the products of their

decay. It is, however, unlikely that including these e�ects alone would result in a suÆciently narrow

main peak and some presence of a second peak.

This brings us to the issues of causality and coherence and how the random nature of the

string networks comes into the calculation of the anisotropy spectrum. Both experimental and

theoretical results for the CMB power spectra involve calculations of averages. When estimating

the correlations of the observed temperature anisotropies, it is usual to compute the average over
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all available patches on the sky. When calculating the predictions of their models, theorists �nd

the average over the ensemble of possible outcomes provided by the model.

In in
ationary models, as in all passive models, only the initial conditions for the perturbations

are random. The subsequent evolution is the same for all members of the ensemble. For wave-

lengths higher than the Hubble radius, the linear evolution equations for the Fourier components

of such perturbations have a growing and a decaying solution. The modes corresponding to smaller

wavelengths have only oscillating solutions. As a consequence, prior to entering the horizon, each

mode undergoes a period of phase \squeezing" which leaves it in a highly coherent state by the

time it starts to oscillate. Coherence here means that all members of the ensemble, corresponding

to the same Fourier mode, have the same temporal phase. So even though there is randomness

involved, as one has to draw random amplitudes for the oscillations of a given mode, the time

behavior of di�erent members of the ensemble is highly correlated. The total spectrum is the

ensemble{averaged superposition of all Fourier modes, and the predicted coherence results in an

interference pattern seen in the angular power spectrum as the well{known acoustic peaks.

In contrast, the evolution of the string network is highly non-linear. Cosmic strings are expected

to move at relativistic speeds, self{intersect and reconnect in a chaotic fashion. The consequence

of this behavior is that the unequal time correlators of the string energy{momentum vanish for

time di�erences larger than a certain coherence time (�c in Figure 1.15). Members of the ensemble

corresponding to a given mode of perturbations will have random temporal phases with the \dice"

thrown on average once in each coherence time. The coherence time of a realistic string network

is rather short. As a result, the interference pattern in the angular power spectrum is completely

washed out.

Causality manifests itself, �rst of all, through the initial conditions for the string sources, the

perturbations in the metric and the densities of di�erent particle species. If one assumes that

the defects are formed by a causal mechanism in an otherwise smooth universe then the correct

initial condition are obtained by setting the components of the stress{energy pseudo{tensor ��� to

zero [Veeraraghavan & Stebbins, 1990; Pen, Spergel & Turok, 1994]. These are the same as the

isocurvature initial conditions [Hu, Spergel & White, 1997]. A generic prediction of isocurvature

models (assuming perfect coherence) is that the �rst acoustic peak is almost completely hidden.

The main peak is then the second acoustic peak and in 
at geometries it appears at ` � 300 �
400. This is due to the fact that after entering the horizon a given Fourier mode of the source

perturbation requires time to induce perturbations in the photon density. Causality also implies

that no superhorizon correlations in the string energy density are allowed. The correlation length

of a \realistic" string network is normally between 0.1 and 0.4 of the horizon size.

An interesting study was performed by Magueijo, Albrecht, Ferreira & Coulson [1996], where

they constructed a toy model of defects with two parameters: the coherence length and the co-

herence time. The coherence length was taken to be the scale at which the energy density power

spectrum of the strings turns from a power law decay for large values of k into a white noise at

low k. This is essentially the scale corresponding to the correlation length of the string network.
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Figure 1.15: The predictions of the toy model of Magueijo, et al. [1996] for di�erent values of
parameters xc, the coherence length, and �c, the coherence time. xc / �=�c(�), where � is the
conformal time and �c(�) is the correlation length of the network at time �. One can obtain
oscillations in the CMB power spectrum by �xing either one of the parameters and varying the
other.

The coherence time was de�ned in the sense described in the beginning of this section, in particu-

lar, as the time di�erence needed for the unequal time correlators to vanish. Their study showed

(see Figure 1.15) that by accepting any value for one of the parameters and varying the other

(within the constraints imposed by causality) one could reproduce the oscillations in the CMB

power spectrum. Unfortunately for cosmic strings, at least as we know them today, they fall into

the parameter range corresponding to the upper right corner in Figure 1.15.

In order to get a better �t to present{day observations, cosmic strings must either be more

coherent or they have to be stretched over larger distances, which is another way of making them

more coherent. To understand this imagine that there was just one long straight string stretching

across the universe and moving with some given velocity. The evolution of this string would be

linear and the induced perturbations in the photon density would be coherent. By increasing the

correlation length of the string network we would move closer to this limiting case of just one long

straight string and so the coherence would be enhanced.

The question of whether or not defects can produce a pattern of the CMB power spectrum

similar to, and including the acoustic peaks of, that produced by the adiabatic in
ationary models

was repeatedly addressed in the literature [Contaldi, Hindmarsh & Magueijo 1999; Magueijo, et al.

1996; Liddle, 1995; Turok, 1996; Avelino & Martins, 2000]. In particular, it was shown [Magueijo,

et al. 1996; Turok, 1996] that one can construct a causal model of active seeds which for certain

values of parameters can reproduce the oscillations in the CMB spectrum. The main problem today

is that current realistic models of cosmic strings fall out of the parameter range that is needed to

�t the observations. At the moment, only the (non-minimal) models with either a varying speed
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of light or hybrid contribution of strings+in
ation are the only ones involving topological defects

that to some extent can match the observations. One possible way to distinguish their predictions

from those of in
ationary models would be by computing key non{Gaussian statistical quantities,

such as the CMB bispectrum.

1.5.2 CMB bispectrum from active models

Di�erent cosmological models di�er in their predictions for the statistical distribution of the

anisotropies beyond the power spectrum. Future MAP and Planck satellite missions will pro-

vide high-precision data allowing de�nite estimates of non-Gaussian signals in the CMB. It is

therefore important to know precisely which are the predictions of all candidate models for the

statistical quantities that will be extracted from the new data and identify their speci�c signatures.

Of the available non-Gaussian statistics, the CMB bispectrum, or the three-point function of

Fourier components of the temperature anisotropy, has been perhaps the one best studied in the

literature [Gangui & Martin, 2000a]. There are a few cases where the bispectrum may be deduced

analytically from the underlying model. The bispectrum can be estimated from simulated CMB

sky maps; however, computing a large number of full-sky maps resulting from defects is a much

more demanding task. Recently, a precise numerical code to compute it, not using CMB maps and

similar to the CMBFAST code16 for the power spectrum, was developed in [Gangui, Pogosian &

Winitzki 2001b]. What follows below is an account of this work.

In a few words, given a suitable model, one can generate a statistical ensemble of realizations

of defect matter perturbations. We used a modi�ed Boltzmann code based on CMBFAST to

compute the e�ect of these perturbations on the CMB and found the bispectrum estimator for

a given realization of sources. We then performed statistical averaging over the ensemble of

realizations to compute the expected CMB bispectrum. (The CMB power spectrum was also

obtained as a byproduct.) As a �rst application, we then computed the expected CMB bispectrum

from a model of simulated string networks �rst introduced by Albrecht et al. [1997] and further

developed in [Pogosian & Vachaspati, 1999] and in [Gangui, Pogosian & Winitzki 2001].

We assume that, given a model of active perturbations, such as a string simulation, we can

calculate the energy-momentum tensor T��(x; �) for a particular realization of the sources in a

�nite spatial volume V0. Here, x is a 3-dimensional coordinate and � is the cosmic time. Many

simulations are run to obtain an ensemble of random realizations of sources with statistical prop-

erties appropriate for the given model. The spatial Fourier decomposition of T�� can be written

as

T��(x; �) =
X
k

���(k; �)e
ikx ; (1.85)

where k are discrete. If V0 is suÆciently large we can approximate the summation by the integral

X
k

���(k; �)e
ikx � V0

(2�)3

Z
d3k���(k; �)e

ikx ; (1.86)

16http://physics.nyu.edu/matiasz/CMBFAST/cmbfast.html
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and the corresponding inverse Fourier transform will be

���(k; �) =
1
V0

Z
V0
d3xT��(x; �)e

�ikx : (1.87)

Of course, the �nal results, such as the CMB power spectrum or bispectrum, do not depend on

the choice of V0. To ensure this independence, we shall keep V0 in all expressions where it appears

below.

It is conventional to expand the temperature 
uctuations over the basis of spherical harmonics,

�T=T (n̂) =
X
lm

almYlm(n̂); (1.88)

where n̂ is a unit vector. The coeÆcients alm can be decomposed into Fourier modes,

alm = V0
(2�)3

(�i)l 4�
Z
d3k�l (k)Y

�
lm(k̂): (1.89)

Given the sources ���(k; �), the quantities �l(k) are found by solving linearized Einstein-

Boltzmann equations and integrating along the line of sight, using a code similar to CMBFAST

[Seljak & Zaldarriaga, 1996]. This standard procedure can be written symbolically as the action

of a linear operator B̂��
l (k) on the source energy-momentum tensor, �l(k) = B̂��

l (k)���(k; �), so

the third moment of �l(k) is linearly related to the three-point correlator of ���(k; �). Below we

consider the quantities �l(k), corresponding to a set of realizations of active sources, as given. The

numerical procedure for computing �l(k) was developed in [Albrecht et al. 1997] and in [Pogosian

& Vachaspati, 1999].

The third moment of alm, namely hal1m1
al2m2

al3m3
i, can be expressed as

(�i)l1+l2+l3 (4�)3 V 3
0

(2�)9

Z
d3k1d

3k2d
3k3Y

�
l1m1

(k̂1)Y
�
l2m2

(k̂2)Y
�
l3m3

(k̂3) h�l1(k1)�l2(k2)�l3(k3)i : (1.90)

A straightforward numerical evaluation of Eq. (1.90) from given sources �l (k) is prohibitively

diÆcult, because it involves too many integrations of oscillating functions. However, we shall be

able to reduce the computation to integrations over scalars [a similar method was employed in

Komatsu & Spergel, 2001 and in Wang & Kamionkowski, 2000]. Due to homogeneity, the 3-point

function vanishes unless the triangle constraint is satis�ed,

k1 + k2 + k3 = 0: (1.91)

We may write

h�l1 (k1)�l2 (k2)�l3 (k3)i = Æ(3) (k1 + k2 + k3)Pl1l2l3 (k1;k2;k3) ; (1.92)

where the three-point function Pl1l2l3 (k1;k2;k3) is de�ned only for values of ki that satisfy

Eq. (1.91). Given the scalar values k1, k2, k3, there is a unique (up to an overall rotation) triplet

of directions k̂i for which the RHS of Eq. (1.92) does not vanish. The quantity Pl1l2l3 (k1;k2;k3)

is invariant under an overall rotation of all three vectors ki and therefore may be equivalently
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represented by a function of scalar values k1, k2, k3, while preserving all angular information.

Hence, we can rewrite Eq. (1.92) as

h�l1(k1)�l2(k2)�l3(k3)i = Æ(3) (k1 + k2 + k3)Pl1l2l3(k1; k2; k3): (1.93)

Then, using the simulation volume V0 explicitly, we have

Pl1l2l3(k1; k2; k3)=
(2�)3

V0
h�l1(k1)�l2(k2)�l3(k3)i : (1.94)

Given an arbitrary direction k̂1 and the magnitudes k1, k2 and k3, the directions k̂2 and k̂3 are

speci�ed up to overall rotations by the triangle constraint. Therefore, both sides of Eq. (1.94) are

functions of scalar ki only. The expression on the RHS of Eq. (1.94) is evaluated numerically by

averaging over di�erent realizations of the sources and over permissible directions k̂i; below we

shall give more details of the procedure.

Substituting Eqs. (1.93) and (1.94) into (1.90), Fourier transforming the Dirac delta and using

the Rayleigh identity, we can perform all angular integrations analytically and obtain a compact

form for the third moment,

hal1m1
al2m2

al3m3
i = Hm1m2m3

l1l2l3

Z
r2dr bl1l2l3(r); (1.95)

where, denoting the Wigner 3j-symbol by
�
l1 l2 l3
m1m2m3

�
, we have

Hm1m2m3

l1l2l3
�
q

(2l1+1)(2l2+1)(2l3+1)
4�

 
l1 l2 l3
0 0 0

! 
l1 l2 l3
m1 m2 m3

!
; (1.96)

and where we have de�ned the auxiliary quantities bl1l2l3 using spherical Bessel functions jl,

bl1l2l3(r) � 8
�3

V 3
0

(2�)3

Z
k21dk1 k

2
2dk2 k

2
3dk3

� jl1(k1r)jl2(k2r)jl3(k3r)Pl1l2l3(k1; k2; k3): (1.97)

The volume factor V 3
0 contained in this expression is correct: as shown in the next section, each

term �l includes a factor V
�2=3
0 , while the average quantity Pl1l2l3(k1; k2; k3) / V �3

0 [cf. Eq. (1.94)],

so that the arbitrary volume V0 of the simulation cancels.

Our proposed numerical procedure therefore consists of computing the RHS of Eq. (1.95) by

evaluating the necessary integrals. For �xed fl1l2l3g, computation of the quantities bl1l2l3(r) is a

triple integral over scalar ki de�ned by Eq. (1.97); it is followed by a fourth scalar integral over r

[Eq. (1.95)]. We also need to average over many realizations of sources to obtain Pl1l2l3(k1; k2; k3).

It was not feasible for us to precompute the values Pl1l2l3(k1; k2; k3) on a grid before integration

because of the large volume of data: for each set fl1l2l3g the grid must contain � 103 points for

each ki. Instead, we precompute �l(k) from one realization of sources and evaluate the RHS of

Eq. (1.94) on that data as an estimator of Pl1l2l3(k1; k2; k3), averaging over allowed directions of

k̂i. The result is used for integration in Eq. (1.97).
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Because of isotropy and since the allowed sets of directions k̂i are planar, it is enough to restrict

the numerical calculation to directions k̂i within a �xed two-dimensional plane. This signi�cantly

reduces the amount of computations and data storage, since �l(k) only needs to be stored on a

two-dimensional grid of k.

In estimating Pl1l2l3(k1; k2; k3) from Eq. (1.94), averaging over directions of k̂i plays a similar

role to ensemble averaging over source realizations. Therefore if the number of directions is large

enough (we used 720 for cosmic strings), only a moderate number of di�erent source realizations

is needed. The main numerical diÆculty is the highly oscillating nature of the function bl1l2l3(r).

The calculation of the bispectrum for cosmic strings presented in the next Section requires about

20 days of a single-CPU workstation time per realization.

We note that this method is speci�c for the bispectrum and cannot be applied to compute

higher-order correlations. The reason is that higher-order correlations involve con�gurations of

vectors ki that are not described by scalar values ki and not restricted to a plane. For instance,

a computation of a 4-point function would involve integration of highly oscillating functions over

four vectors ki which is computationally infeasible.

From Eq. (1.95) we derive the CMB angular bispectrum Cl1l2l3, de�ned as [Gangui & Martin,

2000b]

hal1m1
al2m2

al3m3
i =

 
l1 l2 l3
m1 m2 m3

!
Cl1l2l3 : (1.98)

The presence of the 3j-symbol guarantees that the third moment vanishes unless m1+m2+m3 = 0

and the li indices satisfy the triangle rule jli� ljj � lk � li+ lj. Invariance under spatial inversions

of the three-point correlation function implies the additional `selection rule' l1 + l2 + l3 = even,

in order for the third moment not to vanish. Finally, from this last relation and using standard

properties of the 3j-symbols, it follows that the angular bispectrum Cl1l2l3 is left unchanged under

any arbitrary permutation of the indices li.

In what follows we will restrict our calculations to the angular bispectrum Cl1l2l3 in the `diag-

onal' case, i.e. l1 = l2 = l3 = l. This is a representative case and, in fact, the one most frequently

considered in the literature. Plots of the power spectrum are usually done in terms of l(l + 1)Cl

which, apart from constant factors, is the contribution to the mean squared anisotropy of temper-

ature 
uctuations per unit logarithmic interval of l. In full analogy with this, the relevant quantity

to work with in the case of the bispectrum is

Glll = l(2l + 1)3=2
 
l l l
0 0 0

!
Clll : (1.99)

For large values of the multipole index l, Glll / l3=2Clll. Note also what happens with the 3j-

symbols appearing in the de�nition of the coeÆcients Hm1m2m3

l1l2l3
: the symbol

�
l1 l2 l3
m1m2m3

�
is absent

from the de�nition of Cl1l2l3 , while in Eq. (1.99) the symbol
�
l l l
0 0 0

�
is squared. Hence, there are no

remnant oscillations due to the alternating sign of
�
l l l
0 0 0

�
.
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However, even more important than the value of Clll itself is the relation between the bispectrum

and the cosmic variance associated with it. In fact, it is their comparison that tells us about

the observability `in principle' of the non-Gaussian signal. The cosmic variance constitutes a

theoretical uncertainty for all observable quantities and comes about due to the fact of having just

one realization of the stochastic process, in our case, the CMB sky [Scaramella & Vittorio, 1991].

The way to proceed is to employ an estimator Ĉl1l2l3 for the bispectrum and compute the

variance from it. By choosing an unbiased estimator we ensure it satis�es Cl1l2l3 = hĈl1l2l3i.
However, this condition does not isolate a unique estimator. The proper way to select the best

unbiased estimator is to compute the variances of all candidates and choose the one with the

smallest value. The estimator with this property was computed in [Gangui & Martin, 2000b] and

is

Ĉl1l2l3 =
X

m1;m2;m3

 
l1 l2 l3
m1 m2 m3

!
al1m1

al2m2
al3m3

: (1.100)

The variance of this estimator, assuming a mildly non-Gaussian distribution, can be expressed in

terms of the angular power spectrum Cl as follows

�2
Ĉl1l2l3

= Cl1Cl2Cl3(1+Æl1l2+Æl2l3+Æl3l1+2Æl1l2Æl2l3) : (1.101)

The theoretical signal-to-noise ratio for the bispectrum is then given by

(S=N)l1l2l3 = jCl1l2l3=�Ĉl1l2l3
j: (1.102)

In turn, for the diagonal case l1 = l2 = l3 = l we have

(S=N)l = jClll=�Ĉlll
j: (1.103)

Incorporating all the speci�cs of the particular experiment, such as sky coverage, angular

resolution, etc., will allow us to give an estimate of the particular non-Gaussian signature associated

with a given active source and, if observable, indicate the appropriate range of multipole l's where

it is best to look for it.

1.5.3 CMB bispectrum from strings

To calculate the sources of perturbations we have used an updated version of the cosmic string

model �rst introduced by Albrecht et al. [1997] and further developed in [Pogosian & Vachaspati,

1999], where the wiggly nature of strings was taken into account. In these previous works the

model was tailored to the computation of the two-point statistics (matter and CMB power spectra).

When dealing with higher-order statistics, such as the bispectrum, a di�erent strategy needs to be

employed.

In the model, the string network is represented by a collection of uncorrelated straight string

segments produced at some early epoch and moving with random uncorrelated velocities. At every

subsequent epoch, a certain fraction of the number of segments decays in a way that maintains
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network scaling. The length of each segment at any time is taken to be equal to the correlation

length of the network. This and the root mean square velocity of segments are computed from

the velocity-dependent one-scale model of Martins & Shellard [1996]. The positions of segments

are drawn from a uniform distribution in space, and their orientations are chosen from a uniform

distribution on a two-sphere.

The total energy of the string network in a volume V at any time is E = N�L, where N is

the total number of string segments at that time, � is the mass per unit length, and L is the

length of one segment. If L is the correlation length of the string network then, according to the

one-scale model, the energy density is � = E=V = �=L2, where V = V0a
3, the expansion factor

a is normalized so that a = 1 today, and V0 is a constant simulation volume. It follows that

N = V=L3 = V0=`
3, where ` = L=a is the comoving correlation length. In the scaling regime ` is

approximately proportional to the conformal time � and so the number of strings N(�) within the

simulation volume V0 falls as �
�3.

To calculate the CMB anisotropy one needs to evolve the string network over at least four orders

of magnitude in cosmic expansion. Hence, one would have to start with N >� 1012 string segments

in order to have one segment left at the present time. Keeping track of such a huge number of

segments is numerically infeasible. A way around this diÆculty was suggested in Ref.[3], where the

idea was to consolidate all string segments that decay at the same epoch. The number of segments

that decay by the (discretized) conformal time �i is

Nd(�i) = V0 (n(�i�1)� n(�i)) ; (1.104)

where n(�) = [`(�)]�3 is the number density of strings at time � . The energy-momentum tensor

in Fourier space, �i
��, of these Nd(�i) segments is a sum

�i
�� =

Nd(�i)X
m=1

�im
�� ; (1.105)

where �im
�� is the Fourier transform of the energy-momentum of the m-th segment. If segments

are uncorrelated, then

h�im
���

im0

�� i = Æmm0h�im
���

im
�� i (1.106)

and

h�im
���

im0

�� �
im00


Æ i = Æmm0Æmm00h�im
���

im
���

im

Æ i: (1.107)

Here the angular brackets h: : :i denote the ensemble average, which in our case means averaging

over many realizations of the string network. If we are calculating power spectra, then the relevant

quantities are the two-point functions of �i
��, namely

h�i
���

i
��i = h

Nd(�i)X
m=1

Nd(�i)X
m0=1

�im
���

im0

�� i: (1.108)
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Eq. (1.106) allows us to write

h�i
���

i
��i =

Nd(�i)X
m=1

h�im
���

im
�� i = Nd(�i)h�i1

���
i1
��i; (1.109)

where �i1
�� is of the energy-momentum of one of the segments that decay by the time �i. The last

step in Eq. (1.109) is possible because the segments are statistically equivalent. Thus, if we only

want to reproduce the correct power spectra in the limit of a large number of realizations, we can

replace the sum in Eq. (1.105) by

�i
�� =

q
Nd(�i)�

i1
��: (1.110)

The total energy-momentum tensor of the network in Fourier space is a sum over the consolidated

segments:

��� =
KX
i=1

�i
�� =

KX
i=1

q
Nd(�i)�

i1
�� : (1.111)

So, instead of summing over
PK

i=1Nd(�i) >� 1012 segments we now sum over only K segments,

making K a parameter.

For the three-point functions we extend the above procedure. Instead of Eqs. (1.108) and

(1.109) we now write

h�i
���

i
���

i

Æi=h

Nd(�i)X
m=1

Nd(�i)X
m0=1

Nd(�i)X
m00=1

�im
���

im0

�� �
im00


Æ i =
Nd(�i)X
m=1

h�im
���

im
���

im

Æ i = Nd(�i)h�i1

���
i1
���

i1

Æi(1.112)

Therefore, for the purpose of calculation of three-point functions, the sum in Eq. (1.105) should

now be replaced by

�i
�� = [Nd(�i)]

1=3�i1
�� : (1.113)

Both expressions in Eqs. (1.110) and (1.113), depend on the simulation volume, V0, contained

in the de�nition of Nd(�i) given in Eq. (1.104). This is to be expected and is consistent with our

calculations, since this volume cancels in expressions for observable quantities.

Note also that the simulation model in its present form does not allow computation of CMB sky

maps. This is because the method of �nding the two- and three-point functions as we described

involves \consolidated" quantities �i
�� which do not correspond to the energy-momentum tensor

of a real string network. These quantities are auxiliary and specially prepared to give the correct

two- or three-point functions after ensemble averaging.

In Fig. 1.16 we show the results for G
1=3
lll [cf. Eq. (1.99)]. It was calculated using the string

model with 800 consolidated segments in a 
at universe with cold dark matter and a cosmological

constant. Only the scalar contribution to the anisotropy has been included. Vector and tensor

contributions are known to be relatively insigni�cant for local cosmic strings and can safely be

ignored in this model [3, 131]17. The plots are produced using a single realization of the string

network by averaging over 720 directions of ki. The comparison of G
1=3
lll (or equivalently C

1=3
lll )

17The contribution of vector and tensor modes is large in the case of global strings [Turok, Pen & Seljak, 1998;
Durrer, Gangui & Sakellariadou, 1996].
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Ĉ

lll j 1
=
3
for

d
i�
eren

t
m
u
ltip

ole
in
d
ices.

N
orm

alization
follow

s
from

�
ttin

g
th
e
p
ow

er
sp
ectru

m
to

th
e
B
O
O
M
E
R
A
N
G

an
d
M
A
X
IM

A
d
ata.

w
ith

its
cosm

ic
varian

ce
[cf.

E
q
.
(1.101)]

clearly
sh
ow

s
th
at

th
e
b
isp

ectru
m

(as
com

p
u
ted

from
th
e

p
resen

t
cosm

ic
strin

g
m
o
d
el)

lies
h
id
d
en

in
th
e
th
eoretical

n
oise

an
d
is
th
erefore

u
n
d
etectab

le
for

an
y
given

valu
e
of
l.

L
et

u
s
n
ote,

h
ow

ever,
th
at

in
its

p
resen

t
stage

th
e
strin

g
co
d
e
em

p
loyed

in
th
ese

com
p
u
tation

s

d
escrib

es
B
row

n
ian

,
w
iggly

lon
g
strin

gs
in

sp
ite

of
th
e
fact

th
at

lon
g
strin

gs
are

very
likely

n
ot

B
row

n
ian

on
th
e
sm

allest
scales,

as
recen

t
�
eld

{th
eory

sim
u
lation

s
in
d
icate.

In
ad
d
ition

,
th
e

p
resen

ce
of

sm
all

strin
g
lo
op
s
[W

u
,
et

al.,
1998]

an
d
grav

itation
al
rad

iation
in
to

w
h
ich

th
ey

d
ecay

w
ere

n
ot

yet
in
clu

d
ed

in
th
is
m
o
d
el.

T
h
ese

are
im

p
ortan

t
e�
ects

th
at

cou
ld
,
in

p
rin

cip
le,

ch
an
ge

th
e
ab
ove

p
red

iction
s
for

th
e
strin

g-gen
erated

C
M
B
b
isp

ectru
m

on
very

sm
all

an
gu
lar

scales.

T
h
e
im

p
rin

t
of

cosm
ic
strin

gs
on

th
e
C
M
B
is
a
com

b
in
ation

of
d
i�
eren

t
e�
ects.

P
rior

to
th
e

tim
e
of

recom
b
in
ation

strin
gs

in
d
u
ce

d
en
sity

an
d
velo

city


u
ctu

ation
s
on

th
e
su
rrou

n
d
in
g
m
atter.

D
u
rin

g
th
e
p
erio

d
of
last

scatterin
g
th
ese



u
ctu

ation
s
are

im
p
rin

ted
on

th
e
C
M
B
th
rou

gh
th
e
S
ach

s-

W
olfe

e�
ect,

n
am

ely,
tem

p
eratu

re


u
ctu

ation
s
arise

b
ecau

se
relic

p
h
oton

s
en
cou

n
ter

a
grav

itation
al

p
oten

tialw
ith

sp
atially

d
ep
en
d
en
t
d
ep
th
.
In

ad
d
ition

to
th
e
S
ach

s-W
olfe

e�
ect,

m
ov
in
g
lon

g
strin

gs

d
rag

th
e
su
rrou

n
d
in
g
p
lasm

a
an
d
p
ro
d
u
ce

velo
city

�
eld

s
th
at

cau
se

tem
p
eratu

re
an
isotrop

ies
d
u
e

to
D
op
p
ler

sh
ifts.

W
h
ile

a
strin

g
segm

en
t
b
y
itself

is
a
h
igh

ly
n
on
-G

au
ssian

ob
ject,



u
ctu

ation
s

in
d
u
ced

b
y
strin

g
segm

en
ts

b
efore

recom
b
in
ation

are
a
su
p
erp

osition
of

e�
ects

of
m
an
y
ran

d
om

strin
gs

stirrin
g
th
e
p
rim

ord
ial

p
lasm

a.
T
h
ese



u
ctu

ation
s
are

th
u
s
ex
p
ected

to
b
e
G
au
ssian

as
a

resu
lt
of

th
e
cen

tral
lim

it
th
eorem

.

A
s
th
e
u
n
iverse

b
ecom

es
tran

sp
aren

t,
strin

gs
con

tin
u
e
to

leave
th
eir

im
p
rin

t
on

th
e
C
M
B

m
ain

ly
d
u
e
to

th
e
K
aiser

&
S
teb

b
in
s
[1984]

e�
ect.

A
s
w
e
m
en
tion

ed
in

p
rev

iou
s
section

s,
th
is



56

e�ect results in line discontinuities in the temperature �eld of photons passing on opposite sides

of a moving long string.18 However, this e�ect can result in non-Gaussian perturbations only

on suÆciently small scales. This is because on scales larger than the characteristic inter-string

separation at the time of the radiation-matter equality, the CMB temperature perturbations result

from superposition of e�ects of many strings and are likely to be Gaussian. Avelino et al. [1998]

applied several non-Gaussian tests to the perturbations seeded by cosmic strings. They found the

density �eld distribution to be close to Gaussian on scales larger than 1:5(
Mh
2)�1 Mpc, where


M is the fraction of cosmological matter density in baryons and CDM combined. Scales this

small correspond to the multipole index of order l � 104.

1.5.4 CMB polarization

The possibility that the CMB be polarized was �rst discussed by Martin Rees in 1968, in the context

of anisotropic Universe models. In spite of his optimism, and after more than thirty years, there is

still no positive detection of the polarization �eld. Unlike the BOOMERANG��[G experiment,

MAP will have the capability to detect it and this to a level of better than 10 �K in its low frequency

channels. Polarization is an important probe both for cosmological models and for the more recent

history of our nearby Universe. It arises from the interactions of CMB photons with free electrons;

hence, polarization can only be produced at the last scattering surface (its amplitude depends on

the duration of the decoupling process) and, unlike temperature 
uctuations, it is una�ected by

variations of the gravitational potential after last scattering. Future measurements of polarization

will thus provide a clean view of the inhomogeneities of the Universe at about 400,000 years after

the Bang.

For understanding polarization, a couple of things should be clear. First, the energy of the

photons is small compared to the mass of the electrons. Then, the CMB frequency does not

change, since the electron recoil is negligible. Second, the change in the CMB polarization (i.e.,

the orientation of the oscillating electric �eld ~E of the radiation) occurs due to a certain transition,

called Thomson scattering. The transition probability per unit time is proportional to a combina-

tion of the old (�̂ in
� ) and new (�̂ out

� ) directions of polarization in the form j�̂ in
� � �̂ out

� j2. In other

words, the initial direction of polarization will be favored. Third, an oscillating ~E will push the

electron to also oscillate; the latter can then be seen as a dipole (not to be confused with the CMB

dipole), and dipole radiation emits preferentially perpendicularly to the direction of oscillation.

These `rules' will help us understand why the CMB should be linearly polarized.

Previous to the recombination epoch, the radiation �eld is unpolarized. In unpolarized light

the electric �eld can be decomposed into the two orthogonal directions (along, say, x̂ and ẑ)

perpendicular to the line of propagation (ŷ). The electric �eld along �̂ in
ẑ (suppose ẑ is vertical)

will make the electron oscillate also vertically. Hence, the dipolar radiation will be maximal over

18The extension of the Kaiser-Stebbins e�ect to polarization will be treated below. In fact, Benabed and
Bernardeau [2000] have recently considered the generation of a B-type polarization �eld out of E-type polarization,
through gravitational lensing on a cosmic string.
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the horizontal xy-plane. Analogously, dipole radiation due to the electric �eld along x̂ will be on the

yz-plane. If we now look from the side (e.g., from x̂, on the horizontal plane and perpendicularly

to the incident direction ŷ) we will see a special kind of scattered radiation. From our position we

cannot perceive the radiation that the electron oscillating along the x̂ direction would emit, just

because this radiation goes to the yz-plane, orthogonal to us. Then, it is as if only the vertical

component (�̂ in
ẑ ) of the incoming electric �eld would cause the radiation we perceive. From the

above rules we know that the highest probability for the polarization of the outgoing radiation

�̂ out
� will be to be aligned with the incoming one �̂ in

ẑ , and therefore it follows that the outgoing

radiation will be linearly polarized. Now, as both the chosen incoming direction and our position

as observers were arbitrary, the result will not be modi�ed if we change them. Thomson scattering

will convert unpolarized radiation into linearly polarized one.

This however is not the end of the story. To get the total e�ect we need to consider all possible

directions from which photons will come to interact with the target electron, and sum them up.

We see easily that for an initial isotropic radiation distribution the individual contributions will

cancel out: just from symmetry arguments, in a spherically symmetric con�guration no direction is

privileged, unlike the case of a net linear polarization which would select one particular direction.

Fortunately, we know the CMB is not exactly isotropic; to the millikelvin precision the dominant

mode is dipolar. So, what about a CMB dipolar distribution ? Although spatial symmetry does

not help us now, a dipole will not generate polarization either. Take, for example, the radiation

incident onto the electron from the left to be more intense than the radiation incident from the

right, with average intensities above and below (that's a dipole); it then suÆces to sum up all

contributions to see that no net polarization survives. However, if the CMB has a quadrupolar

variation in temperature (that it has, �rst discovered by COBE, to tens of �K precision) then there

will be an excess of vertical polarization from left- and right-incident photons (assumed hotter than

the mean) with respect to the horizontal one from top and bottom light (cooler). From any point

of view, orthogonal contributions to the �nal polarization will be di�erent, leaving a net linear

polarization in the scattered radiation.

Within standard recombination models the predicted level of linear polarization on large scales

is tiny (see Figure 1.17): the quadrupole generated in the radiation distribution as the photons

travel between successive scatterings is too small. Multiple scatterings make the plasma very

homogeneous and only wavelengths that are small enough (big `'s) to produce anisotropies over

the (rather short) mean free path of the photons will lead to a signi�cant quadrupole, and thus

also to polarization. Indeed, if the CMB photons last scattered at z � 1100, the SCDM model

with h = 1 predicts no more than 0.05 �K on scales greater than a few degrees. Hence, measuring

polarization represents an experimental challenge. There is still no positive detection and the best

upper limits a few years ago were around 25�K, obtained by Edward Wollack and collaborators in

1993, and now improved to roughly 10�K on subdegree angular scales by Hedman, et al., [2000]19.

19They actually �nd upper limits of 14�K and 13�K on the amplitudes of the E and B modes, respectively, of
the polarization �eld { more below. And, if in their analysis they assumed there are no B modes, then the limit on
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E(S)Cl

(S)Cl

E(T)Cl

(T)Cl

B(T)Cl

Figure 1.17: CMB Polarization for two di�erent models. Red and orange (unlabeled) curves are
the angular spectra derived for a �CHDM model, both with (red dashed line) and without (red full
line) reionization. The temperature anisotropy spectrum from scalar perturbations (proportional
to [C`]

1=2, orange curve) is virtually unchanged for both ionization histories. The polarization

spectrum (/ [CE(S)
` ]1=2, red curves), although indistinguishable for ` >� 20, dramatically changes

for small `'s; in this model the Universe is reionized suddenly at low redshift with optical depth
�c = 0:05. Blue and violet curves represent a SCDM model but with a high tensor-mode amplitude,
T/S=1 at the quadrupole (` = 2) level, with scale-invariant spectral indices nS = 1 and nT = 0.

Separate scalar (noted C
(S)
` ) and tensor (C

(T)
` ) contributions to temperature anisotropies are shown

(top curves). Scalar modes only generate E-type polarization (C
E(S)
` ), which is smaller than the

corresponding red curve of the �CHDM model both due to di�erences in the models (notably
� 6= 0 for the red curves) and due to the in
uence of tensors on the normalization at small `. E-

and B-type polarization from tensor modes are also shown, respectively C
E(T)
` and C

B(T)
` . Model

spectra were computed with CMBFAST and are normalized to ÆT`=10 = 27:9�K.

However, CMB polarization increases remarkably around the degree-scale in standard models.

In fact, for � < 1Æ a bump with superimposed acoustic oscillations reaching � 5�K is generically

forecasted. On these scales, like for the temperature anisotropies, the polarization �eld shows

acoustic oscillations. However, polarization spectra are sharper: temperature 
uctuations receive

contributions from both density (dominant) and velocity perturbations and these, being out of

phase in their oscillation, partially cancel each other. On the other hand, polarization is mainly

produced by velocity gradients in the baryon-photon 
uid before last scattering, which also explains

why temperature and polarization peaks are located di�erently. Moreover, acoustic oscillations

depend on the nature of the underlying perturbation; hence, we do not expect scalar acoustic

sound-waves in the baryon-photon plasma, propagating with characteristic adiabatic sound speed

cS � c=
p
3, close to that of an ideal radiative 
uid, to produce the same peak-frequency as that

produced by gravitational waves, which propagate with the speed of light c (see Fig.1.17).

The main technical complication with polarization (characterized by a tensor �eld) is that

it is not invariant under rotations around a given direction on the sky, unlike the temperature

E improves to 10�K (all limits to 95% con�dence level).
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uctuation that is described by a scalar quantity and invariant under such rotations. The level of

linear polarization is conveniently expressed in terms of the Stokes parametersQ and U. It turns out

that there is a clever combination of these parameters that results in scalar quantities (in contrast

to the above noninvariant tensor description) but with di�erent transformation properties under

spatial inversions (parity transformations). Then, inspired by classical electromagnetism, any

polarization pattern on the sky can be separated into `electric' (scalar, unchanged under parity

transformation) and `magnetic' (pseudo-scalar, changes sign under parity) components (E- and

B-type polarization, respectively).

CMB polarization from global defects

One then expands these di�erent components in terms of spherical harmonics, very much like

we did for temperature anisotropies, getting coeÆcients am` for E and B polarizations and, from

these, the multipoles CE;B
` . The interesting thing is that (for symmetry reasons) scalar-density

perturbations will not produce any B polarization (a pseudo-scalar), that is C
B(S)
` = 0. We see

then that an unambiguous detection of some level of B-type 
uctuations will be a signature of the

existence (and of the amplitude) of a background of gravitational waves ! [Seljak & Zaldarriaga,

1997] (and, if present, also of rotational modes, like in models with topological defects).

Linear polarization is a symmetric and traceless 2x2 tensor that requires 2 parameters to fully

describe it: Q, U Stokes parameters. These depend on the orientation of the coordinate system

on the sky. It is convenient to use Q + iU and Q � iU as the two independent combinations,

which transform under right-handed rotation by an angle � as (Q + iU)0 = e�2i�(Q + iU) and

(Q� iU)0 = e2i�(Q� iU). These two quantities have spin-weights 2 and �2 respectively and can

be decomposed into spin �2 spherical harmonics �2Ylm

(Q + iU)(n̂) =
X
lm

a2;lm 2Ylm(n̂) (1.114)

(Q� iU)(n̂) =
X
lm

a�2;lm �2Ylm(n̂): (1.115)

Spin s spherical harmonics form a complete orthonormal system for each value of s. Important

property of spin-weighted basis: there exists spin raising and lowering operators 0@ and 0@ . By

acting twice with a spin lowering and raising operator on (Q+ iU) and (Q� iU) respectively one

obtains quantities of spin 0, which are rotationally invariant. These quantities can be treated like

the temperature and no ambiguities connected with the orientation of coordinate system on the

sky will arise. Conversely, by acting with spin lowering and raising operators on usual harmonics

spin s harmonics can be written explicitly in terms of derivatives of the usual spherical harmonics.

Their action on �2Ylm leads to

0@ 2(Q+ iU)(n̂) =
X
lm

 
[l + 2]!

[l � 2]!

!1=2

a2;lmYlm(n̂) (1.116)
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0@ 2(Q� iU)(n̂) =
X
lm

 
[l + 2]!

[l � 2]!

!1=2

a�2;lmYlm(n̂): (1.117)

With these de�nitions the expressions for the expansion coeÆcients of the two polarization variables

become [Seljak & Zaldarriaga, 1997]

a2;lm =

 
[l � 2]!

[l + 2]!

!1=2 Z
d
 Y �

lm(n̂)
0@ 2(Q+ iU)(n̂) (1.118)

a�2;lm =

 
[l � 2]!

[l + 2]!

!1=2 Z
d
 Y �

lm(n̂)
0@ 2(Q� iU)(n̂): (1.119)

Instead of a2;lm, a�2;lm it is convenient to introduce their linear electric and magnetic combinations

aE;lm = �1
2
(a2;lm + a�2;lm) aB;lm =

i

2
(a2;lm � a�2;lm): (1.120)

These two behave di�erently under parity transformation: while E remains unchanged B changes

the sign, in analogy with electric and magnetic �elds.

To characterize the statistics of the CMB perturbations only four power spectra are needed,

those for X = T;E;B and the cross correlation between T and E. The cross correlation between

B and E or B and T vanishes because B has the opposite parity of T and E. As usual, the spectra

are de�ned as the rotationally invariant quantities

CXl =
1

2l + 1

X
m

ha�X;lmaX;lmi CCl =
1

2l + 1

X
m

ha�T;lmaE;lmi (1.121)

in terms of which on has

ha�X;l0m0aX;lmi = CXl Æl0lÆm0m (1.122)

ha�T;l0m0aE;lmi = CCl Æl0lÆm0m (1.123)

ha�B;l0m0aE;lmi = ha�B;l0m0aT;lmi = 0: (1.124)

According to what was said above, one expects some amount of polarization to be present in

all possible cosmological models. However, symmetry breaking models giving rise to topological

defects di�er from in
ationary models in several important aspects, two of which are the relative

contributions from scalar, vector and tensor modes and the coherence of the seeds sourcing the

perturbation equations. In the local cosmic string case one �nds that in general scalar modes are

dominant, if one compares to vector and tensor modes in the usual decomposition of perturbations.

The situation with global topological defects is radically di�erent and this leads to a very distinctive

signature in the polarization �eld.

Temperature and polarization spectra for various symmetry breaking models were calculated

by Seljak, Pen & Turok [1997] and are shown in �gure 1.18. Both electric and magnetic compo-

nents of polarization are shown for a variety of global defects. They also plot for comparison the

corresponding spectra in a typical in
ationary model, namely, the standard CDM model (h = 0:5,
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Figure 1.18: Power spectra of temperature (T), electric type polarization (E) and magnetic type
polarization (B) for global strings, monopoles, textures and nontopological textures [taken from
Seljak. et al., 1997]. The corresponding spectra for a standard CDM model with T=S = 1 is
also shown for comparison. B polarization turns out to be notably larger for all global defects
considered if compared to the corresponding predictions of in
ationary models on small angular
scales.


 = 1, 
baryon = 0:05) but with equal amount of scalars and tensors perturbations (noted T=S = 1)

which maximizes the amount of B component from in
ationary models. In all the models they

assumed a standard reionization history. The most interesting feature they found is the large

magnetic mode polarization, with a typical amplitude of � 1�K on degree scales [exactly those

scales probed by Hedman, et al., 2001]. For multipoles below ` � 100 the contributions from E

and B are roughly equal. This di�ers strongly from the in
ationary model predictions, where B

is much smaller than E on these scales even for the extreme case of T=S � 1. In
ationary models

only generate scalar and tensor modes, while global defects also have a signi�cant contribution

from vector modes. As we mentioned above, scalar modes only generate E, vector modes pre-

dominantly generate B, while for tensor modes E and B are comparable with B being somewhat

smaller. Together this implies that B can be signi�cantly larger in symmetry breaking models

than in in
ationary models.

String lensing and CMB polarization

Recent studies have shown that in realistic models of in
ation cosmic string formation seems

quite natural in a post-in
ationary preheating phase [Tkachev et al., 1998, Kasuya & Kawasaki,
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1998]. So, even if the gross features on CMB maps are produced by a standard (e.g., in
ationary)

mechanism, the presence of defects, most particularly cosmic strings, could eventually leave a

distinctive signature. One such feature could be found resorting to CMB polarization: the lens

e�ect of a string on the small scale E-type polarization of the CMB induces a signi�cant amount

of B-type polarization along the line-of-sight [Zaldarriaga & Seljak, 1998; Benabed & Bernardeau

2000]. This is an e�ect analogous to the Kaiser-Stebbins e�ect for temperature maps.

In the in
ationary scenario, scalar density perturbations generate a scalar polarization pattern,

given by E-type polarization, while tensor modes have the ability to induce both E and B types

of polarization. However, tensor modes contribute little on very small angular scales in these

models. So, if one considers, say, a standard �CDM model, only scalar primary perturbations will

be present without defects. But if a few strings are left from a very early epoch, by studying the

patch of the sky where they are localized, a distinctive signature could come to light.

In the small angular scale limit, in real space and in terms of the Stokes parameters Q and U

one can express the E and B �elds as follows

E � ��1[(@x2 � @y2)Q+ 2@x@y U ]; (1.125)

B � ��1[(@x2 � @y2)U � 2@x@y Q]: (1.126)

The polarization vector is parallel transported along the geodesics. The lens a�ects the

polarization by displacing the apparent position of the polarized light source. Hence, the ob-

served Stokes parameters Q̂ and Û are given in terms of the primary (unlensed) ones by:

Q̂(~�) = Q(~� + ~�) and Û(~�) = U(~� + ~�). The displacement ~� is given by the integration of

the gravitational potential along the line{of{sights. Of course, here the `potential' acting as lens

is the cosmic string whose e�ect on the polarization �eld we want to study.

In the case of a straight string which is aligned along the y axis, the de
ection angle (or half

of the de�cit angle) is 4�G� [Vilenkin & Shellard, 2000] and this yields a displacement �x = ��0
with

�0 = 4�G�Dlss,s=Ds,us (1.127)

with no displacement along the y axis. Dlss,s and Ds,us are the cosmological angular distances

between the last scattering surface and the string, and between the string and us, respectively.

They can be computed, in an Einstein-de Sitter universe (critical density, just dust and no �),

from

D(z1; z2) = 2c

H0

1

1 + z2
[(1 + z1)

�1=2 � (1 + z2)
�1=2] (1.128)

by taking z1 = 0 for us and z2 ' 1000 for the last scattering surface; see [Bartelmann & Schneider,

2001]. For the usual case in which the redshift of the string zs is well below the zlss one has

Dlss,s=Dlss,us ' 1=
p
1 + zs. Taking this ratio of order 1/2 (i.e., distance from us to the last

scattering surface equal to twice that from the string to the last scattering surface) yields zs '
3. Plugging in some numbers, for typical GUT strings on has G� ' 10�6 and so the typical

expected displacement is about less than 10 arc seconds. Benabed & Bernardeau [2000] compute
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Figure 1.19: Simulations for the B �eld in the case of a circular loop. The angular size of the
�gure is 500 � 500. The resolution is 5' (left) and 1.2' (right). The discontinuity in the B �eld
is sharper the better the resolution. Weak lensing of CMB photons passing relatively apart from
the position of the string core are apparent as faint patches outside of the string loop on the left
panel. [Benabed & Bernardeau 2000].

the resulting B component of the polarization and �nd that the e�ect is entirely due to the

discontinuity induced by the string, being nonzero just along the string itself. This clearly limits

the observability of the e�ect to extremely high resolution detectors, possibly post-Planck ones.

The situation for circular strings is di�erent. As shown by de Laix & Vachaspati [1996] the

lens e�ect of such a string, when facing the observer, is equivalent to the one of a static linear

mass distribution. Considering then a loop centered at the origin of the coordinate system, the

displacement �eld can be expressed very simply: observing in a direction through the loop, ~� has

to vanish, while outside of the loop the displacement decreases as �l=�, i.e., inversely proportional

to the angle. One then has [Benabed & Bernardeau, 2000]

~�(~�) = �2�0 �l
�2
~� with � > �l; (1.129)

where �l is the loop radius.

This ansatz for the displacement, once plugged into the above equations, yields the B �eld

shown in both panels of Figure 1.19. A weak lensing e�ect is barely distinguishable outside the

string loop, while the strong lensing of those photons traveling close enough to the string is the

most clear signature, specially for the high resolution simulation. One can check that the hot and

cold spots along the string pro�le have roughly the same size as for the polarization �eld in the

absence of the string loop. The simulations performed show a clear feature in the maps, although

limited to low resolutions this can well be confused with other secondary polarization sources. It

is well known that point radio sources and synchrotron emission from our galaxy may contribute

to the foreground [de Zotti et al. 1999] and are polarized at a 10 % level. Also lensing from large

scale structure and dust could add to the problem.
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1.6 Varia

1.6.1 Astrophysical footprints

Cosmic strings, with or without current carrying capabilities, are predicted by many theories of

high energy physics, and they have been postulated ad hoc as a possible explanation of various

phenomena, many of which we have explained above. If indeed present in our universe, cosmic

strings could help in the reconciliation between theory and observations in many cases, as well as

lead to interesting and testable predictions in others. These areas include galactic magnetic �elds,

stable string loops (vortons) as a possible dark matter candidate, gravitational waves from strings,

etc.

Strings and galactic magnetic �elds

There are many outstanding astrophysical problems that may perhaps be explained with the help of

superconducting cosmic strings. One of these concerns how galactic magnetic �elds are generated.

In the most commonly held scenario, the magnetic �elds possessed by galaxies today arose from

smaller seed �elds that already existed before galaxies themselves formed. These seed �elds would

have only a small coherence length {the average size of a region with a roughly uniform �eld{

but standard magnetohydrodynamic theory allows both the strength of the �eld and its coherence

length to grow to galactic scales.

A �eld incorporated into a protogalactic structure remains trapped as that structure grows;

in particular, as the protogalaxy shrinks under its own gravity, the magnetic 
ux within it is

compressed too, increasing the strength (
ux per unit area) of the �eld. Rotation of the evolving

system may then increase the �eld strength further, through a dynamo e�ect, to the value typical

of galactic magnetic �elds, roughly 10�6 gauss. However, this scenario is not universally accepted,

and other models are being studied that would produce tiny primordial �elds that already have a

large coherence length.

Superconducting cosmic strings may be able to do the job. They carry electric currents, and in

fact fairly large ones. As we saw, Witten [1985] was the �rst to suggest that strings could become

superconducting, and he went on to calculate a maximum current based on the mass and charge

of a string's current-carrying fermion: some Jmax � 1020A for particles on the grand uni�ed mass

scale { a huge value not so often met even in astrophysics. Magnetic �elds are produced when an

electrically charged object moves in space; theoretically this is precisely what cosmic strings are

and what they do. Calculations suggest that superconducting strings could generate interesting

seed magnetic �elds with strengths of about 10�20 gauss and with coherence scales of roughly 100

kiloparsecs. This corresponds to the size of protogalaxies, and dynamo e�ects could then increase

the �eld strength to the observed values. The string's motion through the turbulent primordial

plasma might induce vorticity that could also amplify �eld strengths. Conducting strings could

thus easily provide magnetic �elds that would evolve into modern galactic �elds [see, e.g., Martins

& Shellard, 1998].
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Cosmic rays from cosmic strings

A second problem is much closer to home. Earth's atmosphere is constantly assaulted by lots of

particles, such as photons, electrons, protons and heavier nuclei. Recent detections have recorded

astonishingly energetic cosmic-ray events, with energies on the order of a few hundred exaelectron-

volts (1 EeV = 1018 electron-volts). This is roughly the kinetic energy of a tennis ball traveling at

over 150 kilometers an hour, all concentrated into an atomic particle. Particles with such energies

cannot easily move through intergalactic space, which, far from being empty, is pervaded by cosmic

background radiation �elds, including the already mentioned microwave background (CMB) as well

as di�use radio backgrounds. From the perspective of particles moving faster than some critical

velocity, these �elds look like bunches of very damaging photons, which degrade the particle's

energy through collisions and scattering. For example, a proton that reaches Earth's atmosphere

with the necessary energy to explain these ultra{energetic events could not have come from farther

away than about 30 million parsecs, according to a result known as the Greisen-Zatsepin-Kuz'min

(GZK) cuto� [see, e.g., Bhattacharjee & Sigl, 2000].

One might therefore conclude that the ultra{high{energy cosmic rays (uhecrons) must come

from sources that are close (astrophysically speaking) to our galaxy. However, unusual and en-

ergetic objects like quasars and active galactic nuclei are mostly too far away. The high-energy

particles remain a mystery because when one looks back in the direction they came from, there

is nothing nearby that could have given them the necessary kick. So what are they, and how did

they manage to reach us?

For the time being, standard astrophysics seems unable to answer these questions, and in

fact essentially states that we should not receive any such rays. As Ludwik Celnikier from the

Observatoire de Paris{Meudon has said, comparing cosmological dark matter to ultra{high{energy

cosmic rays: the former is a form of matter which should exist, but until further notice doesn't,

whereas the high{energy rays are particles which do exist but perhaps shouldn't.

This is where topological defects, and in particular superconducting cosmic strings, can lend a

hand. They o�er two ways to deliver extremely energetic particles: they may directly emit particles

with tremendous energies, or, more excitingly, they may send o� tiny loops of superconducting

cosmic string which would then be misinterpreted as ordinary but very energetic particles.

The �rst mechanism arises because the currents carried by strings can be thought of as streams

of trapped particles, which would in general be extremely massive and unstable. Like neutrons,

however, which decay in a few minutes when left by themselves but live happily inside nuclei, these

heavy particles can exist inde�nitely when con�ned within strings. Indeed, cosmic strings are the

only objects that could preserve such particles from their origin to the present time. The trapped

particles can nonetheless emerge occasionally when strings su�er violent events. A single string

may bend sharply to create a kink or cusp20, or a pair of strings may intersect in such a way that

their ends switch partners. In these events some trapped particles can �nd their way out of the

20Movies of a cosmic string cusp simulation can be found at http://cosmos2.phy.tufts.edu/~kdo/
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Figure 1.20: Interaction of a vorton with a proton in Earth's atmosphere varies with energy in
a way that depends on the interaction of quarks inside the proton with current-carrying particle
states in the string loop [Bonazzola & Peter, 1997]. Ultra{high{energy cosmic rays created in this
way might have a characteristic energy spectrum that would identify vorton collisions as their
origin.

string, at which time they would almost instantly decay. They are so massive, however, that the

light particles produced in their decay would be energetic enough to qualify as ultra{high{energy

cosmic rays.

Disintegration of superconducting strings has also been proposed as the origin of ultra high

energy cosmic rays [Hill, Schramm & Walker, 1987; see however Gill & Kibble, 1994], with the

advantage of getting round the diÆculties of the conventional shock acceleration of cosmic rays.

This mechanism will also produce neutrinos of up to 1018 eV energies. Horizontal air shower

measurements, like the Akeno Giant Air Shower Array (AGASA) experiment [Yoshida, et al.,

1995], however, constrain �e + ��e 
uxes, and current estimates from superconducting strings seem

to exceed these bounds [Blanco-Pillado, Vazquez & Zas, 1997].

Vortons as uhecrons

A second possibility was proposed by Bonazzola & Peter [1997] who have recently suggested that

the high{energy cosmic rays are in fact vortons. As we saw, vortons typically have more than a

hundred times the charge of an electron, Q = Ze, and thus they are eÆciently accelerated along

electric �eld lines in active galactic nuclei. Their huge mass, moreover, means that compared to

protons they need smaller velocities to attain equivalently high energies, and these lower velocities

mean they can travel enormous distances without running up against the GZK cuto�. A vorton
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hitting any air molecule in the atmosphere would decay as if it were a very energetic but otherwise

ordinary particle. The interaction of the trapped current carriers in the vorton with the quarks

within atmospheric protons would proceed with a characteristic energy spectrum (Figure 1.20),

which would be mirrored by the energy spectrum of observed high-energy rays.

Other interesting possibilities in which defects play themselves the rôle of high{energy cosmic

rays have been proposed in the literature in connection with gauge monopoles [e.g., Huguet &

Peter, 1999; Wick, Kephart, Weiler & Biermann, 2000]. It is hoped that the enigma of ultra{high{

energy cosmic rays will be clari�ed in the near future with the data gathered in the very large

Pierre Auger Observatory21.

1.6.2 Cosmology in the Lab

As we mentioned earlier, unlike any other proposed mechanism for the generation of observable

cosmological features, topological defects can be reproduced in the laboratory! In fact, when

all relevant lengths are uniformly scaled down, experimentalists have within reach a manageable

laboratory experiment that o�ers a physical equivalent of the early universe. Some years ago,

Zurek [1985] proposed testing the Kibble mechanism using the transition that the lique�ed noble

gas helium-4 makes from its normal state to the super
uid state, which exists at temperatures lower

than about 2 degrees above absolute zero and in which 
uid 
ow occurs without any friction.

If liquid helium were rapidly pressure{quenched around the critical temperature, Zurek argued,

the rotation of the 
uid as a whole would become trapped in a number of isolated vortices { tiny

tornadoes, in e�ect. The vortices, carrying rotation in quantized amounts, would represent defects

closely analogous to cosmic strings, and studying their formation might o�er interesting hints for

cosmology. Of course, although defects in condensed matter systems are topologically identical to

those in �eld theory, there are also some important di�erences. The dynamics of the laboratory

system is nonrelativistic, and friction is the controlling force, whereas in the cosmological case

defects can move at almost the speed of light, and gravity is important. An additional technical

diÆculty is that the in�nite and homogeneous nature of the universe before a phase transition

cannot be matched by a laboratory sample of �nite size.

Dealing with the super
uid transition of helium turned out to be hard, requiring extreme

laboratory conditions. Some groups have demonstrated vortex generation, but it remains unclear

how well the experimental �ndings match the Kibble-Zurek predictions. However, a more tractable

laboratory analogue has been found, in the form of organic compounds called liquid crystals.

In the second half of the 19th century chemists found several materials that behaved strangely

around their melting point. In 1850, W. Heintz reported on the peculiarities of stearin, an organic

compound used to waterproof paper and make metal polishes and soap. Heated from about 52 to

62 degrees Celsius, stearin �rst changed from a solid to a cloudy liquid, then took on an opaque

coloring, then �nally became a clear liquid. Similar behavior was later observed in other biological

21See the internet sites http://www-lpnhep.in2p3.fr/auger and http://www.fisica.unlp.edu.ar/auger/
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Figure 1.21: Cosmological-defect formation can be simulated in the laboratory by observing the
transformation of liquid crystal between phases with di�erent optical properties. In this sequence,
bubbles of a new phase nucleate in an initially uniform liquid. As the bubbles grow and coalesce,
their boundaries develop into structures analogous to cosmic strings. The scale of the pattern
grows similarly to the way the scale of a network of cosmic strings increases with cosmic expansion.
(Images courtesy of Ajit Srivastava, Institute of Physics, Bhubaneswar, India.)

materials, leading eventually to the recognition of liquid crystals as a new form of matter { which

got their badge of honor with the award of the 1991 Nobel Prize in Physics to Pierre-Gilles de

Gennes for his accomplishments on order phenomena in liquid-crystal systems.

Liquid crystals are organic compounds with phases intermediate to the liquid and solid phases:

They can 
ow like liquids while retaining anisotropic properties of crystalline solids, meaning

that their molecular structure has a spatial alignment or orientation. They can be imagined as

crystals whose molecules are able to move around, as in a liquid, while maintaining their relative

orientation. For example, nematic liquid crystals consist of rodlike molecules, about 20 angstroms

long, which tend to maintain themselves in a parallel alignment. Their structure endows them

with useful optical properties. Such materials are used in digital displays, where electrical signals


ip the orientation of the crystals, switching them between opaque and re
ective states.

Liquid-crystal transitions occur at temperatures ranging from 10 to 200 degrees Celsius and

generate structures easily detectable with the naked eye or with a microscope. These transitions

proceed by the formation of domains, as di�erent regions within a crystal settle into di�erent

alignments, so once again there is the possibility of defect formation. Experiments have shown

that networks of defects in nematic crystals evolve in a self-similar manner, meaning that although

the characteristic scale of the pattern changes, its maintains the same overall appearance. As we

saw in previous sections, such behavior is needed in a cosmological context for strings to be harmless

cosmologically and, moreover, eventually useful as progenitors of structure: self-similarity means

that the defects contribute a constant fraction of the universe's total energy density from small to

large length scales.

Recently many groups have succeeded in carrying out a variation of Zurek's original idea using

the super
uid transition in another isotope, helium-3, at temperatures close to 1 millikelvin, rather

than the higher-temperature transition in helium-4 [see, e.g., Bunkov & Godfrin, 2000]22. In 1996,

22See for instance the internet sites
http://www-crtbt.polycnrs-gre.fr/ult/superfluid 3He/topo-defects/topo eng.html

and http://boojum.hut.fi/research/applied/rotating3he.html
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Figure 1.22: A summary of the spectral density versus frequency for various potential sources
of a stochastic gravitational wave background. Included in this busy plot are the amplitudes of
GW from di�erent types of in
ationary scenarios, from a �rst{order electroweak phase transition,
and from both gauge and global cosmic strings, also including the primordial 0.9 K blackbody
spectrum of gravitons. [Battye & Shellard, 1996].

Ruutu and collaborators in Helsinki succeeded in heating up a volume of super
uid helium-3

with thermal neutrons to just above the transition temperature, then cooling it back through the

super
uid transition. They observed copious production of quantized vortices. The precision in

these experiments is such that the number of vortex lines can be monitored, allowing quantitative

testing of defect-formation theories. Laboratory tests using both liquid crystals and helium have

provided a kind of experimental con�rmation of cosmological topological defect theory, increasing

the credibility of these ideas.

1.6.3 Gravitational waves from strings

Next generation of gravitational waves instruments yield a good prospect of detecting a stochastic

GW background generated in the very early universe. This opens up a brand new window, in

some sense comparable to the advent of radio{astronomy to complement the existing (and as we

know, limited) optical{astronomy, many years ago now. In fact, if one had to limit oneself to those

events accessible through electromagnetic radiation alone, many of the most interesting of these

events would remain outside our reach. The CMB provides a snapshot of the universe at about

400,000 years, just as the universe became transparent to electromagnetic radiation. But what

about those processes that happened before the photon decoupling `surface'?
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Figure 1.23: A series of snapshots from a two interlocked cosmic string loop decay process [courtesy
of R. Battye and P. Shellard]. Loops disintegrate through the emission of (mainly gravitational)
radiation. However, if endowed with currents, the loops may eventually reach equilibrium con�g-
urations (vortons) which will prevent their radiative decay. Such a population of vortons would
jeopardize the so far successful standard model, unless it is produced at low enough energies.

Gravitational waves can penetrate through the electromagnetic surface of last scattering thanks

to the remarkable transparency of the gravitons and their very weak interactions with ordinary

matter. One can then, by detecting this relic background (in `upper case') get information from

the earliest possible times, namely the Planck era � 10�43 seconds after the Bang.

For radiation emitted at a time te before the time of equal matter and radiation energy densities,

i.e., with te < teq � 40; 000 years, and with a wavelength comparable to the horizon �(te) � te,

the GW frequency today is f � z�1eq (teqte)
�1=2 where zeq � 2:3� 104
0h

2.

In experiments one measures

hc(f) = 1:3� 10�20
q

g(f)h2

 
100Hz

f

!
; 
g(f) =

f

�c

@�g
@f

with 
g(f) giving the energy density in gravitational radiation in an octave frequency bin centred

on f , and where h is the Hubble parameter in units of 100 km s�1Mpc�1 and �c is the critical

density.

We saw above that a network of cosmic strings quickly evolved in a self similar manner with just

a few in�nite string segments per Hubble volume and Hubble time. To achieve this, the generation

of small loops and the subsequent decay of these daughter loops was required. Both local and

global oscillating cosmic string loops are then a possible cosmological source of gravitational waves

(see Figure 1.22) with local strings producing the strongest signal, as GW emission is their main

decay channel (there is also the production of Goldstone bosons in the global case) [Caldwell &

Allen, 1992; Battye & Shellard, 1996].

1.6.4 More cosmological miscellanea

Regarding vortons, their presence and evolution was recently the subject of much study, and grand

uni�ed models producing them were confronted with standard cosmological tests, as the primordial

nucleosynthesis bounds and the dark matter content in the universe today [Carter & Davis, 2000].

Without entering into too much detail, in order for the density of vortons at temperatures roughly

around 10 MeV not to a�ect nucleosynthesis results for the light elements, the maximum energy
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Figure 1.24: A possible way out of the vorton excess problem: a sketch of a distribution of loops
with b ' N=Z, and vorton{forming intervals for di�erent values of the electromagnetic correction
�q2 to the vorton equation of state. It is clear that the actual number density of ensuing vortons, at
most proportional to the shaded areas, will depend quite strongly on the location of this interval.
Note also that this electromagnetic correction may reduce drastically the available phase space for
vorton formation since the maximum of the dN=db distribution is usually assumed to be peaked
around b = 1. [Gangui, Peter & Boehm, 1998].

scale for current condensation cannot exceed 105 GeV. This is a limit for approximately chiral

vortons, where the velocity of the carriers approaches that of light, and constitutes a much more

stringent bound that for nonchiral states. For this result, the analysis demanded just that the

universe be radiation dominated during nucleosynthesis. For long{lived vortons the requirement is

stronger, in the sense that this hypothetical population of stable defects should not overclose the

present universe. Hence, present dark matter bounds also yield bounds on vortons and these turn

out to be comparable to the nucleosynthesis ones. Although these results are preliminary, due to

the uncertainties in some of the relevant parameters of the models, grand uni�ed vortons seem to

be in problems. On the other hand, vortons issued from defects formed during (or just above) the

electroweak phase transition could represent today a signi�cant fraction of the nonbaryonic dark

matter of the universe.

Fermionic zero modes may sustain vorton con�gurations. In grand uni�ed models, like SO(10),

where the symmetric phase is restored in the interior of the string, there will be gauge bosons in

the core. If vortons di�use after a subsequent phase transition these bosons will be released and

their out{of{equilibrium decay may lead to a baryon asymmetry compatible with nucleosynthesis

limits [Davis & Perkins, 1997; Davis, et al., 1997]. Another recent mechanism for the generation

of baryon asymmetry, this time at temperatures much lower than the weak scale, takes advantage

of the fact that superconducting strings may act like baryon charge `bags', protecting it against

sphaleron e�ects [Brandenberger & Riotto, 1998].

The above mentioned bounds on vortons can be considerably weakened if, as we showed before,

electromagnetic corrections to the string equation of state are properly taken into account. In other

words, a proto{loop can become a vorton only provided certain relations between the values of the
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conserved parameters characterizing the vorton hold. We have seen that these relations (embodied

in the relevant master function of the string) change whenever electromagnetic self couplings are

considered. A given distribution of vortons will be characterized by the ratio of the conserved

numbers b ' N=Z. As it turns out, increasing the electromagnetic correction is equivalent to

reducing the available phase space for vorton formation, as b of order unity is the most natural

value [see, e.g., Brandenberger, Carter, Davis & Trodden, 1996] situation that we sketch in Figure

1.24. On this �gure, we have assumed a sharply peaked dN=db distribution centered around b = 1;

with �q2 = 0, the available range for vorton formation lies precisely where the distribution is

maximal, whereas for any other value, it is displaced to the right of the distribution. Assuming

a Gaussian distribution, this e�ect could easily lead to a reduction of a few orders of magnitude

in the resulting vorton density, the latter being proportional to the area below the distribution

curve in the allowed interval. This means that as the string loops contract and loose energy in the

process, they keep their `quantum numbers' Z and N constant, and some sets of such constants

which, had they been decoupled from electromagnetism, would have ended up to equilibrium

vorton con�gurations, instead decay into a bunch of Higgs particles, themselves unstable. This

may reduce the cosmological vorton excess problem if those are electromagnetically charged.

The cosmic microwave background radiation might also be used as a charged string loop detec-

tor. In fact vortons are like point masses with quantized electric charge and angular momentum.

They are peculiar for, if they are formed at the electroweak scale, their characteristic size cannot

be larger than a hundredth the classical electron radius, while their mass would be some �ve orders

of magnitude heavier than the electron. They can however contain up to ��1 � 137 times the elec-

tron charge, and hence Thomson scattering between vortons and the cosmic background radiation

at recombination would be (we are admittedly optimistic in here) just nearly at the same level

as the standard one, with important consequences for, e.g., the polarization of the relic radiation.

The signature would depend on the actual distribution of relic vortons at z � 1000, an input that

is presently largely unknown. According to current estimates [e.g., Martins & Shellard, 1998b],

electroweak vortons could contribute non{negligibly to the energy density. However, current �g-

ures are still well below what is needed to get a distinguishable signal from them and thus their

CMB trace would be hidden in the `noise' of the vastly too numerous electrons.
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