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This review covers the measurements related to
the extragalactic background light (EBL) intensity
from gamma-rays to radio in the electromagnetic
spectrum over 20 decades in the wavelength. The
cosmic microwave background (CMB) remains the
best measured spectrum with an accuracy better than
1%. The measurements related to the cosmic optical
background (COB), centered at 1 um, are impacted by
the large zodiacal light associated with interplanetary
dust in the inner Solar system. The best measurements
of COB come from an indirect technique involving
Gamma-ray spectra of bright blazars with an
absorption feature resulting from pair-production off
of COB photons. The cosmic infrared background
(CIB) peaking at around 100 pum established an
energetically important background with an intensity
comparable to the optical background. This discovery
paved the path for large aperture far-infrared and
sub-millimeter observations resulting in the discovery
of dusty, starbursting galaxies. Their role in galaxy
formation and evolution remains an active area of
research in modern-day astrophysics. The extreme
UV background remains mostly unexplored and will
be a challenge to measure due to the high Galactic
background and absorption of extragalactic photons
by the intergalactic medium at these EUV /soft X-ray
energies. We also summarize our understanding of
the spatial anisotropies and angular power spectra
of intensity fluctuations. We motivate a precise direct
measurement of the COB between 0.1 to 5 um
using a small aperture telescope observing either
from the outer Solar system, at distances of 5 AU
or more, or out of the ecliptic plane. Other future
applications include improving our understanding
of the background at TeV energies and spectral
distortions of CMB and CIB.
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1. Introduction

The extragalactic background light (EBL) is the integrated intensity of all of the light emitted
throughout the history of the universe across the whole of the electromagnetic spectrum. While
EBL is sometimes defined as the extragalactic intensity spectrum from UV to infrared (e.g., see
review in Dwek & Krennrich 2012), the total energy content of the universe in the electromagnetic
spectrum spans close to 20 decades in the wavelength from gamma-rays to radio. Across
this whole range, the EBL spectrum captures cosmological backgrounds associated with either
primordial phenomena, such as the cosmic microwave background (CMB), or photons emitted
by stars, galaxies, and active galactic nuclei (AGN) due to nucleosynthesis or other radiative
processes, including dust scattering, absorption and reradiation. The EBL may also contain signals
that are diffuse and extended, including high energy photons associated with dark matter particle
decays or annihilation.

In the UV to infrared portion of the electromagnetic spectrum, the EBL spectrum captures the
redshifted energy released from all stars and galaxies throughout the cosmic history, including
first stellar objects, primordial black holes, and proto-galaxies. If precisely measured, the EBL
spectrum can be used as a constraint on models of galaxy formation and evolution, while
providing an anchor that connects global radiation energy density to star formation, metal
production, and gas consumption. The microwave background spectrum at microns to mm-wave
radio wavelengths, associated with CMB photons, has been measured to a precision better than a
percent and is described by a black-body spectrum with a temperature of 2.7260 & 0.0013 (Fixsen
2009). Such a measurement is facilitated by the fact that the CMB is the brightest of the EBL
components with a factor of 30 to 40 higher energy density than the next brightest background
at optical to infrared wavelengths. The CMB is also a well-known probe of cosmology. The
anisotropies come from both primordial physics, at the epoch of last scattering when electrons and
protons first combined to form hydrogen, or secondary effects during the propagation of photons.
The latter includes effects associated with both gravitational and scattering effects. The angular
power spectrum of CMB spatial anisotropies has now been measured down to a few arcminute
scales with Planck and has been used to determine cosmological parameters such as the energy
density contents, the spatial curvature, spectral index of primordial density perturbations laid out
after an inflation epoch, among others.

Despite the limitations on the accuracy of existing EBL intensity measurements there have
been some key breakthroughs due to intensity measurements of the sky. A classic example is the
cosmic IR background (CIB) peaking at 100 pm. Its intensity was measured with instruments
such as DIRBE (Hauser et al. 1998) and at wavelengths beginning 250 um with FIRAS (Fixsen et
al. 1998), both on COBE. The EBL intensity peaking at 100 microns was found to be roughly
comparable to that of the optical background, suggesting that CIB at long wavelengths is
energetically important as the optical/near-IR background dominated by galaxies. This then
motivated high resolution far-infrared and sub-millimeter imaging from both space and ground
and with increasing aperture sizes and sensitivity more of the CIB background has been resolved
to point sources. These point sources are mainly dusty, star forming and starbursting galaxies
at high redshifts (see review in Casey et al. 2014). Their role in galaxy formation and galaxy
evolution remains one of the key topics in sub-mm astronomical observations today.

With a precise measurement of the EBL intensity spectrum, a cosmic consistency test can
be performed as a function of the wavelength by comparing the integrated light from all
galaxies, stars, AGN and other point sources, to the EBL intensity. Any discrepancies suggest
the presence of new, diffuse emission that is unresolved by telescopes. The possibilities for
new discoveries with profound implications for astronomy range from recombination signatures
during reionization and diffuse photons associated with dark matter annihilation and their
products. Related to the last scientific possibility important studies have been carried out, with
more expected over the coming years, whether there is a diffuse signature at GeV energy scales
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in the cosmic gamma-ray background (CGB) as measured by the Fermi-LAT that can be ascribed
to dark matter (e.g., Ando & Ishiwata 2015).

In addition to the total EBL intensity significant information on the sources of emission and
their nature comes from measurements that focus on the anisotropies of the intensity across the
sky. These are in general quantified and measured in terms of the angular power spectrum or the
correlation function. The well-studied example in the literature is the anisotropy power spectrum
of the CMB, resulting in high-precision cosmological parameter measurements (e.g., Ade et al.
2015a). Anisotropy power spectra have also been measured for CIB, COB, and CGB leading to
inferences on the properties of the source populations present at these wavelengths, especially
on certain physical details related to the faint sources that are below the individual point source
detection level.

The existing EBL intensity measurements are due to a combination of ground and space-
based observations of the sky. Direct absolute intensity measurements must account for a variety
of foregrounds both within the Solar system, such as Zodiacal light at optical and infrared
wavelengths, to Milky Way, such as the Galactic emission at radio, infrared, X-ray or gamma
rays. A good example of an indirect technique to measure EBL is the use of absorbed TeV
spectra of individual blazars and other AGNs at cosmological distances to infer the number
density of intervening infrared photons that are responsible of electron-positron pair-production
by interactions with TeV photons. This has led to the best determined COB measurements in
the literature, especially given the fact that modeling and removing Zodiacal light remains a
challenge for direct EBL intensity measurements around 1 pm.

We summarize existing EBL intensity measurements in Figure 1 where we plot the spectral
intensity AI as a function of the wavelength . In this figure the area under each of the spectral
components represents the total energy density associated with each of those backgrounds.
Those values are listed in the caption of Figure 1 where the estimates were made using a
statistical average of existing results from the literature. In most of these measurements large
systematics, associated with foreground models, are likely to be still present. Here we briefly
outline the techniques, foregrounds, and systematics associated with EBL measurements. We
also discuss their applications for astrophysical and cosmological studies and briefly summarize
studies related to spatial anisotropies. We cover from short to long wavelengths starting from the
gamma-ray background.

(a) Gamma-Ray

The early measurements of the Cosmic Gamma-Ray Background (CGB) intensity came from SAS-
2 between 40 and 300 MeV in 1978 (Fichtel et al. 1978), followed by EGRET between 40 Mev
and 10 Gev in 1998 (Sreekumar et al. 1998; Strong et al. 2004). These measurements have been
superseded in this decade by Fermi-LAT covering 100 MeV to 800 GeV with roughly 25-30 times
better sensitivity than EGRET, as well as overall an improvement in the flux calibration. The CGB
spectrum measured by Fermi-LAT shows a cutoff at energy scales around 280 GeV (Ackermann
et al. 2015). Below this cut-off the spectrum can be described by a single power-law with a spectral
index about 2.3 (£0.05). The cutoff is explained as the disappearance of the high energy photons
that are pair-producing via interactions with the infrared background photons that we discuss
later (Aharonian et al. 2006; Ackermann et al. 2012a; Dominguez et al. 2011; Gilmore et al. 2012).

The CGB spectrum below the cutoff is mostly explained in terms of a combination of AGNs
in the form of blazars and gamma-ray emission from star-forming galaxies (SFGs). Small, but
non-negligible depending on the exact energy, comes from millisecond pulsars (MSPs), Type Ia
supernovae, and gamma-rays from galaxy clusters. At energies above ~ 50 Gev blazars are able to
fully account for the background, with an estimate of 86f%2% in explained by extrapolated blazar
counts in Fermi-LAT Collaboration (2015). Between 0.1 and 50 Gev, blazars account for about
20% of the CGB. The rest are due to other populations of AGNs and SFGs. We refer the reader
to a comprehensive review by Fornasa and Sanchez-Conde (2015) on the source populations
contributing to CGB and existing population models in the literature.
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Figure 1. Intensity of the extragalactic background (1, in units of "W m~2 sr=1) as a function of the wavelength
in meters. We combine the existing measurements from the literature to highlight the best determined estimates for
the background from gamma-ray to radio. The cosmic microwave background (CMB) has the least uncertainty as the
spectrum is determined to better than 1%. Cosmic optical background (COB) has large uncertainties involving direct
measurements due to uncertain removal of the Zodiacal light foreground. Here we show the indirect estimate of EBL at
optical wavelengths based on the TeV/gamma-ray absorption spectra of distant blazars. The UV/soft X-ray background at
a wavelength of 10 to 100 nm remains unexplored. From left to right in increasing wavelength, the plotted datasets are:
Fermi-LAT (the total extragalactic background composed of diffuse and resolved point sources; Ackermann et al. 2015)
and EGRET (Sreekumar et al. 1998; we have removed three data points from Strong et al. 2004 at highest energies)
in the Gamma-ray spectrum, COMPTEL (filled circles between Gamma-ray and X-rays; Weidenspointner et al. 2000)
between Gamma-ray and X-rays, HEAO1 A2 and A4 (Marshall et al. 1980; Rothschild et al. 1983), INTEGRAL (Churazov
et al. 2007), SWIFT/BAT (Ajello et al. 2008), Nagoya balloon experiment (Fukada et al. 1975), SMM (Watanabe et al.
2000), ASCA (Gendreau et al. 1995) and RXTE (Revnivtsev et al. 2003) in the hard to soft X-ray regime in green symbols,
DXS and CHIPS in soft X-rays/Extreme UV (as discussed in Smith et al. 2014 as a line at 0.25 KeV), HESS in optical
(Abramowski et al. 2012; see Figure 2 for other measurements), DIRBE (Hauser et al. 1998) and FIRAS (Lagache et al.
2000) in the far-infrared, FIRAS at microwaves (Mather et al. 1994; Fixsen et al. 1996) and ARCADE (Kogut et al. 2011)
in the radio. The area under each of these backgrounds capture the total energy density of the photons in each of those
wavelength regimes. From gamma-rays to radio the integrated intensity values in units of nW m~2 sr—1 for key EBL
components are ~ 0.015 (gamma-ray), ~ 0.3 (X-ray), 0.01 — 0.02 (lower and upper limits at 4.9 nm for Extreme UV),
24 + 4 (with an additional +5 systematic; optical), ~ 30 £ 10 (CIB), 960 (CMB), and < 0.001 (radio), respectively.

The literature also considers the possibility of a dark matter-induced signal in the gamma-ray
background (see Bertone et al. 2005 for a review). This could be from dark matter that decays
into standard particles (e.g., Bertone et al. 2007; Ibarra et al. 2008) or due to annihilation products
(Abdo et al. 2010; see also Palomares-Ruiz & Siegal-Gaskins 2010). These gamma-rays will form
an anisotropic signal associated with dark matter in our Galaxy. However, the signal is also
expected to be present in all galaxies. The integrated signal from dark matter halos of all other
galaxies will lead to a clustering signal in the gamma-ray background and must be separated
from the clustering of all gamma-ray emitting faint extraglactic sources that also contribute to the
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background. A direct detection of a signal associated with dark matter decay has been attempted
towards Galactic center (e.g., Abazajian & Kaplinghat 2012) and nearby dwarf galaxies that are
considered to be dark matter rich (e.g., Drlica-Wagner et al. 2015, Geringer-Sameth et al. 2015).
The claims of gamma-ray excesses toward the Galactic center have been questioned as whether
due to pulsars or other astrophysical foregrounds (e.g., Bartels et al. 2015; O’Leary et al. 2015),
while the signal towards dwarf galaxies remain at the level of a 30 detection (e.g., Hooper &
Linden 2015).

Due to spatial resolution and the all-sky nature of the CBG measurements, Fermi-LAT also
provides a treasure trove of data beyond the energy spectrum. In particular anisotropies or spatial
fluctuations of the CGB have been pursued to study the nature of faint sources that can account
for the small diffuse signals in the CBG below the point source detection of current high energy
instruments. The angular power spectrum of the CGB is mostly Poisson or shot-noise like between
multipole ell ranges of 150 to 500, corresponding to 30 arcminutes to 3 degree angular scales
on the sky (e.g., Ackermann et al. 2012b). Moving beyond auto spectra, cross-correlations of the
anisotropies can also be pursued (e.g., Xia et al. 2011). For an example the diffuse CGB signal from
all of decaying dark matter in the universe can be studied via cross-correlations with large-scale
structure tracers of the same dark matter, such as weak lensing maps (e.g., Camera et al. 2013).
Existing cross-correlation attempts using Fermi-LAT data include both the CMB lensing map from
Planck (Fornengo et al. 2015) and galaxy weak lensing in the CFHT Lensing Survey (Shirasaki et
al. 2014). These studies are likely to be improved in the near future with wider area galaxy lensing
surveys such as those expected from the Dark Energy Survey (DES) and Large Synoptic Survey
Telescope (LSST).

Over the next decade, CGB studies will be extended to higher energies with the Cherenkov
Telescope Array (CTA) with detections likely in 10 Gev to 10 TeV energy range (Acharya et
al. 2013). CTA will allow studies related to CBG fluctuations at higher energies, especially TeV
scales where there are still no reliable measurements on the spectrum or intensity fluctuations.
We also lack a a complete understanding of the sources that contribute to CGB at 1 to 10 MeV
scales, below the 100 MeV sensitivity of Fermi-LAT. This background spectrum based on EGRET
and COMPTEL (Figure 1) suggests the possibility of a smooth connection to the cosmic X-
ray background (CXB) at 10 to 100 KeV energy scales, though subject to large uncertainties in
COMPTEL background light measurements. If continue to be confirmed such a smooth transition
to X-rays suggest a different source population for the MeV background than the background
at GeV energies. The leading possibility is a combination of Seyfert galaxies and flat-spectrum
radio quasars that appear as bright MeV sources. Due to large uncertainties with EGRET and
COMPTEL background measurements at these energy scales, however, we recommend a future
experiment to improve background intensity measurements at MeV energy scales.

(b) X-Ray

Cosmic X-ray background (CXB) is generally divided into high and soft energies,
with transition around an energy scale of 2 keV. Early measurements of the hard
CXB intensity came from HEAO1 between 2-30 keV and 10-400 keV with A2 and
A4 instruments. These measurements showed that the spectrum follows: I(E)=7.9 x
10792 exp[— E/41.1keV keVem 25 Lsr~1keV ™!, consistent with thermal bremsstrahlung
radiation with a temperature ~ 40 keV (e.g., Marshall et al. 1980; Rothschild et al. 1983; Garmire
et al. 1992). Bulk of the energy density of CXB is thus at 30 keV, but understanding the sources at
such a high X-ray energy has been slow. Previous surveys with SWIFT/BAT and Integral (Ajello
et al. 2008; Churazov et al. 2007) only resolved 1% of the background to point sources at 30 keV.
Current measurements in this energy scale are mainly from NuSTAR (Harrison et al. 2013).
Recent models show that in order to match both the redshift distribution of the faint X-
ray sources in deep images with the Chandra X-ray Observatory and the overall CXB spectrum
requires an evolving ratio of Type 1 (AGNs with visible nuclei) to Type 2 (with obscured broad-
line regions) sources, such that there are more Type 2 Seyferts at higher redshifts (e.g., Menci
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et al. 2004; Ueda et al. 2003; Gilli et al. 2007). Deep surveys with NuSTAR resolve 35% of
the 8-24 KeV background to AGNs with obscuring columns up to 10%° cm ™2 (Harrison et al.
2015), consistent with expectations from AGN population synthesis models (Worsley et al. 2005).
Additional evidence for the presence of such highly absorbed AGNs exist as IR-bright sources
in AKARI with 50% of the mid-IR AGN samples currently undetected in deep Chandra surveys
(e.g., Krumpe et al. 2014).

The soft CXB has been measured with ROSAT down to 0.1 keV energies. At such low energies
intensity measurements start to become challenging due to the Galactic signal and there is a clear
indication for thermal emission from hot gas with a temperature of 10°K associated with a hot
component of the interstellar medium (ISM) or the Galactic halo. Deep ROSAT imaging data
resolved 80% of the CXB at soft X-ray energies of 1 keV to to discrete sources, mainly bright
AGNSs. Chandra X-ray Observatory, with spatial resolution at the level of 0.5 arcsec, and XMM-
Newton has resolved > 90% of the X-ray background at energies between 0.5 to 2 keV and > 80%
at hard 2 to 9 keV energies (Worsley et al. 2005; Xue et al. 2012). The dominant source is AGNs
with a non-negligible contribution from galaxy clusters (e.g., Wu & Xue 2001) and starbursting
galaxies (e.g., Persic & Rephaeli 2003). The uncertainty in the unresolved intensity is not in the
source population but in the overall normalization of the total XRB intensity.

With the background resolved to individual sources, anisotropy measurements of the CXB
intensity and their applications have been limited when compared to similar studies at other
wavelengths. In principle anisotropy studies can uncover diffuse X-ray sources or faint sources
below the detection level. A recent example is the use of Chandra deep images to study the
X-ray background fluctuations in combination with fluctuations measured with Spitzer at 3.6
pm (Cappelluti et al. 2013). This signal has been explained as due to the infrared and X-ray
emission from direct collapse black holes (DCBHs) during reionization (Yue et al. 2013). An X-
ray surveyor, such as the planned Athena mission, should facilitate more detailed studies on
the diffuse background, faint unresolved sources in current deep surveys such as DCBHs, and
multi-wavelength cross-correlation studies.

(c) UV

EBL measurements at UV wavelengths exist with GALEX at 150 nm (Murthy et al. 2010), with
Voyager 1 and 2 at 110 nm (Murthy et al. 1999), and with Voyager UVS at 100 nm (Edelstein
et al. 2000), though subject to both large statistical and systematic uncertainties. In the extreme
UV (EUV) wavelengths below 100 nm, and down to 10 nm at energy scales of 0.1 KeV in soft
X-rays, there are no useful measurements of the Cosmic UV background (CUVB) in the literature
(Fig. 1). While technological developments can be expected, a measurement of the extragalactic
EUV background will likely remain challenging due to absorption of the extragalactic photons
by neutral hydrogen in our Galaxy and the intergalactic medium at wavelengths below 91.2 nm.
Furthermore the Galactic soft X-ray/EUV background presents a considerable foreground that
limits a reliable measurement of the UV background. And the next best measurements are in
X-rays from a wavelength of 5 nm corresponding to energies of 0.25 KeV.

While a reliable background intensity might be challenging, further EUV observations are
warranted since it is understood that bulk of the baryons exists in the warm intergalactic medium
(Cen & Ostriker 1999) with signatures that involve emission and absorption lines around 50
nm (Tepper-Garcia et al. 2013). Based on Extreme UltraViolet Explorer (EUVE) data, there are
some indications that certain galaxy clusters like Coma show excess EUV emission, especially at
energies between 65 and 200 eV (Lieu et al. 1996). While the wavelength regime between 10 to 100
nm remains a crucial wavelength regime for further exploration, we recommend further attempts
between 100 and 1000 nm in the UV as there are possibilities for some significant discoveries on
the nature of warm intergalactic medium. Instruments on the planetary spacecraft to outer Solar
system may continue to provide opportunities for UV background measurements, similar to past
attempts with Voyager (Murthy et al. 1999; Edelstein et al. 2000). In this respect one near-term
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Figure 2. The cosmic optical and infrared background light from 0.1 to 100 um. The data points with error bars are
direct estimates using DIRBE (red circles: Wright 2004, Wright 2001; stars: Cambresy et al. 2001 at 1.25 and 2.2 pum;
Gorjian et al. 2000 at 2.2 and 3.5 um; Levenson et al. 2007 at 2.2 and 3.5 um; open squares at 140 and 240 um;
Hauser et al. 1998), IRTS (purple crosses; Matsumoto et al. 2005), Spitzer at 3.6 um (open triangle; Levenson & Wright
2008), Hubble (green circles; Bernstein 2007), UVS/STIS (blue upper limits; Edelstein et al. 2000; Brown et al. 2000),
CIBER (blue circles; model-dependent based on fluctuation measurements; Zemcov et al. 2014), FIRAS (black line; with
an overall uncertainty of 30% between 200 xm and 1.2mm; Lagache et al. 2000 also Fixsen et al. 1998), and IRAS (blue
square; 60 um fluctuation-based estimate of EBL with IRAS; Miville-Deschfes et al. 2002). The lower limits to the EBL
are from integrated or source counts using Hubble (Gardner et aL. 2000; Madau & Pozzetti 2000), Spitzer/IRAC (Fazio
et al. 2004), ISO (Elbaz et al. 1999), Spitzer/MIPS (Papovich et al. 2004; Dole et al. 2004), Herschel/PACS (Berta et al.
2010), Herschel/SPIRE (Béthermin et al. 2012), and SCUBA (Smail et al. 2002). The blue shaded region is the estimate of
EBL using the HESS TeV blazar absorption spectra (Abramowski et al. 2012). Apart from recent Herschel measurements,
CIBER, and the estimate of EBL from HESS, all other measurements plotted here are tabulated in Hauser & Dwek (2011).
This figure is based on a previous figure by Dole et al. (2006) that summarized these EBL and integrated galaxy count
measurements.

possibility would be the use of New Horizons’ Alice UV spectrometer (Stern et al. 2007) for a new
background measurement at wavelengths around 140-180 nm.

(d) Optical/Near-Infrared

At optical and near-infrared (IR) wavelengths between 0.1 to 5 pum the EBL intensity is
predominantly due to stellar emission from nucleosynthesis throughout the cosmic history (see
Hauser & Dwek 2001 for a review). The cosmic optical background (COB) spectrum also includes
radiative information from the reionization epoch. Due to redshifting of the UV photons to near-
infrared emission from primordial sources is primarily at wavelengths longward of 1 pm (Santos
et al. 2002; Salvaterra et al. 2003). This includes diffuse Ly-a and free-free radiation in addition to
direct emission by stars and mini-quasars (e.g., Cooray & Yoshida 2004; Fernandez & Komatsu
2006).
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At optical and near-IR the few attempts at absolute measurements involve DIRBE on COBE
in several band-passes between 1.25 pm and 240 um (Hauser et al. 1998; Cambresy et al. 2001;
Gorjian et al. 2000; Levenson et al. 2007; Wright 2001; Wright 2004), IRTS, a small JAXA mission,
between 1 and 4 pm (Matsumoto et al. 2005), Voyager (Edelstein et al. 2000) and Hubble (Brown et
al. 2000; Bernstein et al. 2002; Bernstein 2007). Because DIRBEs confusion limit was 5th magnitude
at 2.2 pm, all recent EBL measurements using DIRBE require subtraction of stellar light using
ancillary measurements, such as 2MASS (Wright 2001; Levenson et al. 2007). While Hubble has
been used for optical (Bernstein et al. 2002; Bernstein 2007) and far-UV (Brown et al. 2000) EBL
measurements, the instrument was not designed for absolute photometry and required a careful
subtraction of instrumental emission and baselines (e.g. dark current). Those measurements are
subject to large uncertainties (e.g., Mattila 2003).

The dominant limitation for direct EBL intensity spectrum at these wavelengths is the
Zodiacal light associated with scattered Solar light from micron-size dust interplanetary dust
(IPD) particles near the Earth’s orbit. Existing measurements with DIRBE on COBE make use
of model to remove Zodiacal light (Kelsall et al. 1998) or slight variations (Wright 2001). The
Zodiacal light foreground limits the accuracy of EBL intensity to roughly an order of magnitude
at wavelengths about 1 micron (Hauser et al. 1998; Gorjian et al. 2000; Wright 2001; Cambresy
et al. 2001; Matsumoto et al. 2005; Levenson & Wright 2007). Techniques to remove Zodiacal
light includes monitoring of Fraunhofer lines in the dust scattered spectrum relative to the
Solar spectrum and use of the equivalent width of the lines to estimate the column density of
dust. In the case of HST results on the optical background the zodiacal emission based on the
observed strength of the reflected Fraunhofer lines from a ground-based measurement (Bernstein
et al. 2002). The sounding rocket experiment CIBER (Zemcov et al. 2013) is capable of absolute
photometry (Tsumura et al. 2013) and results related to the optical /near-IR EBL are soon expected
(Matsuura et al. in preparation). If Spitzer /IRAC shutter operations are allowed and successful, a
carefully planned program should also be able to improve the absolute EBL measurements at 3.6
and 4.5 um over the coming years.

In Figure 2 we summarize EBL intensity measurements between optical and IR wavelengths
using absolute photometry, model-dependent estimates based on the EBL fluctuations, and
the integrated galaxy light (IGL) from galaxy counts (lower limits). In general, the summed
contribution of galaxies to the EBL does not reproduce the EBL measured by absolute photometric
instruments. For example, at A = 3.5 um the EBL measured by DIRBE from absolute photometry
is13.0+4.8nW m~2 sr! (Levenson et al. 2007), while the deepest pencil beam surveys with
Spitzer at 3.6 ym give 6—9nW m~2 sr~! (Fazio et al. 2004; Sullivan et al. 2007), with the
best determination of 9.01'(1):57) nW m~2 sr! (Levenson & Wright 2008). At shorter wavelengths
centered around 1 pm, and especially considering EBL measurements from IRTS (Matsumoto et
al. 2005) this divergence is even more pronounced.

Note that model-dependent fluctuations-based estimates of EBL are in between IGL and
absolute photometry measurements (at 1 m, such estimates of EBL are from CIBER; Zemcov
et al. 2014; Figure 2). Fluctuation measurements and angular power spectra of source-subtracted
optical and near-IR background intensity have been presented with Spitzer at 3.6 um and above
(Kashlinsky et al. 2005; Kashlinsky et al. 2012; Cooray et al. 2012), AKARI at 2.4, 3.2 and 4.1 ym
(Matsumoto et al. 2011), Hubble/NICMOS at 1.1 and 1.6 pm (Thompson et al. 2007), CIBER at
1.1 and 1.6 pm (Zemcov et al. 2014), and Hubble/ACS and WFC3 in 5 bands from 0.6 and 1.6
pm (Mitchell-Wynne et al. 2015). These measurements generally reveal a picture in which source
counts, mainly galaxies, dominate the fluctuations with some evidence for additional components
such as intra-halo light (IHL; Cooray et al. 2012; Zemcov et al. 2014), associated with diffuse
stars in extended dark matter halos due to galaxy mergers and tidal stripping, and a signal from
galaxies present during reionization at z > 8 (Mitchell-Wynne et al. 2015). Spitzer fluctuations
have been also cross-correlated with far-infrared maps from Herschel/SPIRE (Thacker et al. 2015)
and X-ray from Chandra (Cappelluti et al. 2013). The former provides allows a quantification of
the total dust content as a function of redshift while the latter has been used to argue for the
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presence of primordial direct collapse black holes (DCHBs; Yue et al. 2013). Over the coming
decade significant improvements in the study of near-IR and optical fluctuations will come from
planned cosmological missions such as Euclid and WFIRST. The small explorer SPHEREx (Doré
et al. 2014), recently selected by NASA for a Phase A study, has the ability to conduct 3D intensity
mapping of spectral lines such as Ha at z ~ 2 and Ly-« at z > 6 during reionization over large
areas on the sky.

A leading possibility for the large difference between absolute photometry EBL and IGL is
likely an unsubtracted foreground component, such as an underestimate of the Zodiacal light
signal (Mattila 2006). If this difference, however, is real it would have significant implications
given that the nature of the emission source must be diffuse and not point-like similar to
galaxies. Fortunately, there is also a third technique to measure the EBL. Given the limitation of
direct measurements possibly due to foregrounds, currently the best estimates of optical /near-
IR EBL come from this indirect technique that makes use of the absorbed TeV/GeV spectra
to constrain the optical and infrared background due to pair production (shaded region in
Figure 2 from Abramowski et al. 2013). The modeling requires intrinsic spectrum for each
blazar, but since this is not observed or available, EBL is inferred through statistical techniques
that make use of a large sample of blazars over a wide range of cosmological distances. The
existing measurements come from High Energy Stereoscopic System (HESS) array in Namibia
(Aharonian et al. 2006; Abramowski et al. 2013) and Fermi/LAT (Ackermann 2012a; Gong &
Cooray 2013). The discrepancy between absolute photometry and IGL-implied intensity is less
severe when comparing galaxy counts to the EBL inferred from absorbed TeV spectra. The
measurements are such that deep galaxy counts have effectively resolved all of the optical and
near-IR photons to individual galaxies. The overall uncertainties, however, are still that the
measurements leave the possibility for small signals such as IHL an reionization consistent with
fluctuation measurements.

Given the large uncertainties, including systematics, with TeV measurements, and especially
absolute photometry measurements, it is crucial that we improve on the optical and near-IR
EBL intensity level. It is also clear that simply repeating an absolute photometry experiment like
DIRBE or IRTS at 1 AU will not improve the current EBL spectrum at wavelengths less than 5 ym
due to limitations coming from the foreground model. Improvements in EBL measurements will
only come with a parallel improvement in our understanding of the IPD distribution in the Solar
system, if measurements are limited to 1 AU, or from observations that are conducted outside
of the zodiacal light dust cloud. In Figure 3 we show the expected zodiacal light intensity as a
function of the radial distance from the Sun, based on the in-situ dust measurements from Pioneer
10; the dust density is dropping more rapidly than the 7! profile expected from the Poynting-
Robertson effect (Hanner et al. 1974). At distances of Jupiter these dust density measurements
suggest a decrease in the zodiacal light intensity of roughly two orders of magnitude from the
intensity level near Earth orbit. One possibility is the out-of-Zodi EBL measurements, such as the
proposed piggy-back ZEBRA instrument on a planetary spacecraft to Jupiter or Saturn distances,
or to travel outside of the ecliptic plane. Given the relatively small cost of the instrument necessary
for the required observations we encourage attempts to measure EBL as a by-product of planetary
spacecraft that explore the outer Solar system (Cooray et al. 2010).

(e) Far-Infrared

Absolute photometry measurements between 10 yum and 1000 pym, corresponding to the far-
infrared EBL peak at around 100 pm (Figure 2), are mainly from DIRBE (Hauser et al. 1998) and
FIRAS (Fixsen et al. 1998; Lagache et al. 2000). In general these measurements have an overall
uncertainty at the level of 30%, all due to uncertain corrections associated with the foreground
sky model. This background is generally referred to as the cosmic infrared background (CIB)
in some literature, especially in the context of CMB experiments that also overlap in frequency
ranges as the sub-millimeter wavelengths.
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Figure 3. Zodiacal light intensity as a function of the radial distance from the Sun, based on the Pioneer 10 dust density
estimates (Hanner et al. 2010) normalized to a radial profile from the Sun of »—1-5. For reference we also show the optical
to near-IR spectrum of the Galactic interstellar medium and two predictions from semi-analytical models on the total IGL
from z < 5 galaxy populations (from Primack et al. 2008). The Zodical light intensity estimates as a function of the radial
distance is based out of the calculations for ZEBRA concept instrument for the outer Solar system in Cooray et al. (2009).

With the absolute photometry measurements establishing a cosmologically important energy
density in the universe at long infrared wavelengths, subsequent observations have focused on
resolving this background to point sources with large aperture telescopes. While the fraction
resolved was low with Spitzer/MIPS at 70 and 160 pm, significant improvements in our ability
to detect and study distant galaxies came over the last five years with Herschel/PACS and SPIRE
between 70 to 500 um. In particular, Herschel /SPIRE resolved 15% (250 pm) to 5% (500 pum) of the
background directly to sources (Oliver et al. 2010). Using statistics such as P (D), probability of
deflections, in deep SPIRE images, Glenn et al. (2010) resolved 60% (250 pm) to 43% (500 pm) of
the background to source counts, especially sources below the individual point source detection
level in maps. Methods involving stacking analysis resolve more of the background with recent
analysis suggesting a resolved fraction greater than 90% (Viero et al. 2015). The sources that make
up the far-infrared /submillimeter background are dusty, star-forming galaxies predominantly
at high redshifts (z > 1). They are likely the dominant contribution to the cosmic star-formation
rate density during the peak epoch of galaxy formation at z ~ 2-3. We refer the reader to the
comprehensive review by Casey et al. (2014) for properties of these galaxies.

Since COBE/DIRBE and FIRAS CIB intensity measurements the experimental focus has been
on measurements related to the spatial anisotropies and the angular power spectrum of CIB
intensity (Haiman & Knox 2000; Knox et al. 2001; Amblard & Cooray 2007). The power spectrum
at 60 and 100 pym with IRAS allowed studies related to the spatial distribution properties of
Galactic dust and an estimate of the total intensity of extragalactic sources through clustering
and Poisson noise at small angular scales (e.g., Miville-Deschfies et al. 2002). At 90 and 170 pm
fluctuation measurements have also been attempted with ISO (Lagache & Puget 2000; Matsuhara
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et al. 2000). Significant improvements in our ability to remove Galactic emission and detect
extragalactic fluctuations have come from more recent experiments including Spitzer/MIPS at
160 pm (Lagache et al. 2007), AKARI at 90 p (Matsuura et al. 2011), and BLAST at 250, 350 and
500 pm (Viero et al. 2009). Currently the best measurements of CIB power spectrum at a few
degree to ten arcsecond angular scales are from Herschel/SPIRE (Amblard et al. 2010; Viero et
al. 2013; Thacker et al. 2013), while best measurements at larger angular scales and spanning
the whole sky are from Planck (Ade et al. 2011; Ade et al. 2013a). While there was a mismatch
between Herschel /SPIRE and Planck CIB power spectra at overlapping angular scales with first
measurements this difference has mostly gone away with the latest flux calibration of Planck/HFI
data. In combination, Planck and Herschel allow studies of the CIB angular power spectrum from
large linear scales with Planck to non-linear 1-halo term (Cooray & Sheth 2002) with Herschel
maps. The measurements are useful to describe the spatial distribution of faint galaxies that make
up the CIB and the relation between far-IR luminosity to dark matter halo mass (Shang et al. 2011;
De Bernardis & Cooray 2012; Xia et al. 2012; Viero et al. 2013; Ade et al. 2013a).

Moving beyond the anisotropy power spectra, CIB fluctuations have also been used for
cross-correlation studies. For example, far-IR galaxies are correlated with unresolved near-IR
background detected with Spitzer and the cross-correlation of near and far-IR backgrounds
improve models related to the dust distribution within dark matter halos (Thacker et al. 2015).
Sources that make up CIB are mostly at z > 1. The foreground dark matter potentials that are
responsible for lensing of the CMB is mostly at z ~ 1-2 and CIB provides one of the best tracers of
the projected dark matter related to CMB lensing (Song et al. 2002). This cross-correlation of CMB
lensing with CIB maps has been studied with Planck (Ade et al. 2013b) and for detections of CMB
lensing signal in the B-modes of CMB polarization (Hanson et al. 2013; Ade et al. 2014).

Additional future applications involving the far-IR/submm background include lensing of
CIB fluctuations, that is CIB at z ~ 3 is expected to be gravitationally lensed by structures at z < 1,
the search for a diffuse CIB components including intra-halo dust in dark matter halos that extend
beyond the dusty disks of star-forming galaxies, and a detailed statistical comparison of dust in
emission seen with CIB vs. dust seen in absorption through extinction studies (Ménard et al. 2007).
While the recent focus has been on CIB fluctuations and its applications, the absolute CIB intensity
still remains uncertain at the level of 30% and must be improved down to sub-percent level if
detailed comparisons are to be made on the sources responsible for CIB vs. diffuse emission
sources at far-IR wavelengths. The proposed Primordial Inflation Explorer (PIXIE; Kogut et al.
2014) has the capability to achieve such a measurement. Its” sensitivity should also be adequate
for a detection of the CIB dipole allowing a comparison of the CIB and CMB dipoles.

(f) Microwaves

As shown in Figure 1, the cosmic microwave background (CMB), peaking at mm wavelengths
between sub-mm and radio, is the dominant background intensity across all wavelengths in the
electromagnetic spectrum. Its total integrated intensity of 960 nW m~2 sr—! is roughly a factor
of 30 higher than the integrated intensity of the infrared background, which remains the next
highest energetic component of the universe. Since its” accidental discovery roughly 50 years ago,
the high background intensity or photon energy density has facilitated its wide applications in
cosmology, especially with spatial anisotropies and polarization using a large number of ground
and space-based experiments, including COBE, WMAP and Planck. For recent reviews on CMB
theory and experimental data summaries we refer the reader to Durrer (2015) and Komatsu et al.
(2014).

While most of the experimental work in CMB concentrate on anisotropies and polarization,
the best measurement of CMB spectrum, and correspondingly the best measurement of any EBL
component from gamma-ray to radio, comes from COBE/FIRAS. It is described by a Planck
function with a blackbody temperature of 2.7260 £ 0.0013 (Fixsen 2009), with spectral departure
from blackbody currently limited by the data to be at the level in 61, /T, < 10~° (Mather et al.
1994; Fixsen et al. 1996). Distortions to the spectrum are expected at the micro and nano-Kelvin
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level (for a general review see Chluba 2014). Detection and detailed study of these distortions,
generated both during the early universe and at late times, remain a primary scientific goal for
a next generation CMB experiment, such as PIXIE (Kogut et al. 2014), with sensitivity at least a
factor of 30-100 better than FIRAS.

A well-known cosmological test related to the CMB temperature anisotropy power spectrum
involves the location of the first acoustic peak in the multi-polar space (Kamionkowski et al. 1994).
The CMB power spectrum from experiments like Planck now reveal the multiple acoustic peak
structure in the anisotropy power spectrum from multipole moments 2 to ~ 2500 and across at
least eight peaks. Along with constraints on cosmological parameters (Ade et al. 2015a), these
observations now provide evidence for an initial spectrum of scale-invariant adiabatic density
perturbations as expected under models involving inflation. It has been argued for a while
that the smoking-gun signature of inflation would be the detection of stochastic background of
gravitational waves associated with it. These gravitational-waves produce a distinct signature in
the polarization of CMB in the form of a contribution to the curl, or magnetic-like, component
of the polarization (Kamionkowski et al. 1997). While polarization from density, or scalar,
perturbations dominate, due to the fact they have no handedness, there is no contribution to curl
mode polarization from density perturbations. Thus the current generation, and one focus of next
generation measurements, involves CMB polarization and especially detailed characterization of
the B-modes of polarization.

In transit to us, CMB photons also encounter the large scale structure that defines the local
universe; thus, several aspects of photon properties, such as the frequency or the direction of
propagation, are affected. In the reionization epoch, variations are also imprinted when photons
are scattered via electrons, moving with respect to the CMB. Though these secondary effects
are in some cases insignificant compared to primary fluctuations, they leave certain imprints in
the anisotropy structure and induce higher order correlations. A well-studied example of such
a secondary effect with current generation CMB experiments is lensing of the CMB (Lewis &
Challinor 2006), with a significant detection of the lensing effect in Planck (Ade et al. 2015b).
The lensing of CMB is useful for cosmological applications involving structure formation and
signatures leftover by a massive neutrinos. A Stage IV CMB experiment will be able to reach
the neutrino mass threshold expected given the neutrino oscillation experiments (Abazajian et al.
2015). AS discussed with respect to Gamma-ray background, CMB lensing traces the large-scale
structure that is also visible at other wavelengths. Therefore, improvements in our understanding
of the nature of dark matter and faint sources at each of the backgrounds will likely come from
cross-correlation studies. These are new topics in cosmology that will likely be improved over the
coming years.

(g) Radio

The cosmic radio background (CRB) has been measured at multiple frequencies and in recent
years with the balloon-borne ARCADE-2 experiment from 3 to 90 GHz (Kogut et al. 2011). When
compared to CMB, Galactic synchrotron background, and extragalactic point sources, ARCADE 2
measured an excess radio background. For example, at 3 GHz ARCADE measured the equivalent
antenna temperature to be 65 mK, once corrected for CMB and Galactic emission. At the same
frequency the known radio galaxy counts contribute about 30 mK. If undetected radio sources
account for the excess seen in ARCADE 2 they will need to form an extra peak in the Euclidean-
normalized number counts of radio sources at flux densities around 1-100 n]y, but an explanation
involving point sources is ruled by various deep radio observations and other arguments (e.g.,
Condon et al. 2012; Holder 2014; Vernstrom et al. 2014). The excess has also motivated alternative
suggestions, such as decaying WIMP dark matter (e.g., Fornengo et al. 2011). A reanalysis of
the Galactic synchrotron emission using multiple components instead of the single slab model
for the Galactic plane synchrotron emission used by the ARCADE team, however, suggests that
there is likely no excess over the background produced by known sources (Subrahmanyan &
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Cowsik 2013). Future attempts to improve the radio background will thus likely also involve
improvements to understanding and modeling of the Galactic radio foreground.

Current and next-generation experiments will likely focus more on the long wavelength
radio background at frequencies around 100 MHz. These experiments are driven by the need to
characterize the background intensity spectrum to study the global signature associated with 21-
cm spin-flip transition of HI from the epoch of reionization. The global signal involves a strong
absorption feature around 60-100 mK, associated with adiabatic cooling of gas, followed by a
weak emission during the epoch of reionization (Furlanetto 2006). Detection of the expected
absorption feature in the background intensity spectrum at frequencies around 60 MHz is
challenging due to the large Galactic foreground at these low radio frequencies. Technology
development studies are underway to pursue such a measurement from the Moon, including
the lunar orbiter DARE (Dark Ages Radio Explorer; Jones et al. 2014). There are also a host
of experiments underway at frequencies above 100 MHz focused on the intensity fluctuations,
especially the power spectrum of 21-cm background during reionization and for absolute
measurements of the sky intensity (see review by Pritchard & Loeb 2012).

2. Summary

This review covers the measurements related to the extragalactic background light (EBL) intensity
from gamma-rays to radio in the electromagnetic spectrum over 20 decades in the wavelength.
The Cosmic Microwave Background (CMB) remains the best measured spectrum with an
accuracy better than 1%. The measurements related to the Cosmic Optical Background (COB),
centered at 1 um, are impacted by the large Zodiacal light intensity associated with interplanetary
dust-scattered sunlight in the inner Solar system. The best measurements of COB come from an
indirect technique involving the absorption of Gamma-ray photons emitted by bright blazars
and other active sources in the universe. The Cosmic Infrared Background (CIB) at wavelengths
centered around 100 um established an energetically important intensity level comparable to the
optical background. This eventually resulted in the discovery of dusty, starbursting galaxies with
large aperture telescopes and a deeper understanding of their importance in galaxy formation
and evolution. The soft X-ray/extreme UV extragalactic background at wavelengths of 10 to 100
nm remains mostly unexplored, but is unlikely to be achieved easily due to the absorption of
the extragalactic photons by the intervening neutral intergalactic medium and the interstellar
medium of our Galaxy. We also summarize our understanding of spatial anisotropies of these
backgrounds and the cosmological/astrophysical applications with angular power spectra of
intensity fluctuations across the sky. We motivate a precise direct measurement of the COB
between 0.1 to 5 um using a small aperture telescope observing from either the outer Solar system
or out of the ecliptic plane. Other future applications include improving our understanding of the
background at TeV energies, improving the MeV background over the previous measurements
with COMPTEL, radio background, and the spectral distortions to CMB and CIB.
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