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Molecular Gas in the Outskirts

Linda C. Watson and Jin Koda

Abstract The outskirts of galaxies offer extreme environments wherewe can test
our understanding of the formation, evolution, and destruction of molecules and
their relationship with star formation and galaxy evolution. We review the basic
equations that are used in normal environments to estimate physical parameters like
the molecular gas mass from CO line emission and dust continuum emission. Then
we discuss how those estimates may be affected when applied to the outskirts, where
the average gas density, metallicity, stellar radiation field, and temperature may be
lower. We focus on observations of molecular gas in the outskirts of the Milky Way,
extragalactic disk galaxies, early-type galaxies, groups, and clusters. The scientific
results show the versatility of molecular gas, as it has beenused to trace Milky
Way spiral arms out to a galactocentric radius of 15 kpc, to study star formation
in extended ultraviolet disk galaxies, to probe galaxy interactions in polar ring S0
galaxies, and to investigate ram pressure stripping in clusters. Throughout the Chap-
ter, we highlight the physical stimuli that accelerate the formation of molecular gas,
including internal processes such as spiral arm compression and external processes
such as interactions.
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1 Introduction

Despite early discoveries of OB stars and molecular gas in the outer Milky Way
(MW; e.g., Fich and Blitz 1984; Brand and Wouterloot 1988), not much attention
had been paid to molecular gas in galaxy outskirts primarilybecause there was a
notion that virtually no star formation occurs there. This notion was altered en-
tirely by theGalaxy Evolution Explorer (GALEX), which revealed that ultraviolet
emission often extends far beyond the edges of optical disks(namely, extended ul-
traviolet disks, or XUV disks; Thilker et al 2005; Gil de Paz et al 2007b). The UV
emission suggests the presence of massive stars, at least B stars, and hence that
there was recent star formation within the lifetime of B stars (∼ 100 Myr). These
young stars must have been born nearby, perhaps requiring unnoticed molecular gas
and clouds somewhere in the extended galaxy outskirts. Average gas densities there
are extremely low compared to typical star-forming regionswithin the MW. Under-
standing the conditions of parental molecular gas in such anextreme condition is
vital to expand our knowledge of the physics of star formation. We need to under-
stand the internal properties of molecular clouds, including the atomic-to-molecular
gas phase transition, the distribution of molecular clouds, and the external environ-
ment in galaxy outskirts.

A blind search for molecular gas has been difficult for the large outskirts of
nearby galaxies due to the limited capability of existing facilities. The Atacama
Large Millimeter/submillimeter Array (ALMA) improved thesensitivity remark-
ably, but even ALMA would need to invest hours to days to carryout a large areal
search for molecular gas over extended disks. This review summarizes the current
knowledge on molecular gas and star formation in the outskirts, but this research
field is still in a phase of discovery. The space to explore is large, and more system-
atic understanding will become possible with future observations.

Studies of molecular gas in the outskirts will also reveal the yet unknown physi-
cal properties of the interstellar medium (ISM) in the outskirts. Most observational
tools were developed and calibrated in the inner parts of galactic disks and may
not be applicable as they are to the outskirts. Many studies are subject tosystem-
atic biases, especially when molecular gas in the outskirts is comparedwith inner
disks. For example, the rotational transition of carbon monoxide (CO) is often used
to measure the mass of molecular gas in normal galaxies; however, its presence and
excitation conditions depend on the metal abundance, stellar radiation field, internal
volume and column densities, and kinetic temperature, all of which may change in
the outskirts.

In this review, we start from a summary of how the ISM evolves in the inner parts
of the MW and nearby galaxies with an emphasis on molecular gas (Sect. 2). We
then discuss the observational methods, including the equations needed to plan for a
future observational search of molecular gas with a radio telescope (Sect. 3). We ex-
plain the potential effects of applying these equations under the extreme conditions
in galaxy outskirts, which may cause systematic biases whenthe ISM is compared
between galaxies’ inner parts and outskirts (Sect. 3.4). Although not many observa-
tions have been carried out in galaxy outskirts, we summarize the current state of
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molecular gas observations in spiral (Sect. 4) and elliptical galaxies (Sect. 5) and
in galaxy groups and clusters (Sect. 6). We finish the review with possible future
directions (Sect. 7). The term “outskirts” is abstract and has been used differently
in different contexts. In this review we use this term for thearea beyond the opti-
cal radius of galaxy, e.g., beyondr25, which is the radius where theB-band surface
brightness of a galaxy falls to 25magarcsec−2. We should, however, note that in
some circumstancesr25 is not defined well, and we have to rely on a loose defini-
tion of “outskirts”.

The measurements of gas properties, such as molecular mass,often depend on
some assumptions of the gas properties themselves. However, galaxy outskirts are
an extreme environment, and the assumptions based on previous measurements in
inner disks may not be appropriate. This problem needs to be resolved iteratively
by adjusting the assumptions to match future observations.We therefore spend a
number of pages on the methods of basic measurements (Sect. 3), so that the equa-
tions and assumptions can be revisited easily in future studies. Readers who already
understand the basic methods and assumptions may skip Sect.3 entirely and move
from Sect. 2 to Sect.4.

2 Molecular Gas from the Inner to the Outer Regions of Galaxies

The most abundant molecule H2 does not have significant emission at the cold tem-
peratures that are typical in molecular clouds (< 30 K). Hence, the emission from
CO, the second-most abundant molecule, is commonly used to trace molecular gas.
Molecular gas is typically concentrated toward the centresof galaxies and its surface
density decreases with galactic radius (Young and Scoville1991; Wong and Blitz
2002). The gas phase changes from mostly molecular in the central regions to more
atomic in the outer regions (Sofue et al 1995; Koda et al 2016;Sofue and Nakanishi
2016). These trends apparently continue into the outskirts, as HI disks often extend
beyond the edges of optical disks (Bosma 1981).

We may infer the properties of gas in the outskirts by extending our knowledge
from the inner disks. Recently, Koda et al (2016) concluded that the HI-H2 gas phase
transition between spiral arm and interarm regions changesas a function of radius
in the MW and other nearby galaxies. In the molecule-dominant inner parts, the gas
remains highly molecular as it moves from an interarm regioninto a spiral arm and
back into the next interarm region. Stellar feedback does not dissociate molecules
much, and perhaps the coagulation and fragmentation of molecular clouds domi-
nate the evolution of the ISM at these radii. The trend differs in the outer regions
where the gas phase is atomic on average. The HI gas is converted to H2 in spiral
arm compression and goes back into the HI phase after passing spiral arms. These
different regimes of ISM evolution are also seen in the LMC, M33, and M51, de-
pending on the dominant gas phase there (Heyer and Terebey 1998; Engargiola et al
2003; Koda et al 2009; Fukui et al 2009; Tosaki et al 2011; Colombo et al 2014).
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Even in regions of relatively low gas densities, a natural fluctuation may occa-
sionally lead to gravitational collapse into molecular gasand clouds. For exam-
ple, many low-density dwarf galaxies show some molecular gas and star formation.
However, some stimulus, such as spiral arm compression, seems necessary to ac-
celerate the HI to H2 phase transition. In addition to such internal stimuli, there are
external stimuli, such as interactions with satellite galaxies, which may also trigger
the phase transition into molecular gas in the outskirts.

3 Molecular ISM Masses: Basic Equations

The molecular ISM is typically cold and is observed at radio wavelengths. To
search for the molecular ISM in galaxy outskirts one needs tobe familiar with
conventional notations in radio astronomy. Here we summarize the basic equa-
tions and assumptions that have been used in studies of the molecular ISM in tradi-
tional environments, such as in the MW’s inner disk. In particular, we focus on the
J = 1−0,2−1 rotational transitions of CO molecules and dust continuumemission
at millimetre/sub-millimetre wavelengths. The molecularISM in galaxy outskirts
may have different properties from those in the inner disks.We discuss how ex-
pected differences could affect the measurements with COJ = 1−0,2−1, and dust
continuum emission.

3.1 Brightness Temperature, Flux Density and Luminosity

The definitions of brightness temperatureTν , brightnessIν , flux densitySν , and
luminosityLν are often confusing. It is useful to go back to the amount of energy
(dE) that passes through an aperture (e.g., detector, or sometimes the 4π sky area),

dE = IνdΩBdAdtdν = {[IνdΩB]dA}dtdν = {SνdA}dtdν = Lν dtdν, (1)

whereSν =
∫

IνdΩB andLν =
∫ ∫

IνdΩBdA (see Fig. 1). Thedt anddν denote
unit time and frequency, respectively. ThedΩB is the solid angle of the source and
has the relation with the physical areadB = D2dΩB with the distanceD. Similarly,
dA = D2dΩA using the solid angle of the aperture area seen from the source dΩA .
The aperturedA can be a portion of the 4π sky sphere as it is seen from the source
and is 4πD2 when integrated over the entire sphere to calculate luminosity. ThedA
could also represent an area of a detector (or a pixel of a detector).

The flux densitySν is often expressed in the unit of “Jansky (Jy)”, which is
equivalent to “10−23ergs−1cm−2Hz−1”. An integration of Iν over a solid angle
dΩB (e.g., telescope beam area or synthesized beam area) providesSν . In reverse,
Iν is Sν divided by the solid angleΩB [=

∫

dΩB]. Therefore, the brightnessIν [=
Sν/ΩB] is expressed in the unit of “Jy/beam”.
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Fig. 1 Definitions of parameters. The rays emitted from the source with the areadB = D2dΩB
pass through the solid angledΩA (or the areaD2dΩA ) at the distance ofD

The brightness temperatureTν is the temperature that makes the black body func-
tion Bν(Tν) have the same brightness as the observedIν at a frequencyν (i.e.,
Iν = Bν(Tν )), even whenIν does not follow the black body law! In the Rayleigh-
Jeans regime (hν ≪ kT ),

Tν =
c2

2ν2k
Iν =

c2

2ν2k

(

Sν
ΩB

)

. (2)

The Tν characterizes radiation and isnot necessarily a physical temperature of an
emitting body. However, if the emitting body is an opticallythick black body and
is filling the beamΩB, Tν is equivalent to the physical temperature of the emitting
body when the Rayleigh-Jeans criterion is satisfied.

TheTν is measured in “Kelvin”. This unit is convenient in radio astronomy since
radio single-dish observations calibrate a flux scale in theKelvin unit using hot and
cold loads of known temperatures. Giant molecular clouds (GMCs) in the MW have
a typical temperature of∼10 K (Scoville and Sanders 1987), and the black body
radiationBν(T ) at this temperature peaks atν ∼ 588GHz (∼ 510µm). Therefore,
most radio observations of molecular gas are in the Rayleigh-Jeans range.

A numerical expression of Eq. (2) is useful in practice,

(

Tν
K

)

= 13.6

(

λ
mm

)2(Sν
Jy

)(

bmaj× bmin

1” ×1”

)−1

. (3)

The last term corresponds toΩB in Eq. (2) and is calculated as

ΩB =
πbmajbmin

4ln2
∼ 1.133bmajbmin, (4)

which represents the area of interest (e.g., source size, telescope beam) as a 2-d
Gaussian with the major and minor axis FWHM diameters ofbmaj andbmin, respec-
tively. Equation (3) is sometimes written with brightness as
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(

Tν
K

)

= 13.6

(

λ
mm

)2( Iν
Jy/beam

)(

bmaj× bmin

1” ×1”

)−1

, (5)

where in this case the last term is for the unit conversion from “beam” into arcsec2,
andbmaj andbmin must refer to the telescope beam or synthesized beam.

3.2 Observations of the Molecular ISM using CO Line Emission

Molecular hydrogen (H2) is the principal component of the ISM at a high density,>
100cm−3. This molecule has virtually no emission at cold temperatures. Hence, CO
emission is typically used to trace the molecular ISM. Conventionally, the molecular
ISM massMmol includes the masses of helium and other elements.Mmol = 1.36MH2

is used to convert the H2 mass intoMmol.

3.2.1 CO(J = 1−0) Line Emission

The fundamental CO rotational transitionJ = 1−0 atνCO(1−0)= 115.271208GHz
has been used to measure the molecular ISM mass since the 1980s. For simplicity
we omit “CO(1−0)” in subscript and instead write “10”. Hence,νCO(1-0) = ν10.

The dynamical masses of GMCs and their CO(1− 0) luminosities are linearly
correlated in the MW’s inner disk (Scoville et al 1987; Solomon et al 1987). If a
great majority of molecules reside in GMCs, the CO(1−0) luminosityL′

10 integrated
over an area (i.e., an ensemble of GMCs in the area) can be linearly translated to the
molecular massMmol,

Mmol = α10L′
10, (6)

whereα10 (or XCO; see below) is a mass-to-light ratio and is called the CO-to-H2

conversion factor (Bolatto et al 2013).
By convention we defineL′

10, instead ofL10 (Eq.1). With the CO(1−0) bright-
ness temperatureT10 (instead ofIν or I10), velocity widthdv (instead of frequency
width dν), and beam area in physical scaledB = D2dΩB, it is defined as

L′
10 ≡

∫ ∫

T10dvdB =
c2

2ν2
10k

[

∫

S10dv

]

D2, (7)

where we used Eq. (2) forT10. The molecular mass is

Mmol = α10
c2

2ν2
10k

[

∫

S10dv

]

D2. (8)

Numerically, this can be expressed as
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(

Mmol

M⊙

)

= 1.1×104

(

α10

4.3M⊙pc−2[K ·km/s]−1

)

( ∫

S10dv
Jy·km/s

)(

D
Mpc

)2

. (9)

Note thatS10 [=
∫

I10dΩB] is an integration over an area of interest (or summation
over all pixels within the area). Theα10 = 4.3M⊙pc−2 corresponds to the conver-
sion factor ofXCO = 2.0×1020cm−2 [K · km/s]−1 multiplied by the factor of 1.36
to account for the masses of helium and other elements.α10 includes helium, while
XCO does not. The calibration ofα10 (or XCO) is discussed in Bolatto et al (2013).

A typical GMC in the MW has a mass of 4×105M⊙ anddv= 8.9km/s (FWHM)
(Scoville and Sanders 1987), which is

∫

S10dv ∼ 1.5Jykm/s or S10 ∼ 170mJy at
D = 5Mpc.

3.2.2 CO(J = 2−1) Line Emission

The CO(J = 2−1) emission (230.538GHz) is also useful for a rough estimation of
molecular mass though an excitation condition may play a role (see below). We can
redefine Eq. (8) for CO(2−1) by replacing the subscripts from 10 to 21 and using a
new CO(2−1)-to-H2 conversion factorα21 ≡ α10/R21/10, whereR21/10[≡ T21/T10]
is the COJ = 2−1/1−0 line ratio in brightness temperature.

In practice,α10 andR21/10 are carried over in use of CO(J = 2−1) as these are
the parameters that have been measured. Equation (8) is now

Mmol =

(

α10

R21/10

)

c2

2ν2
21k

[

∫

S21dv

]

D2. (10)

A numerical evaluation gives

(

MH2

M⊙

)

= 3.8×103

(

α10

4.3M⊙pc−2[K ·km/s]−1

)

(

R21/10

0.7

)−1( ∫

S21dv
Jy·km/s

)(

D
Mpc

)2

.

(11)
The typical GMC with 4×105M⊙ anddv = 8.9km/s has

∫

S21dv ∼ 4.2Jykm/s
or S21 ∼ 470mJy atD = 5Mpc. Note S21 > S10 for the same GMC because
S21/S10 = (ν21/ν10)

2T21/T10 = (ν21/ν10)
2R21/10 ∼ 2.8 from Eq. (2), where the

(ν21/ν10)
2 term arises from two facts: at the higher frequency, (a) eachphoton car-

ries twice the energy, and (b) there are two times more photons in each frequency
intervaldν, which is in the denominator of the definition of flux densityS. Empir-
ically, R21/10 ∼ 0.7 on average in the MW (Sakamoto et al 1997; Hasegawa 1997),
which is consistent with a theoretical explanation under the conditions of the MW
disk (Scoville and Solomon 1974; Goldreich and Kwan 1974; see Sect. 3.4).
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3.3 Observations of the Molecular ISM using Dust Continuum
Emission

Continuum emission from dust provides an alternative meansfor ISM mass mea-
surement. Dust is mixed in the gas phase ISM, and its emissionat millime-
tre/submillimetre waves correlates well with the fluxes of both atomic gas (HI 21 cm
emission) and molecular gas (CO emission). Scoville et al (2016) discussed the us-
age and calibration of dust emission for ISM mass measurement. We briefly sum-
marize the basic equations, whose normalization will be adjusted with an empirical
fitting in the end.

The radiative transfer equation gives the brightness of dust emission

Iν = (1− e−τν )Bν(Td) (12)

with the black body radiationBν(Td) at the dust temperatureTd and the optical depth
τν . The flux density of dust is an integration:

Sν =
∫

(1− e−τν )Bν(Td)dΩB = (1− e−τν )Bν(Td)ΩB, (13)

whereBν andτν are assumed constant withinΩB [=
∫

dΩB]. When the integration
is over the beam area,Sν is the flux density within the beam, and(Sν/ΩB), from
Eq. (13), is in Jy/beam.

An integration ofSν over the entire sky area at the distance ofD (i.e.,
∫

dA =
D2∫

4π dΩA = 4πD2) gives the luminosity

Lν =
∫

(1− e−τν )Bν(Td)ΩBdA = (1− e−τν )Bν (Td)ΩB4πD2 (14)

≈ 4πτνBν(Td)D
2ΩB = 4πκνΣdBν(Td)D

2ΩB = 4πκνMdBν(Td). (15)

The dust is optically thin at mm/sub-mm wavelengths, and we used(1− e−τν ) ∼
τν = κνΣd, whereκν andΣd are the absorption coefficient and surface density of
dust. The dust mass within the beam isMd = ΣdD2ΩB. Obviously, the dust contin-
uum luminosity depends on the dust properties (e.g., compositions and size distri-
bution; viaκν ), amount (Md), and temperature (Td).

Equation (15) gives the mass-to-light ratio for dust

Md

Lν
=

1
4πκνBν(Td)

. (16)

We convertMd into gas mass,Mgas= δGDRMd, with the gas-to-dust ratioδGDR. By
re-defining the dust absorption coefficientκ ′

ν ≡ κν/δGDR (the absorption coefficient
per unit total mass of gas), the gas mass-to-dust continuum flux ratioγν at the fre-
quencyν becomes,

γν ≡
Mgas

Lν
=

1
4πκ ′

νBν(Td)
. (17)
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Onceγν is obtained, the gas mass is estimated asMgas= γνLν . Here, we use the
characterγ, instead ofα that Scoville et al (2016) used, to avoid a confusion with
the CO-to-H2 conversion factor. Dust continuum emission is associated with HI and
H2, andMgas∼ Mmol in dense, molecule-dominated regions (& 100cm−3).

The κ ′
ν can be approximated as a power-lawκ ′

ν = κ ′
850µm(λ/850µm)−β with

the spectral indexβ ∼ 1.8 (Planck Collaboration et al 2011) and coefficientκ ′
850µm

at λ = 850µm (352 GHz). In order to show the frequency dependence explicitly,
we separateBν(Td) into the Rayleigh-Jeans term and the correction termΓν(Td) as
Bν(Td) = (2ν2kTd/c2)Γν(Td), where

Γν(Td) =
x

ex −1
with x =

hν
kTd

. (18)

Equation (17) has the dependenceγν ∝ ν−(β+2)T−1
d Γν(Td)

−1, and the proportional-
ity coefficient, includingκ ′

850µm andδGDR, is evaluated empirically.
Scoville et al (2016) cautioned thatTd should not be derived from a spectral en-

ergy distribution fit (which gives a luminosity-weighted averageTd biased toward
hot dust with a peak in the infrared). Instead, they suggested to use a mass-weighted
Td for the bulk dust component where the most mass resides. Scoville et al (2016)
adoptedTd = 25K and calibratedγν850µm from an empirical comparison ofMmol

(from CO measurements) andLν ,
(

γν

M⊙[Jycm2]−1

)

= 1.5±0.4×103
( ν

352GHz

)−3.8
(

Td

25K

)−1( Γν(Td)

Γν850µm(25K)

)−1

.

(19)
The luminosity is calculated from the observedSν in Jy and distanceD in centimetre
asLν = 4πD2Sν [Jycm2]. The gas mass is thenMmol = γνLν .

3.4 The ISM in Extreme Environments Such as the Outskirts

The methods for molecular ISM mass measurement that we discussed above were
developed and calibrated mainly for the inner parts of galaxies. However, it is not
guaranteed that these calibrations are valid in extreme environments such as galaxy
outskirts. In fact, metallicities appear to be lower in the outskirts than in the inner
part (see Bresolin, this volume). On a 1 kpc scale average, gas and stellar surface
densities, and hence stellar radiation fields, are also lower, although it is not clear
if these trends persist at smaller scales, e.g., cloud scales, where the molecular ISM
typically exists. Empirically,α10 could be larger when metallicities are lower, and
R21/10 could be smaller when gas density and/or temperature are lower.

In order to search for the molecular ISM and to understand star formation in
the outskirts, it is important to take into account the properties and conditions of
the ISM there. Here we explain some aspects that may bias measurements if the
above equations are applied naively as they are. These potential biases should not
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discourage future research, and instead, should be adjusted continuously as we learn
more about the ISM in the extreme environment.

3.4.1 Variations of α10 (or XCO)

The CO-to-H2 conversion factorα10 (or XCO) is a mass-to-light ratio between the
CO(1−0) luminosity and the molecular ISM mass (Bolatto et al 2013). Empirically,
this factor increases with decreasing metallicity (Arimoto et al 1996; Leroy et al
2011) due to the decreasing abundance of CO over H2. At the low metallicity
of the small Magellanic cloud (∼ 1/10Z⊙), α10 appears∼ 10− 20 times larger
(Arimoto et al 1996; Leroy et al 2011).

This trend can be understood based on the self-shielding nature of molecular
clouds. Molecules on cloud surfaces are constantly photo-dissociated by stellar UV
radiation. At high densities within clouds, the formation rate of molecules can be
as fast as the dissociation rate, and hence molecules are maintained in molecular
clouds. The depth where molecules are maintained depends onthe strength of the
ambient UV radiation field and its attenuation by line absorptions by the molecules
themselves as well as by continuum absorption by dust (van Dishoeck and Black
1988).

H2 is∼ 104 times more abundant than CO. It can easily become optically thick on
the skin of cloud surfaces and be self-shielded (Fig. 2). On the other hand, UV pho-
tons for CO dissociation penetrate deeper into the cloud dueto its lower abundance.
This process generates the CO-dark H2 layer around molecular clouds (Fig. 2b;
Wolfire et al 2010). Shielding by dust is more important for COthan H2. Therefore,
if the metallicity or dust abundance is low, the UV photons for CO dissociation reach
deeper and deeper, and eventually destroy all CO molecules while H2 still remains
(Fig. 2c). As the CO-dark H2 layer becomes thicker,L10 decreases whileMH2 stays
high, resulting in a largerα10 in a low metallicity environment, such as galaxy out-
skirts. Since this process depends on the depth that photonscan penetrate (through
dust attenuation as well as line absorption), the visual extinctionAV is often used as
a parameter to characterizeα10 (or XCO).

3.4.2 Variations of R21/10

The CO(2−1) line emission is useful to locate the molecular ISM and to derive a
rough estimation of its mass. However, the higher transitions inevitably suffer from
excitation conditions. Indeed,R21/10 (≡ T21/T10) has been observed to vary by a
factor of 2−3 in the MW and in other nearby galaxies, e.g., between star-forming
molecular clouds (typicallyR21/10∼ 0.7−1.0 and occasionally up to 1.2) and dor-
mant clouds (∼ 0.4−0.7), and between spiral arms (> 0.7) and inter-arm regions
(< 0.7; Sakamoto et al 1997; Koda et al 2012). The variation may be negligible for
finding molecular gas, but may cause a systematic bias, for example, in comparing
galaxy outskirts with inner disks. It is noteworthy thatR21/10 changes systematically
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H2
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H2

CO

H2

H2

(a) (b) (c)
UV UV UV

Fig. 2 Self-shielding nature of molecules in molecular clouds. The abundance of molecules is
maintained in clouds, since the destruction (photo-dissociation by UV radiation) and formation
rates are in balance. The shielding from ambient UV radiation is mainly due to line absorption by
molecules themselves. Therefore, the abundant H2 molecules become optically thick at the absorp-
tion line wavelengths on the skin of clouds, while UV photonsfor CO dissociation can get deeper
into clouds. This mechanism generates the CO-dark H2 layer on the surface of molecular clouds.
This layer can become thicker (panels a, b, c) under several conditions: e.g., lower metallicity or
stronger local radiation field. The CO-to-H2 conversion factorα10 (or XCO) increases with the in-
creasing thickness of the CO-dark H2 layer, and therefore, with lower metallicity or stronger local
radiation field

with star formation activity, and varies along the direction of the Kennicutt-Schmidt
relation, which can introduce a bias.

Theoretically,R21/10 is controlled by three parameters: the volume densitynH2

and kinetic temperatureTk – which determine the CO excitation condition due
to collisions – and the column densityNCO, which controls radiative transfer and
photon trapping (Scoville and Solomon 1974; Goldreich and Kwan 1974). Figure 3
shows the variation ofR21/10 with respect tonH2 and Tk under the large veloc-
ity gradient (LVG) approximation. In this approximation, the Doppler shift due to
a cloud’s internal velocity gradient is assumed to be large enough such that any
two parcels along the line of sight do not overlap in velocityspace. The front par-
cel does not block emission from the back parcel, and the optical depth is deter-
mined only locally within the parcel (or in smalldv). Therefore, the column den-
sity is expressed per velocityNCO/dv. A typical velocity range in molecular clouds
is adopted for this figure. An average GMC in the MW hasnH2 ∼ 300cm−3 and
Tk ∼ 10K (Scoville and Sanders 1987), which results inR21/10 of ∼ 0.6−0.7. If the
density and/or temperature is a factor of 2−3 higher due to a contraction before
star formation or feedback from young stars, the ratio increases toR21/10 > 0.7.
On the contrary, if a cloud is dormant compared to the average, the ratio is lower
R21/10< 0.7.

In the MW, cloud properties appear to change with the galactocentric radius
(Heyer and Dame 2015). If their densities or temperatures are lower in the outskirts,
it would result in a lowerR21/10, and hence, a higher H2 mass at a given CO(2−1)
luminosity. If theR21/10 variation is not accounted for, it could result in a bias when
clouds within the inner disk and in the outskirts are compared.
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Fig. 3 The COJ = 2− 1/1− 0 line ratios as function of the gas kinetic temperatureTkin and
H2 densitynH2 under the LVG approximation (from Koda et al 2012). Most GMCsin the MW
have CO column density in the range of log(NCO/dv) ∼ 16.6 to 17.3, assuming the CO fractional
abundance to H2 of 8×10−5. An average GMC in the MW hasnH2 ∼ 300cm−3 andTk ∼ 10K,
and therefore showsR21/10 ∼0.6-0.7.R21/10 is< 0.7 if the density and/or temperature decrease by
a factor of 2−3, andR21/10 is> 0.7 if the density and/or temperature increase by a factor of 2−3.
Observationally, dormant clouds typically haveR21/10 = 0.4− 0.7, while actively star forming
clouds haveR21/10 = 0.7− 1.0 (and occasionally up to∼ 1.2; Sakamoto et al 1997; Hasegawa
1997). There is also a systematic variation between spiral arms (R21/10 > 0.7) and interarm regions
(R21/10 < 0.7; Koda et al 2012)

3.4.3 Variations of Dust Properties and Temperature

The gas mass-to-dust luminosityMgas/Lν depends on the dust properties/emissivity
(κν ), dust temperature (Td), and gas-to-dust ratio (δGDR) – see Eqs. (16) and (17).
All of these parameters could change in galaxy outskirts, which have low average
metallicity, density, and stellar radiation field. Of course, the assumption of a sin-
gle Td casts a limitation to the measurement as the ISM is multi-phase in reality,
although the key idea of using Eqs. (16) and (17) is to target regions where the
cold, molecular ISM is dominant (Scoville et al 2016). TheδGDR may increase with
decreasing metallicity by about an order of magnitude (δGDR ∼ 40→ 400) for the
change of metallicity 12+ log(O/H) from ∼ 9.0 → 8.0 (their Fig. 6; Leroy et al
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2011). If this trend applies to the outskirts, Eq. (17) wouldtend to underestimate the
gas mass by up to an order of magnitude.

Excess dust emission at millimetre/submillimetre wavelengths has been reported
in the small and large Magellanic clouds (SMC and LMC) and other dwarfs
(Bot et al 2010; Dale et al 2012; although see also Kirkpatrick et al 2013). This ex-
cess emission appears significant when spectral energy distribution fits to infrared
data are extrapolated to millimetre/submillimetre wavelengths. Among the possible
explanations are the presence of very cold dust, a change of the dust spectral index,
and spinning dust emission (e.g., Bot et al 2010). Gordon et al (2014) suggested that
variations in the dust emissivity are the most probable cause in the LMC and SMC
from their analysis of infrared data from theHerschel Space Observatory. The en-
vironment of galaxy outskirts may be similar to those of the LMC/SMC. The excess
emission (27% and 43% for the LMC and SMC, respectively; Gordon et al 2014)
can be ignored if one only needs to locate dust in the vast outskirts, but could cause
a systematic bias when the ISM is compared between inner disks and outskirts.

4 Molecular Gas Observations in the Outskirts of Disk Galaxies

A primary motivation for molecular gas observations in the outskirts of disk galaxies
has been to study molecular clouds and star formation in an extreme environment
with lower average density and metallicity. Many researchers highlight that these
studies may teach us about the early Universe, where these conditions were more
prevalent.

4.1 The Milky Way

The MW is the disk galaxy with the most molecular gas detections in the outskirts,
with pioneering studies of the outer disk molecular gas and star formation proper-
ties beginning in the 1980s (e.g., Fich and Blitz 1984; Brandand Wouterloot 1988).
The MW can serve as a model for the types of studies that can be done in nearby
galaxies with larger and more sensitive facilities. We willuse “outer” MW to refer
to galactocentric radii between the solar circle (RGal > R⊙ = 8.5kpc) and the edge
of the optical disk, which is estimated to be atRGal ∼ 13−19kpc (Ruffle et al 2007;
Sale et al 2010 and references therein). We will use “outskirts” to refer to galacto-
centric radii beyond the edge of the optical disk.

Only about 2% of the molecular mass of the MW is atRGal> 14.5kpc (Nakagawa et al
2005 estimated the molecular mass atRGal > 14.5kpc to be 2× 107M⊙ while
Heyer and Dame 2015 estimated the total molecular mass of theGalaxy to be(1±
0.3)× 109M⊙). N. Izumi (personal communication) collected the known molec-
ular clouds withRGal > 13.5kpc in the second and third quadrants (Fig. 4). The
molecular cloud with the largest known galactocentric radius is probably Digel
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Cloud 1 with a kinematic galactocentric radius ofRGal = 22kpc, dynamical mass
of ∼ 6×104M⊙, and radius of 36pc (Digel Cloud 2 has a larger kinematic distance
of RGal = 24kpc, but the photometric distance isRGal = 15−19kpc based on op-
tical spectroscopy of an associated B star; Digel et al 1994;Yasui et al 2006, 2008;
Izumi et al 2014). Digel Cloud 1 is beyond the edge of the optical disk but well
within the HI disk, which extends toRGal ∼ 30kpc (Digel et al 1994; Ruffle et al
2007 and references therein).

Fig. 4 Figure from N. Izumi (personal communication) showing the known molecular clouds at
RGal > 13.5kpc in the second and third quadrants overlaid on an artist’s conception of the MW
(R. Hurt: NASA/JPL-Caltech/SSC). The colours correspond to the following surveys: orange:
Brunt et al (2003), magenta: Sun et al (2015), red: Digel et al(1994), cyan: Brand and Wouterloot
(1994), blue: May et al (1997), green: Nakagawa et al (2005),yellow: Vázquez et al (2008). The
points represent molecular clouds and the fan-shaped regions represent the survey area. The dis-
tances were derived assumingR⊙ = 8.5kpc and a solar orbital speed ofV⊙ = 220kms−1

Extremely tenuous H2 gas is mixed with the HI gas in the Galactic halo with
a fraction of H2 over HI of only 10−4∼−5 (Lehner 2002). Such tenuous H2 is ob-
served via UV absorption, e.g., toward the Magellanic stream (Lehner 2002) and
high velocity clouds (HVCs; Bluhm et al 2001). This component is important for
understanding the complex physics of the ISM, but is not a major molecular compo-
nent in galaxy outskirts. We therefore do not discuss this component further in this
review.
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4.1.1 Properties of Molecular Clouds in the Outer Milky Way

In this Section we highlight studies that have compared the mass, size, and mass sur-
face density of molecular clouds in the outer MW to clouds in the inner MW. Molec-
ular clouds are the site of star formation, and hence, comparisons of their properties
between the inner and outer MW is important. In general, molecular clouds in the
outer MW have lower mass and mass surface density than cloudsin the inner disk.
We also describe how molecular clouds have been used to tracespiral arms into the
outskirts and to study relatively high-mass star formation.

Heyer and Dame (2015) combined published data on the CO surface brightness
out toRGal∼ 20kpc. The clouds in the outer MW and outskirts are∼ 7 times fainter
than clouds in the inner MW (and even fainter relative to the Galactic centre). As-
suming a constantXCO, this corresponds to a factor of∼ 7 decrease in the mass
surface density of molecular clouds. Heyer and Dame (2015) argued that there is a
real decrease in the mass surface density of the molecular clouds, perhaps caused
by the lower mid-plane pressure or stronger local FUV radiation field in the outer
Galaxy. However, there is also evidence that the outer MW requires a largerXCO

to convert the CO surface brightness into the mass surface density (see Sect.3.4).
Therefore the mass surface density likely decreases by somewhat less than a factor
of ∼ 7.

The mass function of molecular clouds in the outer MW (9.5kpc. RGal .
13.5kpc in this study) has a steeper power law index than that in the inner MW,
such that the outer disk hosts more of its molecular mass in lower-mass clouds
(Rosolowsky 2005, based on the 330deg2 Heyer et al 1998 catalogue and analysis
in Heyer et al 2001 and Brunt et al 2003), although this conclusion may at some
level be a result of variable angular resolution (Heyer and Dame 2015). The mass
function of the outer MW shows no clear evidence for a truncation at the high-mass
end, but under some assumptions Rosolowsky (2005) estimated that the maximum
molecular cloud mass is∼ 2− 3× 105M⊙. In contrast, Rosolowsky (2005) con-
cluded that the inner MW shows a clear truncation with maximum molecular cloud
mass of∼ 3×106M⊙. Because of the small number of known clouds, the apparent
lack of massive clouds in the outer MW might be due to a sampling effect. This
possibility should be addressed in future studies, as a truncation, if it exists, would
be an important clue to understanding cloud physics in the outskirts.

Heyer et al (2001) concluded that the size distribution of molecular clouds in
the outer MW is similar to the distribution in the inner MW from Solomon et al
(1987), but note that surveys with fewer clouds and different galactocentric distance
ranges reached different conclusions. May et al (1997) concluded that outer MW
clouds have smaller sizes than the inner MW while Brand and Wouterloot (1995)
concluded that the outer MW clouds have larger sizes than inner MW clouds at the
same mass. While there are conflicting results in the literature, it seems natural to
conclude that an outer MW cloud must have a larger radius thanan inner MW cloud
at the same mass because it appears that the mass surface density of clouds is lower
in the outer MW (see above and Heyer and Dame 2015).
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Molecular gas observations in the outskirts of the MW have been used to identify
spiral arms. Dame and Thaddeus (2011) discovered a spiral arm in the first quadrant
at RGal ∼ 15kpc, based on HI and CO data. Their new arm is consistent with being
an extension of the Scutum-Centaurus arm. Sun et al (2015) also used HI and CO
data to discover an arm in the second quadrant atRGal= 15−19kpc. This arm could
be a further continuation of the Scutum-Centaurus arm and the Dame and Thaddeus
(2011) arm. These kinds of studies are important not only to map the spiral structure
of the MW, but also to help understand the observation that star formation in the
outskirts of other galaxies often follows spiral arms.

Another important goal of molecular gas studies in the outskirts of the MW
has been to understand the connection with star formation under low density and
metallicity conditions. For example, Brand and Wouterloot(2007) studied an IRAS-
selected molecular cloud with a mass of 4.5−6.6×103M⊙ atRGal∼ 20.2kpc. They
discovered an embedded cluster of 60 stars and the lack of radio continuum emission
limits the most massive star to be later than B0.5. In addition, Kobayashi et al (2008)
studied Digel Cloud 2, which is really two clouds each with a mass of∼ 5×103M⊙.
They discovered embedded clusters in each of the clouds. Onecluster likely con-
tains a Herbig Ae/Be star and there are also several Herbig Ae/Be star candidates,
a B0-B1 star, and an HII region nearby. Therefore, high-mass star formation has
occurred near this low-mass molecular cloud. We encourage more study on the re-
lationship between cloud mass and the most massive star present, as extragalactic
studies can trace O and B stars relatively easily, but have difficulty detecting the
parent molecular clouds (see Sect. 4.2.1).

In the outskirts of the MW and other galaxies, it is importantto ask what
triggers molecular cloud and star formation. In Digel Cloud2, star formation
may have been triggered by the expanding HI shell of a nearby supernova rem-
nant (Kobayashi and Tokunaga 2000; Yasui et al 2006; Kobayashi et al 2008) while
Izumi et al (2014) hypothesized that the star formation in Digel Cloud 1 may have
been triggered by interaction with a nearby HVC.

4.2 Extragalactic Disk Galaxies

We can study molecular gas in more varied environments by moving from the MW
to extragalactic disk galaxies. In this Section, we use “outskirts” to refer to galacto-
centric radii greater than the optical radius (RGal > r25).

4.2.1 Molecular Gas Detections

Numerous attempts to detect CO beyond the optical radius in the disks of spi-
ral galaxies have failed, although many of the non-detections are unpublished
(Watson et al 2016; Morokuma-Matsui et al 2016; J. Braine, F.Combes, J. Donovan
Meyer, and A. Gil de Paz, personal communications). To our knowledge, there are
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only four isolated spiral galaxies with published CO detections beyond the optical
radius (Braine and Herpin 2004; Braine et al 2007, 2010, 2012; Dessauges-Zavadsky et al
2014). Table 1 summarizes the number of detected regions andtheir range of
galactocentric radii and molecular gas masses. Extragalactic studies have not yet
reached the molecular gas masses that are typical in the outskirts of the MW
(2−20×103M⊙ for the eleven Digel clouds atRGal= 18−22kpc; Digel et al 1994;
Kobayashi et al 2008; see also Braine et al 2007).

Table 1 Extragalactic disk galaxies in relative isolation with CO detections beyond the optical
radius (Braine and Herpin 2004; Braine et al 2007, 2010, 2012; Dessauges-Zavadsky et al 2014).
For M33, the molecular gas mass is for one of the detected clouds. For M63, the molecu-
lar gas mass is based on a sum of the CO line intensities in twelve pointings, two of which
are detections. The NGC 4414, NGC 6946, and M63 masses were computed assumingXCO =
2×1020cm−2(Kkms−1)−1.

Galaxy Detected Galactocentric Molecular Method used for Mass
Regions Radius Gas Mass
(#) (r25) (105 M⊙)

NGC 4414 4 1.1−1.5 10−20 Within 21” IRAM 30m beam
NGC 6946 4 1.0−1.4 1.7−3.3 Within 21” IRAM 30m beam
M33 6 1.0−1.1 0.43 Virial mass using resolved PdBI data
M63 2 1.36 7.1 Sum of 12 IRAM 30m pointings

It would be useful to be able to predict where CO will be detected in the outskirts
of disk galaxies, both as a test of our understanding of the physics of CO formation
and destruction in extreme conditions (see Sect. 3.4) and tohelp us efficiently collect
more detections. Most of the published CO studies selected high HI column density
regions or regions near young stars traced by Hα, FUV, or FIR emission. None of
these selection methods is completely reliable. Braine et al (2010) concluded that
CO is often associated with large HI and FIR structures, but it is not necessarily lo-
cated at HI, FIR, or Hα peaks. Many factors might affect the association between HI,
CO and star formation tracers. For example, the star formingregions may drift away
from their birthplaces over the 10−100Myr timescales traced by Hα, FUV, and FIR
emission. In addition, feedback from massive stars might destroy molecular clouds
more easily in the low-density outskirt environment. Finally, higher-resolution HI
maps may show better correlation with CO emission. Sensitive, large-scale (> kpc)
maps of the outskirts of disk galaxies may allow for a more impartial study of the
conditions that maximize the CO detection rate.

4.2.2 Star Formation in Extragalactic Disk Galaxies

It is generally accepted that stars form from molecular gas (e.g., Fukui and Kawamura
2010) and that an important stage before star formation is the conversion of HI to H2

(e.g., Leroy et al 2008). A main tool to study the connection between gas and star
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formation is the Kennicutt-Schmidt law (Schmidt 1959; Kennicutt 1998), which
is an empirical relationship between the star formation rate (SFR) surface density
(ΣSFR) and the gas surface density. Within the optical disk of spiral galaxies, there is
an approximately linear correlation betweenΣSFR and the molecular hydrogen sur-
face density (ΣH2) but no correlation betweenΣSFRand the atomic hydrogen surface
density (ΣHI; e.g., Bigiel et al 2008; Schruba et al 2011).

The majority of the published work connecting the SFR and gasdensity in the
outskirts of disk galaxies has focused on the atomic gas because molecular gas
is difficult to detect (Sect. 4.2.1) and because the ISM is dominantly atomic in
the outskirts, at least on& kpc scales. Bigiel et al (2010) concluded that there is
a correlation between the FUV-basedΣSFR and ΣHI in the outskirts of 17 disk
galaxies and 5 dwarf galaxies. They measured a longer depletion time in the out-
skirts, such that it will take on average 1011 years to deplete the HI gas reser-
voir in the outskirts versus 109 years to deplete the H2 gas reservoir within the
optical disk. Roychowdhury et al (2015) reached a similar conclusion using HI-
dominated regions in disks and dwarfs, including some regions in the outskirts,
although they concluded that the depletion time is somewhatshorter than in the
outskirts of the Bigiel et al (2010) sample (see also Boissier et al 2007; Dong et al
2008; Barnes et al 2012). The correlation betweenΣSFR andΣHI is surprising be-
cause there is no correlation within the optical disk. Bigiel et al (2010) suggested
that high HI column density is important for determining where stars will form in
the outskirts.

The study of the connection between molecular gas and star formation in the
outskirts has been limited by the few molecular gas detections. Figures 5 and 6 show
the relationship betweenΣSFRandΣH2 for the molecular gas detections from Table 1
plus a number of deep CO upper limits. In both panels the SFR was computed based
on FUV and 24µm data to account for the star formation that is unobscured and
obscured by dust.

Dessauges-Zavadsky et al (2014) studied a UV-bright regionat r = 1.36r25 in
the XUV disk of M63 (Fig. 5). They detected CO in two out of twelve pointings
and concluded that the molecular gas has a low star formationefficiency (or, equiv-
alently, the molecular gas has a long depletion time) compared to regions within the
optical disk. They suggested that the low star formation efficiency may be caused by
a warp or by high turbulence. Watson et al (2016) measured a deep CO upper limit
in a region atr = 3.4r25 in the XUV disk of NGC 4625 and compiled published
CO measurements and upper limits for 15 regions in the XUV disk or outskirts of
NGC 4414, NGC 6946, and M33 from Braine and Herpin (2004) and Braine et al
(2007, 2010) (see Table 1 and Fig. 6). They concluded that star-forming regions
in the outskirts are in general consistent with the sameΣSFR-ΣH2 relationship that
exists in the optical disk. However, some points are offset to high star formation
efficiency (short depletion time), which may be because the authors selected Hα-
or FUV-bright regions that could have already exhausted some of the molecular gas
supply (as in Schruba et al 2010; Kruijssen and Longmore 2014).

We should ask what stimulates the formation of molecular gasand stars in the
outskirts of disk galaxies. Thilker et al (2007) suggested that interactions may trig-
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ger the extended star formation in XUV disks while Holwerda et al (2012) sug-
gested that cold accretion may be more important. Bush et al (2008, 2010) carried
out hydrodynamic simulations and concluded that spiral density waves can raise the
density in an extended gas disk to induce star formation (seealso Sect. 4.1.1. of
Debattista et al., this volume).

The state-of-the-art data from SINGS (Kennicutt et al 2003), theGALEX Nearby
Galaxy Survey (Gil de Paz et al 2007a), THINGS (Walter et al 2008), and HERA-
CLES (Leroy et al 2009) brought new insight into the Kennicutt-Schmidt law within
the optical disk of spirals. Deeper CO surveys over wider areas in the outskirts could
bring a similar increase in our understanding of star formation at the onset of the
HI-to-H2 transition. In such wide-area studies, one should keep in mind that the
“standard” physical condition of gas in inner disks could change in the outskirts,
which could affect the measurements (Sect. 3.4).

Fig. 5 Figure 7 from Dessauges-Zavadsky et al (2014) showing the molecular-hydrogen
Kennicutt-Schmidt relation for the star forming regions inthe UV-complex atr = 1.36r25 in M63
(red points) compared to regions within the optical disk (blue points). The blue line shows the fit for
the optical disk. The black lines represent constant star formation efficiency, assuming a timescale
of 108 years. Credit: Dessauges-Zavadsky et al (2014), reproduced with permissionc© ESO
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4.2.3 Theory

This Chapter focuses on observations, but here we briefly highlight theoretical
works that are related to molecular gas in the outskirts. Themajority of the rel-
evant theoretical studies have concentrated on the origin of gas in the outskirts
(e.g., Dekel and Birnboim 2006; Sancisi et al 2008; SánchezAlmeida et al 2014;
Mitra et al 2015) and star formation in the outskirts (Bush etal 2008, 2010; Ostriker et al
2010; Krumholz 2013; Sánchez Almeida et al 2014; see also Roškar et al 2010;
Khoperskov and Bertin 2015). Krumholz (2013) is particularly relevant because he
extended earlier work to develop an analytic model for the atomic and molecular
ISM and star formation in outer disks. Krumholz assumed thathydrostatic equilib-
rium sets the density of cold neutral gas in the outskirts andwas able to match the
Bigiel et al (2010) observations that show a correlation betweenΣSFR andΣHI (see
also Sect. 7 of Elmegreen and Hunter, this volume).

Fig. 6 The molecular hydrogen Kennicutt-Schmidt relation for theremaining star forming regions
that are beyond the optical radius in isolated extragalactic disk galaxies and have published CO
detections or deep upper limits. The solid line shows the fit for the optical disk of normal spiral
galaxies at∼kpc resolution, with the 1σ scatter shown by the dotted lines (Leroy et al 2013). This
figure was originally presented in Fig. 4 in Watson et al (2016)
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5 Molecular Gas Observations in the Outskirts of Early-Type
Galaxies

Early-type galaxies were historically viewed as “red and dead,” with little gas to
form new stars. However, more recent surveys have found reservoirs of cold gas
both at galaxy centres and in the outskirts. Molecular gas inthe centres of early-
type galaxies can have an internal and/or external origin while the molecular gas in
the outskirts often originated in a gas-rich companion thathas interacted or merged
with the early-type. As in all of the environments we have explored, stimuli can also
trigger new molecule formation in the outskirts of early-types.

We start with a review of HI in the inner and outer regions of early-type galaxies
to put the molecular gas observations in context. The ATLAS3D survey detected
HI in 32% of 166 early-type galaxies in a volume-limited sample, down to a 3σ
upper limit of MHI = 5× 106− 5× 107M⊙. Atomic gas in the outskirts of early-
type galaxies is even relatively common, as 14% of the ATLAS3D sample have HI
that extends out to more than 3.5 times the optical effectiveradius (Serra et al 2012).

Most surveys of molecular gas in early-type galaxies have focussed on the in-
ner regions. 22% of 260 early-type galaxies in the ATLAS3D sample were de-
tected in CO, down to a 3σ upper limit ofMH2 ∼ 107−108M⊙ (Young et al 2011;
see also Sage and Wrobel 1989; Knapp and Rupen 1996; Welch andSage 2003;
Combes et al 2007; Welch et al 2010). Within the areas searched, the molecular gas
is generally confined to the central few kpc and is distributed in disks, bars plus
rings, spiral arms, or with a disrupted morphology (Young 2002; Welch and Sage
2003; Young et al 2008; Davis et al 2013; Alatalo et al 2013).

One important motivation for studies of molecular gas in early-type galaxies has
been to determine whether the gas is of internal or external origin. Some of the
molecular gas has likely either been present since the galaxies transitioned to being
early-type or has accumulated from stellar mass loss (Faberand Gallagher 1976;
Young 2002; Young et al 2008; Mathews and Brighenti 2003; Ciotti et al 2010). In
contrast, some molecular gas has likely been accreted more recently through mi-
nor mergers and/or cold accretion. This external origin is most clearly exhibited
by galaxies that display a misalignment between the kinematic axes of the molecu-
lar/ionized gas and the stars (Young et al 2008; Crocker et al2008; Davis et al 2011;
Alatalo et al 2013). In particular, Alatalo et al (2013) concluded that 15 galaxies out
of a sample of 40 show a kinematic misalignment of at least 30 degrees, which is
consistent with gas accretion via minor mergers.

The majority of accreting gas is perhaps in the atomic form, but the outskirts
of early-type galaxies also offer the opportunity to study recently accreted molec-
ular gas, which has mainly been detected in polar rings of elliptical and S0 galax-
ies (see Fig. 7 for an example). These polar rings are presentin about 0.5% of
nearby S0 galaxies (Whitmore et al 1990). CO has been detected in polar rings
at galactocentric radii of 12kpc in NGC 660 (Combes et al 1992) and 2kpc in
NGC 2685 (Schinnerer and Scoville 2002; see also Watson et al1994; Galletta et al
1997; Combes et al 2013). Published values for the mass of molecular hydrogen in
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the polar rings range from 8−11×106M⊙ in NGC 2685 (Schinnerer and Scoville
2002) to 109M⊙ in NGC 660 (Combes et al 1992), although the handful of polar
rings with CO detections are likely biased towards highMH2.

Fig. 7 Figure 2 from Watson et al (1994) showing the Caltech Submillimeter Observatory CO(2−
1) spectra (left) at three pointings, which are indicated by circles in the B-band image of the polar-
ring galaxy NGC 4650A (Whitmore et al 1987) on theright. Watson et al (1994) estimated the
mass of molecular hydrogen in the polar ring of NGC 4650A to beMH2 = 8− 16× 108M⊙. c©
AAS. Reproduced with permission

Polar rings are likely caused by tidal accretion from, or a merger with, a
gas-rich companion and are stable on timescales of a few Gyr as a result of
self gravity (Bournaud and Combes 2003). The molecular gas observations gen-
erally support this hypothesis because the molecular gas masses are consistent
with those of a dwarf or spiral galaxy (Watson et al 1994; Galletta et al 1997;
Schinnerer and Scoville 2002).

Mergers between an early-type galaxy and a gas-rich companion can manifest
in non-polar ring systems as well. Buta et al (1995) studied the spheroid-dominated
spiral galaxy NGC 7217 and concluded that most of the molecular mass is in an
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outer star-forming ring atRGal ∼ 0.6r25 that could have an H2 mass that is equal to
or greater than the HI mass. More recent work by Sil’chenko et al (2011) indicates
that minor mergers may be responsible for the outer ring structures.

Molecular gas has also been detected in shells at a galactocentric radius of
15kpc (1.16r25) in the elliptical galaxy Centaurus A (Charmandaris et al 2000).
Charmandaris et al (2000) calculated the mass of molecular hydrogen in the CenA
shells to beMH2 = 4.3×107M⊙. Like polar rings, shells are likely caused by galaxy
interactions and Charmandaris et al (2000) concluded that CenA interacted with a
massive spiral galaxy rather than a low-mass dwarf galaxy because of the large total
gas mass and large ratio of molecular to atomic gas in CenA. Additional molecular
cloud formation may have been triggered by the interaction between the shells and
the CenA radio jet (see also Salomé et al 2016).

6 Molecular Gas Observations in Galaxy Groups and Clusters

Extended HI gas disks beyond optical edges are common around spiral galaxies, and
as already discussed, some stimulus seems necessary to accelerate molecule forma-
tion there. In the group/cluster environment, galaxy interactions and interactions
with the intergalactic medium (IGM) are triggers for the HI to H2 phase transition.
In the nearby M81 triplet (M82, M81, and NGC 3077), tidal interactions stretch the
atomic gas in the outskirts into tidal spiral arms, leading to gravitational collapse to
form molecular gas and stars (Brouillet et al 1992; Walter etal 2006). Even an inter-
action with a minor partner can be a trigger, e.g., in the M51 system, CO emission
is detected along the tidal arm/bridge between the main galaxy NGC 5194 and its
companion NGC 5195 (Koda et al 2009).

Interaction with the IGM in clusters is also important for the gas phase transition.
Most HI gas in galaxy outskirts is stripped away by the ram pressure from the IGM
(van Gorkom 2004), while the molecular gas, which resides mostly in inner disks,
remains less affected (Kenney and Young 1989; Boselli et al 1997). Some compres-
sion acts on the molecular gas near the transition from the molecular-dominant in-
ner disks to the atomic-dominant outer disks, as the extentsof molecular disks are
smaller when the HI in the outskirts is stripped away (Boselli et al 2014).

The stripped gas in the outskirts is seen as multiphase and has been detected in
HI (e.g., Chung et al 2009), Hα (e.g., Yagi et al 2010), and X-rays (e.g., Wang et al
2004; Sun et al 2010). Stripped molecular gas is found in NGC 4438 and NGC 4435,
which are interacting galaxies in the Virgo cluster (Vollmer et al 2005). CO emis-
sion has also been discovered in the trailing tails of the stripped gas from the disk
galaxies ESO137-001 and NGC 4388 in the Norma and Virgo clusters, respectively
(Jáchym et al 2014; Verdugo et al 2015).

The ram pressure from the IGM can also heat up and excite H2 molecules, and
H2 rotational emission lines are detected in the mid-infraredin spiral galaxies in the
Virgo cluster (Wong et al 2014). The emission from warm H2 is also detected over
large scales in the intergalactic space of Stephan’s Quintet galaxy group with the
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Spitzer Space Telescope (Appleton et al 2006). An analysis of the rotational transi-
tion ladder of its ground vibrational state suggests the molecular gas has tempera-
tures of 185±30K and 675±80 K. This H2 emission coincides with and extends
along the X-ray-emitting shock front that is generated by the galaxy NGC 7318b
passing through the IGM at a high velocity.

A final example of the cluster environment affecting molecular gas formation is
that CO has been detected in cooling flows in the outskirts of galaxies in cluster
cores (e.g., Salomé et al 2006). Clearly, the group and cluster environments produce
some triggers for the formation of molecular gas in galaxy outskirts and therefore
represent another extreme environment where we can test ourunderstanding of the
physics of the ISM and star formation.

7 Conclusions and Future Directions

Throughout the Chapter, we have highlighted that some stimuli seem necessary to
accelerate the formation of molecular gas in galaxy outskirts. In the outskirts of the
MW, stimuli include spiral arm compression, expanding shells from supernova rem-
nants, and interactions with HVCs (Yasui et al 2006; Izumi etal 2014; Koda et al
2016). These same processes are likely at play in the outskirts of extragalactic disk
galaxies. In particular, spiral density waves, interactions, and/or cold accretion may
stimulate molecule formation and the subsequent star formation activity in XUV
disks (Thilker et al 2007; Bush et al 2008; Holwerda et al 2012). Interactions and
mergers likely cause the polar rings in the outskirts of S0 galaxies, although it may
be more likely that the molecules form in the gas-rich companion before the merger
(Bournaud and Combes 2003). Finally, in groups and clusters, interactions and ram
pressure stripping may accelerate molecular gas formationin some localized areas
of galaxies even as the overall effect is to remove the star-forming fuel from the
galaxies (Vollmer et al 2005; Jáchym et al 2014). Galaxy outskirts offer opportuni-
ties to study the formation of molecular gas over a variety ofconditions and will be
the key to understanding if there are different modes of starformation.

Fundamental questions remain about the physical conditions of the ISM in the
outskirts. Where is the molecular gas? What are the basic properties of the molecu-
lar clouds, e.g., the H2 volume density, H2 column density, temperature, mass, and
size? How do these properties differ from the properties of molecular clouds in the
inner regions of galaxies? Is the transition from HI to H2 and the transition from H2
to stars more or less efficient in the outskirts? Are these phase transitions affected
by different large-scale processes, stimuli, or environmental conditions compared to
inner regions? Measurements of molecular gas properties often depend on assump-
tions about the gas properties themselves. Right now, thoseassumptions are based
on our knowledge of molecular gas in inner disks. Those assumptions need to be
revisited and adjusted continuously as we learn more about molecular gas in the
outskirts. This iterative improvement of our knowledge is now starting in the field
of galaxy outskirts.
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Building on the research that has already been done, we have identified a number
of specific studies that would begin to address the fundamental questions above. In
the outskirts of the MW, we can study whether the relationship between the mass of
the molecular cloud and the most massive associated star is different than in the in-
ner MW. In the outskirts of extragalactic disk galaxies, we need to measure the mass
and size functions of molecular clouds and compare to the MW results. In addition,
theoretical studies can work towards predicting where and how molecular gas will
form in the outskirts. To test these predictions, we encourage sensitive and wide-area
mapping of CO and/or dust continuum emission. Higher resolution (cloud-scale)
maps of HI may also be required to accurately locate potential sites ofmolecular
gas formation. After each discovery of molecular gas, subsequent multi-wavelength
studies including excitation ladders of molecular line emission are necessary to re-
fine our knowledge of the physical conditions of molecular gas there. In early-type
galaxies, we should search for molecular gas in XUV disks, asXUV emission could
be even more common in early-type galaxies than late-type galaxies (Moffett et al
2012). We hope those researchers will take note and learn from the high failure rate
of previous (published and unpublished) searches for molecular gas in the outskirts
of disk galaxies.
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