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Abstract

In our modern understanding of galaxy formation, every galaxy forms

within a dark matter halo. The formation and growth of galaxies over

time is connected to the growth of the halos in which they form. The

advent of large galaxy surveys as well as high-resolution cosmological

simulations has provided a new window into the statistical relation-

ship between galaxies and halos and its evolution. Here we define this

galaxy–halo connection as the multi-variate distribution of galaxy and

halo properties that can be derived from observations and simulations.

This connection provides a key test of physical galaxy formation mod-

els; it also plays an essential role in constraints of cosmological models

using galaxy surveys and in elucidating the properties of dark matter

using galaxies. We review techniques for inferring the galaxy–halo con-

nection and the insights that have arisen from these approaches. Some

things we have learned are that galaxy formation efficiency is a strong

function of halo mass; at its peak in halos around a pivot halo mass

of 1012 M�, less than 20% of the available baryons have turned into

stars by the present day; the intrinsic scatter in galaxy stellar mass is

small, less than 0.2 dex at a given halo mass above this pivot mass;

below this pivot mass galaxy stellar mass is a strong function of halo

mass; the majority of stars over cosmic time were formed in a narrow

region around this pivot mass. We also highlight key open questions

about how galaxies and halos are connected, including understanding

the correlations with secondary properties and the connection of these

properties to galaxy clustering.
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1. INTRODUCTION

In modern cosmological models, ∼ 5/6 of the mass in the Universe is made of dark matter

(Planck Collaboration et al. 2016). This dark matter forms the skeleton on which galaxies

form, evolve, and merge. In the context of this model, which is now well established from

a wide range of observations, fluctuations in the matter distribution were created in the

first fraction of a second during an inflationary period. Gravitational instability grew these

fluctuations over time. Gas and dark matter were initially well mixed; as the universe

evolved, gas was able to dissipate and fell to the centers of dark matter halos. For large
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enough dark matter halos, gas was able to cool, form stars, and form a protogalaxy. The

power spectrum of matter indicates that small objects should form first, and halos should

grow and merge over time. Galaxies within these halos then continue to form stars (in

situ) as well as to grow through merging (ex situ), because their dark matter halos merge.

Energetic processes within galaxies impact their surroundings after they form, as various

kinds of feedback, which influences future gas accretion and star formation.

In this context, clearly the growth, internal properties, and spatial distribution of galax-

ies are likely to be closely connected to the growth, internal properties, and spatial distri-

bution of dark matter halos. Very simply, the luminous matter in the Universe is arranged

in galaxies, and in a cold dark matter model, the dark matter in the Universe is arranged

in dark matter halos. The physical and statistical connection between them is the focus

of this review. We denote this the galaxy–halo connection, which in detail can refer to the

full multivariate distribution of properties of halos and the galaxies that form within them.

Elucidating this connection is a stepping stone to answering several of the largest questions

in astrophysics and cosmology today. These include the following:

• Understanding the physics of galaxy formation: How does gas cool in galaxies,

how do stars form, and what determines the dominant feedback processes? How can

we best infer physics from available observations including the spatial distribution of

galaxies as a function of their properties? Statistical constraints on the galaxy–halo

connection can effectively synthesize diverse datasets and provide essential input into

these questions.

• Inferring cosmological parameters: A new generation of deep, wide-area imaging

and spectroscopic surveys has substantial constraining power on cosmological models,

including the power to distinguish between a cosmological constant, dark energy,

and modified gravity; to measure the mass of the neutrino; and to constrain the

inflationary potential. To make full use of these measurements on the widest range

of scales, we need to understand how to robustly marginalize over the uncertainties

in the galaxy–halo connection.

• Probing the properties and distribution of dark matter: How can we infer

the evolution of the matter distribution and the properties of dark matter halos us-

ing surveys of galaxies? Measurements of galaxies and of their spatial distribution

give us the potential to map out the distribution of dark matter as well as to distin-

guish between models of dark matter. These observations are generally sensitive to

combinations of both the dark matter particle and the galaxy–halo connection.

The galaxy–halo connection as a concept started with the earliest understanding of

modern galaxy formation within the framework of cold dark matter (CDM) models, as did

the understanding that the spatial distribution of galaxies can lead to insight into their

formation properties. For example, Peebles (1980) discussed the two-point statistics of

galaxies, and early work recognized that massive galaxies and clusters should have different

clustering properties than average galaxies (Davis & Peebles 1983; Bahcall & Soneira 1983;

Klypin & Kopylov 1983; Kaiser 1984), and that measuring these clustering properties could

provide information about the masses of the dark matter halos that they lived in, because

of the strong dependence of halo clustering on halo mass (Bardeen et al. 1986; Mo & White

1996). It also was recognized early on that this relationship could be complex and scale

dependent (e.g. Klypin, Primack & Holtzman 1996; Jenkins et al. 1998).

However, it was not until the late 1990s that cosmological simulations were able to
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resolve the substructures within larger dark matter halos. At about the same time, the

first large galaxy surveys were beginning. The APM survey (Baugh 1996) was the first

to measure the galaxy correlation function for a large sample of galaxies. Kravtsov &

Klypin (1999) and Coĺın et al. (1999) were able to resolve substructures in simulations

of cosmological volumes, and they measured approximately power-law correlation functions

that were consistent with measurements from APM. This field was then revolutionized with

the Two-degree Field Galaxy Redshift Survey (2dFGRS; Colless et al. 2001) and Sloan

Digital Sky Survey (SDSS; York et al. 2000). For the first time, these surveys were able to

measure the spatial clustering properties of large samples of galaxies, which allowed for the

separation into their physical properties such as luminosity and color or stellar mass and

star formation rate (SFR). Pioneering detections of galaxies at high redshift (Adelberger

et al. 1998) also enabled the first studies of galaxy clustering at these epochs.

These two joint revolutions, (a) the advent of numerical simulations that could resolve

the dark matter structures and substructures hosting galaxies, over volumes large enough to

measure their spatial clustering properties and (b) the advent of large galaxy surveys, that

could identify large samples of galaxies and measure their spatial clustering, including over

a range of redshifts, have led to a new set of approaches to statistically connect these two

distributions and infer the connection between galaxies and halos, that has flourished over

the last ∼ 15 years.1 The primary focus of this review is on the inference of this statistical

connection between galaxies and halos enabled by these two advances. We will highlight

(a) theoretical approaches to the problem (b) the primary insights that we have gained

from studying the galaxy–halo connection and (c) outstanding issues. We note that the

development of the galaxy–halo connection is connected to development of the “halo model”

(Ma & Fry 2000; Peacock & Smith 2000; Seljak 2000; Cooray & Sheth 2002), a method

for analytically calculating the non-linear clustering of dark matter, using the properties of

dark matter halos (including their abundance and spatial clustering) as the basic unit. The

halo model can be combined with models of the galaxy–halo connection to predict galaxy

clustering.

Elucidating the statistical connection between galaxies and halos relies on another major

advance of the last two decades: the establishment of a standard cosmological model,

ΛCDM, in which the universe consists of 5% baryonic matter, 25% dark matter, and 70%

dark energy. The parameters of this model are now known to high precision (Betoule et al.

2014; Planck Collaboration et al. 2016; DES Collaboration et al. 2017; Alam et al. 2017);

this allows robust predictions, using numerical simulations, for the growth of structure and

the formation and evolution of dark matter halos. Although this review relies heavily on

basic predictions of the ΛCDM model and the properties of dark matter halos, these are

well-reviewed elsewhere; see for example Frenk & White (2012) and Primack (2012). The

cosmological simulations that form the basis of many of the predictions described here were

reviewed by Kuhlen, Vogelsberger & Angulo (2012). The current status of physical models

of galaxy formation was reviewed in Somerville & Davé (2015) and outstanding theoretical

challenges were reviewed by Naab & Ostriker (2017); the formation of galaxy clusters was

reviewed by Kravtsov & Borgani (2012). Modern cosmological probes with galaxy surveys

were reviewed in Weinberg et al. (2013); here we focus on cosmological studies that require

1We note that prior to 1999, the only use of the phrase “the galaxy–halo connection” in the
literature was to describe the Milky Way Galaxy and its stellar halo; see e.g. van den Bergh (1996)
.
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an understanding of the galaxy–halo connection. The interplay between the galaxy–halo

connection and models of dark matter on small scales was well reviewed by Bullock &

Boylan-Kolchin (2017), so we only briefly touch on these issues here.

We introduce the methods of modeling and predicting the galaxy–halo connection in

§2. In §3, we review the primary observational handles on the galaxy–halo connection. In

§4, we discuss complications to the simplest modeling approaches. In §5 we discuss current

observational constraints on the mean and scatter of the relationship between galaxy mass

and halo mass; §6 expands this discussion to other aspects of the galaxy–halo connection.

We review the primary applications of the galaxy–halo connection in §7, including un-

derstanding galaxy formation physics, constraining cosmological parameters, and mapping

and understanding the physics of dark matter. In §8 we summarize the key aspects of the

galaxy–halo connection that have been understood from the last decade of studies, assess

the outlook for such studies over the next decade, including how they will be influenced by

upcoming surveys, and highlight outstanding questions for future work.

2. MODELS OF THE GALAXY–HALO CONNECTION

In this review we distinguish between two basic approaches to modeling the galaxy–halo

connection, empirical modeling, which uses data to constrain a specific set of parameters

describing the connection at a given epoch or as a function of time, and physical modeling,

which either directly simulates or parameterizes the physics of galaxy formation such as

gas cooling, star formation, and feedback. A schematic summary of these approaches to

the galaxy–halo connection is given in Figure 1, which gives an example of the galaxy

and dark matter distributions for one such model, and outlines the key elements of various

approaches. We note that in practice these modeling approaches are more of a continuum:

as one moves to the right in this figure, one is assuming less physics directly from the

model itself, and has more flexibility to constrain the unknown aspects of the galaxy–halo

connection directly with data, but the models are also less predictive and less directly

connected to the physical prescriptions. In general, approaches towards the right are also

significantly less expensive computationally than the more physical approaches.

We begin in §2.1 by reviewing the concept of a dark matter halo. We then review

current approaches to empirical modeling of the galaxy–halo connection in §2.2, including

abundance matching, the halo occupation distribution and conditional luminosity function,

and models which connect galaxies over time to their histories. In §2.3, we review approaches

to physical modeling of galaxy formation, including hydrodynamical simulations and semi-

analytic modeling, highlighting areas of synergy with empirical approaches.

2.1. Preliminaries: What is a halo?

In the modern theory of cosmological structure formation, dark matter halos are the basic

unit into which matter collapses. Schematically, halos can be thought of as gravitationally

bound regions of matter that have decoupled from the Hubble expansion and collapsed. In

numerical simulations they are generally defined with masses and radii specified by a given

overdensity: Mvir = 4π
3
R3

vir∆ρm. The definition of ∆ chosen in the literature varies (with

values around 200); here unless otherwise specified we use the definition given by Bryan &

Norman (1998), which characterizes the overdensity predicted for a virialized region that

has undergone spherical collapse.

www.annualreviews.org • The Galaxy–Halo Connection 5



physical models empirical models

Hydrodynamical  
Simulations

Semi-analytic  
Models

Empirical  
Forward  
Modeling

Subhalo  
Abundance  
Modeling

Halo  
Occupation  

Models

Simulate halos & 
gas;


Star formation & 
feedback recipes

Evolution of density 
peaks plus recipes 
for gas cooling, star 

formation, 
feedback

Evolution of density 
peaks plus 

parameterized star 
formation rates

Density peaks 
(halos & subhalos) 
plus assumptions 

about

galaxy—(sub)halo 

connection

Collapsed objects 
(halos) plus

model for 

distribution of galaxy 
number given host 

halo properties

Approaches to modeling the galaxy-halo connection

galaxy-halo  
connection

Figure 1: Modeling approaches to the galaxy–halo connection. Top panel shows the dark matter
distribution in a 90×90×30 Mpc h−1 slice of a cosmological simulation (Left), compared to the
galaxy distribution using an abundance matching model, tuned to match galaxy clustering prop-
erties of an observed sample (Right). The grid highlights the key assumptions of various models
for the galaxy–halo connection. The models are listed on a continuum from left to right ranging
from more physical and predictive (making more assumptions from direct simulation or physical
prescriptions) to more empirical (more flexible parameterizations, constrained directly from data).

Within the radius of a dark matter halo there may be multiple, distinct peaks in the

density field with virialized clumps of dark matter gravitationally bound to them. These

subhalos are smaller than the host halo, and they orbit within the gravitational potential of

the host halo. Resolving and tracking such objects is critical for making proper comparisons

to the observed distribution of galaxies.

We note that the definition of halo radius given above, though common in the literature,

may not be the most physically motivated definition of the boundary of a dark matter halo.

Diemer, More & Kravtsov (2013) have emphasized that the commonly used definitions of

halo boundaries can lead to unphysical interpretations about halo mass accretion histories.

For example, measuring halo growth using Mvir will lead one to infer significant halo growth

which is due just to the halo boundary being defined to larger radii with time, which they

term “pseudoevolution”. Recently several authors have suggested an alternative concept,

the “splashback” radius, which specifies the radius at which matter that is bound to the halo

can orbit to after first collapse (Diemer & Kravtsov 2014; More, Diemer & Kravtsov 2015;

Adhikari, Dalal & Chamberlain 2014; Mansfield, Kravtsov & Diemer 2017); this radius may

also be more co-incident with the radius at which gas can shock heat, and at which infalling
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substructures can start being stripped by their host halos. Because this has not been yet

widely adopted in most of the studies we review, we do not adopt this convention here, but

we note that it may change some of the detailed physical interpretation of results presented

(it is not expected to change the qualitative conclusions).

2.2. Empirical models of the galaxy–halo connection

The revolution in our understanding of the galaxy–halo connection has been driven by new

physical insights as well as significant input from simple empirical models that connect

observations from galaxy surveys to the predictions of the properties and evolution of dark

matter halos in cosmological simulations. Here, we generally assume that the basic proper-

ties of dark matter halos are known for a given cosmological model. They can be predicted

directly using an N-body simulation, or using fitting functions that summarize the proper-

ties of halos in such a simulation. To predict clustering statistics for example, one wants to

know the abundance of dark matter halos (the “halo mass function”; see e.g. Sheth, Mo &

Tormen 2001; Tinker et al. 2008b), their clustering properties (the “halo bias”; e.g. Sheth

& Tormen 1999; Tinker et al. 2010, which can be a function of mass, redshift, and scale),

the radial distribution of matter or substructures within halos, and the velocity distribution

of dark matter or of substructures within halos. In most of the discussion below, we assume

these predictions are made with gravity-only N-body simulations; we explicitly discuss the

impact of hydrodynamics and feedback where relevant.

2.2.1. Abundance Matching. Perhaps the simplest assumption one could make about the

galaxy halo connection is that the most massive galaxies live in the most massive dark matter

halos. This basic approach is generally called “abundance matching” in the literature (the

most massive galaxy lives in the most massive halo; the second most massive galaxy lives in

the next most massive halo, etc.) The earliest versions of this assumption, applied before

there were robust simulations that resolved cosmological structure within halos, assumed

only one galaxy per halo (e.g. Wechsler et al. 1998; Coĺın et al. 1999; Kravtsov & Klypin

1999; Moustakas & Somerville 2002). However, CDM predicts structure on all scales, and

thus predicts that dark matter halos host distinct substructures. These substructures (above

a certain mass) are expected to host galaxies. A simple ansatz is thus that each halo and

subhalo hosts a galaxy, with the mass or luminosity of a galaxy matched by abundance to

the mass or velocity of the dark matter (sub)halo in which it lives; this is often referred

to as subhalo abundance matching (“AM” or “SHAM”) in the literature (Kravtsov et al.

2004; Tasitsiomi et al. 2004; Vale & Ostriker 2004).

Once this assumption is made, one can calculate a range of statistics for the model.

Although the earliest versions of these models were sometimes referred to as zero parameter

models, there are in fact a set of assumptions or parameters that need to be specified. The

two most important are: (1) what halo property is best matched to what galaxy property?

and (2) what is the scatter between these properties? It was realized quickly that while

subhalos are rapidly stripped of their outer material after being accreted into a larger dark

matter halo, galaxy stripping starts much later (Nagai & Kravtsov 2005). Thus, one might

expect a model which matches galaxies to halo properties at the time they are accreted into

their host halos to provide a better match to a luminosity-selected galaxy sample; this was

demonstrated byConroy, Wechsler & Kravtsov (2006). Later work has investigated several

alternative possibilities for the matching proxy, discussed further in §4.1. However, even in
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the presence of scatter between galaxy and halo masses, abundance matching is best thought

of as a non-parametric technique that directly connects the stellar mass function to the halo

mass function (Tasitsiomi et al. 2004). This can be done by deconvolving the scatter, as

described by Behroozi, Conroy & Wechsler (2010); see in particular §3.3.1 of that work

for the equations governing this deconvolution .2 The consequences of and constraints on

scatter are discussed further in §4.3. We note that modern versions of abundance matching

models generally require high-resolution simulations; they depend on resolved substructure

and on accurate merger trees to track the path of halos at least to the point in time that

they started being tidally stripped.

2.2.2. The stellar mass/halo mass relation (SHMR). Abundance matching can be used to

determine the typical galaxy stellar mass at a given halo mass, or galaxy stellar-to-halo

mass relation, which we abbreviate as SHMR. An alternative to inferring this SHMR from

non-parametric abundance matching is to parameterize it and constrain the parameters (e.g.

Moster et al. 2010). The SHMR for central galaxies is shown in Figure 2, as constrained

by non-parametric abundance matching, as inferred by a parametric SHMR constrained

by abundance and clustering data, and as derived by a number of other methods that will

be described below. The basic shape of this relation derives from the mismatch between

the halo mass function and the galaxy stellar mass function or luminosity function, which

declines rapidly below typical galaxies and has a much shallower faint-end slope than the

halo mass function. One can see several clear features in this relation, which are identified

consistently using any of the methods used to constrain it. First, the peak efficiency of

galaxy formation is always quite low: if all halos are assumed to host the universal baryon

fraction Ωb/Ωm of 17%, at its maximum, these results show that just ∼ 20–30% of baryons

have turned into stars, resulting in a SHMR that peaks at just a few percent. This maximum

galaxy formation efficiency occurs around the mass of halos hosting typical L∗ galaxies like

the Milky Way, around 1012M�; we refer to this as the pivot mass. At higher and lower

masses, galaxy formation is even less efficient. Roughly, the stellar mass of central scales

as M∗ ∼ M2−3
h at dwarf masses and M∗ ∼ M

1/3
h at the high mass end. Images of typical

galaxies that populate halos of a given mass are shown below the relation.

SHMR: The

stellar-to-halo mass

relation. This can be
predicted with

models of galaxy

formation, inferred
from parameterized

models, or measured

directly.

This decrease in the efficiency of star formation is a signature of strong feedback pro-

cesses from the formation of stars and black holes. It is likely due to combination of a

number of processes: at high mass, AGN feedback can act to heat halo gas and limit future

star formation (Silk & Rees 1998; Croton et al. 2006); at low mass, feedback from massive

stars is believed to be important in driving winds that eject gas, or prevent it from coming

into a galaxy (Dekel & Silk 1986; Hopkins, Quataert & Murray 2012); at even lower masses,

galaxies can be too small to hold onto their gas during the reionization period around z ∼ 6

(Bullock, Kravtsov & Weinberg 2000). We discuss the constraints on this relation in more

detail in Sections 5 and 6, but here we note that many different techniques are telling the

same basic story.

Below some threshold halo mass, galaxies will no longer be able to form at all. The

smallest known galaxies, ultra-faint dwarf galaxies, have measured dynamical masses in

their inner regions larger than a few times 107 M�, which is most likely equivalent to halo

virial masses of larger than 109 M�. The exact value of the minimum mass at which a halo

can host a galaxy is still somewhat uncertain, as is the slope of and scatter in SHMR for

2A code to implement this procedure is available at http://bitbucket.org/yymao/abundancematching
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AGN
Stellar Winds

Reionization

Supernovae

Figure 2: The galaxy stellar mass-to-halo mass ratio of central galaxies at z = 0. The figure (based
on data compiled in Behroozi et al. 2018) shows constraints from a number of different methods:
direct abundance matching (Behroozi, Conroy & Wechsler 2010; Reddick et al. 2013; Behroozi,
Wechsler & Conroy 2013a); “parameterized abundance matching,” in which this relationship is
parameterized and then those parameters are fit with the stellar mass function and possibly other
observables (Guo et al. 2010; Wang & Jing 2010; Moster et al. 2010; Moster, Naab & White 2013);
from modeling the halo occupation distribution (Zheng, Coil & Zehavi 2007) or the CLF (Yang, Mo
& van den Bosch 2009) and constraining it with two-point clustering; by direct measurement of the
central galaxies in galaxy groups and clusters (Lin & Mohr 2004; Yang, Mo & van den Bosch 2009;
Hansen et al. 2009; Kravtsov, Vikhlinin & Meshcheryakov 2018); and the “Universe Machine,” an
empirical model that traces galaxies through their histories (Behroozi et al. 2018). Bottom panel
shows example galaxies that are hosted by halos in the specified mass range. On the top of the
figure, we indicate key physical processes that may be responsible for ejecting or heating gas or
suppressing star formation at those mass scales. Figure adapted from Behroozi et al. (2018) with
permission.

halos below ∼ 1011 M�. Each of these has important consequences for understanding the

lowest mass galaxies, and also has implications for the nature of dark matter (Bullock &

Boylan-Kolchin 2017).

We note that the SHMR generally parameterizes M∗ as a function of Mh. Due to scatter

in these two quantities, quantifying the galaxy–halo connection with the mean halo mass in

bins of M∗— as done observationally — does not yield the same mean relation. We discuss

this in detail in §4.3.

2.2.3. The Halo Occupation Distribution and Conditional Luminosity Function. A pop-

ular way to describe the relationship between galaxies and dark matter halos is through

the Halo Occupation Distribution (HOD), which specifies the probability distribution for
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the number of galaxies meeting some criteria (for example, a luminosity or stellar mass

threshold) in a halo, generally conditioned on its mass, P (N |M). Typically this PDF is

quantified separately for the central galaxies of halos and the satellite galaxies that orbit

within the halos. For the former, a Bernoulli distribution is assumed, while for satellites a

Poisson distribution is assumed. Under these assumptions the standard HOD is thus fully

characterized by its mean occupation number 〈N |M〉; we discuss this assumption in Section

4.6. In principle, the HOD can be a function of properties other than halo mass; we discuss

this possibility in §4.

The connection between modern halo occupation models and measurements of galaxy

clustering started to be explored by several workers in the early 2000s (e.g. Peacock & Smith

2000; Seljak 2000; Benson et al. 2000; Wechsler et al. 2001; Scoccimarro et al. 2001; Berlind

& Weinberg 2002; Bullock, Wechsler & Somerville 2002), and is now well constrained for

a wide range of galaxy samples. The functional form of the HOD for mass- or luminosity-

selected galaxies is generally assumed to be similar to that of dark matter subhalos within

their hosts. This was first studied in detail by Kravtsov et al. (2004), who found that the

HOD for samples of subhalos is well-described by a power law of subhalos N ∼M , with the

addition of a central galaxy; for a given threshold on galaxy stellar mass, a typical central

galaxy can be found in halos 10–30 times less massive than the halos that host satellite

galaxies of the same stellar mass (examples are shown in the next section). This rough

functional form has been shown to hold for luminosity-threshold or stellar mass-threshold

samples of galaxies. In general, such an HOD can be described by 3–5 parameters for a

given galaxy sample. Commonly used parameterizations are given in Zheng et al. (2005)

(their equations [1] and [3]) and Reddick et al. (2013) (their equations 9 and 10). For more

complicated galaxy samples (e.g. selected by star formation rates, colors, or emission lines),

the functional form of the HOD can be significantly more complicated (e.g., Skibba & Sheth

2009).

The conditional luminosity function (CLF) and conditional stellar mass function

(CSMF) go one step further to describe the full distribution of galaxy luminosities for

a given halo mass. It is generally described separately by the distribution of central galaxy

luminosities P (Lc|M) and satellite galaxy luminosity functions Φ(Lsat|M). This can be

inferred directly from measurements of groups and clusters (Lin, Mohr & Stanford 2004;

Weinmann et al. 2006; Yang, Mo & van den Bosch 2008; Hansen et al. 2009; Yang, Mo

& van den Bosch 2009) or from a full model for galaxy clustering and abundance (Yang,

Mo & van den Bosch 2003; Cooray 2006). In general, this parameterization distinguishes

between central galaxies, which are usually assumed to follow a lognormal distribution of

stellar masses or luminosities at fixed halo mass, and satellite galaxies, which are usually

assumed to follow a Schechter function (Schechter 1976) whose parameters scale with halo

mass. A concise review of the equations governing the CLF can be found in §3.7 of van den

Bosch et al. (2013).

For both the CLF and the HOD, model predictions can be made in two ways. Both

models specify the number of galaxies per halo, thus one can populate halos identified in

an N-body simulation using a Monte Carlo approach, and ‘measure’ observables from the

resulting mock galaxy catalog. Alternatively, both of these frameworks can be combined

with an analytic halo model of dark matter clustering to make predictions for some statistics

analytically (see, e.g., Tinker et al. 2005 and van den Bosch et al. 2013). The CLF and

HOD parameterize the galaxy–halo connection differently, but in spirit they quantify the

same thing. Either method can be used to quantify the other (see, e.g., Leauthaud et al.
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2011).
HOD: Halo
occupation

distribution. This

specifies the
probability

distribution for the

number of galaxies
in a halo, generally

conditioned on its

mass, P (N |M).

CLF: Conditional

luminosity function.

This specifies the
luminosity function

of galaxies (both
centrals and

satellites)

conditioned on halo
mass.

2.2.4. Empirical Modeling of Galaxy Formation Histories. Somewhat intermediate to the

abundance matching and HOD/CLF models that describe a galaxy population at a fixed

epoch and the full semi-analytic approach described in §2.3.2 is a class of models that trace

galaxies within their dark matter halos over time, but directly constrain the galaxy–halo

connection at each epoch. Conroy & Wechsler (2009) developed a simple approach along

these lines using abundance matching at each epoch to determine the SHMR, combined

with the typical mass accretion histories to connect halos through time, to determine typ-

ical galaxy accretion histories and star formation histories across cosmic time. Behroozi,

Wechsler & Conroy (2013a), and Moster, Naab & White (2013) extended this work using

simulated mass accretion histories (following on earlier work from Yang et al. 2012 with

analytic approximations for halo properties) as well as updated constraints from the evo-

lution of the galaxy stellar mass function and galaxy star formation rates to put strong

constraints on the typical trajectories of galaxies through time.

This approach is being taken further by many workers (Becker 2015; Rodŕıguez-Puebla

et al. 2016; Cohn 2017; Moster, Naab & White 2018; Behroozi et al. 2018); instead of

parameterizing the connection between galaxy stellar mass and halo properties at a given

epoch, one can parameterize for example the relationship between the galaxy star formation

rate and the halo mass accretion rate, and then trace these histories through time using

simulated merger histories. This is a powerful approach which allows one in principle to

use a range of data to constrain the model, and to make predictions for the distribution

of galaxy star formation histories as well as their statistical properties at any epoch. In

general this approach also requires high-resolution simulations to construct robust merger

trees of dark matter halos and to trace the evolution of subhalos.

2.3. Physical models of galaxy formation

Physical models of galaxy formation attempt to either directly simulate or to model the

basic physical processes in galaxy formation. The current status and approaches of these

models, including both hydrodynamical simulations and semi-analytic models, were recently

reviewed by Somerville & Davé (2015). Here we primarily focus on the connection to and

contrast with empirical models, as well as the interplay between these various approaches.

2.3.1. Hydrodynamical Simulations. Hydrodynamical simulations model galaxy formation

by solving the equations of gravity and hydrodynamics in a cosmological context, incor-

porating such processes as gas cooling, stellar-feedback driven winds, and feedback from

black holes and supernovae, and in some cases magnetic fields and cosmic rays, and tracing

the properties of dark matter, gas, and stars in given resolution elements over time. Al-

though they contain extensive physical prescriptions, they cannot simulate the full range of

scales needed for galaxy formation in a cosmological context without some parameteriza-

tions below the resolution scale, generally termed “subgrid physics.” These subgrid physics

parameterizations need to be tuned, either through direct tests with observations or by

comparison to constraints with empirical models that connect observations to dark matter

halos.

Although there is still significant uncertainty in the details, there has been dramatic

progress in producing realistic galaxy populations in hydrodynamical simulations over the
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past decade, due to increasing resolution as well as improved physical models for star

formation and feedback, based on insight from a wide range of observations. These models

provide our best understanding of the complex interplay between the physical processes of

galaxy formation, and they can thus be used to inform and test the assumptions of empirical

models. The earliest studies of the halo occupation in hydrodynamical simulations were

performed before it was well-constrained by empirical models (White, Hernquist & Springel

2001; Pearce et al. 2001; Berlind et al. 2003), following earlier work looking at the occupation

in a semi-analytic model by Benson et al. (2000). These studies provided useful insight into

early modeling approaches for the HOD, e.g. Zheng et al. (2005) used smoothed particle

hydrodynamics simulations and semi-analytic models to propose forms for the HOD and

CLF that were later constrained with the best-available clustering data from the Sloan

Digital Sky Survey. More recently, Simha et al. (2012) and Chaves-Montero et al. (2016)

have tested the key assumptions of the subhalo abundance matching approach with modern

cosmological hydrodynamical simulations.

The interplay goes both ways: in recent years, measuring the galaxy–halo connection

either through the SHMR or the halo occupation in these simulations and comparing to

constraints obtained from empirical models and/or combinations of data has become a stan-

dard test for cosmological hydrodynamical simulations and semi-analytic models (Genel

et al. 2014; Vogelsberger et al. 2014; Schaye et al. 2015). Because these models are compu-

tationally expensive (generally, at least an order of magnitude more CPU time to simulate

a given volume than dark matter only simulations), the SHMR and other parameteriza-

tions of the galaxy–halo connection provide very useful intermediate targets that can be

easier to match than full forward modeling of the entire galaxy population and comparing

directly to the range of observables that have been used to constrain it. This can be done

for full cosmological simulations (e.g. Crain et al. 2015), or one can even run a small set

of high-resolution resimulations and evaluate whether the typical galaxy mass agrees with

that inferred from empirical models (Stinson et al. 2013; Munshi et al. 2013). Below, we

review comparisons between these models and current empirical constraints.

2.3.2. Semi-analytic models of galaxy formation. Semi-analytic models of galaxy formation

(White & Frenk 1991; Kauffmann, White & Guiderdoni 1993; Somerville & Primack 1999;

Cole et al. 2000; Bower et al. 2006; Guo et al. 2013) aim to model the same basic processes

of galaxy formation in a computationally efficient manner, by approximating the various

physical processes with analytic prescriptions that are traced through the merging history

of dark matter halos. In current models, these prescriptions are most often traced through

merger trees extracted from N-body simulations. Although these models are significantly

less computationally expensive than hydrodynamical simulations, they generally have a

large number (10–30) of parameters and fully exploring this parameter space has remained

a challenge. These prescriptions also necessarily make simplifying assumptions, that need

to be continually tested both with full hydrodynamical simulations and with data. Several

recent studies have used Monte Carlo Markov chain techniques to directly constrain the

semi-analytic model parameter space with data (Henriques et al. 2009; Lu et al. 2011, 2014;

Henriques et al. 2015). Fully constraining these models with clustering data and other

spatial statisics is still challenging due to the large parameter space and computational

expense. As an alternative, the SHMR and other aspects of the parameterized galaxy–halo

connection can provide useful intermediate steps to test the agreement of models with a

wide range of data.

SAM: Semi-analytic
model
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2.4. Complementarity between approaches

One of the most encouraging aspects of the current state of galaxy formation modeling is

that each of the approaches outlined above is increasingly being used to inform the oth-

ers: more direct physical models can be used to inform and test the parameterizations and

assumptions of empirical approaches, and empirical constraints can be used to efficiently

synthesize diverse constraints from data and pin down uncertainties in the physical pa-

rameterizations. At present, due to the computational expense of more physical models,

empirical models also are more widely used in studies that jointly constrain the galaxy–halo

connection with cosmological parameters. Empirical models are also important for cases in

which one wants to marginalize over possible uncertainty in the galaxy–halo connection in

order to robustly infer cosmological parameters or uncertain dark matter physics.

3. MEASUREMENTS THAT INFORM THE GALAXY–HALO CONNECTION

In the previous section we discussed both empirical and physical models for the galaxy–halo

connection, and the interplay between them. Here, we review the most important measure-

ments that are currently used to inform the galaxy–halo connection: galaxy abundances

(§3.1), galaxy clustering (§3.2), group and cluster catalogs (§3.3), weak gravitational lensing

(§3.4), and additional observables including spatial statistics and scaling relations (§3.5).

For a given cosmological model and galaxy formation model, the abundance of objects,

the relationship between satellites and centrals, and the spatial distribution of galaxies are

related through their galaxy–halo connection. This is true for any galaxy–halo connection,

whether it derives from physical models or a parameterized functional form. In general,

modeling approaches that make more physical assumptions (towards the left in Figure 1)

are more predictive than more data-driven approaches. However, some empirical models

make specific assumptions such that when we use them to describe one or a small set of

observables, they immediately make predictions for a large set of other observables.

3.1. Galaxy abundance

Given the assumption that galaxy properties and halo properties are closely connected, the

most important constraint on the galaxy–halo connection for a given cosmological model

(which in turn predicts the abundance of dark matter halos) is the abundance of galaxies

as a function of stellar mass or luminosity, i.e., the stellar mass function (SMF) or the

luminosity function. The SMF inferred from the measurements of galaxy abundance in the

local universe is now a very statistically precise measurement(Bell et al. 2003; Li & White

2009; Baldry et al. 2012; Bernardi et al. 2017), but there are still a number of important

systematic issues that impact its normalization and mass scaling and can have consequences

for the galaxy–halo connection and its interpretation. Constraints on the evolution of galaxy

stellar mass functions have also improved significantly over the past decade (Pérez-González

et al. 2005; Moustakas et al. 2013), leading to consequential improvements in the evolution

of the galaxy–halo connection.

As discussed in §2, abundance matching can be done directly, in a non-parametric way

that reproduces the observed galaxy SMF (or the luminosity function) by construction.

Alternatively, it can be done parametrically, with a function that maps halo mass—or alter-

native halo properties—onto galaxy stellar mass. The free parameters are then constrained

by the measurements of the SMF.
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Figure 3: Examples of the SHMR. Upper left: The M∗/Mh ratio for three parameterized

SHMRs. The middle (orange) curve is constrained to match the stellar mass function at z =

0 (Upper Right), whereas the other models (blue and green curves) show the sensitivity of

the mass function to changes in the SHMR. The filled circles in each curve indicate the halo

mass at which the mean M∗ is 1011 M�. Bottom left: The mean halo occupation function

for galaxies with M∗ > 1011 M� predicted by each SHMR model. Here, the filled circles

show the same halo mass as the circles in the upper left. Bottom right: Predictions for the

projected correlation function of these galaxies, with SDSS measurements for comparison.

All model calculations are performed using the public halo catalogs from the Bolshoi-Planck

simulation (Klypin et al. 2016). Abbreviations: SDSS, Sloan Digital Sky Suryve; SHMR,

stellar-to-halo mass relation.

The relationship between galaxy abundance, galaxy clustering, the halo occupation,

and the galaxy-to-halo mass ratio for this parameterized model is shown in Figure 3. The

parameterization used here is taken from Behroozi, Conroy & Wechsler (2010), with the

main features being characteristic mass scales for M∗ and Mh, which constitute the location

of the pivot point in the SHMR, and power-law slopes above and below the pivot point.

A model that describes the abundance data well is shown in Figure 3b. These data were
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measured independently for the present work. They represent the SMF at z = 0 based on

data from SDSS DR7 (Abazajian et al. 2009) using the stellar masses of Chen et al. (2012).

Other curves show models that have pushed the pivot point too high and too low. These

models clearly fail to reproduce the abundance of galaxies: moving the pivot point too low

yields too many low-mass galaxies and fails to produce any at the high mass end, while a

pivot point too high has the opposite effect. The filled circles on each SHMR curve show

the halo mass scale at which the galaxy mass is M∗ = 1011 M�, on average. In all of these

models, we have set the log-normal scatter in logM∗ at fixed Mh to be 0.2 dex. Modifying

the power-law slopes of the SHMR will have a similar effect: altering the SMF slope at the

high or low mass end will change the slope of the SHMR. The general shape and amplitude

of the fit produced in Figure 3 echoes the compilation of results shown in Figure 2—a

pivot point at Mh ∼ 1012 M�, a steep slope at lower masses and a shallower slope at higher

masses. We note that at low masses (stellar masses below ∼ 109M�), there is evidence of

a break in the SMF power law to produce more galaxies than a fixed slope would produce,

leading to an increasing SHMR at the low mass end.

3.2. Two-point galaxy clustering

Because the abundance of dark matter halos is connected to their clustering properties,

a given abundance matching or parameterized SHMR model makes a prediction for the

clustering of galaxies. Once the parameters of the model have been set—the scatter, the

abundance matching variable—there is no more freedom in the model after fitting for the

galaxy abundance. The bottom panels of Figure 3 show the predictions each of the SHMR

models make for the mean occupation function and clustering of galaxies with M∗ ≥ 1011

M�. The filled circles in the bottom left correspond to the same Mh as the filled circle in

the top left panel. Although these are non-parametric estimates of the HOD, the shapes

are well-matched by the functional forms for central and satellite galaxies discussed earlier.

Increasing or decreasing the halo mass scale at M∗ = 1011 M� increases and decreases

the overall mass scale of the HOD. This has the impact of increasing and decreasing the

clustering of galaxies.

For HOD and CLF models, abundances alone cannot constrain the parameters of the

models. This is because the number of satellites within a halo is a parameterized function,

rather than mapped onto the substructure in a simulation. Thus, measurements that pro-

vide information about the halo mass are necessary to constrain the parameters of the HOD

and CLF. Galaxy clustering is perhaps the most commonly used; galaxy clustering at r < 1

Mpc is highly sensitive to the fraction of galaxies that are satellites because the number of

pairs within a halo increases with the square of the number of satellites. Clustering at larger

scales is most sensitive to the overall halo mass scale and the scatter between halo mass

and the observable quantity by which galaxies are selected. The halo occupation framework

predicts a transition scale in the clustering of galaxies at r ∼ 1 Mpc. This transition scale

naturally explains the deviations from a power-law measured in the clustering of galaxies

(Zehavi et al. 2004, 2005), as well as its evolution as a function of galaxy luminosity and

redshift (Conroy, Wechsler & Kravtsov 2006). A convenient way to quantify large-scale

clustering of a sample of objects is by their bias relative to dark matter. Bias generically

is related to the ratio between the clustering of the objects and that of the dark matter:

b2 = ξ/ξm, where ξ is the two-point correlation function of galaxies and the subscript m

denotes matter. Bias is usually quantified at large scales, i.e., r > 10 Mpc. The bias of dark
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matter halos has a non-linear dependence on Mh—low mass halos have a roughly constant

bias, while at higher masses bias rises rapidly with increasing Mh. Thus, for the three

different models presented in Figure 3, the bias of the model increases monotonically with

the characteristic halo mass indicated by the filled circles.

This does not mean that clustering has no information to offer for abundance-matching

models. As we discuss in §4, models with different assumptions regarding how galaxies are

matched to halos can change the relative rank-ordering of halos and subhalos, thus shifting

the relative populations of central and satellite galaxies. Scatter can also not be constrained

by abundances alone. The only way to discriminate between these models is to bring in

information other than galaxy abundances, from clustering or one or more of the other

observables described below (see further discussion in §4.3).

3.3. Group and cluster catalogs

An alternative method to constrain the galaxy–halo connection is to find individual dark

matter halos observationally and measure the galaxy content within them. Galaxy clusters

are relatively easy to find in observational data owing to their large mass and the large

number of galaxies contained within them. Figure 2 includes measurements of the SHMR

at the cluster mass scale from Kravtsov, Vikhlinin & Meshcheryakov (2018) using X-ray

observations to detect clusters and Hansen et al. (2005) using optical imaging data. Optical

cluster catalogs can now also be extended to very large volumes and to significantly higher

redshift, for example using red sequence techniques like RedMaPPer (Rykoff et al. 2014,

2016); given the statistical power of these data sets, the primary challenge in using these to

infer the galaxy–halo connection is a full modeling of systematics in the mass–observable

relation.

Modern day galaxy group catalogs are able to probe much lower halo mass scales. The

group-finding algorithm of Yang et al. (2005) uses a variation of the abundance matching

ansatz to assign dark matter halo masses statistically to all galaxies within a given sample.

After an initial guess about which galaxies belong to groups and which do not, abundance

matching is performed on the total group stellar mass and the host dark matter halo mass

function. Each galaxy is assigned a probability of being within a given dark matter halo,

using these updated halo masses, and the process is iterated until convergence. The result-

ing halo occupation statistics that are derived from the final group catalog are in general

agreement with those inferred from an HOD analysis of clustering (Yang, Mo & van den

Bosch 2008; Tinker, Wetzel & Conroy 2011; Campbell et al. 2015). The application of this

algorithm to SDSS data in Yang, Mo & van den Bosch (2009) is also presented in Figure

2. Groups can also be used in combination with two-point clustering (Sinha et al. 2017).

3.4. Weak gravitational lensing

It is straightforward to extend implementations of the galaxy–halo connection from models

of the two-point clustering of galaxies to the cross-correlation between galaxies and matter

(e.g. Tasitsiomi et al. 2004; Yoo et al. 2006; Cacciato et al. 2009; Leauthaud et al. 2012).

Generally, the observational quantity being modeled is ∆Σ(Rp), the excess surface mass

density at a projected distance Rp away from a galaxy, which is related to the galaxy-mass

correlation function ξgm. If all galaxies were central, then ∆Σ(Rp) would simply be a

measure of the projected dark matter halo profiles of all the galaxies in the sample being

modeled. Satellite galaxies complicate the interpretation of the lensing signal, requiring a
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full model of the galaxy–halo connection.

Lensing generally has lower signal-to-noise than two-point clustering, but the constraints

offered by a lensing analysis are complementary to that of an analysis only using clustering.

Lensing directly measures the mass of the dark matter halos around galaxies, whereas

in a clustering analysis the masses are inferred indirectly from the relationship between

halo mass and clustering, as well as the constraints on the abundance of halos in a given

cosmological model. As we discuss in §4.4, properties other than halo mass may influence

clustering. Thus, a cross comparison of constraints on halo occupation from clustering and

lensing is a necessary check on possible systematic errors or secondary parameters compared

to using clustering alone.

3.5. Additional observables

Although the abundance of galaxies and their two-point clustering are the methods that

have been most commonly used to statistically constrain the galaxy–halo connection, there

is information on this relationship from nearly any measure of the spatial distribution of

galaxies. Within the literature, these include satellite kinematics (van den Bosch et al. 2004;

More et al. 2011), galaxy voids (Sheth & van de Weygaert 2004; Furlanetto & Piran 2006;

Tinker et al. 2008a), counts-in-cells (Benson et al. 2000; Berrier et al. 2011), and three-point

statistics (Maŕın et al. 2008; Guo et al. 2015). Measurements of the intracluster light around

clusters and groups of galaxies can also provide important constraints that distinguish the

merging and growth history of galaxies (Conroy, Wechsler & Kravtsov 2007).

Scaling relations of the internal properties of galaxies, such as Tully-Fisher and Faber-

Jackson (Tully & Fisher 1977; Faber & Jackson 1976), also offer information to the extent

that dark matter influences the dynamics of visible matter (Dutton et al. 2010; Cappellari

et al. 2013; Desmond & Wechsler 2015, 2017). At low masses, where large samples with

observable spatial statistics are not yet available, these scaling relations provide the primary

information about the galaxy–halo connection (McConnachie 2012). Strong lensing can

provide additional information about the masses of elliptical galaxies, at least in their inner

regions (Sonnenfeld et al. 2015).

4. BEYOND THE SIMPLEST MODELS OF THE GALAXY–HALO
CONNECTION

The simplest versions of the empirical models we outlined in §2, which connect one primary

galaxy property to one halo property, describe the basic relations very well. However, they

have now been shown in the literature to be inadequate for describing both the spatial dis-

tribution of galaxies at the precision it can now be measured and the full richness of galaxy

properties and correlations that are observable. Here, we discuss additional modeling as-

pects that may be required. We first discuss the question of which halo property should

be primary (§4.1). We then consider the question of alternative primary galaxy proper-

ties (§4.2). We then review other aspects of the galaxy–halo connection that can impact

clustering properties, even for a given SHMR: scatter between galaxy mass and halo mass

(§4.3), assembly bias (§4.4), and the ratio of galaxy mass to halo mass between centrals

and satellites (or, equivalently, the satellite fraction as a function of stellar mass; §4.5).

We then discuss properties of the satellite distribution (§4.6), and consider approaches to

joint modeling of additional galaxy properties, including galaxy star formation rates, galaxy
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sizes, and gas properties.

4.1. What halo property is best matched to galaxies?

The existence of a galaxy–halo connection does not specify which galaxy property correlates

with which halo property, though mass is a typical assumption for both. Mapping galaxy

stellar mass to different halo properties will yield the same SMF, but different clustering

signals. Kravtsov et al. (2004) originally proposed using the maximum circular velocity of

halos Vmax —both parent halos and subhalos—to match onto galaxies. Whereas the mass

of a subhalo is subject to intense tidal stripping immediately upon entering a larger halo,

Vmax is more robust to stripping. A solution to the tidal stripping problem that allows one

to use Mh is to use Mh at the time the subhalo was accreted in order to match to galaxy

properties. These ideas can be combined in various ways, all of which yield slightly different

results in terms of the spatial distribution of galaxies.
The Astrophysical Journal, 771:30 (32pp), 2013 July 1 Reddick et al.

Figure 4. Statistical properties of galaxies as measured from simulated galaxy catalogs and galaxy group catalogs, constructed using different halo properties for
abundance matching. All shown here have zero scatter and µcut = 0. Top: projected two-point correlation function. Labels denote the stellar mass threshold, given in
log(M⊙ h−2). Because increases in scatter or µcut can only decrease the clustering, it follows that any model which falls significantly below the measured clustering
(black) must be excluded. Center: conditional stellar mass function (CSMF). Labels indicate the range in log(Mvir) for each plot, as well as the median total stellar mass
in each bin (M∗,tot). Nonzero scatter broadens this part of the distribution. Bottom left: satellite fraction as a function of stellar mass. As should be expected, models
with higher satellite fraction also have stronger one-halo clustering and more satellites in the CSMF. Bottom center: group stellar mass function and residuals. Bottom
right: standard deviation (scatter) in stellar mass of central as a function of total group stellar mass. The models are most readily distinguished by the small-scale
clustering and changes in the satellite fraction. Error bars on the model points have been omitted for clarity.
(A color version of this figure is available in the online journal.)
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Figure 4: Left Panel: Projected galaxy clustering as a function of scale, for different variants of
abundance matching models, where the galaxy properties are matched to different halo properties.
In these models no scatter is assumed. Points with error bars are measurements from SDSS. Right
Panel: The fraction of galaxies that are satellites as a function of M∗. The line types are the same
as in the left panel. Points with error bars are from the SDSS galaxy group catalog of Tinker, Wetzel
& Conroy (2011). All theoretical models have been passed through the group finder to account for
any biases in this process. Both panels are from Reddick et al. (2013).

Each of the halo properties in the sidebar titled Different Halo Properties for Abundance

Matching can be used, either in a non-parametric abundance matching model or in a pa-

rameterized SHMR, to map galaxies onto halos to match the observed luminosity function

or SMF. Each of these models will produce slightly different spatial distributions, quanti-

fied by the two-point correlation functions shown in Figure 4. In general, the models that

use Vmax, in some form or another, produce galaxy samples that are more highly clustered
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Different Halo Properties for Abundance Matching

• M0: The halo mass today or at the epoch being modeled.

• Macc: Mass at the time of accretion. Equivalent to M0 for host halos.

• Mpeak: In the entire history of a halo, the highest mass achieved.

• V0. Maximum circular velocity of the halo today or at the epoch being modeled.

• Vacc: The Vmax at the time of accretion. Equivalent to Vmax for host halos.

• Vpeak: In the entire history of a halo, the highest Vmax achieved.

• M0,peak and V0,peak: For subhalos, Mpeak or Vpeak. For host halos, these values are

taken at the epoch being modeled.

• V α : a smooth transition between Mpeak and Vpeak: vvir
(
vmax
vvir

)α
, with 0 ≤ α ≤ 1

than models that use Mh. This is due to two effects which can both impact the cluster-

ing: assembly bias, and the different relationships between the properties of centrals and

satellites. We discuss the former in §4.4. For the latter, the impact of different abundance

matching quantities is clearly seen in the right-hand side of Figure 4, which shows the

satellite fraction, fsat, for each of the models as a function of galaxy stellar mass. Models

with a higher fsat yield a higher clustering amplitude, especially at smaller scales (rp < 1

Mpc).

4.2. What galaxy property is best matched to halos?

Through most of this review, we consider galaxy stellar mass to be the primary galaxy

property that is most tightly correlated with the properties of the galaxy halos. However,

it is interesting to consider other possibilities. In the literature, galaxy stellar mass and

galaxy luminosity have been treated rather interchangeably. It is likely that observational

uncertainties in measuring galaxy masses and luminosities may be larger than the difference

in the scatter between them, but with higher precision measurements it may be possible

to make this distinction. The total stellar mass or luminosity in groups and clusters of

galaxies is better correlated with halo mass than is the stellar mass or luminosity of the

central galaxy; the former scales roughly as M∗,tot ∼ M
2/3
h on the massive end, whereas

the latter scales roughly as M∗,cen ∼M1/3
h on the massive end (e.g. Lin & Mohr 2004).

Most of this review assumes that stars in galaxies are setting the primary property,

instead of gas. This is largely due to the fact that obtaining large complete samples of

galaxies with consistently measured gas properties is very challenging. A first basic question

is whether the correlation between halo mass and total baryon mass is stronger than the

correlation with stellar mass. This has been studied extensively with the Tully-Fisher

relationship (e.g., McGaugh et al. 2000), and also with clustering of HI-selected samples

(e.g., Guo et al. 2017). At the current level of accuracy, the scatter between stellar mass–

halo mass and baryon mass–halo mass appear to be comparable, although this may be more

likely to break down for smaller mass galaxies which have high gas fractions (Bradford, Geha

& Blanton 2015). Future large HI surveys should allow a more comprehensive study of this

question.
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An alternative galaxy property is galaxy size. Accurate statistical modeling is becoming

especially interesting now that the relationship between galaxy sizes and stellar masses have

been measured for larger samples in the local Universe (Cappellari et al. 2013) and over a

wide range of epochs with HST (van der Wel et al. 2014). Despite the complexity of galaxy

formation, the tight scaling relations observed between various galaxy structural parameters

imply a fairly tight connection between galaxy sizes and the properties of their dark matter

halos. We discuss joint modeling of two galaxy properties further in §4.7.

Figure 5: Left Panel: The full distribution of halo and galaxy stellar masses for the abundance
matching model from Figure 3 (i.e., the orange curve in that Figure). Both halos and subhalos
are included. The gray scale indicates the log of the number of objects in each bin in the two-
dimensional plane. In this model, the scatter of stellar mass at fixed halo mass is constant, with
σlogM∗ = 0.2 dex. The red dashed lines show the inner 68% range of M∗ at fixed Mh, which is 0.4
dex across the y-axis. However, due to the change in the slope of the SHMR at Mh > 1012 M�, the
distribution in Mh at fixed M∗ widens considerably above this mass. Middle Panel: The scatter in
Mh at fixed M∗, σ(Mh|M∗) for the model in the left-hand panel. At low masses, this scatter is a
constant value equal to roughly half of σlogM∗ . Above the pivot point in the SHMR, the scatter
monotonically increases, due both to the change in slope in the SHMR and to the changing slope
of the halo mass function, which exponentially declines at high Mh. Right Panel: The solid curves
show three different fits to the SDSS stellar mass function in Figure 3, all with different values
of σlogM∗ . These solid curves all show the SHMR as the mean value of M∗ in bins of Mh. The
dashed curves show the corresponding reverse relationship, the mean value of Mh in bins of M∗.
As σlogM∗ increases, the mean halo mass at fixed M∗ decreases, even though the mean M∗ at fixed
Mh decreases with increasing σlogM∗ .

4.3. Scatter

One of the principle questions about the galaxy–halo connection is how much scatter there

is between the properties of galaxies at a given halo mass. When comparing models, we

consider scatter in the SHMR of central galaxies, e.g. the scatter in M∗ at fixed Mh,

which we refer to as σlogM∗ . In abundance matching models the actual parameterization

is in terms of the matching proxy (see the sidebar titled Different Halo Properties for

Abundance Matching), and this scatter is generally assumed to be lognormal and constant

across all halo masses. This is both for convenience and because these assumptions appear

to be consistent with all present data, including the results for fitting HOD models to

galaxy threshold samples. See, for example, Behroozi, Conroy & Wechsler (2010) for the

methodology of incorporating scatter in abundance matching while preserving the same

stellar mass function.

HOD models parameterize the mean number of galaxies per halo. For HOD models of

20 Wechsler & Tinker



luminosity or stellar mass threshold samples, the scatter is incorporated in the shape of the

central galaxy occupation function. For central galaxies, because there can only be one or

zero centrals, this translates to the probability of having a galaxy above the threshold as

a function of halo mass. Thus the scatter derived in HOD models of this type is related

to (but not exactly) the scatter in halo mass at a fixed galaxy mass (or luminosity). The

HOD analysis of SDSS galaxies by Zehavi et al. (2011) found that this scatter—the scatter

in Mh at fixed Lgal—monotonically rises with increasing Lgal.

Figure 5 (left panel) shows the full two-dimensional distribution of halo masses and

galaxy masses for the fiducial model that matches the stellar mass function and clustering

of SDSS galaxies presented in Figure 3. One can see that in such a model the scatter

in Mh at fixed M∗ will depend sensitively on the value of M∗ itself. The middle panel

shows σ(Mh|M∗) explicitly. Above the pivot point the mean relation between M∗ and Mh

is shallower, and galaxies across a fixed width in logM∗ are spread out over a wider range

of logMh.

In abundance matching models, various choices for σlogM∗ can yield the same stellar

mass function, but they do not predict the same spatial distribution of galaxies. The right-

hand panel of Figure 5 shows three different SHMRs, all three of which provide good fits

to the same SDSS stellar mass function but have three different values of σlogM∗ . The

solid curves show each SHMR as the mean M∗ as a function of Mh. As σlogM∗ increases,

the solid curves decrease at fixed Mh. In other words, the halo mass that yields a mean

galaxy mass of 〈M∗〉 = 1011.5 M� increases with σlogM∗ . But recall that each model

produces the same abundance of galaxies. Higher mass halos are less abundant, but the

larger scatter brings in more low-mass halos that contain 1011.5 M� galaxies to preserve

the same abundance. This has a direct impact on the clustering of galaxies, as higher mass

halos above Mh > 1012 M� become increasingly more clustered (more highly biased). Thus

the highest sensitivity to σlogM∗ from clustering measurements is in samples of galaxies at

high masses or luminosities.

4.4. Assembly bias

Halos and galaxies experience a wide variety of assembly histories, even at fixed masses.

Different assembly histories can influence the secondary properties of halos and galaxies.

Assembly history also correlates with large-scale environment, yielding a correlation between

some secondary properties and the spatial distribution of objects. In this subsection, we

review how this assembly bias manifests for halos, and how this might propagate into the

galaxy population.

4.4.1. Halo assembly bias. Halo assembly bias refers to the effect that the clustering of

halos at fixed mass has a dependence on properties other than Mh. This dependence was

initially detected when sorting halos at a given mass by formation time, concentration,

and spin (Wechsler 2001; Gao, Springel & White 2005; Wechsler et al. 2006), as well as

for simulated galaxy samples (Croton, Gao & White 2007), and has now been studied

extensively in the literature for a number of properties of dark matter halos (see, e.g., Mao,

Zentner & Wechsler 2018 for a recent comprehensive study). Figure 6 shows an example of

halo assembly bias that can be seen visually in the distribution of low-mass halos, as well as

a quantitative assessment. Different assembly bias effects can be created from tidal forces

in the density field (Hahn et al. (2009)), and from the statistics of peaks in a Gaussian
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Figure 6: Halo assembly bias, manifesting in concentration, halo formation time, and halo

angular momentum. Left Panel: The gray scale shows the distribution of dark matter in a

90x90x30 Mpc slice of a cosmological simulation at z = 0. The open red circles indicate the

5% of halos at logMh = 10.8 with the highest concentration. Middle Panel: The same slice

is shown once again, but here the green circles show the locations of the 5% of halos with

the lowest concentration from the same halo mass range. Right Panel: The dependence of

halo bias on secondary parameters. Bias here refers to clustering amplitude relative to dark

matter, as defined in §3.2. The solid black curve shows the overall bias of dark matter halos

as a function of halo mass at z = 0. The red and blue points show the clustering for the

25% of halos with the highest formation redshift and lowest formation redshift, respectively.

Data are taken from Li, Mo & Gao (2008). The orange and green points show the clustering

for the 20% of halos with the highest and lowest angular momentum, respectively. Data

are taken from Bett et al. (2007).

random field (Dalal et al. (2008)).

Although its existence for dark matter halos is now well established, there are many

open questions about the assembly bias signal for various halo properties and whether or

to what extent this effect propagates into the clustering of galaxies. We summarize some

of these properties in the sidebar titled What Halo Properties Show Secondary Bias?, but

note that in general, the secondary bias of various halo properties can be complex, and can

have different mass and redshift dependence (Salcedo et al. 2018). Furthermore, Mao, Zent-

ner & Wechsler (2018) have shown that even properties that are highly correlated do not

necessarily have the same clustering signal. This may make first principles predictions for

the expected galaxy assembly bias challenging, but it also indicates that precision measure-

ments of galaxy clustering may provide insights into complex details of structure formation

and the dependence of galaxy properties on halo properties.

Halo concentration:
Halo concentration
is defined as

c ≡ Rhalo/rs, where

rs is the scale at
which the
logarithmic slope of

the internal density
profile is −2.

4.4.2. Theoretical models of galaxy assembly bias. In the abundance matching paradigm,

the relation between galaxies and halos is set by the halo property that is used to match

to the given galaxy property. However, there is no a priori reason to limit the model to a

single halo property. In the literature, there have been multiple models for multi-parameter

galaxy–halo connections. Here we list two that vary the galaxy clustering properties for

luminosity or mass selected galaxy samples; models that include assembly bias for secondary

properties like color or star formation rate are discussed in §4.7.

Composite abundance matching: In this model, the abundance matching parameter

is a combination of two or more halo properties. In the model by Lehmann et al. (2017),
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Important Definitions

• Bias: The clustering of a set of objects relative to the clustering of dark matter.

• Halo Assembly Bias or Secondary Bias: At fixed halo mass, the clustering of dark

matter halos depends on secondary halo properties (which are generally correlated

with the assembly history of the dark matter halo).

• Galaxy Assembly Bias: At fixed halo mass, the galaxy properties or number of galax-

ies within dark matter halos may depend on secondary halo properties that themselves

show a halo assembly bias signature. This includes both central and satellite galaxies.

Note that this definition, proposed by Zentner, Hearin & van den Bosch (2014) is not

exactly parallel with the definition of halo assembly bias definition, and is dependent

on the existence of halo assembly bias. It is well known that galaxy clustering depends

on secondary galaxy properties, but this can be caused by different satellite fractions

or a dependence on halo mass for the secondary property.

What halo properties show secondary bias?.

• Halo properties that show stronger assembly bias at lower masses: half-mass redshift

zM/2, formation redshift ac, fractional halo growth rate ∆M/M . These quantities

are usually defined with respect to Mh at z = 0, but they show assembly bias when

defined at any redshift.

• Halo properties that show stronger assembly bias at higher masses: angular momen-

tum λ, amount of substructure.

• Halo concentration shows signals at high and low masses, but the sign of the signal

switches at the non-linear halo mass M ∼MNL.

the abundance matching parameter is

vα = vvir

(
vmax

vvir

)α
, (1)

where vvir = (GMvir/Rvir)
1/2 is the virial velocity of the halo, and vmax is the maximum

circular velocity within the halo, and α is a free parameter. When α = 0, the abundance

matching parameter is vvir, which is directly proportional to M
1/3
vir —i.e., abundance match-

ing galaxy mass to halo mass. When α = 1, the abundance matching parameter is vmax,

which is directly related to halo concentration. This process is implemented on halo cata-

logs that resolve substructure. In Lehmann et al. (2017) these halo quantities are evaluated

at the epoch of peak halo mass. Increasing α, therefore, has the effect of increasing the

clustering at fixed M∗ (because of the effect of concentration on clustering, as shown in

Figure 6). This freedom essentially parameterizes our current ignorance about how much

galaxy properties depend on concentration or formation time at a given halo mass, which

impacts both the assembly bias and the satellite fraction at a given stellar mass.

Non-linear halo
mass, (MNL): This is
defined as the mass

at which the rms

matter fluctuations
on the Lagrangian
scale of the halo are

equal to
δcrit = 1.686 in

linear theory.
MNL ∼ 1012.8 M�
at z = 0 in the
Planck cosmology,
and decreases with
increasing redshift.

Modified halo occupation models: The previous approach requires simulations that

resolve substructure. An alternative is to take parameterized HOD models—i.e., models
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in which the mean occupation function of central and satellite galaxies are parameterized

as a function of Mh—and modify them to include additional halo properties in the mean

occupation function. These models require cosmological simulations or a multi-parameter

emulator based on such simulations, but no longer require that substructure be tracked.

Hearin et al. (2016) proposed decorated HODs, with the secondary parameter being halo

concentration; Tinker et al. (2008a) used large-scale density as the secondary parameter to

make models to compare to measurements of clustering and voids. In the decorated HOD

models, the mean occupation function is increased or decreased, relative to the mean at a

given value of Mh, on the basis of whether the concentration is above or below the median

c. The change in the HOD can be either a step function or a smooth function in c, and can

be either increasing with c or decreasing with c. Concentration is also fungible with other

halo properties, but estimating c for a halo has the advantage that it does not require full

halo merger trees, as zM/2, ac, and various other properties do. Given the strong correlation

between c and halo growth quantities—at least at mass scales below the cluster scale—the

results seemed likely to be similar; however, the work of Mao, Zentner & Wechsler (2018)

urges caution in making these simplifying assumptions.

4.5. Centrals vs. Satellites

One of the keys to creating a robust model of the spatial distribution of galaxies is getting

the correct fraction of satellite galaxies as a function of galaxy mass. One of the strongest

arguments in favor of the galaxy–halo connection as a model with physical underpinnings is

that a simple abundance matching model generally reproduces the small-scale clustering as

a function of galaxy luminosity or mass, as well as its redshift dependence. But, as Figure

4 demonstrates, details of the relative treatment of central and satellite galaxies matter

when compared to the high precision of galaxy clustering measurements now available at

many epochs.

It is not a requirement of abundance matching or SHMR models that they treat the

galaxies within host halos and subhalos the same. Indeed, the M0,peak and V0,peak models

in that figure explicitly separate the two. Even for models that are matched to halos in

the same way for centrals and satellites, the details can change the stellar mass of centrals

vs. satellites at a given halo mass; see for example the change as one varies α in Fig. 5 of

Lehmann et al. (2017). In the SHMR model of Leauthaud et al. (2011, 2012), this flexibility

is introduced explicitly by having the SHMR only apply to central galaxies, and having the

number of satellites within a halo vary freely, independently of the number of subhalos in

the halo. Alternatively, one can have two different SHMR functions—one for centrals and

one for satellites—as done in Watson & Conroy (2013). Although the details do matter

to within the precision of SDSS-like clustering measurements, Watson & Conroy (2013)

concluded that in such a framework, the preferred model was one in which the SHMR for

centrals and satellites was nearly the same.

4.6. Occupation properties of satellite galaxies

For models that can calculate clustering without populating a simulation—and this includes

HOD, CLF, and some parameterized SHMR models (Vale & Ostriker 2004; Leauthaud et al.

2011)—assumptions are nearly always made that should not be taken as gospel in this era

of precision measurements from large galaxy redshift surveys. The first assumption is that

satellite galaxies are assumed to follow the NavarroFrenkWhite (NFW) density profile,
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which may not be true at very small scales (Watson et al. 2012). The second assumption

is that the second moment of the probability distribution of satellite galaxy occupation has

been assumed to be Poisson in most previous work.

Models for the halo occupation distribution require an assumption about both the mean

and moments of the occupation distribution. Higher order moments can have an impact

on clustering properties and on cosmological systematics, so it is important to know how

robust the simplifying assumption of a Poisson distribution is. The scatter in the number

of subhalos at fixed mass was shown to be super-Poissonian for small average occupation

numbers (Boylan-Kolchin et al. 2010; Busha et al. 2011); Wu et al. (2013) showed that the

scatter can in detail depend on how galaxies or subhalos are selected. Mao, Williamson

& Wechsler (2015) showed that this can be explained by Poisson scatter at fixed mass

and formation history, combined with dependence of the number of subhalos on other

properties (e.g. formation history, environment, or concentration) at fixed mass; Jiang &

van den Bosch (2017) claimed that this is not quite true, and that the distribution is both

sub-Poissonian at small average occupation number and super-Poissonian at large average

occupation number. They present an accurate fitting function for the distribution and show

how this can impact clustering.

4.7. Joint modeling of mass and secondary properties

Thus far we have discussed the relationship between a single galaxy property (mass or lumi-

nosity) and a single or composite halo property. Of course, the full galaxy–halo connection is

more complicated, and for a full description of galaxy formation we will be interested in the

full multivariate connection between galaxy and halo properties over time. Here we review

approaches to modeling a secondary property in addition to stellar mass or luminosity.

Halo occupation methods can be extended to incorporate more than one galaxy prop-

erty. For example, Skibba & Sheth (2009) developed an HOD model that incorporated

galaxy color. Xu et al. (2018) recently created a conditional color-magnitude distribution,

an extension of the CLF methodology. Both of these methods parameterize the mean

occupation of galaxies within halos using Mh only.

A complementary way to incorporate secondary properties into the galaxy–halo con-

nection is through ‘conditional abundance matching’, as proposed by Hearin & Watson

(2013). In this framework, halo mass is first abundance matched to M∗ or luminosity, and

then secondary galaxy properties are abundance matched to secondary halo properties in

narrow bins of M∗ or Mh. This framework was explored and refined using galaxy color

(Hearin & Watson 2013; Hearin et al. 2014) and star formation rate (Watson et al. 2015)

as the secondary galaxy property. For the secondary halo property, variations on halo age

and formation time were employed. At fixed halo mass, the earliest forming halos con-

tained galaxies with the reddest colors or lowest star formation rates, thus this model can

be described as an ‘age-matching model.’ However, this framework extends naturally to

any secondary galaxy property or halo property. For example, Tinker et al. (2017b) used

conditional abundance matching to connect galaxy morphology to halo angular momentum

at fixed Mh. Hearin et al. (2017) connected galaxy size to halo virial radius at the time of

Mpeak through a related approach (we discuss constraints on galaxy sizes in §6.4).

Conditional abundance matching is an ideal tool for comparing models of galaxy assem-

bly bias to observational data. If the secondary halo property used exhibits an assembly

bias signal (such as age, concentration, or spin), then this would manifest as a clustering
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dependence in the secondary galaxy property.

Several recent studies have begun to explore the evolution of gas in galaxies in more

detail in both hydrodynamical simulations (Power, Baugh & Lacey 2010; Bahé & McCarthy

2015; Lagos et al. 2014) and semi-analytic models (Popping, Somerville & Trager 2014; Lu

et al. 2014). Empirical models for full galaxy populations are starting to be used to model

gas as well. Recently, Popping, Behroozi & Peeples (2015) used an empirical model for the

star formation histories along with observed scaling relationships between stellar and gas

densities to develop a model which traces the evolution of gas properties over time. We

expect modeling the gas–halo connection to be an area of extensive future work, aided by

new insight from UV absorption studies, X-ray studies, HI surveys, and Sunyaev-Zel’dovich

(SZ) surveys to develop comprehensive models for the evolution of gas properties that should

substantially impact our understanding of galaxy formation physics.

5. CURRENT CONSTRAINTS ON THE GALAXY–HALO CONNECTION AS
EXPRESSED BY THE SHMR

In this section, we discuss constraints on different aspects of the galaxy–halo connection as

expressed by the SHMR. The mean relation is discussed in §5.1, the scatter in this relation

in §5.2, and the evolution of the mean relation in §5.3. §5.4 discusses observational tests of

whether halo properties other than mass influence the stellar mass or luminosity of galaxies.

This section closes with a brief overview of systematic uncertainties, both observational

and theoretical, that need to be taken into account when interpreting current constraints.

Section 6 considers second-parameter connections involving additional parameters beyond

mass.

5.1. The mean stellar-to-halo mass relation for central galaxies

Figure 2 presented the constraints on the SHMR in the local universe, painting a consistent

picture of the relationship between halos and total galaxy mass from a variety of methods

and datasets. These approaches have now been described in the preceding sections. There

is remarkable consistency on the general outlines of the SHMR from these methods, includ-

ing constraints from non-parametric abundance matching (Behroozi, Conroy & Wechsler

2010; Reddick et al. 2013; Behroozi, Wechsler & Conroy 2013a), the parameterized SHMR

inferred from abundance matching (Guo et al. 2010; Moster, Naab & White 2013, 2018),

the halo occupation distribution (Zheng, Coil & Zehavi 2007), the conditional luminosity

function (Yang et al. 2012), abundance matching from X-ray clusters (Kravtsov, Vikhlinin

& Meshcheryakov 2018), or models based on evolving galaxies within their dark matter halo

histories constrained by galaxy clustering and galaxy-galaxy lensing (Behroozi et al. 2018).

These approaches use different observables and different modeling techniques. For ex-

ample, the HOD and CLF leave satellite occupation as a free parameter to be constrained

by the data, whereas abundance matching techniques are constrained to match satellites

onto subhalos within simulations using a global galaxy–halo relation. Observables used to

constrain these approaches include the stellar mass function at a given epoch, the stellar

mass and star formation rates as a function of time, the group stellar mass function and

conditional stellar mass function of galaxies in groups, galaxy clustering, galaxy–galaxy

lensing, and satellite kinematics. The biggest discrepancy between these methods in terms

of the mean relation is due to systematics in the measurement of the stellar mass itself at
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Figure 7: Left Panel: Points with errors show bias as a function of M∗ for z = 0.5 galaxies

in the BOSS survey from Tinker et al. (2017a). Curves indicate SHMR fits to the BOSS

stellar mass function with various values of σlogM∗ . Middle Panel: Points show the scatter

in M∗ at fixed group stellar mass for central galaxies in z ≈ 0 SDSS group catalogs. Curves

show predictions from abundance matching models with different values of σlogM∗ . All

theoretical models have been run through the group finding algorithm to create an apples-

to-apples comparison. All data and models taken from Reddick et al. (2013). The three

data points at logM∗grp > 12 are not significant owing to low numbers of groups above

this mass scale. Right Panel: The scatter in Mh at fixed M∗, derived from analysis of

satellite kinematics by More et al. (2011). Contours indicate 68% (yellow) and 95% (grey)

confidence intervals. The solid curves show predictions for the quantity using the three

abundance matching models in Figure 5, in which σlogM∗ = 0.1, 0.2, and 0.3.

the highest mass end. At the lowest mass end, uncertainties are dominated by the fact

that galaxy samples are still small and likely incomplete. We discuss these issues further in

§5.5.1.

5.2. Scatter for central galaxies

One of the most important aspects of the galaxy–halo connection is the scatter in central

galaxy stellar mass at fixed halo mass, σlogM∗ . It is not possible to constrain σlogM∗ from

the abundance of galaxies alone; here we present a number of possibilities that can constrain

this parameter: galaxy clustering, galaxy groups and clusters, satellite kinematics, galaxy–

galaxy lensing, and galaxy scaling relations.

Galaxy clustering: Halo bias is a strong function of mass for halos above MNL, so

in this regime galaxy clustering can provide a strong constraint on scatter. The left panel

of Figure 7 gives an example, based on galaxy clustering at z ∼ 0.5 from the BOSS

survey (Tinker et al. 2017a). Different curves represent the predictions of SHMR models

with different scatter values, but only σlogM∗ = 0.18 provides a good fit to the observed

bias of BOSS galaxies. The constraining power of clustering is primarily at the massive

end; this result is best characterized as a constraint in σlogM∗ in the halo mass range

of logMh = [12.7, 13.7]. Using a combination of galaxy clustering and galaxy lensing of

z = 0 SDSS galaxies, an independent study by Zu & Mandelbaum (2015) obtained a

constraint on the scatter at Mh = 1012 M� (σlogM∗ = 0.22+0.02
−0.01) and at Mh = 1014 M�

(σlogM∗ = 0.18± 0.01).

Galaxy groups and clusters: Galaxy groups and clusters can constrain the scatter
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by directly measuring the properties of central galaxies in groups of clusters of a given mass.

Using a sample of galaxy clusters with well-measured X-ray halo mass estimates, Kravtsov,

Vikhlinin & Meshcheryakov (2018) derived a value of σlogM∗ = 0.17 by directly measuring

the scatter around the mean M∗-Mh relation. This measurement probes the halo mass range

of logMh = [14.0, 15.0]. Similar measurements can be made by galaxy group catalogs; here

a critical issue is how well the mass of the group can be measured. The middle panel of

Figure 7 shows scatter in the mass of the central group galaxy at fixed group halo mass,

σ(Mcen|Mgrp) from Reddick et al. (2013). To facilitate a proper comparison with theory,

Reddick et al. (2013) created abundance matching mocks constrained to the SDSS stellar

mass function, which were run through the group finder and processed in the same manner

as the data. The figure shows the mock values of σ(Mcen|Mgrp) for four different values of

σlogM∗ . Data at low stellar masses have no constraining power because the masses of these

groups are not reliable, but using data at M∗ ' 1011 M�, Reddick et al. (2013) determine

a best-fit value of σlogM∗ = 0.20± 0.02 (note that this value refers to the scatter in central

galaxy properties at fixed halo mass). This constraint likely has modest sensitivity to the

abundance matching proxy used, because the measured scatter at fixed group mass depends

on the correlation between central galaxy mass and total group mass. Future surveys, for

example, the DESI Bright Galaxy Survey (DESI Collaboration et al. 2016), may be able

push this scatter constraint down to lower masses because lower mass groups will contain

significantly more galaxies.

Satellite kinematics: Satellite kinematics offer a complementary approach to con-

straining scatter by probing the dark matter gravitational potential around central galax-

ies. With a sufficiently deep spectroscopic sample, satellite kinematics can constrain σlogM∗

around low-mass galaxies and halos below the regime where clustering loses its sensitivity.

The right-hand panel of Figure 7 shows constraints on scatter using kinematics of satellite

galaxies from More et al. (2011). In this analysis, the scatter is presented as σ(Mh|M∗).

Solid curves plotted over the contours show σ(Mh|M∗) for the three SHMR fits to the

SDSS stellar mass function from Figure 5: σlogM∗ = 0.1, 0.2, and 0.3. We note that these

comparisons between theory and data are not precise because they are based on different

assumptions about the stellar mass measurements. However, these data are consistent with

a model in which σlogM∗ = 0.2 or somewhat smaller, which is consistent with constraints

from clustering, lensing, and group statistics.

Scaling relations: Before the advent of surveys that could measure clustering and

lensing for large galaxy samples, the observation of tight dynamical scaling relations was

the best clue that galaxy and halo properties were tightly connected. These have contin-

ued to provide interesting constraints on galaxy formation models (Governato et al. 2007;

Somerville et al. 2008); for example simultaneously matching clustering, abundance, and

the Tully-Fisher relation has been challenging. Recently, studies have begun to combine

these constraints to test empirical models (Desmond & Wechsler 2015, 2017). Although

with current samples these are not yet competitive with clustering to constrain scatter in

the primary galaxy parameter (stellar mass or luminosity) at mass above ∼ 1012M�, they

can provide useful constraints at lower masses and also can constrain the covariate scatter

between e.g. mass and size at fixed halo mass.

Measurement error: We note that most observational constraints on σlogM∗ repre-

sent the quadratic sum of intrinsic scatter and measurement scatter. The uncertainties in

estimating stellar mass are much discussed (e.g., Conroy, Gunn & White 2009), and typical

uncertainties in M∗ range from 0.2–0.3 dex (Mobasher et al. 2015). However, these un-
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Figure 8: Scatter in the stellar mass of central galaxies at a given halo mass from various

theoretical and empirical models. Models include four hydrodynamical simulations, Mas-

sive Black II (Khandai et al. 2015), Eagle (McAlpine et al. 2016) and two IllustrisTNG

simulations (Pillepich et al. 2018) (colored circles connected by thin solid lines); four semi-

analytic models, from Henriques et al. (2015), Lu et al. (2014), Somerville et al. (2012),

and the SAGE model from https://tao.asvo.org.au/tao/ (thick solid lines); and three

empirical models, from Behroozi et al. (2018), Becker (2015), and Hearin & Watson (2013)

(dashed lines).

certainties represent a combination of scatter and overall biases in stellar mass estimates.

While the former contributes to σlogM∗ , the latter does not. Tinker et al. (2017a) estimated

a lower limit to the observational scatter to be 0.11 dex for their stellar masses, yielding

an upper limit to the intrinsic scatter of 0.16 dex. Further understanding of measurement

scatter will enhance our ability to constrain the intrinsic σlogM∗ .

5.2.1. Comparison with galaxy formation models. How do these constraints compare to the

scatter we expect from physical models of galaxy formation? Figure 8 shows σlogM∗ as

a function of Mh for a range of models, including cosmological hydrodynamic simulations

of galaxy formation, semi-analytic galaxy formation models, and empirical models. As

discussed in the previous section and as shown in Figure 7, several recent measurements

indicate that the scatter in stellar mass at fixed halo mass is quite well constrained to be

below 0.2 dex at the high mass end, likely below 0.16 dex when considering only the intrinsic

scatter predicted by these models. This is in good agreement with current predictions from

hydrodynamical simulations, as well as with some of the empirical models. We note however

that all of the semi-analytic models shown here, as well as the Behroozi et al. (2018) model

which traces galaxy star formation through dark matter merging histories, have somewhat

larger scatter at the high mass end. This may be due to inadequate correlation between
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when galaxies are quenched and the properties of halos at that time; it will be important

to understand what differences in the physical parameterizations lead to this difference.

Thus far we have discussed primarily the regime above the pivot point around M =

1012, where the scatter is well constrained by several observational measures. As seen in

Figure 7, at present, clustering, group catalogs, and satellite kinematics only produce

strong constraints above this regime, although the tightness of galaxy scaling relations

provide some constraint at lower masses. At halo masses above ∼ 1012.5M� where the

observational constraints are most robust, most models do predict roughly constant scatter.

At lower masses, most models predict increasing scatter, though care must be taken with

resolution effects (for example, if the merger histories are measured with low resolution, this

may create artificial scatter) and also with definitions — which scatter is being considered?

When considering scatter at the lowest masses, down to the dwarf scale, we have very little

direct observational information about the scatter of central galaxies, and many studies

(both observational and theoretical) have so far considered primarily the scatter of satellites

within the Milky Way or similar simulated galaxies. Here then, it is important to distinguish

scatter due to satellite stripping from scatter due to the formation processes for central

galaxies. For example Munshi et al. (2017) claim to find high scatter in low mass galaxies,

but in fact show rather small scatter, σ < 0.25 dex, for the pre-stripped quantities. Overall,

the evidence suggests that there is slightly more scatter in the stellar masses of dwarf

galaxies; understanding how large this scatter is a critical piece of tests of the CDM model

in this regime and will be a major area of future work as samples of dwarf galaxies increase

(Bullock & Boylan-Kolchin 2017).

5.3. Evolution

Above we have primarily focused on the galaxy–halo connection in the local universe, where

it is accurately constrained by the abundance and detailed clustering properties of galaxies.

How do we expect it to evolve? Stellar mass functions have been measured up to z ∼ 8,

allowing abundance matching to be applied over the majority of the history of the universe.

The first study to investigate the evolution of the SHMR over most of cosmic time was

performed by Conroy & Wechsler (2009) who used abundance matching at individual epochs

combined with information about halo accretion over time to infer the evolution of the

SHMR and galaxy assembly histories. This has since been extended by other authors using

halo merger trees directly, as well as extensive updated information on the populations of

high redshift galaxies.

The primary conclusion from a range of studies is that the star formation efficiency,

defined here as the ratio of the star formation rate divided by the mass accretion rate, is a

strong function of mass, peaking at roughly 1012M�, but a very weak function of redshift.

This is shown in the left panel of Figure 9, based on the results of Behroozi, Wechsler

& Conroy (2013b), which synthesized a range of measurements. This study found that

two-thirds of all star formation occurs in a relatively narrow range of halo masses. We note

that the halo mass accretion rate is declining with time, so the star formation rate itself is

significantly higher for a galaxy at a given stellar mass at higher redshift. A typical galaxy

that lives in a massive halo today started forming stars early, but then at relatively early

times moved out of this efficient mass range. A typical galaxy in a smaller halo started

forming stars later, but spends a longer region in this regime of efficient star formation.

The resulting SHMR as inferred by the study of Behroozi et al. (2018) is shown in the right
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Figure 9: Left: Star formation efficiency (defined here as the star formation rate divided

by the halo mass accretion rate) as a function of halo mass and redshift. Two thirds of all

star formation occurs in within a factor of three of the peak halo masses. From Behroozi,

Wechsler & Conroy (2013b). Right: Evolution of the SHMR with redshift as inferred from

the empirical model of Behroozi et al. (2018).

hand panel. Somewhat surprisingly, the SHMR evolves rather little with time; the peak

of the relation is nearly constant to z ∼ 3. Because low mass galaxies are still building

up, their stellar mass to halo mass ratio increases over this time. Above z ∼ 3, nearly all

galaxies are still forming stars efficiently, and it is unclear whether the SHMR turns over

and declines at the highest masses.

Galaxy clustering and galaxy lensing can be used to test these models out to higher

redshift. This has been done using clustering alone in surveys like BOSS, DEEP, and

PRIMUS out to z ∼ 1 both for typical ∼ L∗ galaxies (Zheng, Coil & Zehavi 2007; Coil

et al. 2008; Abbas et al. 2010; Tinker & Wetzel 2010; Wake et al. 2011; Skibba et al.

2015) and for massive galaxies (Wake et al. 2008; Zheng et al. 2009; White et al. 2011;

Guo et al. 2014; Zhai et al. 2017). Clustering and lensing were combined to constrain

the SHMR in COSMOS out to z ∼ 1 (Leauthaud et al. 2012). Lensing by itself can also

provide constraints at higher redshift (Hudson et al. 2015), although these constraints can

be significantly tightened by bringing in measurements of clustering and/or the stellar mass

function (van Uitert et al. 2016). We expect that the current and next generation of large

imaging and spectroscopic surveys will dramatically increase the statistical power of these

constraints to higher redshift.

5.4. How does assembly bias manifest observationally?

In models of galaxy assembly bias, star formation efficiency may depend on halo properties

other than halo mass. The consequence of such a secondary correlation would be that the

residuals of the SHMR would correlate with other halo properties. Observationally, this

could impact the clustering of galaxies as a function of stellar mass. Such an effect has

been searched for by a number of authors. Lehmann et al. (2017) and Zentner et al. (2016)

have fit z = 0 clustering measurements using models that include secondary halo properties.

Lehmann et al. (2017) used the composite abundance matching method, whereas Zentner

et al. (2016) used the enhanced HOD method. Both models used halo concentration as their

secondary halo property. Both found at least one luminosity threshold sample that preferred
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a model in which galaxy occupation depended on c in such a way to increase the chance of

finding a central galaxy in higher concentration halos, thus boosting the clustering of the

model galaxies. This is in agreement with some results from both semi-analytic models and

cosmological hydrodynamic simulations, which we present in §6.

A significant caveat to both of these analyses is that they are performed at a fixed cos-

mology. The amplitude of galaxy clustering for a fixed HOD is sensitive to the amplitude

of dark matter fluctuations, which can be influenced by σ8, Ωm, and to a lesser extent

other cosmological parameters. Thus it is an open question whether galaxy assembly bias

is required to match the observed level of galaxy clustering over the entire range of cos-

mological parameter space currently allowed by cosmic microwave background and other

large-scale structure probes. Alternatively, if one’s goal is to constrain cosmology from

analysis of non-linear clustering, galaxy assembly bias can be degenerate with changes in

cosmological parameters. Thus, robust analyses of small-scale galaxy clustering must take

galaxy assembly bias into account in order to yield robust cosmological constraints.

5.5. Systematic uncertainties

As the statistical power of the data constraining the galaxy–halo connection increases, it

is important to consider the impact of both observational and theoretical systematic errors

on these constraints. Here we mention a few of the most important of each.

5.5.1. Observational systematics. It is worth noting that definitions and measurement un-

certainties can matter both qualitatively and quantitatively. A particularly important sys-

tematic error is the fact that in large imaging surveys, the surveys have surface brightness

limits and imperfect pipelines that can lead to mis-estimates of the total mass of a galaxy.

For some time, most of the low redshift estimates of the SHMR were based on stellar

mass and clustering estimates of SDSS data. These studies may have underestimated the

stellar mass/luminosity of brightest cluster galaxies by factors of several at the massive

end (Kravtsov, Vikhlinin & Meshcheryakov 2018; Bernardi et al. 2017; Huang et al. 2018).

There are several related issues that can impact this estimation. Differences in the estima-

tion of sky subtraction dominate, but modeling the outer profiles of galaxies, distinguishing

between central galaxies and the intracluster light (Conroy, Wechsler & Kravtsov 2007),

and the estimation of stellar masses themselves can also contribute. The high mass end of

the SHMR has important consequences for inferences about cooling rates and feedback in

massive galaxies, and studies that were based on these earlier results should be re-evaluated

in this light. In particular, based on more recent estimates that indicate increased mass

estimates of massive galaxies, group and cluster mass halos should be expected to host

larger central galaxies than earlier estimates would have indicated, for example scaling as

M∗ ∼ M0.4
h ; this can be seen in the estimate of the SHMR in Figure 2 from Kravtsov,

Vikhlinin & Meshcheryakov (2018) and Behroozi et al. (2018) compared to previous es-

timates. An additional uncertainty is due to possible changes in the stellar initial mass

function at high mass and as a function of radius within a galaxy (Bernardi et al. 2017;

Kravtsov, Vikhlinin & Meshcheryakov 2018). These systematics can impact the need for

effective feedback at the massive end, so they are directly relevant to physical inference

from the SMHR.
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5.5.2. Theoretical systematics. Although gravity is a well-understood process, the results

of cosmological N -body simulations are still subject to systematic errors that can impact

the predictions of models of the galaxy–halo connection. These errors fall into two main

categories: resolution and substructure disruption, and robustness of halo finding and track-

ing.

Lack of spatial and temporal resolution can limit the ability of a simulation to resolve

substructure within halos, even with proper mass resolution (see, e.g., Moore, Lake & Katz

1998; Klypin et al. 1999; Ghigna et al. 2000). van den Bosch (2017) estimates that roughly

80 per cent of all subhalo disruption is numerical rather than physical, which may be due

to inadequate force softening in simulations (van den Bosch & Ogiya 2018; van den Bosch

et al. 2018). Lack of subhalos equates to lack of satellite galaxies, which can cause models

to compare poorly to clustering measurements, or alternatively can drive model selection

to parameters that artificially increase the number of satellites. To account for this, some

studies incorporate ‘orphan’ subhalos which algorithmically follow the estimated path of

disrupted substructure. In some semi-analytic models, the fraction of galaxies represented

by orphans can be 10–30% (Pujol et al. 2017). To control for this in abundance matching,

studies like that by Reddick et al. (2013) and Lehmann et al. (2017) have compared results

from simulations with various resolutions to limit data comparisons to regions in which

numerical results are converged, although caution is still warranted given these findings on

disruption.

Even if substructure is properly resolved in a simulation, identifying and tracking the

substructure robustly can still be a challenge. Many theoretical models require knowledge

of the full history of a given halo or subhalo to properly assign its galaxy. Commonly used

algorithms such as Rockstar (Behroozi, Wechsler & Wu 2013) and Subfind (Springel

et al. 2001) do not always yield the same results. Comparisons of different substructure-

finding codes, such as Onions et al. (2012) and Muldrew, Pearce & Power (2011) find

generally consistent results, with caveats for when the number of particles in a subhalo

becomes small (e.g. less than 50 particles) and when a subhalo passes through the center

of a parent halo. In addition to just finding the subhalos, there is also the need to trace

their merger histories. Srisawat et al. (2013) compared different merger tree codes, finding

distinct results from different codes run on the same simulation. That work proposes a list

of necessary features that all codes should contain to produce robust results.

6. CURRENT CONSTRAINTS ON SECONDARY PROPERTIES IN THE
GALAXY–HALO CONNECTION

Models of the galaxy–halo connection that parameterize this relationship using Mh only

have been highly successful in modeling observational data. However, the question remains

of just how far the mass-only approach can go to represent the observed galaxy distribution

when incorporating galaxy properties other than M∗ and luminosity. The main emphasis of

this section is on models of galaxy bimodality: dividing the observed population into blue,

star-forming objects and red-and-dead passively evolving galaxies. §6.1 reviews current

constraints on the SHMR divided along these two lines, while §6.2 reviews the pursuit of

observational signatures of galaxy assembly bias in galaxy bimodality and galaxy properties

other than mass. §6.3 discusses how the galaxy–halo connection can explain the observed

correlation between bimodality and large-scale environment. Finally, §6.4 discusses the

correlation between galaxy size and halo mass.
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Figure 10: The ratio of the SHMR for quenched (red) and star-forming (blue) galaxies at

z = 0 from various analyses in the literature. All results are for central galaxies only. As

the figure demonstrates, there is not yet consensus between approaches. Results here come

from Zu & Mandelbaum (2016), Rodŕıguez-Puebla et al. (2015), More et al. (2011), Moster,

Naab & White (2018), and Behroozi et al. (2018). See the text for discussion of the various

methods involved. The solid black line with open circles is the prediction of the passive

quenching model. Each of these studies separately constrain the SHMRs for star-forming

and passive galaxies, but here we plot the ratio for brevity.

6.1. Stellar-to-Halo Mass Relations for star-forming and passive central galaxies

At present, there is no consensus on the difference in SHMRs between star-forming (blue)

and passive (red) central galaxies at z = 0. Several examples of estimates of this ratio

as a function of halo mass are shown in Figure 10. All of these data are based on the

SDSS galaxy sample, but they represent a myriad of analysis techniques, including satel-

lite kinematics (More et al. 2011), empirical abundance modeling (Moster, Naab & White

2018), two-point clustering and abundances (Rodŕıguez-Puebla et al. 2015), a combination

of weak lensing with clustering (Zu & Mandelbaum 2016), and the forward-modeling Uni-

verse Machine of Behroozi et al. (2018). All of these analyses constrain the SHMRs for

both subsamples, but for brevity we plot their ratio. These studies find a range of results,

including that the quantity M∗red/M∗blue can be both above or below unity, with one study

finding no difference in the SHMR for the two sub-populations. Conditional abundance

matching models of color make different predictions depending on the exact procedure and

which halo properties are chosen to match to. Different models can predict, at fixed Mh,

that passive galaxies can be either more massive, less massive, or the same as star-forming

galaxies.

As a simple benchmark for interpretation and comparison to observations, the connected
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open circles represent a passive quenching model. In this model, galaxies come off the star-

forming sequence randomly and evolve passively, independently of their halo’s growth—i.e.,

the galaxy within a fast-growing 1012 M� halo is just as likely to quench as a slow-growing

halo of the same mass. Between z = 1 and z = 0, the halos grow independently of the

state of their central galaxies: the red-sequence galaxies have minimal stellar mass growth,

whereas the star-forming galaxies continue to add to their stellar mass. Thus, even if

SHMRred/SHMRblue = 1 at z = 1, by z = 0 they will be different. The red galaxies will

be less massive than the blue galaxies at fixed Mh. The predictions of this model are also

shown in Figure 10. The indicated trend with mass is expected from the buildup of the red

sequence; passive central galaxies at low M∗ have only recently arrived on the red sequence,

but massive galaxies quench at very early times, thus there is a large fraction of the age

of the universe over which blue galaxies can build up substantially more mass than the

quenched galaxies in the same halos.

To yield a M∗red/M∗blue ratio different than the passive model, the assumption that

galaxy quenching is uncorrelated with halo formation history must break down. Whether

or not this breakdown yields galaxy assembly bias in galaxy bimodality—which we have

defined as a spatial correlation of galaxy properties (other than mass) at fixed Mh—is an

open question we examine further in this section. Current constraints clearly deviate from

the predictions of the passive model. However, given the lack of agreement between z = 0

studies, we conclude that the M∗red/M∗blue ratio and its dependence on halo mass remains

an open question.

The differences in these results may come from a myriad of sources. In each approach

there are different modeling assumptions, and each uses different statistical quantities to

constrain the SHMRs. Each uses different estimates of galaxy stellar mass. Moster, Naab &

White (2018) and Behroozi et al. (2018) use star-formation rate to classify galaxies, whereas

the other studies use broadband colors, which can lead to heterogeneous samples. To create

progress, each of these assumptions will have to be tested to understand the impact on the

SHMR constraints.

One question there is near-consensus on is: Does the SHMR for star-forming galaxies

have a pivot point? This question is important because it has consequences for galaxy

feedback and the source of the pivot point in the overall SHMR—is the overall pivot point

due to more massive galaxies being quenched, or do star-forming galaxies also undergo a

transition at 1012 M�, above which star formation is less efficient even though they are

actively star-forming? With the exception of the results from satellite kinematics, which

have large error bars at high Mh, all of the analyses in Figure 10 find that star-forming

galaxies do indeed have a pivot point.

The preceding discussion has focused on central galaxies, but satellite galaxies are a

major component of the quenched population. Analyses from groups and clusters find that,

at all M∗, satellites have a higher quenched fraction than centrals, and that at fixed M∗,

the quenched fraction of satellites monotonically increases with Mh (see, e.g., Yang, Mo &

van den Bosch 2008; Peng et al. 2010; Wetzel, Tinker & Conroy 2012; Wetzel et al. 2013;

Wang et al. 2018). The interpretation of this is that the quenching efficiency of satellites

is higher than that of central galaxies. Indeed, while there are quenched satellite galaxies

at any value of M∗, Geha et al. (2012) found that below the limit of M∗ ≈ 109 M�, no

isolated central galaxies are quenched.
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6.2. How does assembly bias manifest observationally for secondary properties?

If secondary galaxy properties correlate with secondary halo properties that exhibit as-

sembly bias, then this could be detectable in the spatial distribution of galaxies. In this

subsection we review results of observational signatures of galaxy assembly bias, focusing on

galaxy quenching and galactic conformity. We further compare recent results to predictions

from galaxy formation models.

6.2.1. Galaxy assembly bias and galaxy quenching. Most emphasis to date regarding obser-

vational signatures of galaxy assembly has focused on the galaxy bimodality and whether

a galaxy is star-forming or quenched. We demonstrated in the preceding section that stud-

ies of the SHMRs for star-forming and passive galaxies are inconclusive. Here we review

searches for galaxy assembly bias by directly probing the spatial distribution of galaxies.

There have been a number of investigations looking for assembly bias in the clustering

of red and blue galaxies using group catalogs to estimate halo mass, including Yang, Mo &

van den Bosch (2006); Wang et al. (2008); Lacerna, Padilla & Stasyszyn (2014). We regard

these results as too susceptible to biases from the group catalog to be reliable. Campbell

et al. (2015) looked in detail at the results of state-of-the-art group finders and how they

assign halo masses to galaxies separated by color. They found that halo masses can be

highly biased, possibly explaining differing results in the previous studies. Additionally,

Lin et al. (2016) used weak lensing to determine unbiased halo mass estimates of galaxy

groups—using the Yang, Mo & van den Bosch (2009) group catalog—split into red and

blue central galaxies. Lin et al. (2016), focusing on groups at Mh ∼ 1012 M�, found that

groups labeled with the same halo mass from the group finder yield different lensing signals,

indicating larger halo masses in the groups with red central galaxies. Thus, using the halo

masses assigned by the group finder could lead to a spurious detection of assembly bias by

yielding a higher clustering amplitude for the groups with red centrals. In contrast, when

using lensing measurements to create samples with the same Mh, the clustering of groups

with red central galaxies was the same as the clustering of groups with blue central galaxies.

6.2.2. Galactic Conformity. Galactic conformity is the phenomenon that the properties of

neighboring galaxies are correlated with—i.e., they ‘conform to’—the properties of nearby

central galaxies. Conformity studies are usually focused on the color or star formation rates

of galaxies. They are divided into two distinct, but possibly correlated, spatial regimes:

When the neighboring galaxies of a given central are within the same dark matter halo,

this is called one-halo conformity. When the neighboring galaxies are outside the halo virial

radius of the central galaxy, this is called two-halo conformity. Conformity can be quantified

in a number of ways, but a straightforward test is to look at central galaxies of a given M∗,

divided into star-forming and passive samples. The quenched fractions, fq, of neighbors is

measured around each of the central subsamples. If fq for the neighbors around passive

centrals is higher than fq for the neighbors around star-forming centrals, this is a detection

of conformity.

The attention on galactic conformity is driven in part by the possible connection to

halo and galaxy assembly bias. For the one-halo term, it is possible to posit quenching

mechanisms for central galaxies that also impact the quenching efficiency of satellites. In

such a model, the conformity need not be related to assembly bias. But if quenching of

central galaxies is related to halo formation history, then it will also be related to the

accretion history of satellites—i.e., old parent halos will have old central galaxies as well
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Figure 2. Similar to the middle panel in Figure 1, except that

� fpassive of Mr19-SDSS is compared to the distribution of mea-
surements from mock catalogues rather than randomly shu✏ed

data. Top panel : The solid black line corresponds to the � fpassive
in Mr19-SDSS. The shaded contours show the 1�, 2�, and 3�
ranges of � fpassive calculated from 100 mock catalogues with no

built-in conformity. Bottom panel : Normalised residuals of � fpassive
with respect to the mock catalogues. The solid black line shows

the di↵erence between � fpassive for Mr19-SDSS and the mean of

the mocks, divided by the standard deviation of the mocks. The
shaded contours show the 1�, 2�, and 3� ranges of the mocks in

this normalised space.

in any conformity analysis. Moreover, it is necessary to use a
large suite of mock catalogues to properly specify the distri-
bution of the null model. A few of our 100 mock catalogues
do not display spurious conformity signals and so if we had
only used one mock that happened to lack any conformity
signals, we would have come to the wrong conclusion about
the significance of our conformity detection. Our result calls
into question previous claims of 1-halo conformity detec-
tions, especially from papers that used similar group-based
methods as ours, including the original detection by W06.

3.1.2 M(rp) for 1-halo Conformity

We now move to the second statistic that we are using to
probe galactic conformity, the“marked correlation function”,
M(rp). Since the M(rp) can be more sensitive than binary
statistics, and can potentially uncover the scale dependence
of any correlations (see discussion in §2.5), the M(rp) is
well-suited to exploring the correlations between central and
satellite galaxies.

We evaluate M(rp) for the three galaxy properties, i.e.
(g� r) colour, sSFR, and Sérsic index, in di↵erent bins of
Mgroup. Each galaxy pair is comprised of a central galaxy
and a satellite galaxy of the same galaxy group, and the pro-
jected distance, rp, is the distance between the two member
galaxies. We then take the product of the ‘marks’ of the two
galaxies and average this over all pairs in bins of rp. The

mark for each galaxy is just the value of its property (e.g.,
colour) normalised by the mean value over the whole popu-
lation of similar galaxies. We do this in two ways. First, we
normalise using the mean of all central or satellite galaxies
in the same bin of Mgroup. For example, the colour of each
central (satellite) galaxy is divided by the mean colour of all
central (satellite) galaxies that live in similar mass groups.
M(rp) then measures the correlation coe�cient between the
normalised colours of central and satellite galaxies. Since
this measurement is done in rp bins, it is sensitive to ra-
dial gradients in the properties of satellite galaxies within
groups, typically referred to as segregation. For example, if
groups contain colour segregation in the sense that satellite
galaxies in the central regions of groups tend to be redder
than satellite galaxies in the outskirts of groups, thenM(rp)
will be larger than unity in bins of small rp and less than
unity in bins of large rp. Such a radial segregation e↵ect
will masquerade as a 1-halo conformity signal. To account
for this, we do a second normalization where the properties
of satellite galaxies are normalised by the mean values of
all satellites that live in the same bin of both Mgroup and
rp. Measured in this way, M(rp) is not sensitive to radial
segregation and so values di↵erent from unity are direct in-
dications of conformity.

To assess the statistical significance of a conformity sig-
nal, we use the same shu✏ing technique described in §3.1.1.
Randomly shu✏ing the marks of galaxies erases any correla-
tions that are present between central and satellite galaxies
within each bin of Mgroup. As a result, the measured M(rp)
contains no real signal by construction and any values that
di↵er from unity must be due to noise. We perform the shuf-
fling 1000 times and confirm that distribution of shu✏ed
values M(rp)shu✏e is consistent with being Gaussian, so we
use their standard deviation to calculate the 1�, 2�, and 3�
ranges. Once again, for each measurement of M(rp) on the
un-shu✏ed data, we calculate the residual with respect to
the shu✏ed data.

Res =
M(rp)�M(rp)shu✏e

�shu✏e
(10)

This is similar to the residuals in equation (8).
Figure 3 showsM(rp) of (g� r) colour (left), sSFR (cen-

tre), and Sérsic index (right), as a function of projected dis-
tance, rp, with each row corresponding to a bin of Mgroup.
In this figure, we only show bins with Mgroup > 1012.4 h�1M�
since these exhibited the largest signals in the quenched
fraction di↵erence statistic for colour and sSFR, as shown
in Figure 1. In the top part of each panel, the black, solid
line corresponds to the M(rp) of SDSS galaxies, when prop-
erties are normalised within bins of rp in order to remove
e↵ects of radial segregation. For comparison purposes, the
grey dashed line corresponds to the case when the segrega-
tion e↵ect is included, i.e., the contributions for the M(rp)
results are coming from both galactic conformity and the
segregation e↵ect. The shaded regions correspond to the 1�,
2�, and 3� ranges of the distribution ofM(rp) values for the
shu✏ed cases. However, these shu✏e results are analysed by
normalizing properties within bins of rp, so only the black,
solid lines can be compared to the shaded region. We do not
show the shu✏e results that correspond to the grey, dashed
lines. The bottom part of each panel shows the residuals of
each M(rp) with respect to the shu✏es, as defined in equa-
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Figure 11: Left Panel: One-halo conformity. The connected black points are measurements

of ∆fq from SDSS groups, defined as the difference in the quenched fraction of satellite

galaxies when the central galaxy is passive and when it is star-forming (see text for further

details). ∆fq > 0 nominally indicates conformity. The shaded regions indicate 1-3σ con-

tours from repeating the analysis on mock catalogs with no intrinsic conformity in them.

The positive value of ∆fq is consistent with that found in mocks, indicating that the con-

formity seen in the data is from biases in the group catalog. Figure taken from Calderon,

Berlind & Sinha (2017). Right Panel: Two halo conformity signal in SDSS galaxies as a

function of scale. The curves show the median specific star formation rates (SSFR) for

neighbors around central galaxies that are binned by their own SSFR. The bins are de-

fined by their rank order in SSFR as indicated in the panel. The SSFR of the neighbors is

measured as a function of projected separation from the central galaxy. The dashed curves

show the result of Kauffmann et al. (2013), which was reproduced in Tinker et al. (2018).

The solid curves show the result after removing a small number of satellite galaxies that

the Kauffmann isolation criteria did not reject. Figure taken from Tinker et al. (2018).

as old subhalos. Additionally, Hearin, Watson & van den Bosch (2015) proposed two-halo

galactic conformity as a sensitive test of galaxy assembly bias. The formation histories

of neighboring halos are correlated. Thus, if these formation histories are correlated with

quenching mechanisms, two-halo conformity will be present. It is possible to have one-halo

conformity without the presence of two-halo conformity, but two-halo conformity by itself

necessarily produces a one-halo effect: the satellites in the z = 0 universe were themselves

once neighbors in the field before being accreted.

The first detection of conformity was presented by Weinmann et al. (2006), looking at

satellites (the neighbors) around central galaxies in the 1-halo regime using a galaxy group

catalog from z = 0 SDSS data. They found that, at fixed halo mass, the fq of satellite

galaxies was higher when the central was quenched itself, with ∆fq ∼ 0.1–0.2 between

passive and star-forming central galaxies. Other analyses have found similar results (e.g.,

Knobel et al. 2015; Kawinwanichakij et al. 2016; Berti et al. 2017). However, subsequent

studies have examined possible systematic biases in the use of the group catalogs to identify

halos. Campbell et al. (2015) demonstrated that errors in the estimated halo masses can

create a false 1-halo conformity signal. Calderon, Berlind & Sinha (2017) showed that the
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1-halo ∆fq found in SDSS data was consistent with this false signal, which is shown in left

panel of Figure 11. These tests assessing the impact of observational biases do not take

into account the possibility that quenched central galaxies live in more massive halos at

fixed M∗, which would also induce a 1-halo conformity signal with no galaxy assembly bias,

as found in the semi-analytic galaxy model of Wang & White (2012).

The first detection of two-halo conformity was presented by Kauffmann et al. (2013).

Their approach to conformity was to identify central galaxies through an isolation criterion,

then rank order the central galaxies by their specific star formation rates (sSFRs) and

calculated the median sSFR of neighbor galaxies for each quartile in the central sSFR. The

measurements showed a substantial decrease in the sSFR of neighbor galaxies around the

lowest star-forming central galaxies out to 4 Mpc. However, further studies by Tinker et al.

(2018) and Sin, Lilly & Henriques (2017) have shown this effect to be primarily a selection

bias in the isolation criterion. The right-hand panel in Figure 11 compares the original

Kauffmann et al. (2013) result to a new analysis when the small fraction of satellite galaxies

are removed from the original sample of ‘isolated’ galaxies.

Other studies using quenched fractions (Berti et al. 2017) and marked correlation func-

tions (Calderon, Berlind & Sinha 2017) have found statistically significant two-halo signals,

but are small in their actual amplitude, implying ∆fq ∼ 1%. At this level, it is not clear if

the conformity signals found indicates galaxy assembly bias or if they can be explained by

various systematic issues (Tinker et al. 2018). Using the conditional abundance matching

framework of Hearin & Watson (2013), Tinker et al. (2018) compared various implementa-

tions of the age-matching model to measurements of two-halo conformity in SDSS galaxies.

The low level of two-halo conformity measured in SDSS is inconsistent with a model in

which galaxy quenching correlates strongly with halo formation time or similar secondary

halo properties. Current data cannot rule out any correlation between these two quantities

a z = 0, but the correlation can only be weak at best. Similar conclusions were reached by

Zu & Mandelbaum (2016), Zu & Mandelbaum (2018), and Tinker et al. (2017c).

6.2.3. Comparison with physical models. Results from the EAGLE hydrodynamic simula-

tion (Matthee et al. 2017) and semi-analytic models (Croton, Gao & White 2007; Tojeiro

et al. 2017) both show a clear correlation of halo age with total stellar mass of the central

galaxy. At fixed Mh, early-forming halos form more massive galaxies, whereas later-forming

halos form less massive ones. This theoretical prediction is in agreement with Zentner et al.

(2016) and Lehmann et al. (2017), both of which claimed to detect galaxy assembly bias

in the total stellar mass of galaxies (under the assumption that more massive galaxies are

brighter, which is true for star-forming galaxies but less clear for a mixture of active and

passively evolving galaxies).

Analyzing star-forming central galaxies (i.e., removing all passive galaxies from the sam-

ple) from an SDSS group catalog, Tinker et al. (2017b) found a correlation between SSFR

and large-scale density at fixed M∗. These observations were consistent with a conditional

abundance matching model in which sSFR was matched to halo growth rate: faster growing

halos corresponded to higher-than-average star formers. This agrees with the basic ansatz

of empirical models based on using the time-dependent SHMR to infer galaxy sSFR. Note

that these results would not imply large-scale conformity in the quenched fraction of galax-

ies, since this is only found within the star-forming sub-population. Behroozi, Wechsler &

Conroy (2013a) and Moster, Naab & White (2013) predict that the efficiency of converting

accreted baryons into stars for halos with Mh < 1012 M� peaks at late times. For halos with
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the same z = 0 value of Mh, late-forming halos accrete a higher fraction of their baryons

at late times, when this baryon conversion efficiency is maximal. Thus, late-forming halos

should have higher stellar masses than early-forming halos, an opposite effect from that seen

in the theoretical models. To resolve this situation, further analysis is needed on both the

theoretical and observational sides; analyses of clustering using stellar-mass limited sam-

ples, marginalizing over cosmological parameters, are required. Predictions of observables

from the theoretical models need to be quantified. Observational methods of determining

individual halo masses of low-mass field galaxies would be a particularly useful tool.
ELUCID: Galaxy Quenching and its Relation to Environment 17

Fig. 19.— The same as Figure 5 but obtained from Model B. The gray lines are exactly the same curves as in Figure 5.

paper III), and here we make use of the information it
provides to estimate the formation redshifts for individ-
ual groups. To do this, for each group, we search all halos
in the simulation that have mass differences less than 0.3
dex with, and distance less than 5 h−1Mpc to, the group
in question. Most of the groups (∼ 97.4%) have at least
one halo companion defined in this way, and we assign
the formation redshift of the nearest halo to the group.
The formation redshift is defined as the highest redshift
at which half of the final halo mass has assembled into
progenitors more massive than 1011.5 h−1M⊙ (see Neis-
tein, van den Bosch & Dekel 2006; Li et al. 2008). The
choice of this mass limit is motivated by the fact that it
corresponds to the halo mass at which the star formation
efficiency is the highest at different redshifts (see Lim et
al. 2017). For groups with log(M/ h−1M⊙) < 12.0 that
do not have accurate halo mass estimates in the Yang et
al. (2007) group catalog, we only search for halo com-
panions with 11.7 < log(M/ h−1M⊙) < 12.0, where the
lower mass limit (11.7) is adopted so that all halos have
reliable estimates of halo formation redshifts in the ELU-
CID simulation. We have also used other definitions of
halo formation redshift, such as the redshift at which
the main progenitor reaches half of the present-day halo
mass. The results are very similar. We refer the reader
to paper III for the construction of halo merger trees in
ELUCID, which we use to obtain the formation redshifts.

A third model, Model C, is then constructed on top
of Model B. In Model C, the quenching probability of
a model galaxy depends not only on galaxy and halo

masses, but also on the formation redshift of its halo.
The simplest way to link zf to quenching probability is
to assume that a galaxy is quenched when zf > zth, where
zth is a formation redshift threshold. In reality, however,
galaxies with given zf , m and M , must have some dis-
persion in their star formation rate. To mimic this, we
introduce a dispersion in zf for each system before apply-
ing the criterion zf > zth to select the quenched fraction.
In practice, for a galaxy i with zf = zi

f , we use a Monte
Carlo method to generate 500 mock galaxies, with their
formation redshifts (zi

f,m) randomly drawn from a Gaus-

sian distribution with the mean value equal to zi
f and a

width σz. Then, for a given zth, the quenching proba-
bility of the model galaxy, qi, is set to be the fraction of
the mock galaxies that have zi

f,m > zth among the 500
mock galaxies. In order to introduce the dependence on
galaxy mass and halo mass, the threshold zth is required
to be a function of the two quantities, and is determined
by the criterion that the dependence on halo and galaxy
masses for the model galaxies is exactly the same as that
for real galaxies. Note that in our model the formation
redshift dependence is only considered for central galax-
ies; satellites are treated in exactly the same way as in
Model B.

When σz is set to be 0, the dependence of Fq,c(m, ∆)
on ∆ for the model galaxies is found to be much stronger
than that for real galaxies. We have experimented a se-
ries of values for σz, and found that the model matches
the observation the best when σz ∼ 0.8. Figure 21 shows
the quenched fraction as a function of galaxy stellar

Figure 12: The dependence of the galaxy quenched fraction, here expressed as Fq, on large-

scale density, ∆, measured on ∼ 6 Mpc scales. The three panels show the relation for

all galaxies, central galaxies, and satellite galaxies. Open symbols are measurements from

SDSS using the Yang, Mo & van den Bosch (2009) group catalog, whereas solid curves are

predictions from a model in which galaxy quenching is only driven by Mh, and not by ∆

or halo formation history. Adapted from Wang et al. (2018).

6.3. Why do galaxy properties depend on environment?

The correlation between galaxy properties and galaxy environment is well established

(Balogh et al. 2004; Kauffmann et al. 2004; Blanton et al. 2005; Blanton & Berlind 2007).

Properties such as color, star-formation rate, Sersic index, and morphology are each cor-

related with local galaxy density on all measurable scales. The conclusion of these studies

has been that environment mattered most on small scales, and once that environment was

fixed, correlations on larger scales were eliminated. However, no ‘ideal’ scale for environ-

ment to characterized the full dependence could be identified from the data (Blanton &

Berlind 2007; Blanton et al. 2006).

A more comprehensive and physically motivated explanation of the observed correlations

of environment can be obtained through the galaxy–halo connection. Figure 12, taken

from Wang et al. (2018), shows results from the SDSS for the dependence of the quenched

fraction of galaxies on galaxy density, ∆, smoothed over a 5.7 Mpc Gaussian kernel. A
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galaxy group catalog is used to decompose this relation into central and satellite galaxies.

The curves show predictions of a model in which M∗ is assigned to Mh in a manner similar

to abundance matching, but galaxy quenching depends solely on the mass of the host halo.

This model is an good match to the observations for all galaxies (left-hand panel), even

though ∆ is never explicitly used to determine quenching (see also, Peng et al. 2010; Tinker,

Wetzel & Conroy 2011). For low-mass central galaxies, the predictions of the model are

by construction nearly horizontal lines, with predictions for higher M∗ bins curved slightly

by the trend of Mh with ∆ within the M∗ bin, which is stronger at high M∗. This is an

example of spatial correlations in halo mass alone and therefore does not signify assembly

bias. The SDSS measurements for central and satellite galaxies use the group catalog of

Yang et al. (2007). For low-mass centrals, the deviation of the data from a horizontal line

at high ∆ is due in part to misclassification in the group-finding process (Tinker, Wetzel &

Conroy 2011; Tinker et al. 2017c), which may account for the differences with the model

predictions. The strongest correlation with ∆ comes from the satellite galaxies. But this

correlation, once again, is not due to ∆ per se but to the change in the halo mass function

with ∆; higher mass halos live in higher density regions, yielding the strong correlation of

fq with ∆ for satellite galaxies.

Intragroup environment—scales of ∼ 100 kpc or so—also correlates with fq (Blanton

& Berlind 2007; Peng et al. 2010; Wetzel, Tinker & Conroy 2012). This correlation can

also be explained without invoking environment, through the delayed-then-rapid model of

satellite quenching (Wetzel et al. 2013). Older satellites are more likely to be quenched,

and older satellites are more likely to be near the center of the group, where densities are

higher. A model based entirely on time since accretion is consistent with the correlation

between fq and location within the group, although we note that it is not a unique solution

to the problem.

6.4. Galaxy Sizes

An important question is whether galaxy radial size at fixed halo mass is correlated with a

second halo property, and if so what that property is. Classic models of galaxy formation

(Fall & Efstathiou 1980; Mo, Mao & White 1998) have based the radial sizes of galaxies on

the spin of their dark matter halos, and predict that they should be proportional to that

spin and to the size of the halo. However, there have been somewhat confusing signals in

the literature on whether the amount of scatter in sizes at fixed galaxy or halo properties

are consistent with these models, as well as whether the multivariate correlations between

galaxy mass and size at fixed halo mass and radius are what one would predict.

Kravtsov (2013) explored the question of how galaxy size is related to halo properties in

a standard abundance matching model, matching stellar mass to halo mass. They showed

that in this model one obtains an approximately linear relation between the galaxy half-mass

radius and the halo radius, with tight scaling across six decades of mass: Rg ∼ 0.015Rhalo,

with scatter of 0.2 dex and with fairly similar scaling for elliptical and spiral galaxies.

This agrees well with predictions of simple models where galaxy sizes are set by the angular

momentum of their halos. Somerville et al. (2018) compared the conditional size function at

a given stellar mass and concluded that the width of the distribution is roughly consistent

with the ansatz in which galaxy size is proportional to the standard assumption of spin

times the halo size. However, they found a significant trend in the ratio of galaxy size vs.

halo size with both stellar mass and redshift, which is in tension with that ansatz, because
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the spin should not depend strongly on halo mass or redshift. Desmond & Wechsler (2017)

also found that the resulting scatter in the Tully-Fisher relation was larger than one might

expect from these simple models.

The theoretical results of Somerville et al. (2018) and Desmond et al. (2017), using

different techniques, have found an anti-correlation between stellar mass and size at fixed

halo mass, such that smaller galaxies live in more massive halos at fixed M∗. Hearin et al.

(2017) recently proposed a conditional abundance matching model for galaxy sizes, which

came to a similar conclusion based on the clustering properties of small and large galaxies.

This is not by itself conclusive, as galaxy clustering strength is a function of both halo mass

and other properties, including satellite fraction and halo assembly bias. This model is

consistent with measuring a higher lensing signal for larger galaxies at fixed stellar mass as

was found by Charlton et al. (2017), but we caution that this trend may depend on stellar

mass as well as on whether the galaxy samples are color selected. We expect that upcoming

clustering and lensing surveys should be able distinguish these multivariate relations and

their evolution with significantly higher precision.

7. APPLICATIONS OF THE GALAXY–HALO CONNECTION

Parameterized descriptions of the galaxy–halo connection provide an effective way to syn-

thesize diverse datasets, and have wide-ranging application in astrophysics and cosmology.

Below, we highlight three of the major areas in which they have been applied: understand-

ing the physics of galaxy formation (§7.1), inferring cosmological parameters (§7.2), and

probing the properties and distribution of dark matter (§7.3).

7.1. Understanding the Physics of Galaxy Formation

We have discussed several of the key insights into galaxy formation that have been informed

by studies of the galaxy–halo connection, as well as the interplay between physical and

empirical models. We summarize a few of the most interesting aspects here.

• Which halo properties are most important in setting the properties of

galaxies? Constraints on the galaxy–halo connection can give us significant and

robust information about which properties of dark matter halos and their environ-

ments are most important in setting the properties of galaxies. This includes for

example to what extent the star formation rates of galaxies are set by mass, other

structural properties of the halos, properties of the mass accretion history, or large

scale environment.

• Star formation histories and quenching: A new generation of empirical models

is now able to trace galaxy histories through time and constrain them with complex

combinations of data, including the evolution of the SMF, the relationship between

SFR and stellar mass, the evolution of spatial properties with time, and measurements

from galaxy lensing. This has provided significant insight into galaxy star formation

histories and quenching timescales over the full range of observed galaxies. We expect

data taken in the near future will provide larger samples to test the spatial and

lensing properties at higher redshifts, and provide further insight into the physical

mechanisms of star formation and quenching.

• Feedback: The basic shape of the SHMR has been primary evidence for strong feed-

back in galaxy formation, over a range of masses (there is additional direct evidence
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of the processes that lead to this shape, including for example observations of galactic

winds). Although empirical constraints cannot directly probe the physical processes

involved, as these constraints improve, they provide increasingly accurate targets for

the strength of feedback and its dependence on halo mass, redshift, and environment

that any physical model must meet. Particular examples include that the shape of

the SHMR at the massive end constrains the strength of AGN feedback, and the size

of the scatter in the SHMR likely puts constraints on what galaxy or halo properties

are most responsible for halo quenching.

• Downsizing: A persistent puzzle in galaxy formation in the context of ΛCDM was

the observation that although CDM predicts that small halos accrete a larger fraction

of their dark matter at late times than large halos, small galaxies form a smaller

fraction of their stars at late times than large galaxies. This apparent inconsistency

can be understood by the fact that most star formation happens in a fairly narrow

band of halo mass (see Figure 9 and discussion in Conroy & Wechsler 2009 and

Behroozi, Wechsler & Conroy 2013b). A detailed understaning of the combination

of physical effects that lead to this narrow range of efficient star formation is still

missing.

• Merging, galaxy disruption, and the intracluster light: Galaxy merging rates

have long been considered a test of structure formation and are critical for under-

standing how galaxies form, but are highly sensitive to the galaxy–halo connection

for a given halo population (Stewart et al. 2009). Models with constraints on the

galaxy–halo connection over time have made predictions for the buildup of the intr-

acluster light over time and its mass dependence (Purcell, Bullock & Zentner 2007;

Conroy, Wechsler & Kravtsov 2007). Models for the evolution of the galaxy–halo

connection can also shed light on what fraction of galaxy build-up is due to mergers;

e.g. Behroozi et al. (2018) find this to be a strongly increasing function of mass,

with nearly all of dwarf galaxy buildup due to in situ star formation and most of

present-day massive galaxy buildup due to mergers.

We expect that as we become more able to empirically constrain the relationship be-

tween multi-variate properties of the galaxy–halo connection, constraints on these and other

aspects of galaxy formation physics will improve significantly.

7.2. Inferring Cosmological Parameters

Future galaxy surveys will provide tremendous power for high precision cosmological con-

straints, especially if clustering measurements can be pushed to smaller scales, within the

trans-linear or non-linear regime where the galaxy–halo connection is of increasing impor-

tance. For many statistics, the spatial scale at which the minimum fractional error is

achieved is in the range of 1 ≤ r ≤ 10 Mpc (see discussion of Figure 13). This is true

even for surveys that are specifically designed to probe structure on linear scales, such as

measurements of baryon acoustic oscillations. However, galaxy bias is highly complex at

these scales. Higher-order perturbation theory generally breaks down at scales around 10–

20 Mpc, or at larger scales for redshift-space clustering (Carlson, White & Padmanabhan

2009; Wang, Reid & White 2014). Thus, extracting information out of Mpc scales requires

a model that is fully non-linear. The galaxy–halo connection provides such a model, pro-

vided the model is flexible enough to incorporate any systematic uncertainties, including

the accuracy of predictions for scale-dependent halo clustering, galaxy assembly bias, and
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3x2pt

Figure 13: Top Left: Projected galaxy clustering for five cosmological models that vary σ8.

Each model is able to match the same two-point galaxy clustering but with different halo

occupations. Top Middle: Mean halo occupation for the five cosmological models. Higher

values of σ8 require fewer galaxies in massive halos, because they have stronger matter

clustering. Top Right: Cosmological constraints from the combination of three different

two-point correlations (3x2pt): galaxy–galaxy lensing, shear two-point, and angular galaxy–

galaxy clustering using an LSST-like photometric survey. The different colors indicate the

minimum scale used in the measurements. Bottom panels show three observables that can

break the degeneracy between matter clustering and halo occupation. From left to right,

the panels show redshift-space distortions (RSDs), the mass-to-number ratio in clusters,

and galaxy–galaxy lensing for each of the values of σ8.

the impact of baryonic physics on the abundance and clustering of dark matter halos.

Clustering measurements at small scales are sensitive both to growth of structure and to

the universal expansion rate, thus providing complementary information to test competing

models of cosmic acceleration (see, e.g., the comprehensive review by Weinberg et al. 2013).

In general, the pathway to cosmological constraints using halo occupation methods starts

with measurements of projected galaxy clustering, either through wp(rp) or the angular

correlation function w(θ). Using projected quantities is key because they eliminate the effect

of redshift-space distortions (RSDs). The top-left panel in Figure 13 shows measurements

of the projected clustering of galaxies in the BOSS survey from DR10. The figure shows halo

occupation fits using the analytic model of Tinker et al. (2005) with five different values of

σ8, as listed in the panel (the other cosmological parameters are held fixed). For reference,

the clustering of dark matter is shown for each of these cosmologies. The amplitude of

matter clustering, and thus the bias of the galaxies in the halo occupation model, varies

significantly with σ8, but for each cosmology a good fit can be found to the real-space

two-point galaxy clustering. Thus real-space clustering at these scales provides limited
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information on the amplitude and growth of structure when considered alone. Even though

the real-space clustering is the same, each cosmology requires that galaxies occupy different

halos (as shown in the top-middle panel). Thus, the occupation functions constrained

by wp(rp) can be used to make predictions for statistics that contain more cosmologically

sensitive information. These include RSDs, the mass-to-number ratio of galaxy clusters, and

galaxy–galaxy lensing, which are shown in the bottom panels of Figure 13 and discussed

in more detail below.

Redshift-space distortions. Galaxy redshifts are a function of not just the smooth

Hubble flow but also ‘peculiar’ motions caused by the local gravitational potential, which

causes galaxies to move toward overdensities and away from underdensities. Thus, the

spatial distribution of galaxies in redshift space will have anisotropies due to the amplitude

of the velocity field. The velocity field is, in turn, determined by the amount of matter

in the universe, how clumpy that distribution is, and by the theory of gravity. Current

analyses of RSD yield ∼ 10% measurements of the parameter combination fσ8, where f is

the logarithmic growth of structure and σ8 is the amplitude of matter fluctuations (Alam

et al. 2017). The bottom-left panel in Figure 13 shows the variation in the RSD monopole,

ξ0(r), for the five cosmologies, based on the model by Tinker (2007). This panel also shows

the expected measurement error for a full BOSS-like survey based on mock galaxy catalogs.

As discussed above, the ‘sweet spot’ for optimal measurements is in the 1–10 Mpc regime,

where sample variance is minimized but shot noise due to small number statistics is avoided.

The most constraining power between models comes at r ∼ 1 Mpc, which represents the

transition between pairs of galaxies between two distinct halos and pairs within a single

halo. Galaxy pairs within a single halo have larger relative velocities, leading to significant

suppression of clustering. As can be seen in the mean occupation functions, the fraction of

galaxies that are satellites varies inversely with σ8, thus the model with the largest fsat has

the largest pairwise velocity dispersion at r ∼ 1 Mpc, and the lowest ξ0(r) at this scale.

The mass-to-number ratio of galaxy clusters (M/N): This statistic is analogous

to the mass-to-light ratios of galaxy clusters, but reduced the number of free model pa-

rameters by simply counting the number of galaxies, N , inside a halo. From the mean

occupation functions shown in Figure 13, it is clear that measurements of the mean occu-

pation themselves contain cosmological information. The bottom-middle panel of the figure

shows predictions for M/N from the five cosmologies fit to the DR10 BOSS wp(rp). Here,

the quantity M/N is normalized by the ratio ρcrit/n̄gal, where ρcrit is the cosmological crit-

ical density, and n̄gal is the mean space density of the galaxies in the sample. Points with

errors represent estimates of the uncertainties achievable in a BOSS-like survey at z < 0.3.

Errors in halo masses are taken from the weak lensing analysis of RedMaPPer clusters by

Murata et al. (2018), which are added in quadrature with the expected Poisson noise from

the number of clusters in the survey volume (although the mass estimates dominate the

error bar). M/N and M/L have been effectively used to constrain cosmological parameters

with low-redshift data (van den Bosch, Mo & Yang 2003; Tinker et al. 2012), and new

large-scale redshift and lensing surveys make application to larger volumes imminent. Red-

dick et al. (2014) showed that with current constraining power, simple HODs are sufficient

to obtain unbiased parameter constraints, but as the statistical power increases additional

parameters may be needed.

Galaxy–galaxy lensing: Galaxy–galaxy lensing is a probe of the galaxy–matter cross

correlation, and it is sensitive to both the matter density and amplitude of matter fluc-

tuations. The observational quantity measured by galaxy–galaxy lensing is ∆Σ(Rp), the
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excess surface mass density at Rp, relative to the mean interior density, around a galaxy.

The bottom-right panel of Figure 13 shows how ∆Σ(Rp) varies with σ8 for the models fit

to the BOSS real-space clustering. Observational uncertainties in this quantity are shown

from Leauthaud et al. (2017), which uses deep CFHTLS (Canada-France-Hawaii Telescope

Legacy Survey) imaging in the Stripe 82 field of the BOSS spectroscopic survey. Note that

this survey only covers ∼ 200 deg2, which is only 2% of the full spectroscopic BOSS cata-

log. Even this small area yields constraining power to distinguish these models, indicating

the substantial potential of future combinations of large area spectroscopic and imaging

surveys. Cacciato et al. (2013) and More et al. (2015) have demonstrated the efficacy of

joint clustering and lensing analyses for constraining cosmological parameters in the halo

occupation framework.

3x2pt: As discussed above, combinations of two-point statistics can break degeneracies

in the galaxy–halo connection and provide powerful cosmological information. A recent

study from the Dark Energy Survey (DES Collaboration et al. 2017) used a combination

of galaxy–galaxy clustering, shear-shear clustering, and galaxy-shear clustering to put the

tightest constraints yet on σ8 and Ωm in the local Universe (and see related work by Kil-

binger et al. 2013 and van Uitert et al. 2018). To date, these analyses have assumed linear

bias between the galaxy clustering and matter clustering and exclude small scales where this

assumption is expected to fail from the analyses. However, substantially more constraining

power may be available if the modeling can be extended to smaller scales (Krause & Eifler

2017); a full comparison between constraints with a fully nonlinear modeling approach with

a parameterized galaxy–halo connection and a quasi-linear approach with a smaller number

of bias parameters has yet to be done.

As these examples demonstrate, pushing to smaller scales has significant potential to

improve cosmological constraints from current and upcoming datasets, but there are sig-

nificant challenges to realize this potential, many of which are related to aspects of the

galaxy–halo connection. These include the following:

Modeling in the non-linear regime: Historically, researchers have either used fit-

ting functions for the properties of dark matter halos to model galaxy clustering, or have

used simulations directly when modeling a range of galaxy clustering models within one

cosmological model. Achieving the required accuracy for these fitting functions is espe-

cially challenging in the regime in which there is significant power in the data, 1–10 Mpc.

Methods based on perturbation theory or effective field theory (Perko et al. 2016) may be

effective in the mildly non-linear regime, but they will not be effective in modeling collapsed

regions. The solution may be to emulate the statistics directly (e.g. using techniques similar

to those that Heitmann et al. 2010 used for the dark matter power spectrum), using suites

of simulations combined with flexible models of the galaxy–halo connection.

Assembly bias: As discussed in Section 4.4, our understanding of the detailed depen-

dence of galaxy properties on halo properties other than their mass is still in the early stages,

and improved modeling will be essential to take small-scale cosmology probes that depend

on accurate galaxy clustering models to the next stage. In particular, what is needed is a

modeling framework that is flexible enough to encompass the full range of physically plau-

sible manifestations of the complexities of assembly bias for realistic galaxy populations,

without losing substantial constraining power; this has yet to be demonstrated.

Impact of baryons: Precision cosmology on small-scales will also require understand-

ing the possible range of impacts of galaxy formation and feedback on the matter distribu-

tion itself (Rudd, Zentner & Kravtsov 2008; Semboloni et al. 2011; Schneider & Teyssier
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2015), including its implications for the mass function and clustering of dark matter halos

and subhalos (van Daalen et al. 2011; Sawala et al. 2013; Martizzi et al. 2014). We are still

far from being able to simulate the full range of possibilities over a range of cosmological

models in order to directly emulate these effects using hydrodynamical simulations, so em-

pirical modeling of the effects, informed by our best physical models, will likely remain the

best path forward for the foreseeable future. The primary impact on the power spectrum

can be characterized by a change in galaxy density profiles (Zentner, Rudd & Hu 2008),

but this may not be sufficient for all observable statistics. Additional observables should

be combined to put constraints on the possible amount of feedback; e.g. the small-scale

shear power spectrum (Foreman, Becker & Wechsler 2016) and the SZ profiles of groups

and clusters (Battaglia et al. 2017).

Intrinsic alignments: Weak gravitational lensing (see Mandelbaum 2018 for a recent

review) depends on the spatial correlations between small distortions in galaxy shapes; if

galaxy shapes are aligned with their dark matter halos or with the tidal field, this creates

a systematic error that has to be modeled. Different galaxy populations have been shown

to have different intrinsic alignments, so in detail one would like to model not just the halo

occupation as a function of galaxy properties but also the alignment of galaxies with their

halos (Schneider & Bridle 2010; Blazek, Vlah & Seljak 2015).

Additional aspects: Accurate modeling of the galaxy–halo connection will continue

to be an important feature of the next generation of cosmological studies, even for those

studies that are not pushing to small scales or explicitly including a galaxy–halo connection

model. Examples include the following:

• Understanding the error budget in photometric redshift estimates will require effec-

tively modeling the clustering properties of galaxies as a function of their properties

(Hoyle et al. 2017; Gatti et al. 2017); this is most effectively done directly through

tests with realistic mock catalogs that populate galaxies in halos.

• Realistic modeling of galaxy clustering on small scales will be required to understand

key systematics like fiber selection in spectroscopic surveys and deblending in future

imaging surveys (Chang et al. 2013).

• Systematics in cluster cosmology, for example projection and centering effects that

impact the mass–richness relationship, can depend on the details of the galaxy–halo

connection including its radial distribution and color dependence.

7.3. Probing the Properties and Distribution of Dark Matter

The nature of the dark matter that makes up ∼ 83% of the mass in the Universe is still

unclear, and an understanding of the galaxy–halo connection can facilitate astrophysical

constraints on its nature as well as inform constraints from indirect and direct detection.

Although the ΛCDM model has had remarkable success on large scales, especially e.g. at

larger than the typical sizes of dark matter halos, it is less constrained on smaller scales,

where alternative dark matter models can suppress the power spectrum or change the den-

sity profiles or dynamics of halos (Buckley & Peter 2017). Understanding and marginalizing

over the range of possibilities for the galaxy–halo connection can be critical to robust dark

matter constraints in this regime. More generally, there are wide-ranging problems where

understanding the properties of the dark matter halos of a specific galaxy or population

of galaxies is important, and statistical modeling of the possible halo population of the

galaxies provides a way forward. We give a few examples of these applications here.
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• Dwarf galaxies and other probes of small-scale power in CDM are sensitive to the

physics of dark matter, but these constraints are in many cases degenerate with un-

certainties in the galaxy–halo connection (Lovell et al. 2012; Angulo, Hahn & Abel

2013). There has been significant progress on understanding this interplay in recent

years, due to new observations and improved predictions from hydrodynamical sim-

ulations, as well as more sophisticated modeling of the galaxy–halo connection. We

refer the reader to Bullock & Boylan-Kolchin (2017) for a more detailed discussion.

• One of the key tools used to search for WIMP dark matter is indirect detection

using gamma rays, looking for the high-energy photons that would be emitted by

annihilating dark matter particles in the regions in which they have the highest density

(see Strigari 2013, for a review). The strongest individual sources are the center of

the Milky Way itself and its nearby dwarf galaxies (Ackermann et al. 2015), but

several authors have also considered the stacked signals from groups and clusters of

galaxies. For example, Lisanti et al. (2018b,a) showed that interesting constraints

on the dark matter properties could be obtained by looking for excess Fermi signal

around hundreds of galaxy groups in the low redshift (z < 0.03) Universe. Accurate

mass estimates for the galaxy groups are critical to this estimate, which requires an

understanding of the galaxy–halo connection.

• Is the Milky Way a typical galaxy? Because there are so many measurements that can

only be made within the Milky Way or the Local Group, this is a critical question for

a wide range of science applications. Our increasing understanding of the statistical

galaxy–halo connection has informed our understanding of the cosmological context

of the Milky Way itself. There is evidence that the Milky Way is more compact than

a typical galaxy of its luminosity and circular velocity (Licquia, Newman & Bershady

2016), and also that it may have more bright satellites and more quenched classical

satellites than a typical halo of its mass (Geha et al. 2017; Busha et al. 2011).

• The properties of the Milky Way itself and its relationship to cosmological predictions

is also relevant for measurements of direct detection. In particular, the velocity

distribution function of dark matter halos depends significantly on the mass and

concentration of the halos; these halo properties are best constrained through the

galaxy–halo connection (Mao et al. 2013; Mao, Strigari & Wechsler 2014).

• Gravitational time delays in strong lenses provide a measurement of cosmological

distance (Treu & Marshall 2016). However, additional mass from galaxies and their

halos along the line of sight to the systems can also impact the signal and is an

important systematic uncertainty in these measurements. In this case, one has a set

of galaxies and would like to know the total mass distribution of the halos surrounding

them. This can be done using models of the galaxy–halo connection as discussed in

this review; Collett et al. (2013) showed that knowledge of the external shear could

be improved by 30% using such an approach.

• The predicted amount of substructure in a given system is highly dependent on the

mass and concentration of a given dark matter halo (Mao, Williamson & Wechsler

2015). In order to predict the substructure for a given system of galaxies, one needs a

model for the expected mass and concentration given the observed galaxy properties.

This is important in modeling strong lensing systems (Vegetti et al. 2012; Hezaveh

et al. 2016), as well as for predicting signals from indirect detection.
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8. STATUS AND OUTLOOK

Empirical studies of the galaxy–halo connection have exploded since their birth roughly

15 years ago. They are now an essential tool in the interpretation of galaxy surveys for

both galaxy formation and cosmology. These models have provided key insights into the

problems of galaxy formation and evolution. They also play an increasing role in cosmo-

logical modeling and in understanding the physics of dark matter. Accurate methodologies

have been developed for modeling the galaxy–halo connection, and there is increasing in-

terplay between modeling approaches (from physical to empirical models, and from simple

few parameter models to more flexible models with tens of parameters) that leverages the

strengths of each of them.

Some of the key aspects of the galaxy–halo connection that have been learned from this

body of research are as follows:

• Galaxy formation is surprisingly inefficient: the efficiency of turning gas into stars

peaks at ∼ 20–30% of the baryon fraction in halos of 1012M� and is significantly

lower for higher and lower mass halos.

• The stellar masses of central galaxies are a strong function of dark matter halo mass

below 1012M�, scaling like M∗ ∝M2−3
h , and a weaker function above this pivot point,

M∗ ∝M1/3
h .

• Galaxy masses are tightly connected to the masses of their dark matter halos. If halo

properties are considered before substantive stripping by more massive systems, the

scatter in galaxy stellar mass or luminosity at fixed halo mass has a scatter of less

than 0.2 dex for objects above 1012M� where it is well measured; this likely increases

by no more than a factor of two at lower mass.

• For most of the Universe’s history from z ∼ 8–0, the bulk of all star formation occurs

in galaxies that live in a narrow range of halo mass around 1012M�.

• Most galaxies at any stellar mass are the central galaxies in their own dark matter

halo; the fraction of satellite galaxies at a given galaxy stellar mass declines from

∼ 30% at low mass to ∼ 5% at high mass.

• Most trends of galaxy properties with large-scale environment can be reasonably well

explained by the fact that the halo mass function and average halo properties vary

with environment, combined with a galaxy–halo connection that is independent of

environment.

• Although halo mass is the dominant determinant of the state of the galaxy occupying

it, there is statistically significant evidence that some galaxy properties are influenced

by other halo properties, and that this manifests in galaxy clustering properties (as-

sembly bias).

The next generation of surveys is likely to transform the study of the galaxy–halo

connection into a precision science, including enabling the community to pin down the

dependence of the wide range of multi-modal galaxy properties on the key properties of

dark matter halos and their environments within the cosmic web. These surveys include

massive imaging and spectroscopic surveys from the ground and space whose combination

will jointly constrain the abundance and clustering of galaxies and the mass distribution

around them, as well as surveys of 21-cm, UV absorption, X-rays, and the CMB at high

resolution that will map the gas and its connection to galaxies and their halos.

In the next decade, we expect that our understanding of the detailed connection between

galaxies and halos over mass, redshift, and environment will provide major strides forward
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in galaxy formation, cosmological parameters, and the nature of dark energy and neutrino

mass, and in understanding the nature of dark matter. At the same time, it is clear that for

this promise to be realized, the precision of models for the galaxy–halo connection will need

to keep up with the pace of the data. In closing, we highlight some of the most interesting

near-term future issues.

FUTURE ISSUES

1. The detailed manifestations of assembly bias and their connection to the observable

properties of galaxies are still relatively unconstrained. Characterizing them will

likely provide interesting insights into galaxy formation physics; in addition, effec-

tively modeling assembly bias will be important to mitigate systematic uncertainties

in some cosmological constraints.

2. The mass dependence of the normalization and scatter in the galaxy–halo connec-

tion is still poorly constrained at halo masses below ∼ 1012M�. This has important

consequences for interpreting measurements of dwarf galaxies in the context of dark

matter models.

3. Characterizing the halo occupation of galaxies identified with complex selection

criteria, including for example colors, star formation rates, sizes, morphologies, and

line widths, will be increasingly important for cosmological studies.

4. The relationship between galaxy color, galaxy size, and galaxy morphologies and

halo properties at fixed stellar mass is still uncertain; there is a need for models and

observational tests of models that connect galaxy sizes and morphologies to dark

matter halos across cosmic time.

5. Statistically mapping the relationship between halos and the gas surrounding and

fueling galaxies is still in the early stages, and constraints on these relationships

should provide new physical insight into galaxy formation.

6. Baryonic processes, especially various forms of feedback, may modify the abundance

and clustering properties of dark matter halos, with important implications for

inferences about the galaxy–halo connection.

7. A primary challenge for future surveys is optimizing joint constraints on the galaxy–

halo connection and cosmological parameters, which will require judicious choices

in parameterizing the former to retain maximal constraining power.
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