REFERENCES
- Minkowski R. A New Distant Cluster of
Galaxies.
ApJ. 1960 Nov;132:908–910.
-
Matthews TA, Bolton JG, Greenstein JL, et al. paper presented at the
107th meeting of the AAS. In: American Astronomical Society Meeting
Abstracts; Vol. 107; Dec.; 1960.
-
Schmidt M. 3C 273 : A Star-Like Object with Large Red-Shift.
Nature. 1963 Mar;197:1040.
- Hoyle F, Fowler WA. On the nature of strong
radio sources.
MNRAS. 1963;125:169.
- Schmidt M, Matthews TA. Redshift of the
Quasi-Stellar Radio Sources 3c 47 and 3c 147.
ApJ. 1964 Feb;139:781.
- Sandage A. The Existence of a Major New
Constituent of the Universe: the Quasistellar Galaxies.
ApJ. 1965 May;141:1560.
- Osterbrock DE, Parker RAR. Excitation of
the Optical Emission Lines in Quasi-Stellar Radio Sources.
ApJ. 1966 Jan;143:268.
- Salpeter EE. Accretion of Interstellar
Matter by Massive Objects.
ApJ. 1964 Aug;140:796–800.
- Zel’dovich YB. The Fate of a Star
and the Evolution of Gravitational Energy Upon Accretion.
Soviet Physics Doklady. 1964 Sep;9:195.
-
Lynden-Bell D. Galactic Nuclei as Collapsed Old Quasars.
Nature. 1969 Aug;223:690–694.
- Tananbaum H, Avni Y, Branduardi G, et
al. X-ray studies of quasars with the Einstein Observatory.
ApJ. 1979 Nov;234:L9–L13.
- Gunn JE, Peterson BA. On the Density of Neutral
Hydrogen in Intergalactic Space.
ApJ. 1965 Nov;142:1633–1641.
- Planck Collaboration, Aghanim N,
Akrami Y, et al. Planck 2018 results. VI. Cosmological parameters. arXiv
e-prints. 2018
Jul;:arXiv:1807.06209.
- Rees MJ. The Universe at z > 5: When and
How Did the ’Dark Age’ End? In: N R Tanvir, A
Aragon-Salamanca, & J V Wall, editor. The Hubble Space
Telescope and the High Redshift Universe; 1997. p. 115–+.
- Skillman SW, Warren MS, Turk MJ, et
al. Dark Sky Simulations: Early Data Release. ArXiv e-prints
(1407.2600). 2014 Jul;.
- Peebles PJE. Large-scale background
temperature and mass fluctuations due to scale-invariant primeval
perturbations.
ApJ. 1982 Dec;263:L1–L5.
- Blumenthal GR, Faber SM, Primack JR, et
al. Formation of galaxies and large-scale structure with cold dark matter.
Nature. 1984 Oct;311:517–525.
- Davis M, Efstathiou G, Frenk CS, et al. The
evolution of large-scale structure in a universe dominated by cold dark
matter.
ApJ. 1985 May;292:371–394.
- Lynden-Bell D. Statistical mechanics of violent
relaxation in stellar systems.
MNRAS. 1967;136:101–+.
- Gunn JE, Gott JR III. On the Infall of Matter
Into Clusters of Galaxies and Some Effects on Their Evolution.
ApJ. 1972 Aug;176:1.
-
Strömgren B. The Physical State of Interstellar Hydrogen.
ApJ. 1939 May;89:526–+.
- Davé R, Cen R, Ostriker JP, et
al. Baryons in the Warm-Hot Intergalactic Medium.
ApJ. 2001 May;552:473–483.
- Haardt F, Madau P. Radiative Transfer in a
Clumpy Universe. IV. New Synthesis Models of the Cosmic UV/X-Ray Background.
ApJ. 2012 Feb;746:125.
-
Gnedin NY. Effect of Reionization on Structure Formation in the Universe.
ApJ. 2000 Oct;542:535–541.
- Meiksin A, Madau P. On the photoionization
of the intergalactic medium by quasars at high redshift.
ApJ. 1993 Jul;412:34–55.
- Tseliakhovich D, Hirata C. Relative velocity
of dark matter and baryonic fluids and the formation of the first
structures.
Phys. Rev. D. 2010 Oct;82(8):083520.
- Peebles PJE.
Principles of Physical Cosmology. 1993.
- Barkana R, Loeb A. In the beginning: the
first sources of light and the reionization of the universe.
Phys. Rep. 2001 Jul;349:125–238.
- Asplund M, Grevesse N, Sauval AJ, et
al. The Chemical Composition of the Sun.
Annual Review of Astronomy and Astrophysics. 2009
Sep;47(1):481–522.
- Bromm V, Ferrara A, Coppi PS, et al. The
fragmentation of pre-enriched primordial objects.
MNRAS. 2001 Dec;328:969–976.
- Abel T, Bryan GL, Norman ML. The Formation of
the First Star in the Universe. Science.
2002 Jan;295:93–98.
- Machacek ME, Bryan GL, Abel T. Simulations
of Pregalactic Structure Formation with Radiative Feedback.
ApJ. 2001 Feb;548:509–521.
- O’Leary RM, McQuinn M. The Formation
of the First Cosmic Structures and the Physics of the z ~ 20 Universe.
ApJ. 2012 Nov;760:4.
- Schauer ATP, Glover SCO, Klessen RS, et
al. The influence of streaming velocities on the formation of the first
stars.
MNRAS. 2019 Apr;484(3):3510–3521.
- Wise JH, Turk MJ, Norman ML, et al. The Birth
of a Galaxy: Primordial Metal Enrichment and Stellar Populations.
ApJ. 2012 Jan;745:50.
- Hirano S, Hosokawa T, Yoshida N, et
al. Primordial star formation under the influence of far ultraviolet
radiation: 1540 cosmological haloes and the stellar mass distribution.
MNRAS. 2015 Mar;448:568–587.
- Turk MJ, Abel T, O’Shea B. The
Formation of Population III Binaries from Cosmological Initial Conditions.
Science. 2009 Jul;325:601–.
- Greif TH, Bromm V, Clark PC, et al. Formation
and evolution of primordial protostellar systems.
MNRAS. 2012 Jul;424:399–415.
- Schaerer D. On the properties of massive
Population III stars and metal-free stellar populations.
A&A. 2002 Jan;382:28–42.
-
Alvarez MA, Bromm V, Shapiro PR. The H II Region of the First Star.
ApJ. 2006 Mar;639:621–632.
- Kimm T, Cen R. Escape Fraction of Ionizing
Photons during Reionization: Effects due to Supernova Feedback and
Runaway OB Stars.
ApJ. 2014 Jun;788:121.
- Kimm T, Katz H, Haehnelt M, et
al. Feedback-regulated star formation and escape of LyC photons from
mini-haloes during reionization.
MNRAS. 2017 Apr;466(4):4826–4846.
- Xu H, Wise JH, Norman ML, et al. Galaxy
Properties and UV Escape Fractions during the Epoch of Reionization:
Results from the Renaissance Simulations.
ApJ. 2016 Dec;833:84.
- Wise JH, Demchenko VG, Halicek MT, et al. The
birth of a galaxy - III. Propelling reionization with the faintest galaxies.
MNRAS. 2014 Aug;442:2560–2579.
- Robertson BE, Furlanetto SR, Schneider E,
et al. New Constraints on Cosmic Reionization from the 2012 Hubble Ultra
Deep Field Campaign.
ApJ. 2013 May;768:71.
- Ma X, Kasen D, Hopkins PF, et al. The difficulty
of getting high escape fractions of ionizing photons from high-redshift
galaxies: a view from the FIRE cosmological simulations.
MNRAS. 2015 Oct;453:960–975.
- Xu H, Ahn K, Wise JH, et al. Heating the
Intergalactic Medium by X-Rays from Population III Binaries in
High-redshift Galaxies.
ApJ. 2014 Aug;791:110.
- Mesinger A, Ferrara A, Spiegel
DS. Signatures of X-rays in the early Universe.
MNRAS. 2013 May;431:621–637.
- Bañados E, Venemans BP, Mazzucchelli
C, et al. An 800-million-solar-mass black hole in a significantly
neutral Universe at a redshift of 7.5.
Nature. 2018 Jan;553:473–476.
- Fan X, Strauss MA, Becker RH, et
al. Constraining the Evolution of the Ionizing Background and the Epoch
of Reionization with z ~ 6 Quasars. II. A Sample of 19 Quasars.
AJ. 2006 Jul;132:117–136.
- Alvarez MA, Wise JH, Abel T. Accretion onto
the First Stellar-Mass Black Holes.
ApJ. 2009 Aug;701:L133–L137.
-
Greig B, Mesinger A, Haiman Z, et al. Are we witnessing the epoch of
reionisation at z = 7.1 from the spectrum of J1120+0641?
MNRAS. 2017 Apr;466(4):4239–4249.
-
Becker GD, Bolton JS, Madau P, et al. Evidence of patchy hydrogen
reionization from an extreme Lyα trough below redshift six. MNRAS.
2015 Mar;447:3402–3419.
- Songaila A. The Evolution of the
Intergalactic Medium Transmission to Redshift 6.
AJ. 2004 May;127:2598–2603.
- Mesinger A. Was reionization complete by z
~ 5-6?
MNRAS. 2010 Sep;407:1328–1337.
-
Greig B, Mesinger A. The global history of reionization.
MNRAS. 2017 Mar;465(4):4838–4852.
-
McDonald P, Miralda-Escudé J, Rauch M, et al. A Measurement of the
Temperature-Density Relation in the Intergalactic Medium Using a New
Lyα Absorption-Line Fitting Method.
ApJ. 2001 Nov;562:52–75.
- York DG, Adelman J, Anderson JE Jr, et al. The
Sloan Digital Sky Survey: Technical Summary.
AJ. 2000 Sep;120:1579–1587.
- Becker GD, Bolton JS. New measurements of
the ionizing ultraviolet background over 2 < z < 5 and
implications for hydrogen reionization.
MNRAS. 2013 Dec;436:1023–1039.
- Schaye J, Theuns T, Rauch M, et al. The
thermal history of the intergalactic medium*.
MNRAS. 2000 Nov;318:817–826.
- Hui L, Gnedin NY. Equation of state of the
photoionized intergalactic medium.
MNRAS. 1997 Nov;292:27.
- Bolton JS, Becker GD, Wyithe JSB, et al. A
first direct measurement of the intergalactic medium temperature around
a quasar at z = 6.
MNRAS. 2010 Jul;406:612–625.
- Bolton JS, Becker GD, Raskutti S, et
al. Improved measurements of the intergalactic medium temperature around
quasars: possible evidence for the initial stages of He II reionization
at z ≃ 6.
MNRAS. 2012 Feb;419:2880–2892.
- Ewen HI, Purcell EM. Observation of a Line in
the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420
Mc./sec.
Nature. 1951 Sep;168:356.
-
Muller CA, Oort JH. Observation of a Line in the Galactic Radio Spectrum:
The Interstellar Hydrogen Line at 1,420 Mc./sec., and an Estimate of
Galactic Rotation.
Nature. 1951 Sep;168:357–358.
- Scott D, Rees MJ. The 21-cm line at high
redshift: a diagnostic for the origin of large scale structure.
MNRAS. 1990 Dec;247:510.
- Bowman JD, Rogers AEE, Monsalve RA, et
al. An absorption profile centred at 78 megahertz in the sky-averaged
spectrum.
Nature. 2018 Mar;555(7694):67–70.
- Mirocha J, Furlanetto SR. What does the
first highly redshifted 21-cm detection tell us about early galaxies?
MNRAS. 2019 Feb;483(2):1980–1992.
- Cohen A, Fialkov A, Barkana R, et
al. Charting the parameter space of the global 21-cm signal.
MNRAS. 2017 Dec;472(2):1915–1931.
- Kaurov AA, Venumadhav T, Dai L, et
al. Implication of the Shape of the EDGES Signal for the 21 cm Power
Spectrum.
ApJ. 2018 Sep;864(1):L15.
- Barkana R. Possible interaction between
baryons and dark-matter particles revealed by the first stars.
Nature. 2018 Mar;555(7694):71–74.
- Parsons AR, Backer DC, Foster GS, et al. The
Precision Array for Probing the Epoch of Re-ionization: Eight Station
Results.
AJ. 2010 Apr;139:1468–1480.
- van Haarlem MP, Wise MW, Gunst AW, et
al. LOFAR: The LOw-Frequency ARray.
A&A. 2013 Aug;556:A2.
- Bowman JD, Cairns I, Kaplan DL, et al. Science
with the Murchison Widefield Array.
PASA. 2013 Apr;30:e031.
- Neben AR, Bradley RF, Hewitt JN, et al. The
Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements
and Science Implications.
ApJ. 2016 Aug;826:199.
- Dewdney PE, Hall PJ, Schilizzi RT, et al. The
square kilometre array. Proceedings of the IEEE.
2009;97(8):1482–1496.
- Kashikawa N, Ishizaki Y, Willott CJ, et
al. The Subaru High-z Quasar Survey: Discovery of Faint z ~ 6 Quasars.
ApJ. 2015 Jan;798:28.
- Willott CJ, Albert L, Arzoumanian D, et
al. Eddington-limited Accretion and the Black Hole Mass Function at
Redshift 6.
AJ. 2010 Aug;140:546–560.
- Grissom RL, Ballantyne DR, Wise JH. On the
contribution of active galactic nuclei to reionization.
A&A. 2014 Jan;561:A90.
- Madau P, Haardt F. Cosmic Reionization after
Planck: Could Quasars Do It All?
ApJ. 2015 Nov;813:L8.
- Ellis RS, McLure RJ, Dunlop JS, et al. The
Abundance of Star-forming Galaxies in the Redshift Range 8.5-12: New
Results from the 2012 Hubble Ultra Deep Field Campaign.
ApJ. 2013 Jan;763:L7.
- Coe D, Bradley L, Zitrin A. Frontier Fields:
High-redshift Predictions and Early Results.
ApJ. 2015 Feb;800:84.
- Laporte N, Infante L, Troncoso Iribarren P,
et al. Young Galaxy Candidates in the Hubble Frontier Fields. III. MACS
J0717.5+3745.
ApJ. 2016 Apr;820:98.
- Oesch PA, Brammer G, van Dokkum PG, et al. A
Remarkably Luminous Galaxy at z = 11.1 Measured with Hubble Space
Telescope Grism Spectroscopy.
ApJ. 2016 Mar;819:129.
- Schechter P. An analytic expression for
the luminosity function for galaxies.
ApJ. 1976 Jan;203:297–306.
- McLure RJ, Dunlop JS, Bowler RAA, et al. A
new multifield determination of the galaxy luminosity function at z =
7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging.
MNRAS. 2013 Jul;432:2696–2716.
- Livermore RC, Finkelstein SL, Lotz
JM. Directly Observing the Galaxies Likely Responsible for Reionization.
ApJ. 2017 Feb;835(2):113.
- Bouwens RJ, Oesch PA, Illingworth GD, et
al. The z ∼ 6 Luminosity Function Fainter than -15 mag from the
Hubble Frontier Fields: The Impact of Magnification Uncertainties.
ApJ. 2017 Jul;843(2):129.
- Finkelstein SL, Papovich C, Ryan RE, et
al. CANDELS: The Contribution of the Observed Galaxy Population to
Cosmic Reionization.
ApJ. 2012 Oct;758:93.
- Siana B, Shapley AE, Kulas KR, et al. A Deep
Hubble Space Telescope and Keck Search for Definitive Identification of
Lyman Continuum Emitters at z ~ 3.1.
ApJ. 2015 May;804:17.
- Nestor DB, Shapley AE, Kornei KA, et al. A
Refined Estimate of the Ionizing Emissivity from Galaxies at z = 3:
Spectroscopic Follow-up in the SSA22a Field.
ApJ. 2013 Mar;765:47.
- Cooke J, Ryan-Weber EV, Garel T, et
al. Lyman-continuum galaxies and the escape fraction of Lyman-break
galaxies.
MNRAS. 2014 Jun;441:837–851.
-
Arons J, McCray R. Photo-Ionization of Intergalactic Hydrogen by Quasars.
Astrophys. Lett. 1970;5:123.
- Pawlik AH, Schaye J, van Scherpenzeel
E. Keeping the Universe ionized: photoheating and the clumping factor of
the high-redshift intergalactic medium.
MNRAS. 2009 Apr;394:1812–1824.
- So GC, Norman ML, Reynolds DR, et al. Fully
Coupled Simulation of Cosmic Reionization. II. Recombinations, Clumping
Factors, and the Photon Budget for Reionization.
ApJ. 2014 Jul;789:149.
- Finlator K, Oh SP, Özel F, et al. Gas
clumping in self-consistent reionization models.
MNRAS. 2012 Dec;427:2464–2479.
- Madau P, Haardt F, Rees MJ. Radiative
Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing
Sources.
ApJ. 1999 Apr;514:648–659.
- Robertson BE, Ellis RS, Furlanetto SR, et
al. Cosmic Reionization and Early Star-forming Galaxies: A Joint
Analysis of New Constraints from Planck and the Hubble Space Telescope.
ApJ. 2015 Apr;802:L19.
- Alvarez MA, Finlator K, Trenti
M. Constraints on the Ionizing Efficiency of the First Galaxies.
ApJ. 2012 Nov;759:L38.
- Chen P, Wise JH, Norman ML, et al. Scaling
Relations for Galaxies Prior to Reionization.
ApJ. 2014 Nov;795:144.
-
Benson AJ, Sugiyama N, Nusser A, et al. The epoch of reionization.
MNRAS. 2006 Jul;369:1055–1080.
- Furlanetto SR, Zaldarriaga M, Hernquist
L. The Growth of H II Regions During Reionization.
ApJ. 2004 Sep;613:1–15.
- Zahn O, Lidz A, McQuinn M, et al. Simulations
and Analytic Calculations of Bubble Growth during Hydrogen Reionization.
ApJ. 2007 Jan;654:12–26.
- Mesinger A, Furlanetto S. Efficient
Simulations of Early Structure Formation and Reionization.
ApJ. 2007 Nov;669:663–675.
- Gnedin NY, Ostriker JP. Reionization of the
Universe and the Early Production of Metals.
ApJ. 1997 Sep;486:581–+.
- Iliev IT, Mellema G, Ahn K, et al. Simulating
cosmic reionization: how large a volume is large enough?
MNRAS. 2014 Mar;439:725–743.
- Auer LH, Mihalas D. On the use of variable
Eddington factors in non-LTE stellar atmospheres computations.
MNRAS. 1970;149:65–+.
- Davis SW, Stone JM, Jiang YF. A Radiation
Transfer Solver for Athena Using Short Characteristics.
ApJS. 2012 Mar;199:9.
- Finlator K, Özel F, Davé R. A
new moment method for continuum radiative transfer in cosmological
re-ionization.
MNRAS. 2009 Mar;393:1090–1106.
- Gnedin NY, Abel T. Multi-dimensional
cosmological radiative transfer with a Variable Eddington Tensor formalism.
New Astronomy. 2001 Oct;6:437–455.
-
Jiang YF, Stone JM, Davis SW. An Algorithm for Radiation
Magnetohydrodynamics Based on Solving the Time-dependent Transfer Equation.
ApJS. 2014 Jul;213:7.
-
Rosdahl J, Teyssier R. A scheme for radiation pressure and photon
diffusion with the M1 closure in RAMSES-RT.
MNRAS. 2015 Jun;449:4380–4403.
- Aubert D, Deparis N, Ocvirk P. EMMA: an
adaptive mesh refinement cosmological simulation code with radiative
transfer.
MNRAS. 2015 Nov;454:1012–1037.
- Whalen D, Norman ML. A Multistep Algorithm
for the Radiation Hydrodynamical Transport of Cosmological Ionization
Fronts and Ionized Flows.
ApJS. 2006 Feb;162:281–303.
- Krumholz MR, Klein RI, McKee
CF. Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in
Massive Protostellar Cores.
ApJ. 2007 Feb;656:959–979.
- Wise JH, Abel T. ENZO+MORAY: radiation
hydrodynamics adaptive mesh refinement simulations with adaptive ray
tracing.
MNRAS. 2011 Jul;414:3458–3491.
-
Susa H. Smoothed Particle Hydrodynamics Coupled with Radiation Transfer.
PASJ. 2006 Apr;58:445–460.
- Pawlik AH, Schaye J. TRAPHIC - radiative
transfer for smoothed particle hydrodynamics simulations.
MNRAS. 2008 Sep;389:651–677.
- Hasegawa K, Umemura M, Susa H. Radiative
regulation of Population III star formation.
MNRAS. 2009 May;395:1280–1286.
- Smith BD, Bryan GL, Glover SCO, et
al. GRACKLE: a chemistry and cooling library for astrophysics.
MNRAS. 2017 Apr;466(2):2217–2234.