Contents Previous

REFERENCES

  1. Minkowski R. A New Distant Cluster of Galaxies. ApJ. 1960 Nov;132:908–910.
  2. Matthews TA, Bolton JG, Greenstein JL, et al. paper presented at the 107th meeting of the AAS. In: American Astronomical Society Meeting Abstracts; Vol. 107; Dec.; 1960.
  3. Schmidt M. 3C 273 : A Star-Like Object with Large Red-Shift. Nature. 1963 Mar;197:1040.
  4. Hoyle F, Fowler WA. On the nature of strong radio sources. MNRAS. 1963;125:169.
  5. Schmidt M, Matthews TA. Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147. ApJ. 1964 Feb;139:781.
  6. Sandage A. The Existence of a Major New Constituent of the Universe: the Quasistellar Galaxies. ApJ. 1965 May;141:1560.
  7. Osterbrock DE, Parker RAR. Excitation of the Optical Emission Lines in Quasi-Stellar Radio Sources. ApJ. 1966 Jan;143:268.
  8. Salpeter EE. Accretion of Interstellar Matter by Massive Objects. ApJ. 1964 Aug;140:796–800.
  9. Zel’dovich YB. The Fate of a Star and the Evolution of Gravitational Energy Upon Accretion. Soviet Physics Doklady. 1964 Sep;9:195.
  10. Lynden-Bell D. Galactic Nuclei as Collapsed Old Quasars. Nature. 1969 Aug;223:690–694.
  11. Tananbaum H, Avni Y, Branduardi G, et al. X-ray studies of quasars with the Einstein Observatory. ApJ. 1979 Nov;234:L9–L13.
  12. Gunn JE, Peterson BA. On the Density of Neutral Hydrogen in Intergalactic Space. ApJ. 1965 Nov;142:1633–1641.
  13. Planck Collaboration, Aghanim N, Akrami Y, et al. Planck 2018 results. VI. Cosmological parameters. arXiv e-prints. 2018 Jul;:arXiv:1807.06209.
  14. Rees MJ. The Universe at z > 5: When and How Did the ’Dark Age’ End? In: N R Tanvir, A Aragon-Salamanca, & J V Wall, editor. The Hubble Space Telescope and the High Redshift Universe; 1997. p. 115–+.
  15. Skillman SW, Warren MS, Turk MJ, et al. Dark Sky Simulations: Early Data Release. ArXiv e-prints (1407.2600). 2014 Jul;.
  16. Peebles PJE. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. ApJ. 1982 Dec;263:L1–L5.
  17. Blumenthal GR, Faber SM, Primack JR, et al. Formation of galaxies and large-scale structure with cold dark matter. Nature. 1984 Oct;311:517–525.
  18. Davis M, Efstathiou G, Frenk CS, et al. The evolution of large-scale structure in a universe dominated by cold dark matter. ApJ. 1985 May;292:371–394.
  19. Lynden-Bell D. Statistical mechanics of violent relaxation in stellar systems. MNRAS. 1967;136:101–+.
  20. Gunn JE, Gott JR III. On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution. ApJ. 1972 Aug;176:1.
  21. Strömgren B. The Physical State of Interstellar Hydrogen. ApJ. 1939 May;89:526–+.
  22. Davé R, Cen R, Ostriker JP, et al. Baryons in the Warm-Hot Intergalactic Medium. ApJ. 2001 May;552:473–483.
  23. Haardt F, Madau P. Radiative Transfer in a Clumpy Universe. IV. New Synthesis Models of the Cosmic UV/X-Ray Background. ApJ. 2012 Feb;746:125.
  24. Gnedin NY. Effect of Reionization on Structure Formation in the Universe. ApJ. 2000 Oct;542:535–541.
  25. Meiksin A, Madau P. On the photoionization of the intergalactic medium by quasars at high redshift. ApJ. 1993 Jul;412:34–55.
  26. Tseliakhovich D, Hirata C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D. 2010 Oct;82(8):083520.
  27. Peebles PJE. Principles of Physical Cosmology. 1993.
  28. Barkana R, Loeb A. In the beginning: the first sources of light and the reionization of the universe. Phys. Rep. 2001 Jul;349:125–238.
  29. Asplund M, Grevesse N, Sauval AJ, et al. The Chemical Composition of the Sun. Annual Review of Astronomy and Astrophysics. 2009 Sep;47(1):481–522.
  30. Bromm V, Ferrara A, Coppi PS, et al. The fragmentation of pre-enriched primordial objects. MNRAS. 2001 Dec;328:969–976.
  31. Abel T, Bryan GL, Norman ML. The Formation of the First Star in the Universe. Science. 2002 Jan;295:93–98.
  32. Machacek ME, Bryan GL, Abel T. Simulations of Pregalactic Structure Formation with Radiative Feedback. ApJ. 2001 Feb;548:509–521.
  33. O’Leary RM, McQuinn M. The Formation of the First Cosmic Structures and the Physics of the z ~ 20 Universe. ApJ. 2012 Nov;760:4.
  34. Schauer ATP, Glover SCO, Klessen RS, et al. The influence of streaming velocities on the formation of the first stars. MNRAS. 2019 Apr;484(3):3510–3521.
  35. Wise JH, Turk MJ, Norman ML, et al. The Birth of a Galaxy: Primordial Metal Enrichment and Stellar Populations. ApJ. 2012 Jan;745:50.
  36. Hirano S, Hosokawa T, Yoshida N, et al. Primordial star formation under the influence of far ultraviolet radiation: 1540 cosmological haloes and the stellar mass distribution. MNRAS. 2015 Mar;448:568–587.
  37. Turk MJ, Abel T, O’Shea B. The Formation of Population III Binaries from Cosmological Initial Conditions. Science. 2009 Jul;325:601–.
  38. Greif TH, Bromm V, Clark PC, et al. Formation and evolution of primordial protostellar systems. MNRAS. 2012 Jul;424:399–415.
  39. Schaerer D. On the properties of massive Population III stars and metal-free stellar populations. A&A. 2002 Jan;382:28–42.
  40. Alvarez MA, Bromm V, Shapiro PR. The H II Region of the First Star. ApJ. 2006 Mar;639:621–632.
  41. Kimm T, Cen R. Escape Fraction of Ionizing Photons during Reionization: Effects due to Supernova Feedback and Runaway OB Stars. ApJ. 2014 Jun;788:121.
  42. Kimm T, Katz H, Haehnelt M, et al. Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionization. MNRAS. 2017 Apr;466(4):4826–4846.
  43. Xu H, Wise JH, Norman ML, et al. Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations. ApJ. 2016 Dec;833:84.
  44. Wise JH, Demchenko VG, Halicek MT, et al. The birth of a galaxy - III. Propelling reionization with the faintest galaxies. MNRAS. 2014 Aug;442:2560–2579.
  45. Robertson BE, Furlanetto SR, Schneider E, et al. New Constraints on Cosmic Reionization from the 2012 Hubble Ultra Deep Field Campaign. ApJ. 2013 May;768:71.
  46. Ma X, Kasen D, Hopkins PF, et al. The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: a view from the FIRE cosmological simulations. MNRAS. 2015 Oct;453:960–975.
  47. Xu H, Ahn K, Wise JH, et al. Heating the Intergalactic Medium by X-Rays from Population III Binaries in High-redshift Galaxies. ApJ. 2014 Aug;791:110.
  48. Mesinger A, Ferrara A, Spiegel DS. Signatures of X-rays in the early Universe. MNRAS. 2013 May;431:621–637.
  49. Bañados E, Venemans BP, Mazzucchelli C, et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature. 2018 Jan;553:473–476.
  50. Fan X, Strauss MA, Becker RH, et al. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ~ 6 Quasars. II. A Sample of 19 Quasars. AJ. 2006 Jul;132:117–136.
  51. Alvarez MA, Wise JH, Abel T. Accretion onto the First Stellar-Mass Black Holes. ApJ. 2009 Aug;701:L133–L137.
  52. Greig B, Mesinger A, Haiman Z, et al. Are we witnessing the epoch of reionisation at z = 7.1 from the spectrum of J1120+0641? MNRAS. 2017 Apr;466(4):4239–4249.
  53. Becker GD, Bolton JS, Madau P, et al. Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six. MNRAS. 2015 Mar;447:3402–3419.
  54. Songaila A. The Evolution of the Intergalactic Medium Transmission to Redshift 6. AJ. 2004 May;127:2598–2603.
  55. Mesinger A. Was reionization complete by z ~ 5-6? MNRAS. 2010 Sep;407:1328–1337.
  56. Greig B, Mesinger A. The global history of reionization. MNRAS. 2017 Mar;465(4):4838–4852.
  57. McDonald P, Miralda-Escudé J, Rauch M, et al. A Measurement of the Temperature-Density Relation in the Intergalactic Medium Using a New Lyα Absorption-Line Fitting Method. ApJ. 2001 Nov;562:52–75.
  58. York DG, Adelman J, Anderson JE Jr, et al. The Sloan Digital Sky Survey: Technical Summary. AJ. 2000 Sep;120:1579–1587.
  59. Becker GD, Bolton JS. New measurements of the ionizing ultraviolet background over 2 < z < 5 and implications for hydrogen reionization. MNRAS. 2013 Dec;436:1023–1039.
  60. Schaye J, Theuns T, Rauch M, et al. The thermal history of the intergalactic medium*. MNRAS. 2000 Nov;318:817–826.
  61. Hui L, Gnedin NY. Equation of state of the photoionized intergalactic medium. MNRAS. 1997 Nov;292:27.
  62. Bolton JS, Becker GD, Wyithe JSB, et al. A first direct measurement of the intergalactic medium temperature around a quasar at z = 6. MNRAS. 2010 Jul;406:612–625.
  63. Bolton JS, Becker GD, Raskutti S, et al. Improved measurements of the intergalactic medium temperature around quasars: possible evidence for the initial stages of He II reionization at z ≃ 6. MNRAS. 2012 Feb;419:2880–2892.
  64. Ewen HI, Purcell EM. Observation of a Line in the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420 Mc./sec. Nature. 1951 Sep;168:356.
  65. Muller CA, Oort JH. Observation of a Line in the Galactic Radio Spectrum: The Interstellar Hydrogen Line at 1,420 Mc./sec., and an Estimate of Galactic Rotation. Nature. 1951 Sep;168:357–358.
  66. Scott D, Rees MJ. The 21-cm line at high redshift: a diagnostic for the origin of large scale structure. MNRAS. 1990 Dec;247:510.
  67. Bowman JD, Rogers AEE, Monsalve RA, et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature. 2018 Mar;555(7694):67–70.
  68. Mirocha J, Furlanetto SR. What does the first highly redshifted 21-cm detection tell us about early galaxies? MNRAS. 2019 Feb;483(2):1980–1992.
  69. Cohen A, Fialkov A, Barkana R, et al. Charting the parameter space of the global 21-cm signal. MNRAS. 2017 Dec;472(2):1915–1931.
  70. Kaurov AA, Venumadhav T, Dai L, et al. Implication of the Shape of the EDGES Signal for the 21 cm Power Spectrum. ApJ. 2018 Sep;864(1):L15.
  71. Barkana R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature. 2018 Mar;555(7694):71–74.
  72. Parsons AR, Backer DC, Foster GS, et al. The Precision Array for Probing the Epoch of Re-ionization: Eight Station Results. AJ. 2010 Apr;139:1468–1480.
  73. van Haarlem MP, Wise MW, Gunst AW, et al. LOFAR: The LOw-Frequency ARray. A&A. 2013 Aug;556:A2.
  74. Bowman JD, Cairns I, Kaplan DL, et al. Science with the Murchison Widefield Array. PASA. 2013 Apr;30:e031.
  75. Neben AR, Bradley RF, Hewitt JN, et al. The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications. ApJ. 2016 Aug;826:199.
  76. Dewdney PE, Hall PJ, Schilizzi RT, et al. The square kilometre array. Proceedings of the IEEE. 2009;97(8):1482–1496.
  77. Kashikawa N, Ishizaki Y, Willott CJ, et al. The Subaru High-z Quasar Survey: Discovery of Faint z ~ 6 Quasars. ApJ. 2015 Jan;798:28.
  78. Willott CJ, Albert L, Arzoumanian D, et al. Eddington-limited Accretion and the Black Hole Mass Function at Redshift 6. AJ. 2010 Aug;140:546–560.
  79. Grissom RL, Ballantyne DR, Wise JH. On the contribution of active galactic nuclei to reionization. A&A. 2014 Jan;561:A90.
  80. Madau P, Haardt F. Cosmic Reionization after Planck: Could Quasars Do It All? ApJ. 2015 Nov;813:L8.
  81. Ellis RS, McLure RJ, Dunlop JS, et al. The Abundance of Star-forming Galaxies in the Redshift Range 8.5-12: New Results from the 2012 Hubble Ultra Deep Field Campaign. ApJ. 2013 Jan;763:L7.
  82. Coe D, Bradley L, Zitrin A. Frontier Fields: High-redshift Predictions and Early Results. ApJ. 2015 Feb;800:84.
  83. Laporte N, Infante L, Troncoso Iribarren P, et al. Young Galaxy Candidates in the Hubble Frontier Fields. III. MACS J0717.5+3745. ApJ. 2016 Apr;820:98.
  84. Oesch PA, Brammer G, van Dokkum PG, et al. A Remarkably Luminous Galaxy at z = 11.1 Measured with Hubble Space Telescope Grism Spectroscopy. ApJ. 2016 Mar;819:129.
  85. Schechter P. An analytic expression for the luminosity function for galaxies. ApJ. 1976 Jan;203:297–306.
  86. McLure RJ, Dunlop JS, Bowler RAA, et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging. MNRAS. 2013 Jul;432:2696–2716.
  87. Livermore RC, Finkelstein SL, Lotz JM. Directly Observing the Galaxies Likely Responsible for Reionization. ApJ. 2017 Feb;835(2):113.
  88. Bouwens RJ, Oesch PA, Illingworth GD, et al. The z ∼ 6 Luminosity Function Fainter than -15 mag from the Hubble Frontier Fields: The Impact of Magnification Uncertainties. ApJ. 2017 Jul;843(2):129.
  89. Finkelstein SL, Papovich C, Ryan RE, et al. CANDELS: The Contribution of the Observed Galaxy Population to Cosmic Reionization. ApJ. 2012 Oct;758:93.
  90. Siana B, Shapley AE, Kulas KR, et al. A Deep Hubble Space Telescope and Keck Search for Definitive Identification of Lyman Continuum Emitters at z ~ 3.1. ApJ. 2015 May;804:17.
  91. Nestor DB, Shapley AE, Kornei KA, et al. A Refined Estimate of the Ionizing Emissivity from Galaxies at z = 3: Spectroscopic Follow-up in the SSA22a Field. ApJ. 2013 Mar;765:47.
  92. Cooke J, Ryan-Weber EV, Garel T, et al. Lyman-continuum galaxies and the escape fraction of Lyman-break galaxies. MNRAS. 2014 Jun;441:837–851.
  93. Arons J, McCray R. Photo-Ionization of Intergalactic Hydrogen by Quasars. Astrophys. Lett. 1970;5:123.
  94. Pawlik AH, Schaye J, van Scherpenzeel E. Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium. MNRAS. 2009 Apr;394:1812–1824.
  95. So GC, Norman ML, Reynolds DR, et al. Fully Coupled Simulation of Cosmic Reionization. II. Recombinations, Clumping Factors, and the Photon Budget for Reionization. ApJ. 2014 Jul;789:149.
  96. Finlator K, Oh SP, Özel F, et al. Gas clumping in self-consistent reionization models. MNRAS. 2012 Dec;427:2464–2479.
  97. Madau P, Haardt F, Rees MJ. Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources. ApJ. 1999 Apr;514:648–659.
  98. Robertson BE, Ellis RS, Furlanetto SR, et al. Cosmic Reionization and Early Star-forming Galaxies: A Joint Analysis of New Constraints from Planck and the Hubble Space Telescope. ApJ. 2015 Apr;802:L19.
  99. Alvarez MA, Finlator K, Trenti M. Constraints on the Ionizing Efficiency of the First Galaxies. ApJ. 2012 Nov;759:L38.
  100. Chen P, Wise JH, Norman ML, et al. Scaling Relations for Galaxies Prior to Reionization. ApJ. 2014 Nov;795:144.
  101. Benson AJ, Sugiyama N, Nusser A, et al. The epoch of reionization. MNRAS. 2006 Jul;369:1055–1080.
  102. Furlanetto SR, Zaldarriaga M, Hernquist L. The Growth of H II Regions During Reionization. ApJ. 2004 Sep;613:1–15.
  103. Zahn O, Lidz A, McQuinn M, et al. Simulations and Analytic Calculations of Bubble Growth during Hydrogen Reionization. ApJ. 2007 Jan;654:12–26.
  104. Mesinger A, Furlanetto S. Efficient Simulations of Early Structure Formation and Reionization. ApJ. 2007 Nov;669:663–675.
  105. Gnedin NY, Ostriker JP. Reionization of the Universe and the Early Production of Metals. ApJ. 1997 Sep;486:581–+.
  106. Iliev IT, Mellema G, Ahn K, et al. Simulating cosmic reionization: how large a volume is large enough? MNRAS. 2014 Mar;439:725–743.
  107. Auer LH, Mihalas D. On the use of variable Eddington factors in non-LTE stellar atmospheres computations. MNRAS. 1970;149:65–+.
  108. Davis SW, Stone JM, Jiang YF. A Radiation Transfer Solver for Athena Using Short Characteristics. ApJS. 2012 Mar;199:9.
  109. Finlator K, Özel F, Davé R. A new moment method for continuum radiative transfer in cosmological re-ionization. MNRAS. 2009 Mar;393:1090–1106.
  110. Gnedin NY, Abel T. Multi-dimensional cosmological radiative transfer with a Variable Eddington Tensor formalism. New Astronomy. 2001 Oct;6:437–455.
  111. Jiang YF, Stone JM, Davis SW. An Algorithm for Radiation Magnetohydrodynamics Based on Solving the Time-dependent Transfer Equation. ApJS. 2014 Jul;213:7.
  112. Rosdahl J, Teyssier R. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT. MNRAS. 2015 Jun;449:4380–4403.
  113. Aubert D, Deparis N, Ocvirk P. EMMA: an adaptive mesh refinement cosmological simulation code with radiative transfer. MNRAS. 2015 Nov;454:1012–1037.
  114. Whalen D, Norman ML. A Multistep Algorithm for the Radiation Hydrodynamical Transport of Cosmological Ionization Fronts and Ionized Flows. ApJS. 2006 Feb;162:281–303.
  115. Krumholz MR, Klein RI, McKee CF. Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores. ApJ. 2007 Feb;656:959–979.
  116. Wise JH, Abel T. ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing. MNRAS. 2011 Jul;414:3458–3491.
  117. Susa H. Smoothed Particle Hydrodynamics Coupled with Radiation Transfer. PASJ. 2006 Apr;58:445–460.
  118. Pawlik AH, Schaye J. TRAPHIC - radiative transfer for smoothed particle hydrodynamics simulations. MNRAS. 2008 Sep;389:651–677.
  119. Hasegawa K, Umemura M, Susa H. Radiative regulation of Population III star formation. MNRAS. 2009 May;395:1280–1286.
  120. Smith BD, Bryan GL, Glover SCO, et al. GRACKLE: a chemistry and cooling library for astrophysics. MNRAS. 2017 Apr;466(2):2217–2234.

Contents Previous