![]() | Annu. Rev. Astron. Astrophys. 1994. 32:
531-590 Copyright © 1994 by Annual Reviews. All rights reserved |
6.1. Disk Heating by Halo Holes
As halo objects traverse the Galactic disk, they will impart energy to
the stars
there. This will lead to a gradual puffing up of the disk, with older
stars being heated more than younger ones.
Lacey & Ostriker (1985)
have argued that black holes of around 106
M could
provide the best mechanism for generating
the observed amount of puffing. In particular, this explains: 1. why the
velocity dispersion of the disk stars,
, scales with age as
t1/2; 2. the relative velocity
dispersions in the radial, azimuthal, and vertical directions; and
3. the existence of a high energy tail of stars with large velocity
Ipser & Semenzato 1985).
In order to normalize the
(t) relationship
correctly, the number density of the
holes n must satisfy nM2
3 ×
104
M2
pc-3. Combining this with the local halo density
h =
nM
0.01
M
pc-3 gives M = 2 &215; 106
M
.
This argument is no longer compelling because more recent measurements give smaller velocity dispersions for older stars, so that a may no longer rise as fast as t1/2 (Carlberg et al 1985, Stromgren 1987, Gomez et al 1990). Heating by a combination of spiral density waves and giant molecular clouds may now give a better fit to the data (Lacey 1991). Nevertheless, one can still use the Lacey-Ostriker argument to place an upper limit on the density in halo objects of mass M (Carr et al 1984):
![]() | (6.1) |
where tg is the age of the Galaxy. Otherwise the disk would be more puffed up than observed. This limit is shown in Figure 3, along with the line that corresponds to having at least one black hole of mass M within the Galaxy.
Although the dependence is not shown explicitly in Equation (6.1),
Mheat also scales as
2 and
-1h. Thus, by applying the
disk-heating argument to
galaxies with higher dark matter density, lower stellar velocity
dispersion, or
smaller age, one can obtain stronger constraints. For the gas-rich dwarf
galaxy DDO 154 (which has
= 17 km s-1,
an age of at least 1.5 Gyr, and a central dark matter density of 0.009
M
pc-3),
Rix & Lake (1993)
find M < 7 × 105
M
.
For the dwarf galaxy GR8 (which has
= 4 km s-1,
an age of at least 1 Gyr, and a central dark matter density of 0.07
M
pc-3), they find M < 6 × 103
M
.
Of course unless the black holes form pregalactically, there is no
reason for
expecting the halo objects to have the same mass in different galaxies,
so these limits are not shown in Figure 3.