![]() | Annu. Rev. Astron. Astrophys. 1998. 36:
267-316 Copyright © 1998 by Annual Reviews. All rights reserved |
Observations of absorption by the He I and HeII Lyman series provide another, independent source of information on the state of the intergalactic medium and the UV background radiation (Sargent et al 1980). Comparing the Doppler parameters of the HeII 304 Å and HI 1215 Å lines it is in principle possible to use the difference in atomic masses to measure the contributions from bulk and thermal motions to the line broadening separately, so theories of the kinematics of the cosmic gas can be tested. The far-UV HeII Lyman edge at 228 Å probes the intensity of the UV background at much shorter wavelengths than the HI edge. As the photoionization rates are dominated by the intensity of the ionizing radiation near the respective ionization edges, measurements of the HeII and HI column densities can then in principle fix the spectral shape of the UV background in the vicinity of two points, 228 Å and 912 Å. This comparison can be done as a function of wavelength (or redshift) so it is possible to measure the spatial spectral fluctuations of the UV background caused by local UV sources and by fluctuations in the intergalactic absorption, and, perhaps at higher redshifts, to study the progress of reionization (e.g., Shapiro & Giroux 1987; Donahue & Shull 1987; Miralda-Escudé & Rees 1993; Shapiro et al 1994; Madau & Meiksin 1994; Giroux et al 1995).
In a photoionized optically thin gas HeIII is the dominant
ionization state; the remaining He is expected to be mostly in the form
of singly ionized HeII. For realistic spectral intensity distributions
(except for the very soft UV background caused by decaying neutrinos,
Sciama 1990)
HeI is undetectable in the optically thin clouds of the
Ly forest proper, although
it should be present in Lyman limit systems
(Miralda-Escudé &
Ostriker 1992).
Indeed, HeI yielded the first
detection of helium at high redshift, when absorption by its 504 Å
line was found in HST FOS data of several optically thick (z ~ 2)
metal systems towards the bright QSO HS1700+64
(Reimers et al 1992,
Reimers & Vogel 1993).
The ionization state of HeI is less easy to interpret because of the
possible presence of internal sources of radiation, and unknown shielding
effects.
The HeII Ly
Forest
Because of its relative strength, HeII 304 Å is likely to be
a better tracer of the low density baryon distribution than even
HI Ly.
The principal observable of the HeII
Ly forest is the ratio of
the Gunn-Peterson optical depths of HeII to HI:
![]() | (18) |
where NHeII and
NHI are the column densities of HeII
and HI, respectively
(Miralda-Escudé
1993).
The last equation is valid
for an optically thin gas, where the ionization equilibrium is governed
by photoionisation and both H and He are highly ionized.
JHeII and
JHI are the intensities of the ionizing radiation
field weighted with the frequency dependence of the photoionization
cross-sections. Thus the relative strength of the GP troughs are only
dependent on the ratios of the ionizing fluxes, a situation which can
be cast in terms of the column density ratio
or the ratio of
the intensities at the absorption edges, the softness parameter
SL
(Madau & Meiksin
1994),
![]() | (19) |
The HeII/HI ratio
can range from values of a few, to a thousand,
depending on the spectral slope of the ionizing radiation.
The shape of the ionizing spectrum depends on the relative mix between
"hard"
(AGNs) and "soft" (stellar) sources, and on the details of radiative
transfer by the intergalactic medium
(Bechtold et al 1987;
Shapiro & Giroux 1987;
Miralda-Escudé &
Ostriker 1990;
Meiksin & Madau 1993;
Giroux & Shapiro 1996,
Haardt & Madau 1996).
Thus a HeII 304 Å Gunn-Peterson trough should
appear more prominent than the corresponding HI trough
(Miralda-Escudé
1993),
allowing for a more sensitive measurement of the distribution of
gas in low density regions.
For the actual HeII forest of discrete absorption lines a relation
similar to equation (18) holds, where
is now replaced by
eff as defined earlier
(Miralda-Escudé
1993):
![]() | (20) |
This relation gives the optical depths for a
Ly forest of individual
lines above a certain optical depth threshold, assuming that the column
density distribution of HI
Ly
lines is a power law with
index
. The Doppler
parameters are bHeII and
bHI.
Clearly, together with the strong HeII GP effect there should be a HeII
forest stronger than the corresponding HI
Ly
forest by a similar factor.
OBSERVATIONS Only a small fraction of all QSOs are
suitable for
a search for HeII absorption. The short wavelength of 304 Å requires
an object to be redshifted to at least z > 2 - 3 for the HeII
line to
enter the far UV bands accessible to the Hubble Space Telescope (HST),
or the Hopkins Ultraviolet Telescope (HUT). The QSO has to be bright
enough for a spectrum to be taken, and most importantly, there must be
flux down to the wavelength range of interest. The average blanketing of
the spectrum by Ly lines
(the "Lyman valley",
Møller & Jakobsen
1990)
and especially the total blackout imposed by individual intervening
Lyman limit systems below 912 Å in their rest frame renders the large
majority of QSOs useless for a HeII search
(Picard & Jakobsen
1993),
and surveys of known QSOs for residual UV flux (e.g.
Jakobsen et al 1993)
have to be mounted to select suitable candidates.
To date there are five detections of the HeII forest. A HeII absorption
"break" blueward of the HeII emission line was first seen with the
HST FOC far UV prism by
Jakobsen et al, 1994
in the LOS to Q0302-003
(zem = 3.29), leading to an estimate for the mean
optical depth,
HeII =
3.2+
-1.1.
The object was reobserved at higher resolution with the GHRS instrument by
Hogan et al (1997)
(
HeII
2, beyond the proximity
effect region).
Tytler et al. (1995)
obtained
HeII = 1.0 ±
0.2, later corrected to
HeII > 1.5
(Tytler & Jakobsen, unpublished) in the LOS to Q1937-69
(zem = 3.18).
Davidsen et al (1996),
observed the object HS1700+6416 with HUT to obtain
HeII = 1.0 ±
0.2, at < z > = 2.4.
Reimers et al (1997),
in the LOS to HE2347-4342 (zem = 2.89) find the HeII
absorption to consist of patches with a high continuous GP component,
HeII =
4.8+
-2
in addition to the contribution
expected from the discrete lines, which alternate with regions with less GP
absorption
HeII
3.
INTERPRETATION Given the large uncertainties, all
measurements to date seem to be consistent with each other, if the
expected increase in the optical depth with redshift is taken into
account.
Constraining the strength and shape of the ionizing radiation from the
absorbed flux requires a knowledge of the clumpiness of the gas,
because of the exponential dependence of the absorbed flux on the
optical depth. According to equations (18) and
(20) the relative strengths of the absorption by HI and HeII
depend on the amount of bulk motion relative to thermal motion, and on
the column density distribution function (slope and possible cutoff at
low column density), and the relative contribution from a diffuse
absorption trough. Arguments have been put forward both against
(Songaila et al 1995)
and in favor
(Hogan et al 1997;
Reimers et al 1997;
Zheng et al 1998)
of the existence of such a trough in addition
to the line absorption expected from translating the known HI
Ly
forest into a HeII
forest. If the proponents of additional
trough absorption are correct this may also imply that the HI column
density distribution function has been over-corrected for confusion,
and does not extend to as low a column density as previously assumed.
Superficially this argument sounds like the return of the
lines-versus-trough debate familiar from the HI Gunn-Peterson effect,
but there is new information to be gained by studying the detailed
structure of the low density HeII absorption. The larger optical depth
of HeII highlights very low density structure in voids, which may be
too weak to be usefully constrained with optical HI
Ly
forest
spectra. Eventually such observations will constrain the spatial
fluctuations of the ionizing radiation field and the density field in a
large fraction of the volume of the the universe. The question of
whether the spatial variations of the diffuse absorption can be (or
should be) parametrized as "lines" may have to await the arrival of
better data. In any case, the finding of a substantial amount of HeII
absorption from voids is an important consistency check for
hierarchical structure formation models
(Zhang et al 1995,
1997;
Croft et al 1997a).
At the time of this writing the spectral shape of the radiation field is still not well constrained (Sethi & Nath 1997; Reimers et al 1997; Zheng et al 1998). An interesting twist has been added by the detection of patchy HeII absorption, which is inconsistent with a uniform radiation field. Reimers et al (1997) invoke incomplete reionization of HeII as a possible explanation, an effect predicted to produce saturated absorption troughs (Meiksin & Madau 1993). However, it is hard to tell how strongly saturated the troughs really are. The observations may still be consistent with a fully re-ionized HeII, if the troughs are caused by local fluctuations in the HeII ionizing background (Miralda-Escudé 1997).