![]() | Annu. Rev. Astron. Astrophys. 2000. 38: 761-814 Copyright © 2000 by Annual Reviews. All rights reserved |
3.1.1. Molecular Spectroscopy
ISO has opened the realm of external galaxies for molecular infrared
spectroscopy. Pure H2 rotational emission lines have been
detected in a wide range of galaxies, from normal to ultraluminous (e.g.
Rigopoulou et al
1996a,
2000,
Kunze et al 1996,
1999,
Lutz et al 1999, Moorwood et al 1996,
Sturm et al 1996,
Valentijn et al 1996,
Valentijn & van der
Werf 1999a).
The lowest rotational lines [28 µm S(0) and 17
µm S(1)] originate in warm (90-200 K;
Valentijn & van der
Werf 1999a,
b)
gas that constitutes up to 20% of the total mass of the (cold) molecular
ISM in these galaxies
(Kunze et al 1999,
Rigopoulou et al
2000).
High rotation lines [S(5), S(7)] and rovibrational lines come from a
small amount of much hotter gas
( 1000 K). It is likely that
the H2 emission arises from a combination of shocks, X-ray
illuminated clouds (in AGNs), and photodissociation regions. OH, CH, and
H2O
lines are seen in emission or absorption (or a combination of the two) in
a number of gas-rich starburst, Seyfert, and ultraluminous galaxies
(Colbert et al 1999,
Bradford et al 1999,
Fischer et al 1997,
1999,
Spinoglio et al 1999,
Skinner et al 1997,
Kegel et al 1999).
The observed OH emission can generally be accounted for by infrared pumping
through rotational and rovibrational transitions in sources with a warm
infrared
background source. The ISO SWS/LWS spectroscopy solves the long-standing
puzzle of the pumping mechanism for intense radio mega-maser OH emission
in luminous infrared galaxies
(Baan 1993).
In the mega-maser galaxies Arp 220, IRAS 20100-4156, and 3Zw35,
absorption is seen in cross-ladder rotational transitions
(Figure 4);
this strongly supports the idea of rotational pumping models for the
masers
(Skinner et al 1997,
Kegel et al 1999).
The OH masers must therefore be located in front of the far-IR continuum
source on kpc scales. The OH mega-masers originate in the extended starburst
region, not in the circumnuclear environment
(Skinner et al 1997).
The far-IR molecular line spectra of the ultraluminous galaxies Arp 220
(Figure 4) and Mrk 231 are remarkably similar to
those of the galactic center molecular cloud complex/star-forming region
SgrB2
(Figure 4,
Cox et al 1999,
Fischer et al 1997,
1999),
which indicates that the properties of the entire molecular ISM in Arp 220
(scale 1 kpc) are comparable to those of this dense galactic cloud
[N(H2)
1024 cm-2, n(H2) ~ 104
cm-3].
![]() |
Figure 4. Comparison of the LWS spectrum of Arp 220 and the Galactic star-forming region/molecular cloud SgrB2 (Fischer et al 1999, Cox et al 1999). The spectrum of SgrB2 has been divided by a factor of 115 and shifted to the redshift of Arp 220. The main molecular absorption bands are identified, along with the [OI] and [CII] fine structure lines. |