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Abstract. Isummarize current knowledge of galaxy formation with emphasis
on the initial conditions provided by the ACDM cosmology, integral constraints
from cosmological quantities, and the demographics of high-redshift protogalax-
ies. Tables are provided summarizing the number density, star formation rate
and stellar mass per object, cosmic star formation rate and stellar mass den-
sities, clustering length and typical dark matter halo masses for Lyman break
galaxies, Lyman alpha emitting galaxies, Distant red galaxies, Sub-millimeter
galaxies, and Damped Lyman « absorption systems. I also discuss five key un-
solved problems in galaxy formation and prognosticate advances that the near
future will bring.

1. Boundary Conditions for Galaxy Formation

1.1. Imitial Conditions: ACDM Cosmology

The initial conditions for the formation of galaxies are provided by the now-
standard ACDM cosmological model. The combined results of the WMAP satel-
lite study of Cosmic Microwave Background anisotropies, large-scale structure,
and Type la supernovae observations yield best-fit values for the cosmological
parameters of roughly Qy = 0.7, Q,, = 0.3, Q = 0.04, and Hy = 70h7okm
s~! Mpc~! (Bennett et al. 2003).! The original model of galaxy formation was
Monolithic Collapse (Eggen, Lynden-Bell, & Sandage 1962), where gravitational
collapse of a cloud of primordial gas very early in the lifetime of the Universe
formed all parts of each galaxy at the same time. Modern evidence rules out
this model on two fronts; the widely varying ages of different components of the
Galaxy provide a counter-example, and the ACDM cosmology predicts “bottom-
up” i.e. hierarchical rather than “top-down” structure formation.

Hierarchical structure formation is a generic feature of Cold Dark Matter
(CDM) models. Small overdensities are able to overcome the cosmological ex-
pansion and collapse first, and the resulting dark matter “halos” merge together
to form larger halos which serve as sites of galaxy formation. This process
continues until the present day, making galaxy formation an ongoing process.
The nearly-scale-invariant primordial power spectrum inferred from combining
WMAP with large-scale structure observations provides power on all scales in

"We include hro, analogous to the traditional parameter h = higo, even though its value appears
quite close to 1.
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the distribution of CDM. The baryons fall into the CDM potential wells after
decoupling, leaving only trace evidence of their previous acoustic oscillations as
a series of low-amplitude peaks in the matter power spectrum. The non-linear
collapse of dark matter overdensities occurs on larger and larger scales, so the
typical collapsed halo mass grows with time, but no preferred scale is introduced.
ACDM therefore provides a distribution of halos where galaxies can form, with
the details of the process up to baryonic physics.

Despite the lack of preferred galaxy scales in the distribution of dark matter
halos, baryonic physics causes galaxies to have minimum and maximum masses.
The maximum mass is that of CD galaxies in cluster centers with baryonic
masses ~ 1012M, and virial masses ~ 10'3My; there are ~ 10M,, of baryons
available in a rich cluster but virialization of galaxies and heating of gas to the
high virial temperature prevent most of this mass from finding its way to the
central galaxy. The minimum mass observed today is that of dwarf galaxies,
~ 108Mg, but galaxies may initially have formed as small as 10°Mg, (the bary-
onic Jean’s mass after recombination i.e. the minimum mass for which gravity
overwhelmed pressure support). Explaining the lack of observed galaxies with
circular velocities below 30 km/s is a major goal; it is suspected that feedback
from supernovae explosions may have quenched star formation in such low-mass
objects immediately after a single burst of star formation (Dekel & Silk 1986).

The growth of cosmological structure and collapse of dark matter halos is
a feature of the matter-dominated epoch. During radiation-domination, per-
turbations on scales smaller than the sound horizon were unable to grow due
to acoustic oscillations in the photon-baryon fluid that gave rise to the famous
peaks in the CMB angular power spectrum and the lower-amplitude peaks in the
matter power spectrum. Now that we have entered a phase of dark energy dom-
ination, structure growth is slowing and will cease entirely as the universe enters
a new phase of inflation. This cosmological “freeze-out” in structure formation
is recent, since equality between the dark energy and matter densities occurred
at zeq = 0.4. The slowing of structure formation occurs gradually, so the growth
of cosmological structure continued nearly unabated until z.,, even though we
see strong observational evidence for “downsizing” at z < 1 where high-mass
galaxies grow far more slowly than lower-mass galaxies (e.g. Treu et al. 2005;
Smith 2005). Another term being used by some is “anti-hierarchical”, which is
basically a synonym for “downsizing” but seems to imply inconsistency with hi-
erarchical cosmology. However, the observed freeze-out in galaxy (and possibly
supermassive black hole) formation in massive galaxies is not inconsistent with
CDM models; rather, it appears to be caused by baryonic feedback which is
not well understood at present (see §6.). The slowing of cosmological structure
growth since z ~ 0.4 may, however, play a role in the recent decline of the cosmic
star formation rate density discussed by Bell et al. (2005).

1.2. Final Conditions: Low-redshift Galaxies

The study of galaxy formation is made easier by having full boundary condi-
tions. The final conditions are the Hubble sequence of mature galaxies we see
in the nearby universe at redshift zero. Indeed, much has been learned about
galaxy formation from “archaeological” evidence in the ages and chemical abun-
dances of various Galactic stellar populations, and expanding these studies to
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the rest of the Local Group and beyond is quite useful. Nonetheless, there are
great advantages to observing galaxies in the act of formation, which motivates
the study of high-redshift galaxies. At z > 2, galaxy-mass halos are rare so
the majority of galaxies we observe reside in dark matter halos that have only
recently collapsed i.e. at high-redshift most galaxies are young. In this sense,
z > 2 can be considered the epoch of galaxy formation.

2. Integral Constraints: Cosmological Quantities

Instead of studying galaxies as discrete objects residing in dark matter halos, one
can track the cosmological quantities that comprise the baryon budget. Galaxy
formation and evolution plays the fundamental role in the processing of baryons
from neutral hydrogen to molecular gas to stars to metals. Star formation is
inextricably linked with galaxy formation; whether you choose to define a galaxy
as a large conglomeration of stars or an overdensity of baryons inside a collapsed
dark matter halo, the galaxies in our universe form great numbers of stars. The
cosmological quantities of interest provide integral constraints on star formation.
The cosmic star formation rate density (SFRD) is an integral constraint averaged
over the volume of the universe observable at a given redshift. The cosmic
density of neutral gas, 44, the cosmic density of metals, {27, and the cosmic
stellar mass density all provide integral constraints on the SFRD over time, as
will be discussed below. The sum of the cosmic infrared background (CIB) and
cosmic far-infrared background (FIRB) radiation provides an integral constraint
on the SFRD from the Big Bang all the way to z = 0 by tracing the energy
generated by nuclear reactions in stars.

2.1. Cosmic Density of Neutral Gas

The Damped Lyman a Absorption systems (DLAs, Wolfe et al. 1986) are quasar
absorption line systems with HI column densities > 2 x 102°cm™2, sufficient
to self-shield against the high-redshift ionizing background. Studying quasar
absorption-line spectra provides a (nearly) unbiased sample of lines-of-sight
through the cosmos ideal for measuring cosmological quantities. The DLAs have
been found to contain the majority of neutral hydrogen atoms at high redshift
(see the recent review by Wolfe, Gawiser, & Prochaska 2005). Moreover, DLAs
contain the vast majority of neutral gas, by which we mean neutral hydrogen
and helium in regions that are sufficiently neutral to cool and participate in star
formation, as lower column density systems are predominantly ionized. Hence
the DLASs provide the reservoir of neutral gas that is available for star formation.
In a simple closed box model, dpgqes/dt = —dp,/dt, and the net decrease in the
cosmic density of neutral gas from z = 3 to z = 0 is assumed to have all been
turned into stars (see Fig. 5 of Wolfe et al. 2005). In that case, the DLAs
appear to have formed about half of the stars seen in galaxies today. The truth
is more complicated in hierarchical cosmology, where an open box model must
be used;
dpgas _ dpx
dt —  dt
Cosmological models for infall of gas from the intergalactic medium (IGM),
merging of lower column-density systems, and gas loss due to galactic winds

+ infall + merging — winds. (1)
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are still quite uncertain, but the star formation rates actually measured for
DLAs (Wolfe, Gawiser, & Prochaska 2003a; Wolfe, Prochaska, & Gawiser 2003b,
Wolfe et al. 2004) imply that DLAs could have formed all present-day stars.
Unfortunately, large uncertainties in the source and sink terms prevent us from
using changes in the cosmic density of neutral gas as an integral constraint on
the cosmic SFRD at the present time.

2.2. Star Formation Rate Density

The cosmic star formation rate density has now been measured out to z ~ 6
(Giavalisco et al. 2004). The high-redshift points are taken from only the Lyman
break galaxies, and it is unclear how severe the resulting incompleteness is since
we are not sure if all star-forming galaxy populations at these redshifts are
known. The plot is traditionally shown in misleading units of MuMpc=3yr—!
versus redshift; in order to integrate-by-eye, one should plot this quantity versus
time, and this has the effect of greatly increasing the apparent amount of star
formation at low redshifts. Despite significant uncertainties in the SFRD at
z > 3 due to incompleteness and large dust corrections, it appears that most
stars in the present-day universe formed at z < 2 (see Fig. 33 of Pettini 2004).

2.3. Stellar Mass Density

The cosmic stellar mass density provides an integral constraint on the SFRD,
p«(t) = J3dp./dt. See Dickinson et al. (2003) for a recent compilation, and
Niv Drory’s contribution to this volume for an update. Note that the stellar
masses of galaxies are not direct observables but are inferred from rest-frame
optical (and near-infrared) photometry by modelling each object’s star formation
history using an assumed initial mass function (IMF).

2.4. Cosmic Metal Enrichment History

The cosmic metal density is really a history of cosmic metal enrichment due to
star formation, p.(t) = 1/42 [} dp./dt (Pettini 2004). Wolfe et al. (2005, see
their Fig. 7) show that the cosmic metallicity traced by DLAs rises gradually
from a mean value of [M/H]=-1.5 at z ~ 4 to a mean value of -0.7 at z ~ 1.
The range of observed DLA metallicities is somewhat higher than that of halo
stars but overlaps, and is somewhat lower than that of thick disk stars and far
lower than the near-solar values seen for thin disk stars in the Milky Way. The
DLAs uniformly show greater metal enrichment than the Lyman « forest but
less than values inferred for Lyman break galaxies or quasars at the same epoch
(see Figs. 8, 32 of Pettini 2004, and see Leitherer 2005 for a review). The values
given above are the cosmic mean metallicity of the neutral gas traced by DLAs,
but they do not represent a full census of metals, which can also be found in
heavily star-forming regions that have already used up their neutral gas or can
be expelled by galactic winds into the IGM, which is predominantly ionized. It is
therefore useful to compare the observed DLA metallicities with those expected
from the DLA star formation rates; this leads to a factor of ten deficit in the
observed metallicities called the “Missing Metals Problem” (Wolfe et al. 2005;
Hopkins et al. 2005; Pettini 1999). The most likely explanation is that the star-
forming regions of the galaxies seen as DLAs have superwinds sufficiently strong
to move most of the metals produced into the IGM.
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3. Theoretical Advances

Theoretical efforts to understand and model galaxy formation are mostly beyond
the analytical realm, where they divide into semi-analytic models and cosmolog-
ical simulations. These two approaches have been converging in recent years, as
the practitioners of cosmological hydrodynamic simulations are using more de-
tailed “recipes” for star formation, supernova feedback, and winds and in some
cases have claimed grandiose results from purely N-body simulations with many
semi-analytic recipes added (e.g. Springel et al. 2005). For examples of state-
of-the-art cosmological hydrodynamic simulations of high-redshift galaxies and
AGN;, see Nagamine, Springel, & Hernquist (2004) and Di Matteo, Springel, &
Hernquist (2005).

Semi-analytic models reproduce observations moderately well but have yet
to demonstrate much success in predicting future observations, making them
more of a tool for interpreting results than theoretical models in the classic sense.
Somerville, Primack, & Faber (2001) tuned their models to reproduce galaxy
properties at z = 0 and found one of their models to be in good agreement with
the dust-corrected points at z > 2 in the cosmic SFRD diagram. However, as
mentioned above, semi-analytic models for infall, merging, and winds are highly
uncertain and it is not clear if observations of the cosmic density of neutral gas
and the missing metals problem are consistent with the predictions. Similar
scatter is seen in theoretical predictions of the cosmic stellar mass density.

4. Protogalaxy Demographics

DLAs dominate the neutral gas, making DLA-based studies appropriate for
determining its cosmic density. However, other cosmological quantities should
be summed over all high-redshift objects rather than just DLAs or just Lyman
break galaxies, which trace the bright end of the high-redshift rest-UV galaxy
luminosity function. Another motivation for studying all types of objects is the
search for the progenitors of typical spiral galaxies like the Milky Way, which
have not yet been pinpointed amongst the zoo of high-redshift galaxies. In
designing the Multiwavelength Survey by Yale-Chile (MUSYC, Gawiser et al.
2005a, http://www.astro.yale.edu/MUSYC), it was decided to focus on selecting
all known populations of galaxies at z ~ 3, where most objects are young and
several selection techniques overlap (see review by Stern & Spinrad 1999). The
various populations at this epoch are labelled by three-letter acronyms (TLAs).
We discuss each below.

4.1. Lyman Break Galaxies (LBGs)

The Lyman break galaxies (LBGs) are selected via the Lyman break at 912A in
the rest-frame. Higher-energy photons are unable to escape the galaxies or travel
far in the IGM due to the large cross-section for absorption of ionizing photons
by neutral hydrogen (for an illustration of the technique first successfully applied
by Steidel & Hamilton 1992, see Fig. 19 of Pettini 2004). At z ~ 3, the Lyman
break generates a very red color in U — V, which could also be observed for an
intrinsically red object such as an M dwarf or elliptical galaxy, leading to the
additional requirement of a blue continuum color in e.g. V — R, consistent with
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the expected starburst nature of young galaxies. This makes the LBG technique
insensitive to heavily dust-reddened or evolved stellar populations.

The selected population of galaxies is described in detail by Giavalisco
(2002) and Steidel et al. (2003). Star formation rates range from 10-1000 Mg
yr~! with a median value of ~ 50 Mg, yr~! after correction for reddening values
ranging over 0 <E(B — V)< 0.4 (Pettini 2004). Inferred stellar masses range
over 6 x 108My < M, < 101" My, with median value 2 x 10'°M,. Implied stellar
ages range over 1 Myr< t, < 2 Gyr with median age 500 Myr (Shapley et al.
2005). Observed qualities of LBGs are summarized in Tables 1 and 2 below, giv-
ing values for the space density, clustering length and dark matter halo masses
from Adelberger et al. (2005), the SFR and stellar mass per object and stellar
mass density from Shapley et al. (2001) and the cosmic SFRD from Steidel et al.
(1999).

4.2. Lyman Alpha Emitters (LAEs)

Starbursting galaxies can emit most of their ultraviolet luminosity in the Lyman
« line. Because Lyman o photons are resonantly scattered in neutral hydrogen,
even a small amount of dust will quench this emission. Hence, selecting objects
with strong Lyman « emission lines is expected to reveal a set of objects in the
early phases of rapid star formation. These could either be young objects in
their first burst of star formation or evolved galaxies undergoing a starburst due
to a recent merger. Selecting galaxies with strong emission lines also allows us
to probe the high-redshift luminosity function dimmer than the “spectroscopic”
continuum limit of magnitude R = 25.5 that is used to select the Steidel et
al. LBG samples, since continuum detection is not necessary for spectroscopic
confirmation using the emission line.

Observed qualities of the Lyman Alpha Emitting galaxies (LAEs) are sum-
marized in Tables 1 and 2 below, giving values for the SFR per object from Hu,
Cowie, & McMahon (1998) and the space density, SFRD, clustering length and
dark matter halo masses from MUSYC (Gawiser et al. 2005b).

4.3. Distant Red Galaxies (DRGs)

The inability of the Lyman break selection technique to find intrinsically red
objects can be overcome by using observed NIR imaging to select high-redshift
galaxies via their rest-frame Balmer/4000A break. Looking for a continuum
break in J — K selects objects at 2 < z < 4, labelled Distant Red Galaxies
(DRGs) (Franx et al. 2003; van Dokkum et al. 2003). Reddy et al. (2005) offer a
comparison of the redshift distributions of objects selected by LBG /star-forming
colors, DRGs selected in J — K, and the passive evolution and star-forming
samples selected through their BzK colors by Daddi et al. (2004). Note that this
comparison is somewhat biased as the spectroscopic follow-up was performed on
a sample originally selected only by the LBG /star-forming criteria. van Dokkum
et al. (2005) report MUSYC results for an analogous comparison derived from
a K-selected sample with inferred stellar masses > 101 M.

Observed qualities of DRGs are summarized in Tables 1 and 2 below, giving
values for the SFR and stellar mass per object from van Dokkum et al. (2004)
and for the space density, SFRD, stellar mass density, clustering length and dark
matter halo masses from MUSYC (Gawiser et al, in preparation).
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4.4. Sub-Millimeter Galaxies (SMGs)

The Sub-millimeter galaxies (SMGs) are selected using sub-millimeter bolome-
ter arrays, e.g. SCUBA or MAMBO, which have poor spatial resolution, ~ 15”.
Complementary high-resolution radio imaging is needed to obtain positions ac-
curate enough to find optical counterparts or perform spectroscopy. This means
that the SMGs with redshifts are really jointly selected in both sub-mm and
radio. Observed qualities of SMGs are summarized in Tables 1 and 2 below,
giving values for the space density from Chapman et al. (2003), the SFR per
object and SFR density from Chapman et al. (2005), the clustering length from
Webb et al. (2003) and the dark matter halo masses from MUSYC (Gawiser et
al., in preparation).

4.5. Damped Lyman a Absorption Systems (DLAs)

The Damped Lyman « Absorption systems (DLAs) were introduced above in
§2.1. Observed qualities of DLAs are summarized in Tables 1 and 2 below,
giving the range of SFR per object for the two DLAs for which this quantity
has been determined (Mgller et al. 2002; Bunker 2004, see Wolfe et al. 2005
for a review). Also shown are the SFR density from Wolfe et al. (2003a) and
the clustering length and dark matter halo masses determined by Cooke et al.
(2005).

5. Clustering of protogalaxies

It seems appropriate to provide a brief summary of the method used to generate
the clustering lengths and inferred dark matter halo masses given in the Tables.
The spatial correlation function £(r) = (r/rg)~7 is inferred by fitting a power-
law to either the observed spatial or angular correlation function of the sample.
If only angular positions are observed, the redshift distribution N(z) must be
measured spectroscopically and used to invert the Limber equation as described
in Giavalisco et al. (1998). The Landy-Szalay estimator is typically used to
estimate the angular or spatial correlation function of the datapoints and to
correct for the so-called “integral constraint” caused by measuring the mean
density of the population from the observed survey volume (Landy & Szalay
1993). The LBG, LAE, and DRG samples are large enough to use the correlation
length rg measured from the auto-correlation function to determine the bias
factor e.g. brpa, following

¢eBa-LBa(r) = (r/ro) ™" = bl paéom(r), (2)

where &pps(r) is the dark matter autocorrelation function predicted by the

ACDM cosmology. The SMG and DLA samples are small, so their cross-

correlation with the more numerous LBGs is used to determine their bias factor,
e.g.

Epra—rpa(r) = (1/r0)”" = bprabrecépm(r). (3)

The bias factor of each family of protogalaxies determines its typical dark

matter halo mass following the method of Mo & White (1996), whose application
to the cross-correlation function was first suggested by Gawiser et al. (2001).
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This method also allows one to predict the number abundance of dark matter
halos with mass above the given threshold mass and to compare this with the
observed number density of the population to infer the average halo occupation
number.

Table 1. The z = 3 universe. References for entries are given in the text,
with a few entries still to be determined from MUSYC, ALMA, and JWST.
Typical systematic uncertainties are a factor of two.

TLA Space density SFR per object Stellar mass per object Clustering length (rg)

[h% Mpc™] Meyr™] (Mo [hzg Mpc]
LBG  2x10° 30 107 61
LAE  3x107* 6 MUSYC 4+1
DRG  3x107* 200 2 x 10! 9+2
SMG  2x107° 1000 MUSYC 16+7
DLA ALMA 1-50 JWST 4+2

Table 2.  Cosmological quantities. References for entries are given in the
text, with a few entries still to be determined from MUSYC and JWST.
Typical systematic uncertainties are a factor of three.

TLA SFR density Stellar mass density Dark matter halo mass
Meyr~thiy Mpc™®]  [Mphdy Mpc™?] Me]

LBG 0.1 107 3 x 10M

LAE 0.002 MUSYC 10t

DRG 0.06 6 x 107 3 x 1012

SMG 0.02 MUSYC 1013

DLA 0.03 JWST 101!

6. Five Unsolved Problems in Galaxy Formation

1. What does a protogalazy look like? The term protogalaxy has been used
loosely here and in the literature to describe young galaxies at high redshift.
Part of the difficulty is that once an object has sufficient stars to be observed in
rest-frame UV or optical radiation, we consider it a galaxy. But before this time
it is either unobservable or only observable in absorption (e.g. DLAs), X-ray
emission from a supermassive black hole (quasars/AGN), or in far-infrared radi-
ation from dust which could be enshrouding either a powerful AGN or rapid star
formation. If dark matter halo collapse, initial star formation and supermassive
black hole formation all occur simultaneously, the formation epoch of the galaxy
is well-defined, and the picture is simple. But it is possible that many collapsed
halos remain quiescent clouds of neutral gas until star formation is triggered by
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later mergers; these objects could comprise the half of DLAs that fail to show
significant cooling in the [CII] 158 micron line (Wolfe et al. 2004). The distri-
bution of lag times between dark matter halo collapse, supermassive black hole
formation, and rapid star formation remain uncertain.

2. When/how did each component of the Galaxy form? Observations indi-
cate that the thin disk formed at z ~ 2, but simulations have trouble creating
disk galaxies. One area now receiving attention is the manner in which angular
momentum coupling between dark matter and baryons affects bar/disk forma-
tion and the cuspiness of bulges. It is still not clear if the globular clusters
should be considered Galactic components or were all formed earlier and cap-
tured, despite evidence that some globular clusters are captured dwarf galaxies.
Could globular clusters have formed in the same low-mass halos that met the
Jeans threshold for collapse after recombination and hosted the Population III
stars?

3. When/how did galazy sequences evolve? HST observations of morpholo-
gies of galaxies at z > 2 imply that the Hubble sequence was not yet present.
This is somewhat subtle, as cosmological surface brightness dimming would make
a face-on spiral appear very different at high redshift, but most objects display
irregular morphology and even the most promising edge-on disk candidates show
spectroscopic kinematics inconsistent with the presence of disks (Erb et al. 2004).
However, in the low-redshift (z < 1) universe we see a clear bimodality in the
distribution of galaxy properties, the so-called red and blue sequences (e.g. Bell
et al. 2004; Kannappan 2004). Such bimodalities are unlikely to arise from cos-
mological structure formation but are presumably caused by baryonic physics
and appear directly linked to the “downsizing” behavior discussed in §1.1.

4. What role did feedback play? The non-linear baryonic physics of star for-
mation leads to highly energetic processes (ultraviolet radiation, stellar winds,
supernova explosions) that can ionize or expel neutral gas that would other-
wise participate in further star formation. It is now clear that the processes
of galaxy and supermassive black hole formation are intimately connected, as
evidenced by striking correlations between the masses of black holes and the ve-
locity dispersions (or masses) of bulges in which they are embedded (Gebhardt
et al. 2000; Ferrarese & Merritt 2000; Kormendy & Richstone 1995; Magorrian
et al. 1998). Possible explanations include simultaneous hierarchical growth of
galaxies and their central black holes through mergers (Haehnelt & Kauffmann
2000; Di Matteo et al. 2005), a strong coupling between black hole accretion and
star formation in proto-disks at high redshift (e.g. Burkert & Silk 2001), and
the effects of AGN feedback on the surrounding intergalactic medium (Scanna-
pieco, Silk, & Bouwens 2005). One way or another, it appears that feedback
from AGN, supernovae, and galactic winds must regulate the joint formation of
the bulge and central black hole. Feedback may also play a role in determining
the cuspiness of the dark matter halos, which does not appear consistent with
profiles predicted from N-body simulations (Silk 2004). The galactic winds play
a critical role in metal enrichment of the intergalactic medium and probably
play a lesser role in ejecting neutral gas from the galaxies. As mentioned above,
supernova feedback may explain the apparent minimum galaxy mass.

5. When/how was the universe reionized? A major area of ongoing investi-
gation is the reionization epoch when the intergalactic medium was ionized.
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Slightly inconsistent results have been reported for the reionization redshift
from WMAP observations of the temperature-E-mode cross-power-spectrum
(z = 20 £ 9, Bennett et al. 2003) and the apparent end of reionization where
the neutral hydrogen fraction dropped to 0.01 as seen in SDSS quasar spectra
at z ~ 6.3 (Fan et al. 2002). It seems premature to hypothesize bimodal models
of reionization where separate families of sources produce the “early” ionization
seen by WMAP and the completion of reionization seen by SDSS. Nonetheless,
it is unclear at present which sources reionized the universe, and the leading
candidates are the first generation of zero-metallicity stars (Population III) and
starbursting galaxies including LBGs and LAEs. The quasars have very hard,
ionizing spectra but were not numerous enough to reionize the universe at z > 6;
they appear to dominate Hell reionization at z ~ 3. Significant uncertainties
exist regarding the nature of the Population III stars: did they form in 10°Mg
dark matter halos that collapsed after recombination, or in larger galaxies later
on? A top-heavy initial mass function (IMF) is presumed for Population III, but
what was the exact mass range and nature of stellar death? Did multiple stars
occur per halo, or did the death of the first very massive star prevent further
star formation or cause sufficient metal enrichment to generate Population II
stars?

7. Conclusions: Coming Attractions

The speakers have been asked to discuss major advances expected in the com-
ing decade. For galaxy formation, I will go on record with three promising
predictions and one slightly fascetious warning.

The coming years will see the unification of galaxy formation and evolu-
tion. Until very recently, galaxy formation was studied at z > 2.5 and galaxy
evolution was studied at z < 1 and the period 1 < z < 2.5 was referred to
as the “redshift desert”. But technological advances in NIR imaging and spec-
troscopy have made the rest-frame Balmer/4000A break and nearby emission
lines available for study in distant galaxies. Development of these “needle-in-
a-haystack” techniques now allows us to successfully find evolved galaxies at
z > 2 even though these objects may be rare at those epochs. Hence we are
beginning to study objects at z ~ 3 that formed at z > 6 which may turn out
to be much easier than observing z > 6 galaxies directly. Imaging with the
Spitzer satellite is enabling the first studies of rest-frame near-infrared emission
from z > 2 galaxies, breaking degeneracies between age and dust. Deep imaging
and slitless spectroscopy with the GALEX satellite are revealing the analogs of
Lyman break galaxies at low redshift (Burgarella et al. 2005). These combined
studies may make it possible to piece together a rough evolutionary sequence,
e.g. DLA—LAE—LBG—SMG—DRG, that would form part of a grand unified
model of high-redshift galaxies and AGN.

We will be able to study the interstellar medium in emission at high-redshift.
ALMA will enable studies of molecular gas in young galaxies through high-order
CO lines. The [CII] 158 micron line, which dominates the cooling of the Cold
Neutral Medium phase at both low and high redshift, should be detectable for
galaxies with large gas mass or rapid cooling equilibrating the heating due to
starbursts. The current set of Early Universe Molecular Emission Line Galaxies
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consist mostly of quasars and are reviewed (and assigned the questionable TLA
“EMG”) by Solomon & vanden Bout (2005). Both CO and [CII] have now been
detected in z > 6 SDSS quasars, where they provide the best direct probes
of the quasar host galaxies (Bertoldi et al. 2003; Walter et al. 2004; Maiolino
et al. 2005). Detecting these lines and the sub-millimeter dust continuum from
protogalaxies with ALMA will allow us to probe a multivariate mass function of
gas mass, molecular mass, dust mass, and stellar mass. Even ALMA sensitivity
may only allow detections of the tip of the gas-mass function, but this will
provide a complementary set of objects to the tip of the rest-frame-UV and rest-
frame-optical luminosity functions currently studied at high redshift, and much
can be learned from the intersection and union of these samples.

High-redshift galaxies will be used to constrain dark energy properties. It has
recently been shown (Seo & Eisenstein 2003; Linder 2003; Blake & Glazebrook
2003) that the scale of baryon acoustic oscillations provides a “standard rod”
that can be measured in the clustering of high-redshift galaxies. The measure-
ment will constrain the dark energy equation-of-state as a function of redshift,
w(z), via its influence on the expansion history of the universe. The measure-
ment can be performed at any redshift where the line-of-sight starting at z = 0
is sufficiently influenced by the dark energy, making z = 1 and z = 3 equally ac-
ceptable. Of order a million redshifts are needed, and the most likely surveys to
accomplish this ambitious goal appear to be HETDEX using the VIRUS instru-
ment under construction for HET and the wide-field multi-fiber spectrograph
KAOS proposed for Gemini.

The rapidly increasing sophistication of studies of the high-redshift universe
will generate even more jargon. We are already debating proper nomenclature
for special categories of DLAs at lower column density (sub-DLAs) and those
found in gamma-ray burst afterglows (burst-DLAs or bDLAs). Four-letter object
acronyms (FLOAs?) are going to be part of the future.
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