Contents Previous

REFERENCES

  1. W. L. Kraushaar, G. W. Clark, G. P. Garmire, L. V. Borken R., T. Thorson, High-Energy Cosmic Gamma-Ray Observations from the OSO-3 Satellite, Astrophys. J. 177 (1972) 341.
  2. F. Acero, et al., Fermi Large Area Telescope Third Source Catalog, Astrophys. J. Suppl. 218. arXiv:1501.02003.
  3. J. Lande, M. Ackermann, A. Allafort, J. Ballet, K. Bechtol, et al., Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data, Astrophys. J. 756 (2012) 5. arXiv:1207.0027, doi:10.1088/0004-637X/756/1/5.
  4. M. Ackermann, et al., The Spectrum and Morphology of the Fermi Bubbles, Astrophys. J. arXiv:1407.7905, doi:10.1088/0004-637X/793/1/64.
  5. C. E. Fichtel, et al., High-energy gamma-ray results from the second small astronomy satellite, Astrophys. J. 198 (1975) 163–182.
  6. P. Sreekumar, et al., EGRET observations of the extragalactic gamma-ray emission, Astrophys. J. 494 (1998) 523–534. arXiv:astro-ph/9709257, doi:10.1086/305222.
  7. A. Strong, I. Moskalenko, O. Reimer, A new determination of the extragalactic diffuse gamma-ray background from egret data, Astrophys.J. 613 (2004) 956–961. arXiv:astro-ph/0405441, doi:10.1086/423196.
  8. A. Abdo, et al., The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data, Phys.Rev.Lett. 104 (2010) 101101. arXiv:1002.3603, doi:10.1103/PhysRevLett.104.101101.
  9. M. Ackermann, et al., The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys.J. 799 (1) (2015) 86. arXiv:1410.3696, doi:10.1088/0004-637X/799/1/86.
  10. F. Stecker, M. Salamon, M. Malkan, The High-energy diffuse cosmic gamma-ray background radiation from blazars, Astrophys.J. 410 (1993) L71–L74.
  11. F. Stecker, M. Salamon, The Gamma-ray background from blazars: A New look, Astrophys.J. 464 (1996) 600–605. arXiv:astro-ph/9601120, doi:10.1086/177348.
  12. A. Muecke, M. Pohl, On the contribution of unresolved blazars to the extragalactic gamma-ray background, ASP Conf.Ser. 159 (1998) 217. arXiv:astro-ph/9807297.
  13. T. Narumoto, T. Totani, Gamma-ray luminosity function of blazars and the cosmic gamma-ray background: evidence for the luminosity dependent density evolution, Astrophys.J. 643 (2006) 81–91. arXiv:astro-ph/0602178, doi:10.1086/502708.
  14. C. D. Dermer, The Extragalactic Gamma Ray Background, AIP Conf.Proc. 921 (2007) 122–126. arXiv:0704.2888, doi:10.1063/1.2757282.
  15. V. Pavlidou, T. M. Venters, The Spectral Shape of the Gamma-ray Background from Blazars, Astrophys.J. 673 (2008) 114–118. arXiv:0710.0002, doi:10.1086/523956.
  16. Y. Inoue, T. Totani, The Blazar Sequence and the Cosmic Gamma-Ray Background Radiation in the Fermi Era, Astrophys.J. 702 (2009) 523–536. arXiv:0810.3580, doi:10.1088/0004-637X/702/1/523,10.1088/0004-637X/728/1/73.
  17. M. Ajello, L. Costamante, R. Sambruna, N. Gehrels, J. Chiang, et al., The Evolution of Swift/BAT blazars and the origin of the MeV background, Astrophys.J. 699 (2009) 603–625. arXiv:0905.0472, doi:10.1088/0004-637X/699/1/603.
  18. A. Abdo, et al., The Fermi-LAT high-latitude Survey: Source Count Distributions and the Origin of the Extragalactic Diffuse Background, Astrophys.J. 720 (2010) 435–453. arXiv:1003.0895, doi:10.1088/0004-637X/720/1/435.
  19. K. N. Abazajian, S. Blanchet, P. Harding, The contribution of Blazars to the Extragalactic Diffuse Gamma-ray Background and Their Future Spatial Resolution, Phys.Rev. D84 (2011) 103007. arXiv:1012.1247, doi:10.1103/PhysRevD.84.103007.
  20. F. W. Stecker, T. M. Venters, Components of the Extragalactic Gamma Ray Background, Astrophys.J. 736 (2011) 40. arXiv:1012.3678, doi:10.1088/0004-637X/736/1/40.
  21. J. Singal, V. Petrosian, M. Ajello, Flux and Photon Spectral Index Distributions of Fermi-LAT Blazars And Contribution To The Extragalactic Gamma-ray Background, Astrophys.J. 753 (2012) 45. arXiv:1106.3111.
  22. M. Ajello, M. Shaw, R. Romani, C. Dermer, L. Costamante, et al., The Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars, Astrophys.J. 751 (2012) 108. arXiv:1110.3787, doi:10.1088/0004-637X/751/2/108.
  23. M. Ajello, R. Romani, D. Gasparrini, M. Shaw, J. Bolmer, et al., The Cosmic Evolution of Fermi BL Lacertae Objects, Astrophys.J. 780 (2014) 73. arXiv:1310.0006, doi:10.1088/0004-637X/780/1/73.
  24. M. Di Mauro, F. Donato, G. Lamanna, D. Sanchez, P. Serpico, Diffuse γ-ray emission from unresolved BL Lac objects, Astrophys.J. 786 (2014) 129. arXiv:1311.5708, doi:10.1088/0004-637X/786/2/129.
  25. M. Ajello, D. Gasparrini, M. Sánchez-Conde, G. Zaharijas, M. Gustafsson, et al., The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark-Matter Annihilation, Astrophys.J. 800 (2) (2015) L27. arXiv:1501.05301, doi:10.1088/2041-8205/800/2/L27.
  26. L. Stawarz, T. Kneiske, J. Kataoka, Kiloparsec-scale jets in FR I radio galaxies and the gamma-ray background, Astrophys.J. 637 (2006) 693–698. arXiv:astro-ph/0507316, doi:10.1086/498084.
  27. F. Massaro, M. Ajello, Fueling lobes of radio galaxies: statistical particle acceleration and the extragalactic gamma-ray background, Astrophys.J.Letts 729 (2011) L12. arXiv:1102.0774.
  28. Y. Inoue, Contribution of the Gamma-ray Loud Radio Galaxies Core Emissions tothe Cosmic MeV and GeV Gamma-Ray Background Radiation, Astrophys.J. 733 (2011) 66. arXiv:1103.3946, doi:10.1088/0004-637X/733/1/66.
  29. M. Di Mauro, F. Calore, F. Donato, M. Ajello, L. Latronico, Diffuse γ-ray emission from misaligned active galactic nuclei, Astrophys.J. 780 (2014) 161. arXiv:1304.0908, doi:10.1088/0004-637X/780/2/161.
  30. D. Bhattacharya, P. Sreekumar, R. Mukherjee, Contribution from unresolved discrete sources to the Extragalactic Gamma-Ray Background (EGRB), Res.Astron.Astrophys. 9 (2009) 1205–1214. arXiv:0907.1741, doi:10.1088/1674-4527/9/11/004.
  31. B. D. Fields, V. Pavlidou, T. Prodanovic, Cosmic Gamma-Ray Background from Star-Forming Galaxies, Astrophys.J. 722 (2010) L199. arXiv:1003.3647.
  32. R. Makiya, T. Totani, M. Kobayashi, Contribution from Star-Forming Galaxies to the Cosmic Gamma-Ray Background Radiation, Astrophys. J. 728 (2011) 158. arXiv:1005.1390, doi:10.1088/0004-637X/728/2/158.
  33. M. Ackermann, et al., GeV Observations of Star-forming Galaxies with Fermi LAT, Astrophys.J. 755 (2012) 164. arXiv:1206.1346, doi:10.1088/0004-637X/755/2/164.
  34. B. C. Lacki, S. Horiuchi, J. F. Beacom, The Star-Forming Galaxy Contribution to the Cosmic MeV and GeV Gamma-Ray Background, Astrophys.J. 747 (2012) 2. arXiv:1206.0772.
  35. N. Chakraborty, B. D. Fields, Inverse Compton Contribution to the Star-Forming Extragalactic Gamma-Ray Background, Astrophys.J. 773 (2013) 104. arXiv:1206.0770, doi:10.1088/0004-637X/773/2/104.
  36. C.-A. Faucher-Giguere, A. Loeb, The Pulsar Contribution to the Gamma-Ray Background, JCAP 1001 (2010) 005. arXiv:0904.3102, doi:10.1088/1475-7516/2010/01/005.
  37. J. M. Siegal-Gaskins, R. Reesman, V. Pavlidou, S. Profumo, T. P. Walker, Anisotropies in the gamma-ray sky from millisecond pulsars, Mon.Not.Roy.Astron.Soc. 415 (2011) 1074S. arXiv:1011.5501.
  38. F. Calore, M. Di Mauro, F. Donato, F. Donato, Diffuse gamma-ray emission from galactic pulsars, Astrophys.J. 796 (2014) 14. arXiv:1406.2706, doi:10.1088/0004-637X/796/1/14.
  39. F. Zandanel, I. Tamborra, S. Gabici, S. Ando, High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints, Astron.Astrophys. 578 (2015) A32. arXiv:1410.8697, doi:10.1051/0004-6361/201425249.
  40. S. Horiuchi, J. F. Beacom, Revealing Type Ia supernova physics with cosmic rates and nuclear gamma rays, Astrophys.J. 723 (2010) 329–341. arXiv:1006.5751, doi:10.1088/0004-637X/723/1/329.
  41. A. Lien, B. D. Fields, The Diffuse Gamma-ray Background from Type Ia Supernovae, Astrophys.J. 747 (2012) 120. arXiv:1201.3447, doi:10.1088/0004-637X/747/2/120.
  42. O. E. Kalashev, D. V. Semikoz, G. Sigl, Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux, Phys.Rev. D79 (2009) 063005. arXiv:0704.2463, doi:10.1103/PhysRevD.79.063005.
  43. M. Ahlers, J. Salvado, Cosmogenic gamma-rays and the composition of cosmic rays, Phys.Rev. D84 (2011) 085019. arXiv:1105.5113, doi:10.1103/PhysRevD.84.085019.
  44. G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys.Rept. 405 (2005) 279–390. arXiv:hep-ph/0404175, doi:10.1016/j.physrep.2004.08.031.
  45. M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 1103 (2011) 051. arXiv:1012.4515, doi:10.1088/1475-7516/2011/03/051.
  46. A. Ibarra, Indirect dark matter detection, Acta Phys.Polon. B43 (2012) 2199–2224. doi:10.5506/APhysPolB.43.2199.
  47. T. Bringmann, C. Weniger, Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects, Phys.Dark Univ. 1 (2012) 194–217. arXiv:1208.5481, doi:10.1016/j.dark.2012.10.005.
  48. P. Ullio, L. Bergstrom, J. Edsjo, C. G. Lacey, Cosmological dark matter annihilations into gamma-rays - a closer look, Phys.Rev. D66 (2002) 123502. arXiv:astro-ph/0207125, doi:10.1103/PhysRevD.66.123502.
  49. J. E. Taylor, J. Silk, The Clumpiness of cold dark matter: Implications for the annihilation signal, Mon.Not.Roy.Astron.Soc. 339 (2003) 505. arXiv:astro-ph/0207299, doi:10.1046/j.1365-8711.2003.06201.x.
  50. S. Ando, Can dark matter annihilation dominate the extragalactic gamma-ray background?, Phys.Rev.Lett. 94 (2005) 171303. arXiv:astro-ph/0503006, doi:10.1103/PhysRevLett.94.171303.
  51. S. Ando, E. Komatsu, Anisotropy of the cosmic gamma-ray background from dark matter annihilation, Phys.Rev. D73 (2006) 023521. arXiv:astro-ph/0512217, doi:10.1103/PhysRevD.73.023521.
  52. S. Ando, E. Komatsu, T. Narumoto, T. Totani, Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin of cosmic gamma-ray background, Phys.Rev. D75 (2007) 063519. arXiv:astro-ph/0612467, doi:10.1103/PhysRevD.75.063519.
  53. J. M. Siegal-Gaskins, Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background, JCAP 0810 (2008) 040. arXiv:0807.1328, doi:10.1088/1475-7516/2008/10/040.
  54. S. Ando, Gamma-ray background anisotropy from galactic dark matter substructure, Phys.Rev. D80 (2009) 023520. arXiv:0903.4685, doi:10.1103/PhysRevD.80.023520.
  55. M. Fornasa, L. Pieri, G. Bertone, E. Branchini, Anisotropy probe of galactic and extra-galactic Dark Matter annihilations, Phys.Rev. D80 (2009) 023518. arXiv:0901.2921, doi:10.1103/PhysRevD.80.023518.
  56. J. Zavala, V. Springel, M. Boylan-Kolchin, Extragalactic gamma-ray background radiation from dark matter annihilation, Mon.Not.Roy.Astron.Soc. 405 (2010) 593. arXiv:0908.2428.
  57. A. Ibarra, D. Tran, C. Weniger, Detecting Gamma-Ray Anisotropies from Decaying Dark Matter: Prospects for Fermi LAT, Phys.Rev. D81 (2010) 023529. arXiv:0909.3514, doi:10.1103/PhysRevD.81.023529.
  58. A. Abdo, et al., Constraints on Cosmological Dark Matter Annihilation from the Fermi-LAT Isotropic Diffuse Gamma-Ray Measurement, JCAP 1004 (2010) 014. arXiv:1002.4415, doi:10.1088/1475-7516/2010/04/014.
  59. G. Hutsi, A. Hektor, M. Raidal, Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying Dark Matter, JCAP 1007 (2010) 008. arXiv:1004.2036, doi:10.1088/1475-7516/2010/07/008.
  60. J. Zavala, M. Vogelsberger, T. R. Slatyer, A. Loeb, V. Springel, The cosmic X-ray and gamma-ray background from dark matter annihilation, Phys.Rev. D83 (2011) 123513. arXiv:1103.0776, doi:10.1103/PhysRevD.83.123513.
  61. F. Calore, V. De Romeri, F. Donato, Conservative upper limits on WIMP annihilation cross section from Fermi-LAT gamma-rays, Phys.Rev. D85 (2012) 023004, 10 pages, 6 figures Version updated, as sent to PRD. arXiv:1105.4230, doi:10.1103/PhysRevD.85.023004.
  62. M. Fornasa, J. Zavala, M. A. Sánchez-Conde, J. M. Siegal-Gaskins, T. Delahaye, et al., Characterization of Dark-Matter-induced anisotropies in the diffuse gamma-ray background, MNRAS, 429, 1529. arXiv:1207.0502, doi:10.1093/mnras/sts444.
  63. M. Di Mauro, A. Cuoco, F. Donato, J. M. Siegal-Gaskins, Fermi-LAT /gamma-ray anisotropy and intensity explained by unresolved Radio-Loud Active Galactic Nuclei, JCAP 1411 (11) (2014) 021. arXiv:1407.3275, doi:10.1088/1475-7516/2014/11/021.
  64. M. Ackermann, et al., Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background. arXiv:1501.05464.
  65. M. Di Mauro, F. Donato, Composition of the Fermi-LAT isotropic gamma-ray background intensity: Emission from extragalactic point sources and dark matter annihilations, Phys.Rev. D91 (2015) 123001. arXiv:1501.05316.
  66. M. Ackermann, et al., Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT, Phys.Rev. D85 (2012) 083007. arXiv:1202.2856.
  67. A. Cuoco, E. Komatsu, J. Siegal-Gaskins, Joint anisotropy and source count constraints on the contribution of blazars to the diffuse gamma-ray background, Phys.Rev. D86 (2012) 063004. arXiv:1202.5309, doi:10.1103/PhysRevD.86.063004.
  68. J. P. Harding, K. N. Abazajian, Models of the Contribution of Blazars to the Anisotropy of the Extragalactic Diffuse Gamma-ray Background, JCAP 1211 (2012) 026. arXiv:1206.4734, doi:10.1088/1475-7516/2012/11/026.
  69. D. Malyshev, D. W. Hogg, Statistics of gamma-ray point sources below the Fermi detection limit, Astrophys.J. 738 (2011) 181. arXiv:1104.0010, doi:10.1088/0004-637X/738/2/181.
  70. J.-Q. Xia, A. Cuoco, E. Branchini, M. Viel, Tomography of the Fermi-lat γ-ray Diffuse Extragalactic Signal via Cross Correlations With Galaxy Catalogs, Astrophys.J.Suppl. 217 (1) (2015) 15. arXiv:1503.05918, doi:10.1088/0067-0049/217/1/15.
  71. M. Shirasaki, S. Horiuchi, N. Yoshida, Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background: Constraints on the Dark Matter Annihilation Cross-Section, Phys.Rev. D90 (6) (2014) 063502. arXiv:1404.5503, doi:10.1103/PhysRevD.90.063502.
  72. S. Camera, M. Fornasa, N. Fornengo, M. Regis, A Novel Approach in the Weakly Interacting Massive Particle Quest: Cross-correlation of Gamma-Ray Anisotropies and Cosmic Shear, Astrophys.J. 771 (2013) L5. arXiv:1212.5018, doi:10.1088/2041-8205/771/1/L5.
  73. S. Ando, A. Benoit-Lévy, E. Komatsu, Mapping dark matter in the gamma-ray sky with galaxy catalogs, Phys.Rev. D90 (2014) 023514. arXiv:1312.4403, doi:10.1103/PhysRevD.90.023514.
  74. S. Ando, Power spectrum tomography of dark matter annihilation with local galaxy distribution, JCAP 1410 (10) (2014) 061. arXiv:1407.8502, doi:10.1088/1475-7516/2014/10/061.
  75. S. Camera, M. Fornasa, N. Fornengo, M. Regis, Tomographic-spectral approach for dark matter detection in the cross-correlation between cosmic shear and diffuse γ-ray emission, JCAP 1506 (06) (2015) 029. arXiv:1411.4651, doi:10.1088/1475-7516/2015/06/029.
  76. M. Doro, et al., Dark Matter and Fundamental Physics with the Cherenkov Telescope Array, Astropart.Phys. 43 (2013) 189–214. arXiv:1208.5356, doi:10.1016/j.astropartphys.2012.08.002.
  77. B. Acharya, M. Actis, T. Aghajani, G. Agnetta, J. Aguilar, et al., Introducing the CTA concept, Astropart.Phys. 43 (2013) 3–18. doi:10.1016/j.astropartphys.2013.01.007.
  78. W. Atwood, et al., The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission, Astrophys.J. 697 (2009) 1071–1102. arXiv:0902.1089, doi:10.1088/0004-637X/697/2/1071.
  79. M. Ackermann, et al., Fermi-LAT Observations of the Diffuse Gamma-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium, Astrophys.J. 750 (2012) 3. arXiv:1202.4039, doi:10.1088/0004-637X/750/1/3.
  80. C. E. Fichtel, G. A. Simpson, D. J. Thompson, Diffuse gamma radiation, Astrophys.J. 222 (1978) 883–849.
  81. A. W. Strong, I. V. Moskalenko, O. Reimer, A New estimate of the extragalactic gamma-ray background from EGRET data. arXiv:astro-ph/0306345.
  82. A. Franceschini, G. Rodighiero, M. Vaccari, The extragalactic optical-infrared background radiations, their time evolution and the cosmic photon-photon opacity, Astron.Astrophys. 487 (2008) 837. arXiv:0805.1841, doi:10.1051/0004-6361:200809691.
  83. A. Dominguez, J. Primack, D. Rosario, F. Prada, R. Gilmore, et al., Extragalactic Background Light Inferred from AEGIS Galaxy SED-type Fractions, Mon.Not.Ray.Astron.Soc. 410 (2011) 2556–2578. arXiv:1007.1459.
  84. M. Ackermann, et al., The Imprint of The Extragalactic Background Light in the Gamma-Ray Spectra of Blazars, Science 338 (2012) 1190–1192. arXiv:1211.1671, doi:10.1126/science.1227160.
  85. A. Abramowski, et al., Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S, Astron.Astrophys. 550 (2013) 4. arXiv:1212.3409, doi:10.1051/0004-6361/201220355.
  86. R. Gilmore, R. Somerville, J. Primack, A. Dominguez, Semi-analytic modeling of the EBL and consequences for extragalactic gamma-ray spectra, Mon.Not.Roy.Astron.Soc. 422 (2012) 3189. arXiv:1104.0671, doi:10.1111/j.1365-2966.2012.20841.x.
  87. A. Dominguez, J. Finke, F. Prada, J. Primack, F. Kitaura, et al., Detection of the cosmic γ-ray horizon from multiwavelength observations of blazars, Astrophys.J. 770 (2013) 77. arXiv:1305.2162, doi:10.1088/0004-637X/770/1/77.
  88. V. Khaire, R. Srianand, Star formation history, dust attenuation and extragalactic background light, Astrophys.J. 805 (1) (2015) 33. arXiv:1405.7038, doi:10.1088/0004-637X/805/1/33.
  89. C. M. Urry, P. Padovani, Unified schemes for radio-loud active galactic nuclei, Publ.Astron.Soc.Pac. 107 (1995) 803. arXiv:astro-ph/9506063, doi:10.1086/133630.
  90. R. D. Blandford, M. J. Rees, Extended and compact extragalactic radio sources - Interpretation and Theory, Physics Scripta 17 (1978) 265–274.
  91. G. Ghisellini, L. Maraschi, F. Tavecchio, The Fermi blazars’ divide, Mon.Not.Roy.Astron.Soc. 396 (2009) L105–109.
  92. E. T. Meyer, G. Fossati, M. Georganopoulos, M. L. Lister, Collective evidence for Inverse Compton emission from External Photons in High-Power blazars, Astrophys.J. 752 (2012) L4. arXiv:1203.4991.
  93. M. Ackermann, et al., The Second Catalog of Active Galactic Nuclei detected by the Fermi Large Area Telescope, Astrophys.J. 743 (2011) 71. arXiv:1108.1420.
  94. P. Padovani, G. Ghisellini, A. C. Fabian, C. A., Radio-loud AGN and the extragalactic gamma-ray background, Mon.Not.Roy.Astron.Soc. 260 (1993) L21–L24.
  95. T. M. Kneiske, K. Mannheim, BL Lac Contribution to the Extragalactic Gamma-Ray Background, Astron.Astrophys. 479 (2008) 41. arXiv:0705.3778, doi:10.1051/0004-6361:20065605.
  96. R. C. Hartman, et al., The third EGRET Catalog of High-Energy Gamma-Ray Sources, Astrophys.J.Suppl. 123 (1999) 79–202.
  97. H. Falcke, P. L. Biermann, The jet-disk symbiosis. 1. Radio to X-ray emission models for quasars, Astron.Astrophys. 293 (1995) 665. arXiv:astro-ph/9411096.
  98. H. Falcke, E. Koerding, S. Markoff, A Scheme to unify low - power accreting black holes: Jet - dominated accretion flows and the radio / x-ray correlation, Astron.Astrophys. 414 (2004) 895–903. arXiv:astro-ph/0305335, doi:10.1051/0004-6361:20031683.
  99. A. Merloni, S. Heinz, T. Di Matteo, A Fundamental plane of black hole activity, Mon.Not.Roy.Astron.Soc. 345 (2003) 1057. arXiv:astro-ph/0305261, doi:10.1046/j.1365-2966.2003.07017.x.
  100. E. Kording, R. Fender, S. Migliari, Jet-dominated advective systems: radio and x-ray luminosity dependence on the accretion rate, Mon.Not.Roy.Astron.Soc. 369 (2006) 1451–1458. arXiv:astro-ph/0603731, doi:10.1111/j.1365-2966.2006.10383.x.
  101. G. Fossati, A. Celotti, G. Ghisellini, L. Maraschi, Unifying models for x-ray selected and radio selected BL Lac objects, Mon.Not.Roy.Astron.Soc. 289 (1997) 136. arXiv:astro-ph/9704113, doi:10.1093/mnras/289.1.136.
  102. G. Fossati, L. Maraschi, A. Celotti, A. Comastri, G. Ghisellini, A Unifying view of the spectral energy distributions of blazars, Mon.Not.Roy.Astron.Soc. 299 (1998) 433–448. arXiv:astro-ph/9804103, doi:10.1046/j.1365-8711.1998.01828.x.
  103. D. Donato, G. Ghisellini, G. Tagliaferri, G. Fossati, Hard X-ray properties of blazars, Astron.Astrophys. 375 (2001) 739–751. arXiv:astro-ph/0105203.
  104. Y. Ueda, M. Akiyama, K. Ohta, T. Miyaji, Cosmological evolution of the hard x-ray AGN luminosity function and the origin of the hard x-ray background, Astrophys.J. 598 (2003) 886–908. arXiv:astro-ph/0308140, doi:10.1086/378940.
  105. G. Hasinger, T. Miyaji, M. Schmidt, Luminosity-dependent evolution of soft x-ray selected AGN: New Chandra and XMM-Newton surveys, Astron.Astrophys. 441 (2005) 417–434. arXiv:astro-ph/0506118, doi:10.1051/0004-6361:20042134.
  106. R. Gilli, A. Comastri, G. Hasinger, The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era, Astron.Astrophys. arXiv:astro-ph/0610939.
  107. S. Ando, E. Komatsu, T. Narumoto, T. Totani, Angular power spectrum of gamma-ray sources for GLAST: Blazars and clusters of galaxies, Mon.Not.Roy.Astron.Soc. 376 (2007) 1635–1647. arXiv:astro-ph/0610155, doi:10.1111/j.1365-2966.2007.11421.x.
  108. A. Abdo, et al., Fermi Large Area Telescope First Source Catalog, Astrophys.J.Suppl. 188 (2010) 405–436. arXiv:1002.2280, doi:10.1088/0067-0049/188/2/405.
  109. M. Cavadini, R. Salvaterra, F. Haardt, A New model for the extragalactic γ-ray background. arXiv:1105.4613.
  110. J. Dunlop, J. Peacock, The Redshift Cut-Off in the Luminosity Function of Radio Galaxies and Quasars, Mon.Not.Roy.Astron.Soc. 247 (1990) 19.
  111. J. Chiang, R. Mukherjee, The Luminosity Function of the EGRET Gamma-Ray blazars, Astrophys.J. 496 (1998) 752.
  112. Intensity and origin of the extragalatic gamma-ray background, for the 4th Fermi Symposium, http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/program/thu/MAckermann.pdf.
  113. A. Rau, et al., BL Lacertae objects beyond redshift 1.3 = UV-to-NIR photometry and photometric redshift for Fermi-LAT blazars, Astron.Astrophys. 538. arXiv:1112.0025.
  114. M. S. Shaw, R. W. Romani, G. Cotter, S. E. Healey, P. F. Michelson, et al., Spectroscopy of The Largest Ever Gamma-ray Selected BL Lac Sample, Astrophys.J. 764 (2013) 135. arXiv:1301.0323, doi:10.1088/0004-637X/764/2/135.
  115. P. L. Nolan, et al., Fermi Large Area Telescope Second Source Catalog, Astrophys.J.Suppl. 199 (2012) 31. arXiv:1108.1435, doi:10.1088/0067-0049/199/2/31.
  116. P. D. Barthel, Is every quasar beamed?, Astrophys.J. 336 (1989) 606. doi:10.1086/167038.
  117. B. L. Fanaroff, J. M. Riley, The morphology of extragalactic radio sources of high and low luminosity, Mon.Not.Ray.Astron.Soc. 167 (1974) 31P–36P.
  118. A. A. Abdo, et al., Fermi Large Area Telescope observations of Misaligned Active Galactic Nuclei, Astrophys.J. 720 (2010) 912–922.
  119. L. Maraschi, G. Ghisellini, A. Celotti, A jet model for the gamma-ray emitting blazar 3C 279, Astrophys.J. 397 (1992) L5–L9. doi:10.1086/186531.
  120. C. D. Dermer, R. Schlickeiser, Model for the high-energy emission from blazars, Astrophys.J. 416 (1993) 458. doi:10.1086/173251.
  121. G. Ghirlanda, G. Ghisellini, F. Tavecchio, L. Foschini, G. Bonnoli, The radio/gamma-ray connection in Fermi-blazars, Mon.Not.Roy.Astron.Soc. 413 (2011) 852–862. arXiv:1007.2751.
  122. C. J. Willott, S. Rawlings, K. M. Blundell, M. Lacy, S. A. Eales, The radio luminosity function from the low-frequency 3crr, 6ce and 7crs complete samples, Mon.Not.Roy.Astron.Soc. 322 (2001) 536–552. arXiv:astro-ph/0010419, doi:10.1046/j.1365-8711.2001.04101.x.
  123. Z. Yuan, J. Wang, On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission, Astrophys.J. 744 (2012) 84. arXiv:1109.4028, doi:10.1088/0004-637X/744/2/84.
  124. L. Lara, G. Giovannini, W. Cotton, L. Feretti, J. Marcaide, et al., A New sample of large angular size radio galaxies. 3. Statistics and evolution of the grown population, Astron.Astrophys. 421 (2004) 899–911. arXiv:astro-ph/0404373, doi:10.1051/0004-6361:20035676.
  125. A. A. Abdo, et al., Fermi Gamma-Ray Imaging of a Radio Galaxy, Science 328 (2010) 725.
  126. A. A. Abdo, et al., Fermi Large Area Telescope observations of Local Group galaxies: Detection of M31 and search for M33, Astron.Astrophys. 523 (2010) A46. arXiv:1012.1952.
  127. A. Abdo, Observations of the Large Magellanic Cloud with Fermi, Astron.Astrophys. 512 (2010) A7. arXiv:1001.3298, doi:10.1051/0004-6361/200913474.
  128. A. A. Abdo, et al., Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT. arXiv:1008.2127.
  129. M. Hayashida, Stawarz, C. C. Cheung, K. Bechtol, G. M. Madejski, et al., Discovery of GeV Emission from the Circinus Galaxy with the Fermi Large Area Telescope, Astrophys.J. 779 (2013) 131. arXiv:1310.1913, doi:10.1088/0004-637X/779/2/131.
  130. A. Abdo, Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi, Astrophys.J. 709 (2010) L152–L157. arXiv:0911.5327, doi:10.1088/2041-8205/709/2/L152.
  131. A. Abdo, The First Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope, Astrophys.J. 715 (2010) 429–457. arXiv:1002.0150, doi:10.1088/0004-637X/715/1/429.
  132. Q.-W. Tang, X.-Y. Wang, P.-H. Thomas Tam, Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146, Astrophys.J. 794 (1) (2014) 26. arXiv:1407.3391, doi:10.1088/0004-637X/794/1/26.
  133. J. Kennicutt, Robert C., Star formation in galaxies along the Hubble sequence, Ann.Rev.Astron.Astrophys. 36 (1998) 189–231. arXiv:astro-ph/9807187, doi:10.1146/annurev.astro.36.1.189.
  134. V. L. Ginzburg, S. L. Syrovatskii, The Origin of Cosmic Rays, Pergamon Press, 1964.
  135. A. Strong, T. Porter, S. Digel, G. Johannesson, P. Martin, et al., Global cosmic-ray related luminosity and energy budget of the Milky Way, Astrophys.J. 722 (2010) L58–L63. arXiv:1008.4330, doi:10.1088/2041-8205/722/1/L58.
  136. E. E. Salpeter, The Luminosity function and stellar evolution, Astrophys.J. 121 (1955) 161–167. doi:10.1086/145971.
  137. N. Bastian, K. R. Covey, M. R. Meyer, A Universal Stellar Initial Mass Function? A Critical Look at Variations, Ann.Rev.Astron.Astrophys. 48 (2010) 339–389. arXiv:1001.2965, doi:10.1146/annurev-astro-082708-101642.
  138. T. A. Thompson, E. Quataert, E. Waxman, The Starburst Contribution to the Extra-Galactic Gamma-Ray Background, Astrophys.J. 654 (2006) 219–225. arXiv:astro-ph/0606665, doi:10.1086/509068.
  139. S. Cole, et al., The 2dF Galaxy Redshift Survey: Near infrared galaxy luminosity functions, Mon.Not.Roy.Astron.Soc. 326 (2001) 255. arXiv:astro-ph/0012429, doi:10.1046/j.1365-8711.2001.04591.x.
  140. A. M. Hopkins, J. F. Beacom, On the normalisation of the cosmic star formation history, Astrophys.J. 651 (2006) 142–154. arXiv:astro-ph/0601463, doi:10.1086/506610.
  141. S. Horiuchi, J. F. Beacom, E. Dwek, The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Phys.Rev. D79 (2009) 083013. arXiv:0812.3157, doi:10.1103/PhysRevD.79.083013.
  142. M. Pohl, On the predictive power of the minimum energy condition. 2: Fractional calorimeter behaviour in the diffuse high energy gamma ray emission of spiral galaxies, Astron.Astrophys. 287 (1994) 453–462.
  143. M. Persic, Y. Rephaeli, Cosmic rays in galaxies: a probe of star formation, Mon.Not.Roy.Astron.Soc. 403 (2010) 1569–1576. arXiv:0912.4156, doi:10.1111/j.1365-2966.2009.16218.x.
  144. V. Pavlidou, B. D. Fields, The Guaranteed gamma-ray background, Astrophys.J. 575 (2002) L5–L8. arXiv:astro-ph/0207253, doi:10.1086/342670.
  145. S. Ando, V. Pavlidou, Imprint of Galaxy Clustering in the Cosmic Gamma-Ray Background, Mon.Not.Roy.Astron.Soc. 400 (2009) 2122. arXiv:0908.3890, doi:10.1111/j.1365-2966.2009.15605.x.
  146. B. C. Lacki, T. A. Thompson, E. Quataert, A. Loeb, E. Waxman, On The GeV and TeV Detections of the Starburst Galaxies M82 and NGC 253, Astrophys.J. 734 (2011) 107. arXiv:1003.3257, doi:10.1088/0004-637X/734/2/107.
  147. M. Schmidt, The Rate of Star Formation, Astrophys.J. 129 (1959) 243. doi:10.1086/146614.
  148. J. Kennicutt, Robert C., P. B. Stetson, A. Saha, D. Kelson, D. M. Rawson, et al., The HST Key Project on the Extragalactic Distance Scale. 13. The Metallicity dependence of the Cepheid distance scale, Astrophys.J. 498 (1998) 181. arXiv:astro-ph/9712055, doi:10.1086/305538.
  149. A. M. Hopkins, On the evolution of star forming galaxies, Astrophys.J. 615 (2004) 209. arXiv:astro-ph/0407170, doi:10.1086/424032.
  150. O. Nakamura, M. Fukugita, J. Brinkmann, D. P. Schneider, The H-alpha luminosity function of morphologically classified galaxies in the Sloan Digital Sky Survey, Astron.J. 127 (2004) 2511–2521. arXiv:astro-ph/0312519.
  151. C. Papovich, S. L. Finkelstein, H. C. Ferguson, J. M. Lotz, M. Giavalisco, The Rising Star-Formation Histories of Distant Galaxies and Implications for Gas Accretion with Time, Mon.Not.Roy.Astron.Soc. 412 (2011) 1123–1136. arXiv:1007.4554.
  152. F. Elsner, G. Feulner, U. Hopp, The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5, Astron.Astrophys. 477 (2008) 503–5121. arXiv:0711.0384.
  153. A. K. Leroy, F. Walter, E. Brinks, F. Bigiel, W. de Blok, et al., The Star Formation Efficiency in Nearby Galaxies: Measuring Where Gas Forms Stars Effectively, Astron.J. 136 (2008) 2782–2845. arXiv:0810.2556, doi:10.1088/0004-6256/136/6/2782.
  154. K. Nagamine, J. P. Ostriker, M. Fukugita, R. Cen, The history of cosmological star formation: three independent approaches and a critical test using the extragalactic background light, Astrophys.J. 653 (2006) 881–893. arXiv:astro-ph/0603257, doi:10.1086/508765.
  155. M. S. Yun, N. A. Reddy, J. J. Condon, Radio properties of infrared selected galaxies in the IRAS 2 Jy sample, Astrophys.J. 554 (2001) 803. arXiv:astro-ph/0102154, doi:10.1086/323145.
  156. H. Dole, G. Lagache, J.-L. Puget, K. I. Caputi, N. Fernandez-Conde, et al., The cosmic infrared background resolved by spitzer. contributions of mid-infrared galaxies to the far-infrared background, Astron.Astrophys. 451 (2006) 417–429. arXiv:astro-ph/0603208, doi:10.1051/0004-6361:20054446.
  157. F. W. Stecker, Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?, Astropart.Phys. 26 (2007) 398–401. arXiv:astro-ph/0607197, doi:10.1016/j.astropartphys.2006.08.002.
  158. P. F. Hopkins, J. D. Younger, C. C. Hayward, D. Narayanan, L. Hernquist, Mergers, AGN, and ’Normal’ Galaxies: Contributions to the Distribution of Star Formation Rates and Infrared Luminosity Functions, Mon.Not.Roy.Astron.Soc. 402 (2010) 1693–1713. arXiv:0911.1131.
  159. M. Nagashima, Y. Yoshii, Hierarchical formation of galaxies with dynamical response to supernova - induced gas removal, Astrophys.J. 610 (2004) 23–44. arXiv:astro-ph/0404485, doi:10.1086/421484.
  160. M. Nagashima, H. Yahagi, M. Enoki, Y. Yoshii, N. Gouda, Numerical galaxy catalog. 1. A Semi-analytic model of galaxy formation with N-body simulations, Astrophys.J. 634 (2005) 26–50. arXiv:astro-ph/0508085, doi:10.1086/496872.
  161. I. Tamborra, S. Ando, K. Murase, Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history, JCAP 1409 (09) (2014) 043. arXiv:1404.1189, doi:10.1088/1475-7516/2014/09/043.
  162. G. Rodighiero, et al., Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength Spitzer observations up to z-2.5, Astron.Astrophys. 515. arXiv:0910.5649.
  163. V. Acciari, E. Aliu, T. Arlen, T. Aune, M. Bautista, et al., A connection between star formation activity and cosmic rays in the starburst galaxy M 82, Nature 462 (2009) 770–772. arXiv:0911.0873, doi:10.1038/nature08557.
  164. C. Gruppioni, P. F., R. G., et al., The Herschel PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galactic to z=4, Mon.Not.Roy.Astron.Soc. 432 (2013) 23–52. arXiv:1302.5209.
  165. M. J. Devlin, P. A. Ade, I. Aretxaga, J. J. Bock, E. L. Chapin, et al., Over half of the far-infrared background light comes from galaxies at z > 1.2, Nature 458 (2009) 737–739. arXiv:0904.1201, doi:10.1038/nature07918.
  166. M. Bethermin, E. L. Floc’h, O. Ilbert, A. Conley, G. Lagache, et al., HerMES: deep number counts at 250, 350, and 500 microns in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background, Astron.Astrophys. 542. arXiv:1203.1925.
  167. A. Barger, W.-H. Wang, L. Cowie, F. Owen, C.-C. Chen, et al., Precise Identifications of Submillimeter Galaxies: Measuring the History of Massive Star-Forming Galaxies to z > 5, Astrophys.J. 761 (2012) 89. arXiv:1209.1626, doi:10.1088/0004-637X/761/2/89.
  168. C.-Y. Ng, J. Takata, G. Leung, K. Cheng, P. Philippopoulos, High-Energy Emission of the First Millisecond Pulsar, Astrophys.J. 787 (2014) 167. arXiv:1405.2148, doi:10.1088/0004-637X/787/2/167.
  169. T. Gregoire, J. Knodlseder, Constraining the Galactic millisecond pulsar population using Fermi Large Area Telescope, Astron.Astrophys. 554 (2013) A62. arXiv:1305.1584, doi:10.1051/0004-6361/201219676.
  170. A. Abdo, et al., The Second Fermi Large Area Telescope Catalog of Gamma-ray Pulsars, Astrophys.J.Suppl. 208 (2013) 17. arXiv:1305.4385, doi:10.1088/0067-0049/208/2/17.
  171. G. Benford, R. Buschauer, Coeherent pulsar radio radiation by antenna mechanisms - General theroy, Mon.Not.Roy.Astron.Soc. 179 (1977) 189–207.
  172. R. T. Gangadhara, Circular polarization in pulsars due to curvature radiation, Astrophys.J. 710 (2010) 29–44.
  173. P. Wang, C. Wang, J. Han, Curvature Radiation in Rotating Pulsar Magnetosphere, Mon.Not.Roy.Astron.Soc. 423 (2012) 2464. arXiv:1203.5995, doi:10.1111/j.1365-2966.2012.21053.x.
  174. M. Kerr, the Fermi-LAT Collaboration, Pulsars in gamma rays: what Fermi is teaching us, IAU Symp. 291 (2012) 307–312. arXiv:1211.3726.
  175. M. A. Alpar, A. F. Cheng, J. Ruderman, M. A. Shaman, A new class of radio pulsars, Nature 300 (1982) 728–730.
  176. E. Phinney, S. Kulkarni, Binary and millisecond pulsars, Ann.Rev.Astron.Astrophys. 32 (1994) 591–639. doi:10.1146/annurev.aa.32.090194.003111.
  177. D. Lorimer, Binary and millisecond pulsars at the new millennium, Living Rev.Rel. 4 (2001) 5. arXiv:astro-ph/0104388.
  178. D. Lorimer, Binary and Millisecond Pulsars, Living Rev.Rel. 11 (2008) 8. arXiv:0811.0762.
  179. B. Kiziltan, S. E. Thorsett, Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit, Astrophys.J. 715 (2010) 335–341. arXiv:0909.1562, doi:10.1088/0004-637X/715/1/335.
  180. A. G. Lyne, R. N. Manchester, D. R. Lorimer, M. Bailes, et al., The Parkes Southern Pulsar Survey - II. Final results and population analysis, Mon.Not.Roy.Astron.Soc. 295 (1998) 743–755.
  181. J. Arons, Pulsars as gamma-ray sources, Astron.Astrophys.Suppl. 120 (1996) 49–60.
  182. M. Ruderman, P. Sutherland, Theory of pulsars: Polar caps, sparks, and coherent microwave radiation, Astrophys.J. 196 (1975) 51. doi:10.1086/153393.
  183. A. K. Harding, Pulsar gamma-rays - Spectra, luminosities and efficiencies, Astrophys.J. 245 (1981) 267–273.
  184. C.-A. Faucher-Giguere, V. M. Kaspi, Birth and evolution of isolated radio pulsars, Astrophys.J. 643 (2006) 332–355. arXiv:astro-ph/0512585, doi:10.1086/501516.
  185. D. R. Lorimer, The Galactic Millisecond Pulsar Population, IAU Symp. 291 (2013) 237. arXiv:1210.2746, doi:10.1017/S1743921312023769.
  186. M. McLaughlin, J. Cordes, The gamma-ray pulsar population, Astrophys.J. 538 (2000) 818. arXiv:astro-ph/9912409, doi:10.1086/309174.
  187. J. Cordes, D. F. Chernoff, Neutron star population dynamics. I: Millisecond pulsars, Astrophys.J. 482 (1997) 971–992. arXiv:astro-ph/9706162, doi:10.1086/304179.
  188. S. A. Story, P. L. Gonthier, A. K. Harding, Population synthesis of radio and gamma-ray millisecond pulsars from the Galactic disk, Astrophys.J. 671 (2007) 713–726. arXiv:0706.3041, doi:10.1086/521016.
  189. R. N. Manchester, G. B. Hobbs, A. Teoh, M. Hobbs, The Australia Telescope National Facility pulsar catalogue, Astron.J. 129 (2005) 1993. arXiv:astro-ph/0412641, doi:10.1086/428488.
  190. R. N. Manchester, L. A. G., N. D’Amico, M. Bailes, J. S., et al., The Parkes Southern Pulsar Survey - I. Observing and data analysis systems and initial results, Mon.Not.Roy.Astron.Soc. 279 (1996) 1235–1250.
  191. G. M. Voit, S. T. Kay, G. L. Bryan, The baseline intracluster entropy profile from gravitational structure formation, Mon.Not.Roy.Astron.Soc. 364 (2005) 909–916. arXiv:astro-ph/0511252, doi:10.1111/j.1365-2966.2005.09621.x.
  192. R. J. van Weerer, M. Bruggen, H. J. A. Rottgering, M. Hoeft, S. E. Nuza, H. T. Intema, Radio emission observations of new radio halos and relics from the NVSS and WENNS surveys. Relic orientations, cluster X-ray luminosities and redshift distribution, Astron.Astrophys. 533. arXiv:1107.5597.
  193. A., S. P. Oh, C. Pfrommer, Giant radio relics in galaxy clusters: reacceleration of fossil relativistic electrons?, Mon.Not.Roy.Astron.Soc. 435 (2013) 1061–10825. arXiv:1301.5644.
  194. B. M. Deis, W. Reich, H. Lesch, R. Wielebinski, The large-scale structure of the diffuse radio halo of the Coma cluster at 1.4 GHz, Astron.Astrophys. 321 (1997) 55–63. arXiv:astro-ph/9609189.
  195. S. Brown, L. Rudnick, Diffuse radio emission in/around the Coma cluster: beyond simple accretion, Mon.Not.Roy.Astron.Soc. 412 (2011) 2–12. arXiv:1009.4258.
  196. G. Brunetti, R. Cassano, K. Dolag, G. Setti, On the evolution of giant radio halos and their connection with cluster mergers, Astron.Astrophys. 507 (2009) 661. arXiv:0909.2343, doi:10.1051/0004-6361/200912751.
  197. R. Cassano, S. Ettori, G. Brunetti, S. Giacintucci, G. Pratt, et al., Revisiting scaling relations for giant radio halos in galaxy clusters, Astrophys.J. 777 (2013) 141. arXiv:1306.4379, doi:10.1088/0004-637X/777/2/141.
  198. A. Loeb, E. Waxman, Gamma-ray background from structure formation in the intergalactic medium, Nature 405 (2000) 156. arXiv:astro-ph/0003447, doi:10.1038/35012018.
  199. T. Totani, T. Kitayama, Forming clusters of galaxies as the origin of unidentified GeV gamma-ray sources, Astrophys.J. 545 (2000) 572–577. arXiv:astro-ph/0006176, doi:10.1086/317872.
  200. W. H. Press, P. Schechter, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys.J. 187 (1974) 425–438. doi:10.1086/152650.
  201. A. Cooray, R. K. Sheth, Halo models of large scale structure, Phys.Rept. 372 (2002) 1–129. arXiv:astro-ph/0206508, doi:10.1016/S0370-1573(02)00276-4.
  202. U. Keshet, E. Waxman, A. Loeb, V. Springel, L. Hernquist, Gamma-rays from intergalactic shocks, Astrophys.J. 585 (2003) 128–150. arXiv:astro-ph/0202318, doi:10.1086/345946.
  203. C. Pfrommer, T. Ensslin, V. Springel, Simulating cosmic rays in clusters of galaxies - II. A unified scheme for radio halos and relics with predictions of the gamma-ray emission, Mon.Not.Roy.Astron.Soc. 385 (2008) 1211–1241. arXiv:0707.1707.
  204. S. Gabici, P. Blasi, The Gamma-ray background from large scale structure formation, Astropart.Phys. 19 (2003) 679–689. arXiv:astro-ph/0211573, doi:10.1016/S0927-6505(03)00106-3.
  205. F. Miniati, Inter-Galactic shock acceleration and the cosmic gamma-ray background, Mon.Not.Roy.Astron.Soc. 337 (2002) 199. arXiv:astro-ph/0203014, doi:10.1046/j.1365-8711.2002.05903.x.
  206. S. Gabici, P. Blasi, On the Detectability of gamma-rays from clusters of galaxies: Mergers versus secondary infall, Astropart.Phys. 20 (2004) 579–590. arXiv:astro-ph/0306369, doi:10.1016/j.astropartphys.2003.09.002.
  207. K. Kashiyama, P. Meszaros, Galaxy Mergers as a Source of Cosmic Rays, Neutrinos, and Gamma Rays, Astrophys.J. 790 (2014) L14. arXiv:1405.3262, doi:10.1088/2041-8205/790/1/L14.
  208. F. Zandanel, S. Ando, Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster, Mon.Not.Roy.Astron.Soc. 440 (2014) 663–671. arXiv:1312.1493, doi:10.1093/mnras/stu324.
  209. S. Colafrancesco, P. Blasi, Clusters of galaxies and the diffuse gamma-ray background, Astropart.Phys. 9 (1998) 227–246. arXiv:astro-ph/9804262, doi:10.1016/S0927-6505(98)00018-8.
  210. S. Ando, D. Nagai, Gamma-ray probe of cosmic-ray pressure in galaxy clusters and cosmological implications, Mon.Not.Roy.Astron.Soc. 385 (2008) 2243–2253. arXiv:0705.2588, doi:10.1111/j.1365-2966.2008.12996.x.
  211. F. Zandanel, F. Prada, A Phenomenological Model for the Intracluster Medium that matches X-ray and Sunyaev-Zel’dovich observations, Mon.Not.Roy.Astron.Soc. 438 (2014) 116–123. arXiv:1311.4793, doi:10.1093/mnras/stt2196.
  212. G. Giovannini, M. Tordi, L. Feretti, Radio halo and relic candidates from the nrao vla sky survey, New Astron. 4 (1999) 141. arXiv:astro-ph/9904210, doi:10.1016/S1384-1076(99)00018-4.
  213. J. Aleksic, et al., Constraining Cosmic Rays and Magnetic Fields in the Perseus Galaxy Cluster with TeV observations by the MAGIC telescopes, Astron.Astrophys. 541 (2012) A99. arXiv:1111.5544, doi:10.1051/0004-6361/201118502.
  214. K. Greisen, End to the cosmic ray spectrum?, Phys.Rev.Lett. 16 (1966) 748–750. doi:10.1103/PhysRevLett.16.748.
  215. G. Zatsepin, V. Kuzmin, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 (1966) 78–80.
  216. P. S. Coppi, F. A. Aharonian, Constraints on the VHE emissivity of the universe from the diffuse GeV gamma-ray background, Astrophys.J. 487 (1997) L9–L12. arXiv:astro-ph/9610176, doi:10.1086/310883.
  217. I. Cholis, D. Hooper, S. D. McDermott, Dissecting the Gamma-Ray Background in Search of Dark Matter, JCAP 1402 (2014) 014. arXiv:1312.0608, doi:10.1088/1475-7516/2014/02/014.
  218. J. Whelan, I. J. Iben, Binaries and Supernovae of Type I, Astrophys.J. 186 (1973) 1007–1014.
  219. J. Iben, I., A. Tutukov, Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses), Astrophys.J.Suppl. 54 (1984) 335–372. doi:10.1086/190932.
  220. K. Ahn, E. Komatsu, P. Hoflich, Cosmic gamma-ray background from Type Ia supernovae revisited: Evidence for missing gamma-rays at MeV, Phys.Rev. D71 (2005) 121301. arXiv:astro-ph/0506126, doi:10.1103/PhysRevD.71.121301.
  221. L. E. Strigari, J. F. Beacom, T. P. Walker, P. Zhang, The Concordance Cosmic Star Formation Rate: Implications from and for the supernova neutrino and gamma ray backgrounds, JCAP 0504 (2005) 017. arXiv:astro-ph/0502150, doi:10.1088/1475-7516/2005/04/017.
  222. Y. Rasera, R. Teyssier, P. Sizun, B. Cordier, J. Paul, et al., Soft gamma-ray background and light dark matter annihilation, Phys.Rev. D73 (2006) 103518. arXiv:astro-ph/0507707, doi:10.1103/PhysRevD.73.103518.
  223. M. G. Baring, A. K. Harding, Magnetic photon splitting: Computations of proper time rates and spectra, Astrophys.J. 482 (1997) 372. arXiv:astro-ph/9704210, doi:10.1086/304152.
  224. Y. Lithwick, R. Sari, Lower limits on Lorentz factors in gamma-ray bursts, Astrophys.J. 555 (2001) 540–545. arXiv:astro-ph/0011508, doi:10.1086/321455.
  225. B. Zhang, Y. Z. Fan, J. Dyks, S. Kobayashi, P. Meszaros, et al., Physical processes shaping GRB x-ray afterglow lightcurves: Theoretical implications from the SWIFT XRT observations, Astrophys.J. 642 (2006) 354–370. arXiv:astro-ph/0508321, doi:10.1086/500723.
  226. P. Meszaros, The Fireball shock model of gamma-ray bursts, AIP Conf.Proc. 526 (2000) 514–518. arXiv:astro-ph/9912474, doi:10.1063/1.1361591.
  227. S. Casanova, B. Dingus, B. Zhang, Contribution of GRB emission to the GeV extragalactic diffuse gamma-ray flux, AIP Conf.Proc. 1000 (2008) 40–43. doi:10.1063/1.2943497.
  228. T. Le, C. D. Dermer, Gamma-ray burst predictions for the Fermi Gamma Ray Space Telescope, Astrophys.J. 700 (2009) 1026–1033. arXiv:0807.0355.
  229. M. Schmidt, Luminosities and space densities of gamma-ray bursts, Astrophys.J. 523 (1999) L117–L120. arXiv:astro-ph/9908206, doi:10.1086/312281.
  230. S. Ando, E. Nakar, R. Sari, GeV Emission from Prompt and Afterglow Phases of Gamma-Ray Bursts, Astrophys.J. 689 (2008) 1150. arXiv:0807.0012, doi:10.1086/592486.
  231. I. V. Moskalenko, T. A. Porter, Isotropic Gamma-Ray Background: Cosmic-Ray Induced Albedo from Debris in the Solar System?, Astrophys.J. 692 (2009) 54–57. arXiv:0901.0304, doi:10.1088/0004-637X/692/1/L54.
  232. R. Mahadevan, R. Narayan, J. Krolik, Gamma-ray emission from advection-dominated accretion flows around black holes: application to the Galactic Center, Astrophys.J. 486 (1997) 268–285. arXiv:astro-ph/9704018.
  233. K. Oka, T. Manmoto, Gamma-ray emission from an accretion flow around a Kerr black hole, Mon.Not.Roy.Astron.Soc. 340 (2003) 543–550.
  234. S. H. Teng, R. F. Mushotzky, R. M. Sambruna, D. S. Davis, C. S. Reynolds, Fermi/LAT Observations of Swift/BAT Seyferts: on the Contribution of Radio-quiet AGN to the Extragalactic Gamma-ray Background, Astrophys.J. 742 (2011) 66. arXiv:1109.2734, doi:10.1088/0004-637X/742/2/66.
  235. Y. Inoue, T. Totani, Y. Ueda, The Cosmic MeV Gamma-ray Background and Hard X-ray Spectra of Active Galactic Nuclei: Implications for the Origin of Hot AGN Coronae, Astrophys.J. 672 (2008) L5. arXiv:0709.3877, doi:10.1086/525848.
  236. A. Galeev, R. Rosner, G. Vaiana, Structured coronae of accretion disks, Astrophys.J. 229 (1979) 318–326. doi:10.1086/156957.
  237. B. F. Liu, S. Mineshige, K. Shibata, A simple model for a magnetic reconnection-heated corona, Astrophys.J. 572 (2002) L173–L176. arXiv:astro-ph/0205257.
  238. U. Keshet, E. Waxman, A. Loeb, The Case for a low extragalactic gamma-ray background, JCAP 0404 (2004) 006. arXiv:astro-ph/0306442, doi:10.1088/1475-7516/2004/04/006.
  239. R. Feldmann, D. Hooper, N. Y. Gnedin, Circum-Galactic Gas and the Isotropic Gamma Ray Background, Astrophys.J. 763 (2013) 21. arXiv:1205.0249, doi:10.1088/0004-637X/763/1/21.
  240. M. E. Anderson, J. N. Bregman, Detection of a Hot Gaseous Halo Around the Giant Spiral Galaxy NGC 1961, Astrophys.J. 737 (2011) 22. arXiv:1105.4614, doi:10.1088/0004-637X/737/1/22.
  241. N. Y. Gnedin, A. V. Kravtsov, Environmental Dependence of the Kennicutt-Schmidt Relation in Galaxies, Astrophys.J. 728 (2011) 88. arXiv:1004.0003, doi:10.1088/0004-637X/728/2/88.
  242. R. Feldmann, N. Gnedin, A. Kravtsov, How Universal is the SFR - H2 Relation?, Astrophys.J. 732 (2011) 115. arXiv:1010.1539, doi:10.1088/0004-637X/732/2/115.
  243. N. I. Gnedin, J. P. Ostriker, Light elements nucleosynthesis - a false clue?, Astrophys.J. 400 (1992) 1–20.
  244. D. N. Page, S. Hawking, Gamma rays from primordial black holes, Astrophys.J. 206 (1976) 1–7. doi:10.1086/154350.
  245. J. H. MacGibbon, B. J. Carr, Cosmic rays from primordial black holes, Astrophys.J. 371 (1991) 447–469. doi:10.1086/169909.
  246. F. Stecker, D. Morgan, J. Bredekamp, Possible evidence for the existence of antimatter on a cosmological scale in the universe, Phys.Rev.Lett. 27 (1971) 1469–1472. doi:10.1103/PhysRevLett.27.1469.
  247. P. Bhattacharjee, Q. Shafi, F. Stecker, TeV and superheavy mass scale particles from supersymmetric topological defects, the extragalactic gamma-ray background, and the highest energy cosmic rays, Phys.Rev.Lett. 80 (1998) 3698–3701. arXiv:hep-ph/9710533, doi:10.1103/PhysRevLett.80.3698.
  248. T. Bringmann, F. Calore, M. Di Mauro, F. Donato, Constraining dark matter annihilation with the isotropic γ-ray background: updated limits and future potential, Phys.Rev. D89 (2014) 023012. arXiv:1303.3284, doi:10.1103/PhysRevD.89.023012.
  249. M. Taoso, G. Bertone, A. Masiero, Dark Matter Candidates: A Ten-Point Test, JCAP 0803 (2008) 022. arXiv:0711.4996, doi:10.1088/1475-7516/2008/03/022.
  250. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter, Phys.Rept. 267 (1996) 195–373. arXiv:hep-ph/9506380, doi:10.1016/0370-1573(95)00058-5.
  251. S. P. Martin, A Supersymmetry primer, Adv.Ser.Direct.High Energy Phys. 21 (2010) 1–153. arXiv:hep-ph/9709356, doi:10.1142/9789814307505_0001.
  252. D. Hooper, S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys.Rept. 453 (2007) 29–115. arXiv:hep-ph/0701197, doi:10.1016/j.physrep.2007.09.003.
  253. G. Bertone, The moment of truth for WIMP Dark Matter, Nature 468 (2010) 389–393. arXiv:1011.3532, doi:10.1038/nature09509.
  254. P. Ade, et al., Planck 2013 results. XVI. Cosmological parameters, Astron.Astrophys. arXiv:1303.5076, doi:10.1051/0004-6361/201321591.
  255. S. Palomares-Ruiz, J. M. Siegal-Gaskins, Annihilation vs. Decay: Constraining dark matter properties from a gamma-ray detection, JCAP 1007 (2010) 023. arXiv:1003.1142, doi:10.1088/1475-7516/2010/07/023.
  256. S. Campbell, B. Dutta, E. Komatsu, Effects of Velocity-Dependent Dark Matter Annihilation on the Energy Spectrum of the Extragalactic Gamma-ray Background, Phys.Rev. D82 (2010) 095007. arXiv:1009.3530, doi:10.1103/PhysRevD.82.095007.
  257. S. Campbell, B. Dutta, Effects of P-wave Annihilation on the Angular Power Spectrum of Extragalactic Gamma-rays from Dark Matter Annihilation, Phys.Rev. D84 (2011) 075004. arXiv:1106.4621, doi:10.1103/PhysRevD.84.075004.
  258. S. Hofmann, D. J. Schwarz, H. Stoecker, Damping scales of neutralino cold dark matter, Phys.Rev. D64 (2001) 083507. arXiv:astro-ph/0104173, doi:10.1103/PhysRevD.64.083507.
  259. A. Loeb, M. Zaldarriaga, The Small-scale power spectrum of cold dark matter, Phys.Rev. D71 (2005) 103520. arXiv:astro-ph/0504112, doi:10.1103/PhysRevD.71.103520.
  260. A. M. Green, S. Hofmann, D. J. Schwarz, The First wimpy halos, JCAP 0508 (2005) 003. arXiv:astro-ph/0503387, doi:10.1088/1475-7516/2005/08/003.
  261. T. Bringmann, Particle Models and the Small-Scale Structure of Dark Matter, New J.Phys. 11 (2009) 105027. arXiv:0903.0189, doi:10.1088/1367-2630/11/10/105027.
  262. S. Profumo, K. Sigurdson, P. Ullio, M. Kamionkowski, A Running spectral index in supersymmetric dark-matter models with quasi-stable charged particles, Phys.Rev. D71 (2005) 023518. arXiv:astro-ph/0410714, doi:10.1103/PhysRevD.71.023518.
  263. J. M. Cornell, S. Profumo, W. Shepherd, Kinetic Decoupling and Small-Scale Structure in Effective Theories of Dark Matter, Phys.Rev. D88 (1) (2013) 015027. arXiv:1305.4676, doi:10.1103/PhysRevD.88.015027.
  264. E. Sefusatti, G. Zaharijas, P. D. Serpico, D. Theurel, M. Gustafsson, Extragalactic gamma-ray signal from dark matter annihilation: an appraisal, Mon.Not.Roy.Astron.Soc. 441 (2014) 1861–1878. arXiv:1401.2117, doi:10.1093/mnras/stu686.
  265. J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V. Kravtsov, et al., Profiles of dark haloes. Evolution, scatter, and environment, Mon.Not.Roy.Astron.Soc. 321 (2001) 559–575. arXiv:astro-ph/9908159, doi:10.1046/j.1365-8711.2001.04068.x.
  266. A. V. Maccio’, A. A. Dutton, F. C. d. Bosch, Concentration, Spin and Shape of Dark Matter Haloes as a Function of the Cosmological Model: WMAP1, WMAP3 and WMAP5 results, Mon.Not.Roy.Astron.Soc. 391 (2008) 1940–1954. arXiv:0805.1926, doi:10.1111/j.1365-2966.2008.14029.x.
  267. F. Prada, A. A. Klypin, A. J. Cuesta, J. E. Betancort-Rijo, J. Primack, Halo concentrations in the standard LCDM cosmology, Mon.Not.Roy.Astron.Soc. 423 (2012) 3018–3030. arXiv:1104.5130, doi:10.1111/j.1365-2966.2012.21007.x.
  268. R. H. Wechsler, J. S. Bullock, J. R. Primack, A. V. Kravtsov, A. Dekel, Concentrations of dark halos from their assembly histories, Astrophys.J. 568 (2002) 52–70. arXiv:astro-ph/0108151, doi:10.1086/338765.
  269. K. Dolag, M. Bartelmann, F. Perrotta, C. Baccigalupi, L. Moscardini, et al., Numerical study of halo concentrations in dark - energy cosmologies, Astron.Astrophys. 416 (2004) 853–864. arXiv:astro-ph/0309771, doi:10.1051/0004-6361:20031757.
  270. M. Kuhlen, M. Vogelsberger, R. Angulo, Numerical Simulations of the Dark Universe: State of the Art and the Next Decade, Phys.Dark Univ. 1 (2012) 50–93. arXiv:1209.5745, doi:10.1016/j.dark.2012.10.002.
  271. V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, et al., The Aquarius Project: the subhalos of galactic halos, Mon.Not.Roy.Astron.Soc. 391 (2008) 1685–1711. arXiv:0809.0898, doi:10.1111/j.1365-2966.2008.14066.x.
  272. A. F. Neto, L. Gao, P. Bett, S. Cole, J. F. Navarro, et al., The statistics of lambda CDM Halo Concentrations, Mon.Not.Roy.Astron.Soc. 381 (2007) 1450–1462. arXiv:0706.2919, doi:10.1111/j.1365-2966.2007.12381.x.
  273. A. R. Duffy, J. Schaye, S. T. Kay, C. Dalla Vecchia, Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology, Mon.Not.Roy.Astron.Soc. 390 (2008) L64. arXiv:0804.2486.
  274. L. Pieri, G. Bertone, E. Branchini, Dark Matter Annihilation in Substructures Revised, Mon.Not.Roy.Astron.Soc. 384 (2008) 1627. arXiv:0706.2101, doi:10.1111/j.1365-2966.2007.12828.x.
  275. A. Pinzke, C. Pfrommer, L. Bergstrom, Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations, Phys.Rev. D84 (2011) 123509. arXiv:1105.3240, doi:10.1103/PhysRevD.84.123509.
  276. L. Gao, C. Frenk, A. Jenkins, V. Springel, S. White, Where will supersymmetric dark matter first be seen?, Mon.Not.Roy.Astron.Soc. 419 (2012) 1721. arXiv:1107.1916, doi:10.1111/j.1365-2966.2011.19836.x.
  277. T. Ishiyama, Hierarchical Formation of Dark Matter Halos and the Free Streaming Scale, Astrophys.J. 788 (2014) 27. arXiv:1404.1650, doi:10.1088/0004-637X/788/1/27.
  278. J. Diemand, B. Moore, J. Stadel, Earth-mass dark-matter haloes as the first structures in the early Universe, Nature 433 (2005) 389–391. arXiv:astro-ph/0501589, doi:10.1038/nature03270.
  279. D. Anderhalden, J. Diemand, Density Profiles of CDM Microhalos and their Implications for Annihilation Boost Factors, JCAP 1304 (2013) 009. arXiv:1302.0003, doi:10.1088/1475-7516/2013/04/009, 10.1088/1475-7516/2013/08/E02.
  280. M. A. Sánchez-Conde, F. Prada, The flattening of the concentration-mass relation towards low halo masses and its implications for the annihilation signal boost, Mon.Not.Roy.Astron.Soc. 442 (2014) 2271–2277. arXiv:1312.1729.
  281. A. D. Ludlow, J. F. Navarro, R. E. Angulo, M. Boylan-Kolchin, V. Springel, et al., The Mass-Concentration-Redshift Relation of Cold Dark Matter Halos, Mon.Not.Roy.Astron.Soc. 441 (2013) 378–388. arXiv:1312.0945.
  282. K. J. Mack, Known Unknowns of Dark Matter Annihilation over Cosmic Time, Mon.Not.Roy.Astron.Soc. 439 (2014) 2728. arXiv:1309.7783, doi:10.1093/mnras/stu129.
  283. A. Jenkins, C. Frenk, S. D. White, J. Colberg, S. Cole, et al., The Mass function of dark matter halos, Mon.Not.Roy.Astron.Soc. 321 (2001) 372. arXiv:astro-ph/0005260, doi:10.1046/j.1365-8711.2001.04029.x.
  284. V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, et al., Simulating the joint evolution of quasars, galaxies and their large-scale distribution, Nature 435 (2005) 629–636. arXiv:astro-ph/0504097, doi:10.1038/nature03597.
  285. J. Bond, S. Cole, G. Efstathiou, N. Kaiser, Excursion set mass functions for hierarchical Gaussian fluctuations, Astrophys.J. 379 (1991) 440. doi:10.1086/170520.
  286. C. G. Lacey, S. Cole, Merger rates in hierarchical models of galaxy formation, Mon.Not.Roy.Astron.Soc. 262 (1993) 627–649.
  287. R. K. Sheth, H. Mo, G. Tormen, Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes, Mon.Not.Roy.Astron.Soc. 323 (2001) 1. arXiv:astro-ph/9907024, doi:10.1046/j.1365-8711.2001.04006.x.
  288. R. K. Sheth, G. Tormen, An Excursion set model of hierarchical clustering : Ellipsoidal collapse and the moving barrier, Mon.Not.Roy.Astron.Soc. 329 (2002) 61. arXiv:astro-ph/0105113, doi:10.1046/j.1365-8711.2002.04950.x.
  289. J. L. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian, M. S. Warren, et al., Toward a halo mass function for precision cosmology: The Limits of universality, Astrophys.J. 688 (2008) 709–728. arXiv:0803.2706, doi:10.1086/591439.
  290. A. Knebe, S. R. Knollmann, S. I. Muldrew, F. R. Pearce, M. A. Aragon-Calvo, et al., Haloes gone MAD: The Halo-Finder Comparison Project, Mon.Not.Roy.Astron.Soc. 415 (2011) 2293–2318. arXiv:1104.0949, doi:10.1111/j.1365-2966.2011.18858.x.
  291. J. F. Navarro, C. S. Frenk, S. D. White, The Structure of cold dark matter halos, Astrophys.J. 462 (1996) 563–575. arXiv:astro-ph/9508025, doi:10.1086/177173.
  292. J. Einasto, On the construction of a composite model for the Galaxy and on the determination of the system of Galactic parameters, Trudy Inst. Astroz. Alma-Ata 51.
  293. A. W. Graham, D. Merritt, B. Moore, J. Diemand, B. Terzic, Empirical models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models, Astron.J. 132 (2006) 2685–2700. arXiv:astro-ph/0509417, doi:10.1086/508988.
  294. J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, et al., The Diversity and Similarity of Cold Dark Matter Halos, Mon.Not.Roy.Astron.Soc. 402 (2010) 21. arXiv:0810.1522, doi:10.1111/j.1365-2966.2009.15878.x.
  295. L. Hernquist, An Analytical Model for Spherical Galaxies and Bulges, Astrophys.J. 356 (1990) 359. doi:10.1086/168845.
  296. B. Moore, T. R. Quinn, F. Governato, J. Stadel, G. Lake, Cold collapse and the core catastrophe, Mon.Not.Roy.Astron.Soc. 310 (1999) 1147–1152. arXiv:astro-ph/9903164, doi:10.1046/j.1365-8711.1999.03039.x.
  297. W. Dehnen, D. McLaughlin, Dynamical insight into dark-matter haloes, Mon.Not.Roy.Astron.Soc. 363 (2005) 1057–1068. arXiv:astro-ph/0506528, doi:10.1111/j.1365-2966.2005.09510.x.
  298. J. F. Navarro, E. Hayashi, C. Power, A. Jenkins, C. S. Frenk, et al., The Inner structure of Lambda-CDM halos 3: Universality and asymptotic slopes, Mon.Not.Roy.Astron.Soc. 349 (2004) 1039. arXiv:astro-ph/0311231, doi:10.1111/j.1365-2966.2004.07586.x.
  299. D. Merritt, J. F. Navarro, A. Ludlow, A. Jenkins, A Universal density profile for dark and luminous matter?, Astrophys.J. 624 (2005) L85–L88. arXiv:astro-ph/0502515, doi:10.1086/430636.
  300. J. Stadel, D. Potter, B. Moore, J. Diemand, P. Madau, et al., Quantifying the heart of darkness with GHALO - a multi-billion particle simulation of our galactic halo, Mon.Not.Roy.Astron.Soc. 398 (2009) L21–L25. arXiv:0808.2981, doi:10.1111/j.1745-3933.2009.00699.x.
  301. R. A. Flores, J. R. Primack, Observational and theoretical constraints on singular dark matter halos, Astrophys.J. 427 (1994) L1–4. arXiv:astro-ph/9402004, doi:10.1086/187350.
  302. A. Burkert, The Structure of dark matter halos in dwarf galaxies, IAU Symp. 171 (1996) 175. arXiv:astro-ph/9504041, doi:10.1086/309560.
  303. W. de Blok, S. McGaugh, J. van der Hulst, Hi observations of low surface brightness galaxies: probing low density galaxies, Mon.Not.Roy.Astron.Soc. 283 (1996) 18–54. arXiv:astro-ph/9605069, doi:10.1093/mnras/283.1.18.
  304. S. S. McGaugh, V. C. Rubin, W. de Blok, High - resolution rotation curves of low surface brightness galaxies: Data, Astron.J. 122 (2001) 2381–2395. arXiv:astro-ph/0107326, doi:10.1086/323448.
  305. W. de Blok, A. Bosma, High-resolution rotation curves of low surface brightness galaxies, Astron.Astrophys. 385 (2002) 816. arXiv:astro-ph/0201276, doi:10.1051/0004-6361:20020080.
  306. G. Gentile, P. Salucci, U. Klein, D. Vergani, P. Kalberla, The Cored distribution of dark matter in spiral galaxies, Mon.Not.Roy.Astron.Soc. 351 (2004) 903. arXiv:astro-ph/0403154, doi:10.1111/j.1365-2966.2004.07836.x.
  307. J. D. Simon, A. D. Bolatto, A. Leroy, L. Blitz, E. L. Gates, High-resolution measurements of the halos of four dark matter-dominated galaxies: Deviations from a universal density profile, Astrophys.J. 621 (2005) 757–776. arXiv:astro-ph/0412035, doi:10.1086/427684.
  308. P. Salucci, A. Lapi, C. Tonini, G. Gentile, I. Yegorova, et al., The Universal Rotation Curve of Spiral Galaxies. 2. The Dark Matter Distribution out to the Virial Radius, Mon.Not.Roy.Astron.Soc. 378 (2007) 41–47. arXiv:astro-ph/0703115, doi:10.1111/j.1365-2966.2007.11696.x.
  309. N. Li, D.-M. Chen, Cusp-core problem and strong gravitational lensing, Res.Astron.Astrophys. 9 (2009) 1173–1184. arXiv:0905.3041, doi:10.1088/1674-4527/9/11/001.
  310. J. Guedes, S. Callegari, P. Madau, L. Mayer, Forming Realistic Late-Type Spirals in a LCDM Universe: The Eris Simulation, Astrophys.J. 742 (2011) 76. arXiv:1103.6030, doi:10.1088/0004-637X/742/2/76.
  311. M. Kuhlen, A. Pillepich, J. Guedes, P. Madau, The Distribution of Dark Matter in the Milky Way’s Disk, Astrophys.J. 784 (2014) 161. arXiv:1308.1703, doi:10.1088/0004-637X/784/2/161.
  312. M. Gustafsson, M. Fairbairn, J. Sommer-Larsen, Baryonic Pinching of Galactic Dark Matter Haloes, Phys.Rev. D74 (2006) 123522. arXiv:astro-ph/0608634, doi:10.1103/PhysRevD.74.123522.
  313. P. Colin, O. Valenzuela, A. Klypin, Bars and cold dark matter halos, Astrophys.J. 644 (2006) 687–700. arXiv:astro-ph/0506627, doi:10.1086/503791.
  314. P. B. Tissera, S. D. White, S. Pedrosa, C. Scannapieco, Dark matter response to galaxy formation, Mon. Not. Roy. Astron. Soc. 406 (2010) 922. arXiv:0911.2316, doi:10.1111/j.1365-2966.2010.16777.x.
  315. O. Y. Gnedin, D. Ceverino, N. Y. Gnedin, A. A. Klypin, A. V. Kravtsov, et al., Halo Contraction Effect in Hydrodynamic Simulations of Galaxy FormationarXiv:1108.5736.
  316. J. Sommer-Larsen, M. Limousin, Moderate Steepening of Galaxy Cluster Dark Matter Profiles by Baryonic Pinching, Mon. Not. Roy. Astron. Soc. 408 (2010) 1998. arXiv:0906.0573, doi:10.1111/j.1365-2966.2010.17260.x.
  317. S. Mashchenko, J. Wadsley, H. Couchman, Stellar Feedback in Dwarf Galaxy Formation, Science 319 (2008) 174. arXiv:0711.4803, doi:10.1126/science.1148666.
  318. A. Pontzen, F. Governato, How supernova feedback turns dark matter cusps into cores, Mon.Not.Roy.Astron.Soc. 421 (2012) 3464. arXiv:1106.0499, doi:10.1111/j.1365-2966.2012.20571.x.
  319. F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, et al., At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores, Nature 463 (2010) 203–206. arXiv:0911.2237, doi:10.1038/nature08640.
  320. A. V. Maccio’, G. Stinson, C. B. Brook, J. Wadsley, H. Couchman, et al., Halo expansion in cosmological hydro simulations: towards a baryonic solution of the cusp/core problem in massive spirals, Astrophys.J. 744 (2012) L9. arXiv:1111.5620, doi:10.1088/2041-8205/744/1/L9.
  321. S. Profumo, T. E. Jeltema, Extragalactic Inverse Compton Light from Dark Matter Annihilation and the Pamela Positron Excess, JCAP 0907 (2009) 020. arXiv:0906.0001, doi:10.1088/1475-7516/2009/07/020.
  322. L. E. Strigari, S. M. Koushiappas, J. S. Bullock, M. Kaplinghat, Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments, Phys.Rev. D75 (2007) 083526. arXiv:astro-ph/0611925, doi:10.1103/PhysRevD.75.083526.
  323. M. Kuhlen, J. Diemand, P. Madau, The Dark Matter Annihilation Signal from Galactic Substructure: Predictions for GLAST, Astrophys.J. 686 (2008) 262. arXiv:0805.4416.
  324. J. Lavalle, Q. Yuan, D. Maurin, X. Bi, Full Calculation of Clumpiness Boost factors for Antimatter Cosmic Rays in the light of Lambda-CDM N-body simulation results. Abandoning hope in clumpiness enhancement?, Astron.Astrophys. 479 (2008) 427–452. arXiv:0709.3634, doi:10.1051/0004-6361:20078723.
  325. V. Springel, S. D. White, C. S. Frenk, J. F. Navarro, A. Jenkins, et al., A blueprint for detecting supersymmetric dark matter in the Galactic halo, Nature (2008) 73–76. arXiv:0809.0894.
  326. G. D. Martinez, J. S. Bullock, M. Kaplinghat, L. E. Strigari, R. Trotta, Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry, JCAP 0906 (2009) 014. arXiv:0902.4715, doi:10.1088/1475-7516/2009/06/014.
  327. M. Kamionkowski, S. M. Koushiappas, M. Kuhlen, Galactic Substructure and Dark Matter Annihilation in the Milky Way Halo, Phys.Rev. D81 (2010) 043532. arXiv:1001.3144, doi:10.1103/PhysRevD.81.043532.
  328. A. Charbonnier, C. Combet, M. Daniel, S. Funk, J. Hinton, et al., Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories - I. The classical dSphs, Mon.Not.Roy.Astron.Soc. 418 (2011) 1526–1556. arXiv:1104.0412, doi:10.1111/j.1365-2966.2011.19387.x.
  329. M. A. Sánchez-Conde, M. Cannoni, F. Zandanel, M. E. Gomez, F. Prada, Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?, JCAP 1112 (2011) 011. arXiv:1104.3530, doi:10.1088/1475-7516/2011/12/011.
  330. E. Nezri, R. White, C. Combet, D. Maurin, E. Pointecouteau, et al., gamma-rays from annihilating dark matter in galaxy clusters: stacking vs single source analysis, Mon.Not.Roy.Astron.Soc. 425 (2012) 477. arXiv:1203.1165, doi:10.1111/j.1365-2966.2012.21484.x.
  331. J. Zavala, N. Afshordi, Clustering in the Phase Space of Dark Matter Haloes. II. Stable Clustering and Dark Matter Annihilation, MNRAS 441 (2014) 1329–1339. arXiv:1311.3296, doi:10.1093/mnras/stu506.
  332. J. Diemand, M. Kuhlen, P. Madau, Dark matter substructure and gamma-ray annihilation in the Milky Way halo, Astrophys.J. 657 (2007) 262–270. arXiv:astro-ph/0611370, doi:10.1086/510736.
  333. F. C. van den Bosch, G. Tormen, C. Giocoli, The Mass function and average mass loss rate of dark matter subhaloes, Mon.Not.Roy.Astron.Soc. 359 (2005) 1029–1040. arXiv:astro-ph/0409201, doi:10.1111/j.1365-2966.2005.08964.x/abs/.
  334. C. Giocoli, G. Tormen, F. C. d. Bosch, The Population of Dark Matter Subhaloes: Mass Functions and Average Mass Loss Rates, Mon.Not.Roy.Astron.Soc. 386 (2008) 2135–2144. arXiv:0712.1563, doi:10.1111/j.1365-2966.2008.13182.x.
  335. S. Blanchet, J. Lavalle, Diffuse gamma-ray constraints on dark matter revisited. I: the impact of subhalos, JCAP 1211 (2012) 021. arXiv:1207.2476, doi:10.1088/1475-7516/2012/11/021.
  336. J. Diemand, M. Kuhlen, P. Madau, Formation and evolution of galaxy dark matter halos and their substructure, Astrophys.J. 667 (2007) 859–877. arXiv:astro-ph/0703337, doi:10.1086/520573.
  337. J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, et al., Clumps and streams in the local dark matter distribution, Nature 454 (2008) 735–738. arXiv:0805.1244, doi:10.1038/nature07153.
  338. A. Klypin, S. Trujillo-Gomez, J. Primack, Halos and galaxies in the standard cosmological model: results from the Bolshoi simulation, Astrophys.J. 740 (2011) 102. arXiv:1002.3660, doi:10.1088/0004-637X/740/2/102.
  339. S. Ando, E. Komatsu, Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT, Phys.Rev. D87 (12) (2013) 123539. arXiv:1301.5901, doi:10.1103/PhysRevD.87.123539.
  340. P. D. Serpico, E. Sefusatti, M. Gustafsson, G. Zaharijas, Extragalactic gamma-ray signal from Dark Matter annihilation: a power spectrum based computation, Mon.Not.Roy.Astron.Soc. 421 (2012) L87–L91. arXiv:1109.0095, doi:10.1111/j.1745-3933.2011.01212.x.
  341. M. P. van Daalen, J. Schaye, The contributions of matter inside and outside of haloes to the matter power spectrum, Mon.Not.Roy.Astron.Soc. 452 (2015) 2247–2257. arXiv:1501.05950.
  342. J. Zavala, N. Afshordi, Clustering in the Phase Space of Dark Matter Haloes. I. Results from the Aquarius simulations, MNRAS 441 (2013) 1317–1328. arXiv:1308.1098, doi:10.1093/mnras/stu678.
  343. M. Boylan-Kolchin, V. Springel, S. D. White, A. Jenkins, G. Lemson, Resolving Cosmic Structure Formation with the Millennium-II Simulation, Mon.Not.Roy.Astron.Soc. 398 (2009) 1150. arXiv:0903.3041, doi:10.1111/j.1365-2966.2009.15191.x.
  344. K. C. Y. Ng, R. Laha, S. Campbell, S. Horiuchi, B. Dasgupta, et al., Resolving small-scale dark matter structures using multisource indirect detection, Phys.Rev. D89 (8) (2014) 083001. arXiv:1310.1915, doi:10.1103/PhysRevD.89.083001.
  345. F. Stecker, The Cosmic Gamma-Ray Background from the Annihilation of Primordial Stable Neutral Heavy Leptons, Astrophys.J. 223 (1978) 1032–1036. doi:10.1086/156336.
  346. Y.-T. Gao, F. W. Stecker, D. B. Cline, The Lightest supersymmetric particle and the extragalactic gamma-ray background, Astron.Astrophys. 249 (1991) 1–4.
  347. L. Bergstrom, J. Edsjo, P. Ullio, Spectral gamma-ray signatures of cosmological dark matter annihilation, Phys.Rev.Lett. 87 (2001) 251301. arXiv:astro-ph/0105048, doi:10.1103/PhysRevLett.87.251301.
  348. D. Elsaesser, K. Mannheim, Supersymmetric dark matter and the extragalactic gamma-ray background, Phys.Rev.Lett. 94 (2005) 171302. arXiv:astro-ph/0405235, doi:10.1103/PhysRevLett.94.171302.
  349. D. Elsaesser, K. Mannheim, Cosmological gamma ray and neutrino backgrounds due to neutralino dark matter annihilation, Astropart.Phys. 22 (2004) 65–72. arXiv:astro-ph/0405347, doi:10.1016/j.astropartphys.2004.05.003.
  350. K. Ahn, E. Komatsu, Cosmological lower bound on dark matter masses from the soft gamma-ray background, Phys.Rev. D71 (2005) 021303. arXiv:astro-ph/0412630, doi:10.1103/PhysRevD.71.021303.
  351. T. Oda, T. Totani, M. Nagashima, Gamma-ray background from neutralino annihilation in the first cosmological objects, Astrophys.J. 633 (2005) L65–L68. arXiv:astro-ph/0504096, doi:10.1086/497691.
  352. S. Horiuchi, S. Ando, Dark matter annihilation from intermediate-mass black holes: Contribution to the extragalactic gamma-ray background, Phys.Rev. D74 (2006) 103504. arXiv:astro-ph/0607042, doi:10.1103/PhysRevD.74.103504.
  353. W. de Boer, C. Sander, V. Zhukov, A. Gladyshev, D. Kazakov, Egret excess of diffuse galactic gamma rays interpreted as a signal of dark matter annihilation, Phys.Rev.Lett. 95 (2005) 209001. arXiv:astro-ph/0602325, doi:10.1103/PhysRevLett.95.209001.
  354. E.-J. Ahn, G. Bertone, D. Merritt, Impact of astrophysical processes on the gamma-ray background from dark matter annihilations, Phys.Rev. D76 (2007) 023517. arXiv:astro-ph/0703236, doi:10.1103/PhysRevD.76.023517.
  355. M. Fornasa, G. Bertone, Black Holes as Dark Matter Annihilation Boosters, Int.J.Mod.Phys. D17 (2008) 1125–1157. arXiv:0711.3148, doi:10.1142/S0218271808012747.
  356. A. Cuoco, J. Brandbyge, S. Hannestad, T. Haugboelle, G. Miele, Angular Signatures of Annihilating Dark Matter in the Cosmic Gamma-Ray Background, Phys.Rev. D77 (2008) 123518. arXiv:0710.4136, doi:10.1103/PhysRevD.77.123518.
  357. W. de Boer, A. Nordt, C. Sander, V. Zhukov, A New Determination of the Extragalactic Background of Diffuse Gamma Rays taking into account Dark Matter Annihilation, Astron.Astrophys. 470 (2007) 61–66. arXiv:0705.0094, doi:10.1051/0004-6361:20054613.
  358. E. Baltz, B. Berenji, G. Bertone, L. Bergstrom, E. Bloom, et al., Pre-launch estimates for GLAST sensitivity to Dark Matter annihilation signals, JCAP 0807 (2008) 013. arXiv:0806.2911, doi:10.1088/1475-7516/2008/07/013.
  359. J. M. Siegal-Gaskins, V. Pavlidou, Robust identification of isotropic diffuse gamma rays from Galactic dark matter, Phys.Rev.Lett. 102 (2009) 241301. arXiv:0901.3776, doi:10.1103/PhysRevLett.102.241301.
  360. A. V. Belikov, D. Hooper, The Contribution Of Inverse Compton Scattering To The Diffuse Extragalactic Gamma-Ray Background From Annihilating Dark Matter, Phys.Rev. D81 (2010) 043505. arXiv:0906.2251, doi:10.1103/PhysRevD.81.043505.
  361. M. Kawasaki, K. Kohri, K. Nakayama, Diffuse gamma-ray background and cosmic-ray positrons from annihilating dark matter, Phys.Rev. D80 (2009) 023517. arXiv:0904.3626, doi:10.1103/PhysRevD.80.023517.
  362. F.-Y. Cyr-Racine, S. Profumo, K. Sigurdson, Protohalo Constraints to the Resonant Annihilation of Dark Matter, Phys.Rev. D80 (2009) 081302. arXiv:0904.3933, doi:10.1103/PhysRevD.80.081302.
  363. G. Huetsi, A. Hektor, M. Raidal, Constraints on leptonically annihilating Dark Matter from reionization and extragalactic gamma background, Astron.Astrophys. 505 (2009) 999–1005. arXiv:0906.4550, doi:10.1051/0004-6361/200912760.
  364. S. Dodelson, A. V. Belikov, D. Hooper, P. Serpico, Identifying Dark Matter Annihilation Products In The Diffuse Gamma Ray Background, Phys.Rev. D80 (2009) 083504. arXiv:0903.2829, doi:10.1103/PhysRevD.80.083504.
  365. K. N. Abazajian, P. Agrawal, Z. Chacko, C. Kilic, Conservative Constraints on Dark Matter from the Fermi-LAT Isotropic Diffuse Gamma-Ray Background Spectrum, JCAP 1011 (2010) 041. arXiv:1002.3820, doi:10.1088/1475-7516/2010/11/041.
  366. A. Cuoco, A. Sellerholm, J. Conrad, S. Hannestad, Anisotropies in the Diffuse Gamma-Ray Background from Dark Matter with Fermi LAT: a closer look, Mon.Not.Roy.Astron.Soc. 414 (2011) 2040–2054. arXiv:1005.0843, doi:10.1111/j.1365-2966.2011.18525.x.
  367. K. N. Abazajian, S. Blanchet, J. P. Harding, Current and Future Constraints on Dark Matter from Prompt and Inverse-Compton Photon Emission in the Isotropic Diffuse Gamma-ray Background, Phys.Rev. D85 (2012) 043509. arXiv:1011.5090, doi:10.1103/PhysRevD.85.043509.
  368. J. Aleksic, S. Ansoldi, L. Antonelli, P. Antoranz, A. Babic, et al., Optimized dark matter searches in deep observations of Segue 1 with MAGIC, JCAP 1402 (2014) 008. arXiv:1312.1535, doi:10.1088/1475-7516/2014/02/008.
  369. A. Abramowski, et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S, Phys.Rev.Lett. 106 (2011) 161301. arXiv:1103.3266, doi:10.1103/PhysRevLett.106.161301.
  370. M. Ackermann, et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi-LAT Data. arXiv:1503.02641.
  371. M. Ackermann, et al., Search for Dark Matter Satellites using the FERMI-LAT, Astrophys.J. 747 (2012) 121. arXiv:1201.2691, doi:10.1088/0004-637X/747/2/121.
  372. H.-S. Zechlin, D. Horns, Unidentified sources in the Fermi-LAT second source catalog: the case for DM subhalos, JCAP 1211 (2012) 050. arXiv:1210.3852, doi:10.1088/1475-7516/2012/11/050.
  373. M. Bolz, A. Brandenburg, W. Buchmuller, Thermal production of gravitinos, Nucl.Phys. B606 (2001) 518–544. arXiv:hep-ph/0012052, doi:10.1016/S0550-3213(01)00132-8, 10.1016/j.nuclphysb.2007.09.020.
  374. K.-Y. Choi, D. E. Lopez-Fogliani, C. Munoz, R. R. de Austri, Gamma-ray detection from gravitino dark matter decay in the mu nu SSM, JCAP 1003 (2010) 028. arXiv:0906.3681, doi:10.1088/1475-7516/2010/03/028.
  375. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, P. W. Graham, R. Harnik, et al., Decaying Dark Matter as a Probe of Unification and TeV Spectroscopy, Phys.Rev. D80 (2009) 055011. arXiv:0904.2789, doi:10.1103/PhysRevD.80.055011.
  376. M. Cirelli, M. Kadastik, M. Raidal, A. Strumia, Model-independent implications of the e+-, anti-proton cosmic ray spectra on properties of Dark Matter, Nucl.Phys. B813 (2009) 1–21. arXiv:0809.2409, doi:10.1016/j.nuclphysb.2013.05.002, 10.1016/j.nuclphysb.2008.11.031.
  377. G. Bertone, W. Buchmuller, L. Covi, A. Ibarra, Gamma-Rays from Decaying Dark Matter, JCAP 0711 (2007) 003. arXiv:0709.2299, doi:10.1088/1475-7516/2007/11/003.
  378. A. Ibarra, D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay, Phys.Rev.Lett. 100 (2008) 061301. arXiv:0709.4593, doi:10.1103/PhysRevLett.100.061301.
  379. W. Buchmuller, L. Covi, K. Hamaguchi, A. Ibarra, T. Yanagida, Gravitino Dark Matter in R-Parity Breaking Vacua, JHEP 0703 (2007) 037. arXiv:hep-ph/0702184, doi:10.1088/1126-6708/2007/03/037.
  380. X. Huang, G. Vertongen, C. Weniger, Probing Dark Matter Decay and Annihilation with Fermi LAT Observations of Nearby Galaxy Clusters, JCAP 1201 (2012) 042. arXiv:1110.1529, doi:10.1088/1475-7516/2012/01/042.
  381. A. Ibarra, S. Lopez Gehler, M. Pato, Dark matter constraints from box-shaped gamma-ray features, JCAP 1207 (2012) 043. arXiv:1205.0007, doi:10.1088/1475-7516/2012/07/043.
  382. L. Zhang, C. Weniger, L. Maccione, J. Redondo, G. Sigl, Constraining Decaying Dark Matter with Fermi LAT Gamma-rays, JCAP 1006 (2010) 027. arXiv:0912.4504, doi:10.1088/1475-7516/2010/06/027.
  383. C.-R. Chen, S. K. Mandal, F. Takahashi, Gamma-ray Constraints on Hadronic and Leptonic Activities of Decaying Dark Matter, JCAP 1001 (2010) 023. arXiv:0910.2639, doi:10.1088/1475-7516/2010/01/023.
  384. M. Papucci, A. Strumia, Robust implications on Dark Matter from the first FERMI sky gamma map, JCAP 1003 (2010) 014. arXiv:0912.0742, doi:10.1088/1475-7516/2010/03/014.
  385. M. Cirelli, P. Panci, P. D. Serpico, Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi, Nucl.Phys. B840 (2010) 284–303. arXiv:0912.0663, doi:10.1016/j.nuclphysb.2010.07.010.
  386. M. Cirelli, E. Moulin, P. Panci, P. D. Serpico, A. Viana, Gamma ray constraints on Decaying Dark Matter, Phys.Rev. D86 (2012) 083506. arXiv:1205.5283, doi:10.1103/PhysRevD.86.083506, 10.1103/PhysRevD.86.109901.
  387. S. Ando, K. Ishiwata, Constraints on decaying dark matter from the extragalactic gamma-ray background, JCAP 1505 (05) (2015) 024. arXiv:1502.02007, doi:10.1088/1475-7516/2015/05/024.
  388. L. Dugger, T. E. Jeltema, S. Profumo, Constraints on Decaying Dark Matter from Fermi Observations of Nearby Galaxies and Clusters, JCAP 1012 (2010) 015. arXiv:1009.5988, doi:10.1088/1475-7516/2010/12/015.
  389. M. Ackermann, et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys.J. 761 (2012) 91. arXiv:1205.6474, doi:10.1088/0004-637X/761/2/91.
  390. T. Asaka, J. Hashiba, M. Kawasaki, T. Yanagida, Spectrum of background x-rays from moduli dark matter, Phys.Rev. D58 (1998) 023507. arXiv:hep-ph/9802271, doi:10.1103/PhysRevD.58.023507.
  391. F. Takayama, M. Yamaguchi, Gravitino dark matter without R-parity, Phys.Lett. B485 (2000) 388–392. arXiv:hep-ph/0005214, doi:10.1016/S0370-2693(00)00726-7.
  392. J. M. Overduin, P. Wesson, Dark matter and background light, Phys.Rept. 402 (2004) 267–406. arXiv:astro-ph/0407207, doi:10.1016/j.physrep.2004.07.006.
  393. S. Matsumoto, K. Ishiwata, T. Moroi, Cosmic Gamma-ray from Inverse Compton Process in Unstable Dark Matter Scenario, Phys.Lett. B679 (2009) 1–5. arXiv:0905.4593, doi:10.1016/j.physletb.2009.07.004.
  394. A. Ibarra, D. Tran, C. Weniger, Decaying Dark Matter in Light of the PAMELA and Fermi LAT Data, JCAP 1001 (2010) 009. arXiv:0906.1571, doi:10.1088/1475-7516/2010/01/009.
  395. C. Arina, T. Hambye, A. Ibarra, C. Weniger, Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay, JCAP 1003 (2010) 024. arXiv:0912.4496, doi:10.1088/1475-7516/2010/03/024.
  396. K. Ishiwata, S. Matsumoto, T. Moroi, Decaying Dark Matter in Supersymmetric Model and Cosmic-Ray Observations, JHEP 1012 (2010) 006. arXiv:1008.3636, doi:10.1007/JHEP12(2010)006.
  397. A. Ibarra, D. Tran, C. Weniger, Indirect Searches for Decaying Dark Matter, Int.J.Mod.Phys. A28 (2013) 1330040. arXiv:1307.6434, doi:10.1142/S0217751X13300408.
  398. M. Ave, L. Cazon, J. Cronin, J. M. Neto, A. Olinto, et al., The 2pt+: an enhanced 2 point correlation function, JCAP 0907 (2009) 023. arXiv:0905.2192, doi:10.1088/1475-7516/2009/07/023.
  399. J.-Q. Xia, A. Cuoco, E. Branchini, M. Fornasa, M. Viel, A cross-correlation study of the Fermi-LAT γ-ray diffuse extragalactic signal, Mon.Not.Roy.Astron.Soc. 416 (2011) 2247–2264. arXiv:1103.4861.
  400. A. M. Soltan, The nearest neighbor statistics for X-ray source counts I.The method. arXiv:1101.0256.
  401. T. R. Slatyer, D. P. Finkbeiner, A statistical test of emission from unresolved point sources, Mon.Not.Roy.Astron.Soc. 405 (2009) 1777–1786. arXiv:0910.0482.
  402. K. Gorski, E. Hivon, A. Banday, B. Wandelt, F. Hansen, et al., HEALPix - A Framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophys.J. 622 (2005) 759–771. arXiv:astro-ph/0409513, doi:10.1086/427976.
  403. E. Komatsu, B. D. Wandelt, D. N. Spergel, A. J. Banday, K. M. Gorski, Measurement of the cosmic microwave background bispectrum on the COBE DMR sky maps, Astrophys.J. 566 (2002) 19–29. arXiv:astro-ph/0107605, doi:10.1086/337963.
  404. L. Knox, Determination of inflationary observables by cosmic microwave background anisotropy experiments, Phys.Rev. D52 (1995) 4307–4318. arXiv:astro-ph/9504054, doi:10.1103/PhysRevD.52.4307.
  405. S. S. Campbell, Angular Power Spectra with Finite Counts, Mon.Not.Roy.Astron.Soc. 448 (3) (2015) 2854–2878. arXiv:1411.4031, doi:10.1093/mnras/stv135.
  406. N. Fornengo, M. Regis, Particle dark matter searches in the anisotropic sky, Front. Physics 2 (2014) 6. arXiv:1312.4835, doi:10.3389/fphy.2014.00006.
  407. B. S. Hensley, J. M. Siegal-Gaskins, V. Pavlidou, The detectability of dark matter annihilation with Fermi using the anisotropy energy spectrum of the gamma-ray background, Astrophys.J. 723 (2010) 277–284. arXiv:0912.1854, doi:10.1088/0004-637X/723/1/277.
  408. B. S. Hensley, V. Pavlidou, J. M. Siegal-Gaskins, Novel Techniques for Decomposing Diffuse Backgrounds, Mon.Not.Roy.Astron.Soc. 433 (2013) 591. arXiv:1210.7239, doi:10.1093/mnras/stt746.
  409. A. E. Broderick, C. Pfrommer, E. Puchwein, K. M. Smith, P. Chang, Lower Limits upon the Anisotropy of the Extragalactic Gamma-Ray Background implied by the 2FGL and 1FHL Catalogs, Astrophys.J. 796 (1) (2014) 12. arXiv:1308.0015, doi:10.1088/0004-637X/796/1/12.
  410. D. N. Limber, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II, Astrophys.J. 119 (1954) 655. doi:10.1086/145870.
  411. N. Kaiser, Clustering in real space and in redshift space, Mon.Not.Roy.Astron.Soc. 227 (1987) 1–27.
  412. N. Afshordi, Y.-S. Loh, M. A. Strauss, Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy,hot gas, and point sources, Phys.Rev. D69 (2004) 083524. arXiv:astro-ph/0308260, doi:10.1103/PhysRevD.69.083524.
  413. P.-J. Zhang, J. F. Beacom, Angular correlations of the MeV cosmic gamma ray background, Astrophys.J. 614 (2004) 37–42. arXiv:astro-ph/0401351, doi:10.1086/423329.
  414. V. Berezinsky, P. Blasi, V. Ptuskin, Clusters of galaxies as a storage room for cosmic rays, Astrophys J. 487 (1997) 529–535. arXiv:astro-ph/9609048, doi:10.1086/304622.
  415. E. Waxman, A. Loeb, Fluctuations in the radio background from intergalactic synchrotron emission, Astrophys.J. 545 (2000) L11–L14. arXiv:astro-ph/0007049, doi:10.1086/317326.
  416. U. Keshet, E. Waxman, A. Loeb, Imprint of intergalactic shocks on the low - frequency radio sky, Astrophys.J. 617 (2004) 281–302. arXiv:astro-ph/0402320, doi:10.1086/424837.
  417. S. S. Campbell, J. F. Beacom, Combined Flux and Anisotropy Searches Improve Sensitivity to Gamma Rays from Dark Matter. arXiv:1312.3945.
  418. M. Taoso, S. Ando, G. Bertone, S. Profumo, Angular correlations in the cosmic gamma-ray background from dark matter annihilation around intermediate-mass black holes, Phys.Rev. D79 (2009) 043521. arXiv:0811.4493, doi:10.1103/PhysRevD.79.043521.
  419. F. Calore, V. De Romeri, M. Di Mauro, F. Donato, J. Herpich, et al., Gamma-ray anisotropies from dark matter in the Milky Way: the role of the radial distribution, Mon.Not.Roy.Astron.Soc. 442 (2014) 1151–1156. arXiv:1402.0512, doi:10.1093/mnras/stu912.
  420. G. Gomez-Vargas, et al., Dark matter implications of Fermi-LAT measurement of anisotropies in the diffuse gamma-ray background, Nucl.Instrum.Meth. A742 (2014) 149–153. doi:10.1016/j.nima.2013.11.009.
  421. P. G. Hoel, S. Port, C. Stone, Introduction to probability theory, Houghton Mifflin, 1972.
  422. S. K. Lee, S. Ando, M. Kamionkowski, The Gamma-Ray-Flux Probability Distribution Function from Galactic Halo Substructure, JCAP 0907 (2009) 007. arXiv:0810.1284, doi:10.1088/1475-7516/2009/07/007.
  423. E. J. Baxter, S. Dodelson, S. M. Koushiappas, L. E. Strigari, Constraining Dark Matter in Galactic Substructure, Phys.Rev. D82 (2010) 123511. arXiv:1006.2399, doi:10.1103/PhysRevD.82.123511.
  424. M. R. Feyereisen, S. Ando, S. K. Lee, Modelling the flux distribution function of the extragalactic gamma-ray background from dark matter annihilation. arXiv:1506.05118.
  425. G. T. Richards, A. D. Myers, A. G. Gray, R. N. Riegel, R. C. Nichol, et al., Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey: II. 1,000,000 Quasars from Data Release Six, Astrophys.J.Suppl. 180 (2009) 67–83. arXiv:0809.3952, doi:10.1088/0067-0049/180/1/67.
  426. T. Jarrett, T. Chester, R. Cutri, S. Schneider, J. L. Rosenberg, et al., 2mass extended sources in the zone of avoidance, Astron.J. 120 (2000) 298–313. arXiv:astro-ph/0005017, doi:10.1086/301426.
  427. J. J. Condon, W. Cotton, E. Greisen, Q. Yin, R. Perley, et al., The NRAO VLA Sky survey, Astron.J. 115 (1998) 1693–1716. doi:10.1086/300337.
  428. F. B. Abdalla, M. Banerji, O. Lahav, V. Rashkov, A Comparison of Six Photometric Redshift Methods Applied to 1.5 Million Luminous Red Galaxies, Mon.Not.Roy.Astron.Soc. 417 (2011) 1891. arXiv:0812.3831.
  429. H. Aihara, et al., The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III, Astrophys.J.Suppl. 193 (2011) 29. arXiv:1101.1559, doi:10.1088/0067-0049/193/2/29.
  430. A. Cuoco, J.-Q. Xia, M. Regis, E. Branchini, N. Fornengo, et al., Dark matter searches in the gamma-ray extragalactic background via cross-correlations with galaxy catalogues. arXiv:1506.01030.
  431. A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys.Rev. D66 (2002) 103511. arXiv:astro-ph/0205436, doi:10.1103/PhysRevD.66.103511.
  432. R. Smith, et al., Stable clustering, the halo model and nonlinear cosmological power spectra, Mon.Not.Roy.Astron.Soc. 341 (2003) 1311. arXiv:astro-ph/0207664, doi:10.1046/j.1365-8711.2003.06503.x.
  433. J. P. Huchra, L. M. Macri, K. L. Masters, T. H. Jarrett, P. Berlind, et al., The 2MASS Redshift Survey - Description and Data Release, Astrophys.J.Suppl. 199 (2012) 26. arXiv:1108.0669, doi:10.1088/0067-0049/199/2/26.
  434. U. Seljak, Analytic model for galaxy and dark matter clustering, Mon.Not.Roy.Astron.Soc. 318 (2000) 203. arXiv:astro-ph/0001493, doi:10.1046/j.1365-8711.2000.03715.x.
  435. Z. Zheng, A. A. Berlind, D. H. Weinberg, A. J. Benson, C. M. Baugh, et al., Theoretical models of the halo occupation distribution: Separating central and satellite galaxies, Astrophys.J. 633 (2005) 791–809. arXiv:astro-ph/0408564, doi:10.1086/466510.
  436. M. Regis, J.-Q. Xia, A. Cuoco, E. Branchini, N. Fornengo, et al., Particle dark matter searches outside the Local Group, Phys.Rev.Lett. 114 (24) (2015) 241301. arXiv:1503.05922, doi:10.1103/PhysRevLett.114.241301.
  437. M. Bartelmann, P. Schneider, Weak gravitational lensing, Phys.Rept. 340 (2001) 291–472. arXiv:astro-ph/9912508, doi:10.1016/S0370-1573(00)00082-X.
  438. N. Kaiser, Weak lensing and cosmology, Astrophys.J. 498 (1998) 26. arXiv:astro-ph/9610120, doi:10.1086/305515.
  439. T. Abbott, et al., The dark energy survey. arXiv:astro-ph/0510346.
  440. R. Laureijs, et al., Euclid Definition Study Report. arXiv:1110.3193.
  441. L. Amendola, et al., Cosmology and fundamental physics with the Euclid satellite, Living Rev.Rel. 16 (2013) 6. arXiv:1206.1225.
  442. C. Heymans, L. Van Waerbeke, L. Miller, T. Erben, H. Hildebrandt, et al., CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey, Mon.Not.Roy.Astron.Soc. 427 (2012) 146. arXiv:1210.0032, doi:10.1111/j.1365-2966.2012.21952.x.
  443. L. Miller, C. Heymans, T. Kitching, L. Van Waerbeke, T. Erben, et al., Bayesian Galaxy Shape Measurement for Weak Lensing Surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey, Mon.Not.Roy.Astron.Soc. 429 (2013) 2858–2880. arXiv:1210.8201, doi:10.1093/mnras/sts454.
  444. E. Komatsu, et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys.J.Suppl. 192 (2011) 18. arXiv:1001.4538, doi:10.1088/0067-0049/192/2/18.
  445. R. Sachs, A. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys.J. 147 (1967) 73–90. doi:10.1007/s10714-007-0448-9.
  446. N. Fornengo, L. Perotto, M. Regis, S. Camera, Evidence of Cross-correlation between the CMB Lensing and the Γ-ray sky, Astrophys.J. 802 (1) (2015) L1. arXiv:1410.4997, doi:10.1088/2041-8205/802/1/L1.
  447. P. Ade, et al., Planck 2013 results. XII. Component separation, Astron.Astrophys. 571 (2014) A12. arXiv:1303.5072, doi:10.1051/0004-6361/201321580.
  448. A. Blanchard, J. Schneider, Gravitational lensing effect on the fluctuations of the cosmic microwave background, Astron.Astrophys. 184.
  449. A. Lewis, A. Challinor, Weak gravitational lensing of the cmb, Phys.Rept. 429 (2006) 1–65. arXiv:astro-ph/0601594, doi:10.1016/j.physrep.2006.03.002.
  450. T. Okamoto, W. Hu, CMB lensing reconstruction on the full sky, Phys.Rev. D67 (2003) 083002. arXiv:astro-ph/0301031, doi:10.1103/PhysRevD.67.083002.
  451. P. Ade, et al., Planck 2013 results. XVII. Gravitational lensing by large-scale structure, Astron.Astrophys. 571 (2014) A17. arXiv:1303.5077.
  452. V. Springel, The Cosmological simulation code GADGET-2, Mon.Not.Roy.Astron.Soc. 364 (2005) 1105–1134. arXiv:astro-ph/0505010, doi:10.1111/j.1365-2966.2005.09655.x.
  453. R. Angulo, V. Springel, S. White, A. Jenkins, C. Baugh, et al., Scaling relations for galaxy clusters in the Millennium-XXL simulation, Mon.Not.Roy.Astron.Soc. 426 (2012) 2046–2062. arXiv:1203.3216, doi:10.1111/j.1365-2966.2009.15191.x.
  454. J.-M. Alimi, V. Bouillot, Y. Rasera, V. Reverdy, P.-S. Corasaniti, et al., DEUS Full Observable ΛCDM Universe Simulation: the numerical challenge. arXiv:1206.2838.
  455. G. Dubus, J. Contreras, S. Funk, Y. Gallant, T. Hassan, et al., Surveys with the Cherenkov Telescope Array, Astropart.Phys. 43 (2013) 317–330. arXiv:1208.5686, doi:10.1016/j.astropartphys.2012.05.020.
  456. J. Ripken, A. Cuoco, H.-S. Zechlin, J. Conrad, D. Horns, The sensitivity of Cherenkov telescopes to dark matter and astrophysical anisotropies in the diffuse gamma-ray background, JCAP 1401 (01) (2014) 049. arXiv:1211.6922, doi:10.1088/1475-7516/2014/01/049.
  457. D. Schlegel, et al., The BigBOSS Experiment. arXiv:1106.1706.
  458. F. A. Harrison, W. W. Craig, F. E. Christensen, C. J. Hailey, W. W. Zhang, et al., The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission, Astrophys.J. 770 (2013) 103. arXiv:1301.7307, doi:10.1088/0004-637X/770/2/103.
  459. T. Takahashi, K. Mitsuda, R. Kelley, H. Aharonian, F. Aarts, et al., The ASTRO-H X-ray Observatory, Proc.SPIE Int.Soc.Opt.Eng. 8443 (2012) 1Z. arXiv:1210.4378, doi:10.1117/12.926190.
  460. T. Kitayama, M. Bautz, M. Markevitch, K. Matsushita, S. Allen, et al., ASTRO-H White Paper - Clusters of Galaxies and Related Science. arXiv:1412.1176.
  461. M. Aartsen, et al., First observation of PeV-energy neutrinos with IceCube, Phys.Rev.Lett. 111 (2013) 021103. arXiv:1304.5356, doi:10.1103/PhysRevLett.111.021103.
  462. M. Aartsen, et al., Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856. arXiv:1311.5238, doi:10.1126/science.1242856.
  463. M. Aartsen, et al., Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys.Rev.Lett. 113 (2014) 101101. arXiv:1405.5303, doi:10.1103/PhysRevLett.113.101101.
  464. IceCube’s Neutrinos: The beginning of extra-Galactic neutrino astrophysics? arXiv:1312.0558.
  465. L. A. Anchordoqui, V. Barger, I. Cholis, H. Goldberg, D. Hooper, et al., Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics, and Particle Physics, JHEAp 1-2 (2014) 1–30. arXiv:1312.6587, doi:10.1016/j.jheap.2014.01.001.
  466. A. Loeb, E. Waxman, The Cumulative background of high energy neutrinos from starburst galaxies, JCAP 0605 (2006) 003. arXiv:astro-ph/0601695, doi:10.1088/1475-7516/2006/05/003.
  467. F. W. Stecker, PeV neutrinos observed by IceCube from cores of active galactic nuclei, Phys.Rev. D88 (4) (2013) 047301. arXiv:1305.7404, doi:10.1103/PhysRevD.88.047301.
  468. K. Murase, Y. Inoue, C. D. Dermer, Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence, Phys.Rev. D90 (2014) 023007. arXiv:1403.4089, doi:10.1103/PhysRevD.90.023007.
  469. P. Padovani, E. Resconi, Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?, Mon.Not.Roy.Astron.Soc. 443 (2014) 474–484. arXiv:1406.0376, doi:10.1093/mnras/stu1166.
  470. K. Murase, M. Ahlers, B. C. Lacki, Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube, Phys.Rev. D88 (12) (2013) 121301. arXiv:1306.3417, doi:10.1103/PhysRevD.88.121301.
  471. M. Ahlers, K. Murase, Probing the Galactic Origin of the IceCube Excess with Gamma-Rays, Phys.Rev. D90 (2) (2014) 023010. arXiv:1309.4077, doi:10.1103/PhysRevD.90.023010.
  472. R.-Y. Liu, X.-Y. Wang, S. Inoue, R. Crocker, F. Aharonian, Diffuse PeV neutrinos from EeV cosmic ray sources: semi-relativistic hypernova remnants in star-forming galaxies, Phys.Rev. D89 (2014) 083004. arXiv:1310.1263, doi:10.1103/PhysRevD.89.083004.
  473. L. A. Anchordoqui, T. C. Paul, L. H. M. da Silva, D. F. Torres, B. J. Vlcek, What IceCube data tell us about neutrino emission from star-forming galaxies (so far), Phys.Rev. D89 (2014) 127304. arXiv:1405.7648, doi:10.1103/PhysRevD.89.127304.

Contents Previous