REFERENCES
-
W. L. Kraushaar, G. W. Clark, G. P. Garmire, L. V. Borken R., T. Thorson,
High-Energy Cosmic Gamma-Ray Observations from the OSO-3 Satellite,
Astrophys. J. 177 (1972) 341.
-
F. Acero, et al., Fermi Large Area Telescope Third Source Catalog,
Astrophys. J. Suppl. 218.
arXiv:1501.02003.
-
J. Lande, M. Ackermann, A. Allafort, J. Ballet, K. Bechtol, et al.,
Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data,
Astrophys. J. 756 (2012) 5.
arXiv:1207.0027,
doi:10.1088/0004-637X/756/1/5.
-
M. Ackermann, et al., The Spectrum and Morphology of the Fermi Bubbles,
Astrophys. J.
arXiv:1407.7905,
doi:10.1088/0004-637X/793/1/64.
-
C. E. Fichtel, et al., High-energy gamma-ray results from the second small
astronomy satellite,
Astrophys. J. 198 (1975) 163–182.
-
P. Sreekumar, et al., EGRET observations of the extragalactic gamma-ray
emission,
Astrophys. J. 494 (1998) 523–534.
arXiv:astro-ph/9709257,
doi:10.1086/305222.
-
A. Strong, I. Moskalenko, O. Reimer, A new determination of the
extragalactic diffuse gamma-ray background from egret data,
Astrophys.J. 613 (2004) 956–961.
arXiv:astro-ph/0405441,
doi:10.1086/423196.
-
A. Abdo, et al., The Spectrum of the Isotropic Diffuse Gamma-Ray Emission
Derived From First-Year Fermi Large Area Telescope Data,
Phys.Rev.Lett. 104 (2010) 101101.
arXiv:1002.3603,
doi:10.1103/PhysRevLett.104.101101.
-
M. Ackermann, et al., The spectrum of isotropic diffuse gamma-ray emission
between 100 MeV and 820 GeV,
Astrophys.J. 799 (1) (2015) 86.
arXiv:1410.3696,
doi:10.1088/0004-637X/799/1/86.
-
F. Stecker, M. Salamon, M. Malkan, The High-energy diffuse cosmic gamma-ray
background radiation from blazars,
Astrophys.J. 410 (1993) L71–L74.
-
F. Stecker, M. Salamon, The Gamma-ray background from blazars: A New look,
Astrophys.J. 464 (1996) 600–605.
arXiv:astro-ph/9601120,
doi:10.1086/177348.
-
A. Muecke, M. Pohl, On the contribution of unresolved blazars to the
extragalactic gamma-ray background,
ASP Conf.Ser. 159 (1998) 217.
arXiv:astro-ph/9807297.
-
T. Narumoto, T. Totani, Gamma-ray luminosity function of blazars and the
cosmic gamma-ray background: evidence for the luminosity dependent density
evolution,
Astrophys.J. 643 (2006) 81–91.
arXiv:astro-ph/0602178,
doi:10.1086/502708.
-
C. D. Dermer, The Extragalactic Gamma Ray Background,
AIP Conf.Proc. 921 (2007) 122–126.
arXiv:0704.2888,
doi:10.1063/1.2757282.
-
V. Pavlidou, T. M. Venters, The Spectral Shape of the Gamma-ray Background
from Blazars,
Astrophys.J. 673 (2008) 114–118.
arXiv:0710.0002,
doi:10.1086/523956.
-
Y. Inoue, T. Totani, The Blazar Sequence and the Cosmic Gamma-Ray Background
Radiation in the Fermi Era,
Astrophys.J. 702 (2009) 523–536.
arXiv:0810.3580,
doi:10.1088/0004-637X/702/1/523,10.1088/0004-637X/728/1/73.
-
M. Ajello, L. Costamante, R. Sambruna, N. Gehrels, J. Chiang, et al., The
Evolution of Swift/BAT blazars and the origin of the MeV background,
Astrophys.J. 699 (2009) 603–625.
arXiv:0905.0472,
doi:10.1088/0004-637X/699/1/603.
-
A. Abdo, et al., The Fermi-LAT high-latitude Survey: Source Count
Distributions and the Origin of the Extragalactic Diffuse Background,
Astrophys.J. 720 (2010) 435–453.
arXiv:1003.0895,
doi:10.1088/0004-637X/720/1/435.
-
K. N. Abazajian, S. Blanchet, P. Harding, The contribution of Blazars to the
Extragalactic Diffuse Gamma-ray Background and Their Future Spatial
Resolution,
Phys.Rev. D84 (2011) 103007.
arXiv:1012.1247,
doi:10.1103/PhysRevD.84.103007.
-
F. W. Stecker, T. M. Venters, Components of the Extragalactic Gamma Ray
Background,
Astrophys.J. 736 (2011) 40.
arXiv:1012.3678,
doi:10.1088/0004-637X/736/1/40.
-
J. Singal, V. Petrosian, M. Ajello, Flux and Photon Spectral Index
Distributions of Fermi-LAT Blazars And Contribution To The Extragalactic
Gamma-ray Background,
Astrophys.J. 753 (2012) 45.
arXiv:1106.3111.
-
M. Ajello, M. Shaw, R. Romani, C. Dermer, L. Costamante, et al., The
Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars,
Astrophys.J. 751 (2012) 108.
arXiv:1110.3787,
doi:10.1088/0004-637X/751/2/108.
-
M. Ajello, R. Romani, D. Gasparrini, M. Shaw, J. Bolmer, et al., The Cosmic
Evolution of Fermi BL Lacertae Objects,
Astrophys.J. 780 (2014) 73.
arXiv:1310.0006,
doi:10.1088/0004-637X/780/1/73.
-
M. Di Mauro, F. Donato, G. Lamanna, D. Sanchez, P. Serpico, Diffuse
γ-ray emission from unresolved BL Lac objects,
Astrophys.J. 786 (2014) 129.
arXiv:1311.5708,
doi:10.1088/0004-637X/786/2/129.
-
M. Ajello, D. Gasparrini, M. Sánchez-Conde, G. Zaharijas,
M. Gustafsson, et al., The Origin of the Extragalactic Gamma-Ray
Background and Implications for Dark-Matter Annihilation,
Astrophys.J. 800 (2) (2015) L27.
arXiv:1501.05301,
doi:10.1088/2041-8205/800/2/L27.
-
L. Stawarz, T. Kneiske, J. Kataoka, Kiloparsec-scale jets in FR I radio
galaxies and the gamma-ray background,
Astrophys.J. 637 (2006) 693–698.
arXiv:astro-ph/0507316,
doi:10.1086/498084.
-
F. Massaro, M. Ajello, Fueling lobes of radio galaxies: statistical particle
acceleration and the extragalactic gamma-ray background,
Astrophys.J.Letts 729 (2011) L12.
arXiv:1102.0774.
-
Y. Inoue, Contribution of the Gamma-ray Loud Radio Galaxies Core
Emissions tothe Cosmic MeV and GeV Gamma-Ray Background Radiation,
Astrophys.J. 733 (2011) 66.
arXiv:1103.3946,
doi:10.1088/0004-637X/733/1/66.
-
M. Di Mauro, F. Calore, F. Donato, M. Ajello, L. Latronico, Diffuse
γ-ray emission from misaligned active galactic nuclei,
Astrophys.J. 780 (2014) 161.
arXiv:1304.0908,
doi:10.1088/0004-637X/780/2/161.
-
D. Bhattacharya, P. Sreekumar, R. Mukherjee, Contribution from unresolved
discrete sources to the Extragalactic Gamma-Ray Background (EGRB),
Res.Astron.Astrophys. 9 (2009) 1205–1214.
arXiv:0907.1741,
doi:10.1088/1674-4527/9/11/004.
-
B. D. Fields, V. Pavlidou, T. Prodanovic, Cosmic Gamma-Ray Background from
Star-Forming Galaxies,
Astrophys.J. 722 (2010) L199.
arXiv:1003.3647.
-
R. Makiya, T. Totani, M. Kobayashi, Contribution from Star-Forming
Galaxies to the Cosmic Gamma-Ray Background Radiation,
Astrophys. J. 728 (2011) 158.
arXiv:1005.1390,
doi:10.1088/0004-637X/728/2/158.
-
M. Ackermann, et al., GeV Observations of Star-forming Galaxies with
Fermi LAT,
Astrophys.J. 755 (2012) 164.
arXiv:1206.1346,
doi:10.1088/0004-637X/755/2/164.
-
B. C. Lacki, S. Horiuchi, J. F. Beacom, The Star-Forming Galaxy Contribution
to the Cosmic MeV and GeV Gamma-Ray Background,
Astrophys.J. 747 (2012) 2.
arXiv:1206.0772.
-
N. Chakraborty, B. D. Fields, Inverse Compton Contribution to the
Star-Forming Extragalactic Gamma-Ray Background,
Astrophys.J. 773 (2013) 104.
arXiv:1206.0770,
doi:10.1088/0004-637X/773/2/104.
-
C.-A. Faucher-Giguere, A. Loeb, The Pulsar Contribution to the Gamma-Ray
Background,
JCAP 1001 (2010) 005.
arXiv:0904.3102,
doi:10.1088/1475-7516/2010/01/005.
-
J. M. Siegal-Gaskins, R. Reesman, V. Pavlidou, S. Profumo, T. P. Walker,
Anisotropies in the gamma-ray sky from millisecond pulsars,
Mon.Not.Roy.Astron.Soc. 415 (2011) 1074S.
arXiv:1011.5501.
-
F. Calore, M. Di Mauro, F. Donato, F. Donato, Diffuse gamma-ray emission
from galactic pulsars,
Astrophys.J. 796 (2014) 14.
arXiv:1406.2706,
doi:10.1088/0004-637X/796/1/14.
-
F. Zandanel, I. Tamborra, S. Gabici, S. Ando, High-energy gamma-ray and
neutrino backgrounds from clusters of galaxies and radio constraints,
Astron.Astrophys. 578 (2015) A32.
arXiv:1410.8697,
doi:10.1051/0004-6361/201425249.
-
S. Horiuchi, J. F. Beacom, Revealing Type Ia supernova physics with cosmic
rates and nuclear gamma rays,
Astrophys.J. 723 (2010) 329–341.
arXiv:1006.5751,
doi:10.1088/0004-637X/723/1/329.
-
A. Lien, B. D. Fields, The Diffuse Gamma-ray Background from Type Ia
Supernovae,
Astrophys.J. 747 (2012) 120.
arXiv:1201.3447,
doi:10.1088/0004-637X/747/2/120.
-
O. E. Kalashev, D. V. Semikoz, G. Sigl, Ultra-High Energy Cosmic Rays
and the GeV-TeV Diffuse Gamma-Ray Flux,
Phys.Rev. D79 (2009) 063005.
arXiv:0704.2463,
doi:10.1103/PhysRevD.79.063005.
-
M. Ahlers, J. Salvado, Cosmogenic gamma-rays and the composition of cosmic
rays,
Phys.Rev. D84 (2011) 085019.
arXiv:1105.5113,
doi:10.1103/PhysRevD.84.085019.
-
G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence,
candidates and constraints,
Phys.Rept. 405 (2005) 279–390.
arXiv:hep-ph/0404175,
doi:10.1016/j.physrep.2004.08.031.
-
M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, et al., PPPC 4 DM
ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection,
JCAP 1103 (2011) 051.
arXiv:1012.4515,
doi:10.1088/1475-7516/2011/03/051.
-
A. Ibarra, Indirect dark matter detection,
Acta Phys.Polon. B43 (2012) 2199–2224.
doi:10.5506/APhysPolB.43.2199.
-
T. Bringmann, C. Weniger, Gamma Ray Signals from Dark Matter: Concepts,
Status and Prospects,
Phys.Dark Univ. 1 (2012) 194–217.
arXiv:1208.5481,
doi:10.1016/j.dark.2012.10.005.
-
P. Ullio, L. Bergstrom, J. Edsjo, C. G. Lacey, Cosmological dark matter
annihilations into gamma-rays - a closer look,
Phys.Rev. D66 (2002) 123502.
arXiv:astro-ph/0207125,
doi:10.1103/PhysRevD.66.123502.
-
J. E. Taylor, J. Silk, The Clumpiness of cold dark matter: Implications for
the annihilation signal, Mon.Not.Roy.Astron.Soc. 339 (2003) 505.
arXiv:astro-ph/0207299,
doi:10.1046/j.1365-8711.2003.06201.x.
-
S. Ando, Can dark matter annihilation dominate the extragalactic gamma-ray
background?,
Phys.Rev.Lett. 94 (2005) 171303.
arXiv:astro-ph/0503006,
doi:10.1103/PhysRevLett.94.171303.
-
S. Ando, E. Komatsu, Anisotropy of the cosmic gamma-ray background from dark
matter annihilation,
Phys.Rev. D73 (2006) 023521.
arXiv:astro-ph/0512217,
doi:10.1103/PhysRevD.73.023521.
-
S. Ando, E. Komatsu, T. Narumoto, T. Totani, Dark matter annihilation or
unresolved astrophysical sources? Anisotropy probe of the origin of cosmic
gamma-ray background,
Phys.Rev. D75 (2007) 063519.
arXiv:astro-ph/0612467,
doi:10.1103/PhysRevD.75.063519.
-
J. M. Siegal-Gaskins, Revealing dark matter substructure with
anisotropies in the diffuse gamma-ray background,
JCAP 0810 (2008) 040.
arXiv:0807.1328,
doi:10.1088/1475-7516/2008/10/040.
-
S. Ando, Gamma-ray background anisotropy from galactic dark matter
substructure,
Phys.Rev. D80 (2009) 023520.
arXiv:0903.4685,
doi:10.1103/PhysRevD.80.023520.
-
M. Fornasa, L. Pieri, G. Bertone, E. Branchini, Anisotropy probe of galactic
and extra-galactic Dark Matter annihilations,
Phys.Rev. D80 (2009) 023518.
arXiv:0901.2921,
doi:10.1103/PhysRevD.80.023518.
-
J. Zavala, V. Springel, M. Boylan-Kolchin, Extragalactic gamma-ray
background radiation from dark matter annihilation,
Mon.Not.Roy.Astron.Soc. 405 (2010) 593.
arXiv:0908.2428.
-
A. Ibarra, D. Tran, C. Weniger, Detecting Gamma-Ray Anisotropies from
Decaying Dark Matter: Prospects for Fermi LAT,
Phys.Rev. D81 (2010) 023529.
arXiv:0909.3514,
doi:10.1103/PhysRevD.81.023529.
-
A. Abdo, et al., Constraints on Cosmological Dark Matter Annihilation
from the Fermi-LAT Isotropic Diffuse Gamma-Ray Measurement,
JCAP 1004 (2010) 014.
arXiv:1002.4415,
doi:10.1088/1475-7516/2010/04/014.
-
G. Hutsi, A. Hektor, M. Raidal, Implications of the Fermi-LAT diffuse
gamma-ray measurements on annihilating or decaying Dark Matter,
JCAP 1007 (2010) 008.
arXiv:1004.2036,
doi:10.1088/1475-7516/2010/07/008.
-
J. Zavala, M. Vogelsberger, T. R. Slatyer, A. Loeb, V. Springel, The cosmic
X-ray and gamma-ray background from dark matter annihilation,
Phys.Rev. D83 (2011) 123513.
arXiv:1103.0776,
doi:10.1103/PhysRevD.83.123513.
-
F. Calore, V. De Romeri, F. Donato, Conservative upper limits on WIMP
annihilation cross section from Fermi-LAT gamma-rays,
Phys.Rev. D85 (2012) 023004,
10 pages, 6 figures Version updated, as sent to PRD.
arXiv:1105.4230,
doi:10.1103/PhysRevD.85.023004.
-
M. Fornasa, J. Zavala, M. A. Sánchez-Conde, J. M. Siegal-Gaskins,
T. Delahaye, et al., Characterization of Dark-Matter-induced
anisotropies in the diffuse gamma-ray background,
MNRAS, 429, 1529.
arXiv:1207.0502,
doi:10.1093/mnras/sts444.
-
M. Di Mauro, A. Cuoco, F. Donato, J. M. Siegal-Gaskins, Fermi-LAT
/gamma-ray anisotropy and intensity explained by unresolved
Radio-Loud Active Galactic Nuclei,
JCAP 1411 (11) (2014) 021.
arXiv:1407.3275,
doi:10.1088/1475-7516/2014/11/021.
-
M. Ackermann, et al., Limits on Dark Matter Annihilation Signals from the
Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background.
arXiv:1501.05464.
-
M. Di Mauro, F. Donato, Composition of the Fermi-LAT isotropic gamma-ray
background intensity: Emission from extragalactic point sources and dark
matter annihilations,
Phys.Rev. D91 (2015) 123001.
arXiv:1501.05316.
-
M. Ackermann, et al., Anisotropies in the diffuse gamma-ray background
measured by the Fermi LAT,
Phys.Rev. D85 (2012) 083007.
arXiv:1202.2856.
-
A. Cuoco, E. Komatsu, J. Siegal-Gaskins, Joint anisotropy and source count
constraints on the contribution of blazars to the diffuse gamma-ray
background,
Phys.Rev. D86 (2012) 063004.
arXiv:1202.5309,
doi:10.1103/PhysRevD.86.063004.
-
J. P. Harding, K. N. Abazajian, Models of the Contribution of Blazars to the
Anisotropy of the Extragalactic Diffuse Gamma-ray Background,
JCAP 1211 (2012) 026.
arXiv:1206.4734,
doi:10.1088/1475-7516/2012/11/026.
-
D. Malyshev, D. W. Hogg, Statistics of gamma-ray point sources below the
Fermi detection limit,
Astrophys.J. 738 (2011) 181.
arXiv:1104.0010,
doi:10.1088/0004-637X/738/2/181.
-
J.-Q. Xia, A. Cuoco, E. Branchini, M. Viel, Tomography of the Fermi-lat
γ-ray Diffuse Extragalactic Signal via Cross Correlations With Galaxy
Catalogs,
Astrophys.J.Suppl. 217 (1) (2015) 15.
arXiv:1503.05918,
doi:10.1088/0067-0049/217/1/15.
-
M. Shirasaki, S. Horiuchi, N. Yoshida, Cross-Correlation of Cosmic Shear and
Extragalactic Gamma-ray Background: Constraints on the Dark Matter
Annihilation Cross-Section,
Phys.Rev. D90 (6) (2014) 063502.
arXiv:1404.5503,
doi:10.1103/PhysRevD.90.063502.
-
S. Camera, M. Fornasa, N. Fornengo, M. Regis, A Novel Approach in the Weakly
Interacting Massive Particle Quest: Cross-correlation of Gamma-Ray
Anisotropies and Cosmic Shear,
Astrophys.J. 771 (2013) L5.
arXiv:1212.5018,
doi:10.1088/2041-8205/771/1/L5.
-
S. Ando, A. Benoit-Lévy, E. Komatsu, Mapping dark matter in the
gamma-ray sky with galaxy catalogs,
Phys.Rev. D90 (2014) 023514.
arXiv:1312.4403,
doi:10.1103/PhysRevD.90.023514.
-
S. Ando, Power spectrum tomography of dark matter annihilation with local
galaxy distribution,
JCAP 1410 (10) (2014) 061.
arXiv:1407.8502,
doi:10.1088/1475-7516/2014/10/061.
-
S. Camera, M. Fornasa, N. Fornengo, M. Regis, Tomographic-spectral approach
for dark matter detection in the cross-correlation between cosmic shear and
diffuse γ-ray emission,
JCAP 1506 (06) (2015) 029.
arXiv:1411.4651,
doi:10.1088/1475-7516/2015/06/029.
-
M. Doro, et al., Dark Matter and Fundamental Physics with the Cherenkov
Telescope Array,
Astropart.Phys. 43 (2013) 189–214.
arXiv:1208.5356,
doi:10.1016/j.astropartphys.2012.08.002.
-
B. Acharya, M. Actis, T. Aghajani, G. Agnetta, J. Aguilar, et al.,
Introducing the CTA concept,
Astropart.Phys. 43 (2013) 3–18.
doi:10.1016/j.astropartphys.2013.01.007.
-
W. Atwood, et al., The Large Area Telescope on the Fermi Gamma-ray Space
Telescope Mission,
Astrophys.J. 697 (2009) 1071–1102.
arXiv:0902.1089,
doi:10.1088/0004-637X/697/2/1071.
-
M. Ackermann, et al., Fermi-LAT Observations of the Diffuse Gamma-Ray
Emission: Implications for Cosmic Rays and the Interstellar Medium,
Astrophys.J. 750 (2012) 3.
arXiv:1202.4039,
doi:10.1088/0004-637X/750/1/3.
-
C. E. Fichtel, G. A. Simpson, D. J. Thompson, Diffuse gamma radiation,
Astrophys.J. 222 (1978) 883–849.
-
A. W. Strong, I. V. Moskalenko, O. Reimer, A New estimate of the
extragalactic gamma-ray background from EGRET data.
arXiv:astro-ph/0306345.
-
A. Franceschini, G. Rodighiero, M. Vaccari, The extragalactic
optical-infrared background radiations, their time evolution and the
cosmic photon-photon opacity,
Astron.Astrophys. 487 (2008) 837.
arXiv:0805.1841,
doi:10.1051/0004-6361:200809691.
-
A. Dominguez, J. Primack, D. Rosario, F. Prada, R. Gilmore, et al.,
Extragalactic Background Light Inferred from AEGIS Galaxy SED-type
Fractions,
Mon.Not.Ray.Astron.Soc. 410 (2011) 2556–2578.
arXiv:1007.1459.
-
M. Ackermann, et al., The Imprint of The Extragalactic Background Light
in the Gamma-Ray Spectra of Blazars,
Science 338 (2012) 1190–1192.
arXiv:1211.1671,
doi:10.1126/science.1227160.
-
A. Abramowski, et al., Measurement of the extragalactic background light
imprint on the spectra of the brightest blazars observed with H.E.S.S,
Astron.Astrophys. 550 (2013) 4.
arXiv:1212.3409,
doi:10.1051/0004-6361/201220355.
-
R. Gilmore, R. Somerville, J. Primack, A. Dominguez, Semi-analytic
modeling of the EBL and consequences for extragalactic gamma-ray spectra,
Mon.Not.Roy.Astron.Soc. 422 (2012) 3189.
arXiv:1104.0671,
doi:10.1111/j.1365-2966.2012.20841.x.
-
A. Dominguez, J. Finke, F. Prada, J. Primack, F. Kitaura, et al., Detection
of the cosmic γ-ray horizon from multiwavelength observations of
blazars,
Astrophys.J. 770 (2013) 77.
arXiv:1305.2162,
doi:10.1088/0004-637X/770/1/77.
-
V. Khaire, R. Srianand, Star formation history, dust attenuation and
extragalactic background light,
Astrophys.J. 805 (1) (2015) 33.
arXiv:1405.7038,
doi:10.1088/0004-637X/805/1/33.
-
C. M. Urry, P. Padovani, Unified schemes for radio-loud active galactic
nuclei,
Publ.Astron.Soc.Pac. 107 (1995) 803.
arXiv:astro-ph/9506063,
doi:10.1086/133630.
-
R. D. Blandford, M. J. Rees, Extended and compact extragalactic radio
sources - Interpretation and Theory,
Physics Scripta 17 (1978) 265–274.
-
G. Ghisellini, L. Maraschi, F. Tavecchio, The Fermi blazars’ divide,
Mon.Not.Roy.Astron.Soc. 396 (2009) L105–109.
-
E. T. Meyer, G. Fossati, M. Georganopoulos, M. L. Lister, Collective
evidence for Inverse Compton emission from External Photons in
High-Power blazars,
Astrophys.J. 752 (2012) L4.
arXiv:1203.4991.
-
M. Ackermann, et al., The Second Catalog of Active Galactic Nuclei
detected by the Fermi Large Area Telescope,
Astrophys.J. 743 (2011) 71.
arXiv:1108.1420.
-
P. Padovani, G. Ghisellini, A. C. Fabian, C. A., Radio-loud AGN and the
extragalactic gamma-ray background,
Mon.Not.Roy.Astron.Soc. 260 (1993) L21–L24.
-
T. M. Kneiske, K. Mannheim, BL Lac Contribution to the Extragalactic
Gamma-Ray Background,
Astron.Astrophys. 479 (2008) 41.
arXiv:0705.3778,
doi:10.1051/0004-6361:20065605.
-
R. C. Hartman, et al., The third EGRET Catalog of High-Energy Gamma-Ray
Sources,
Astrophys.J.Suppl. 123 (1999) 79–202.
-
H. Falcke, P. L. Biermann, The jet-disk symbiosis. 1. Radio to X-ray
emission models for quasars,
Astron.Astrophys. 293 (1995) 665.
arXiv:astro-ph/9411096.
-
H. Falcke, E. Koerding, S. Markoff, A Scheme to unify low - power accreting
black holes: Jet - dominated accretion flows and the radio / x-ray
correlation,
Astron.Astrophys. 414 (2004) 895–903.
arXiv:astro-ph/0305335,
doi:10.1051/0004-6361:20031683.
-
A. Merloni, S. Heinz, T. Di Matteo, A Fundamental plane of black hole
activity,
Mon.Not.Roy.Astron.Soc. 345 (2003) 1057.
arXiv:astro-ph/0305261,
doi:10.1046/j.1365-2966.2003.07017.x.
-
E. Kording, R. Fender, S. Migliari, Jet-dominated advective systems:
radio and x-ray luminosity dependence on the accretion rate,
Mon.Not.Roy.Astron.Soc. 369 (2006) 1451–1458.
arXiv:astro-ph/0603731,
doi:10.1111/j.1365-2966.2006.10383.x.
-
G. Fossati, A. Celotti, G. Ghisellini, L. Maraschi, Unifying models for
x-ray selected and radio selected BL Lac objects,
Mon.Not.Roy.Astron.Soc. 289 (1997) 136.
arXiv:astro-ph/9704113,
doi:10.1093/mnras/289.1.136.
-
G. Fossati, L. Maraschi, A. Celotti, A. Comastri, G. Ghisellini, A Unifying
view of the spectral energy distributions of blazars,
Mon.Not.Roy.Astron.Soc. 299 (1998) 433–448.
arXiv:astro-ph/9804103,
doi:10.1046/j.1365-8711.1998.01828.x.
-
D. Donato, G. Ghisellini, G. Tagliaferri, G. Fossati, Hard X-ray
properties of blazars,
Astron.Astrophys. 375 (2001) 739–751.
arXiv:astro-ph/0105203.
-
Y. Ueda, M. Akiyama, K. Ohta, T. Miyaji, Cosmological evolution of the hard
x-ray AGN luminosity function and the origin of the hard x-ray background,
Astrophys.J. 598 (2003) 886–908.
arXiv:astro-ph/0308140,
doi:10.1086/378940.
-
G. Hasinger, T. Miyaji, M. Schmidt, Luminosity-dependent evolution of soft
x-ray selected AGN: New Chandra and XMM-Newton surveys,
Astron.Astrophys. 441 (2005) 417–434.
arXiv:astro-ph/0506118,
doi:10.1051/0004-6361:20042134.
-
R. Gilli, A. Comastri, G. Hasinger, The synthesis of the cosmic X-ray
background in the Chandra and XMM-Newton era, Astron.Astrophys.
arXiv:astro-ph/0610939.
-
S. Ando, E. Komatsu, T. Narumoto, T. Totani, Angular power spectrum of
gamma-ray sources for GLAST: Blazars and clusters of galaxies,
Mon.Not.Roy.Astron.Soc. 376 (2007) 1635–1647.
arXiv:astro-ph/0610155,
doi:10.1111/j.1365-2966.2007.11421.x.
-
A. Abdo, et al., Fermi Large Area Telescope First Source Catalog,
Astrophys.J.Suppl. 188 (2010) 405–436.
arXiv:1002.2280,
doi:10.1088/0067-0049/188/2/405.
-
M. Cavadini, R. Salvaterra, F. Haardt, A New model for the extragalactic
γ-ray background.
arXiv:1105.4613.
-
J. Dunlop, J. Peacock, The Redshift Cut-Off in the Luminosity Function of
Radio Galaxies and Quasars,
Mon.Not.Roy.Astron.Soc. 247 (1990) 19.
-
J. Chiang, R. Mukherjee, The Luminosity Function of the EGRET Gamma-Ray
blazars,
Astrophys.J. 496 (1998) 752.
-
Intensity and origin of the extragalatic gamma-ray background, for the 4th
Fermi Symposium,
http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/program/thu/MAckermann.pdf.
-
A. Rau, et al., BL Lacertae objects beyond redshift 1.3 = UV-to-NIR
photometry and photometric redshift for Fermi-LAT blazars,
Astron.Astrophys. 538.
arXiv:1112.0025.
-
M. S. Shaw, R. W. Romani, G. Cotter, S. E. Healey, P. F. Michelson, et al.,
Spectroscopy of The Largest Ever Gamma-ray Selected BL Lac Sample,
Astrophys.J. 764 (2013) 135.
arXiv:1301.0323,
doi:10.1088/0004-637X/764/2/135.
-
P. L. Nolan, et al., Fermi Large Area Telescope Second Source Catalog,
Astrophys.J.Suppl. 199 (2012) 31.
arXiv:1108.1435,
doi:10.1088/0067-0049/199/2/31.
-
P. D. Barthel, Is every quasar beamed?,
Astrophys.J. 336 (1989) 606.
doi:10.1086/167038.
-
B. L. Fanaroff, J. M. Riley, The morphology of extragalactic radio
sources of high and low luminosity,
Mon.Not.Ray.Astron.Soc. 167 (1974) 31P–36P.
-
A. A. Abdo, et al., Fermi Large Area Telescope observations of Misaligned
Active Galactic Nuclei,
Astrophys.J. 720 (2010) 912–922.
-
L. Maraschi, G. Ghisellini, A. Celotti, A jet model for the gamma-ray
emitting blazar 3C 279,
Astrophys.J. 397 (1992) L5–L9.
doi:10.1086/186531.
-
C. D. Dermer, R. Schlickeiser, Model for the high-energy emission from
blazars,
Astrophys.J. 416 (1993) 458.
doi:10.1086/173251.
-
G. Ghirlanda, G. Ghisellini, F. Tavecchio, L. Foschini, G. Bonnoli, The
radio/gamma-ray connection in Fermi-blazars,
Mon.Not.Roy.Astron.Soc. 413 (2011) 852–862.
arXiv:1007.2751.
-
C. J. Willott, S. Rawlings, K. M. Blundell, M. Lacy, S. A. Eales, The radio
luminosity function from the low-frequency 3crr, 6ce and 7crs complete
samples,
Mon.Not.Roy.Astron.Soc. 322 (2001) 536–552.
arXiv:astro-ph/0010419,
doi:10.1046/j.1365-8711.2001.04101.x.
-
Z. Yuan, J. Wang, On the Evolution of the Cores of Radio Sources and Their
Extended Radio Emission,
Astrophys.J. 744 (2012) 84.
arXiv:1109.4028,
doi:10.1088/0004-637X/744/2/84.
-
L. Lara, G. Giovannini, W. Cotton, L. Feretti, J. Marcaide, et al., A New
sample of large angular size radio galaxies. 3. Statistics and evolution of
the grown population,
Astron.Astrophys. 421 (2004) 899–911.
arXiv:astro-ph/0404373,
doi:10.1051/0004-6361:20035676.
-
A. A. Abdo, et al., Fermi Gamma-Ray Imaging of a Radio Galaxy,
Science 328 (2010) 725.
-
A. A. Abdo, et al., Fermi Large Area Telescope observations of Local Group
galaxies: Detection of M31 and search for M33,
Astron.Astrophys. 523 (2010) A46.
arXiv:1012.1952.
-
A. Abdo, Observations of the Large Magellanic Cloud with Fermi,
Astron.Astrophys. 512 (2010) A7.
arXiv:1001.3298,
doi:10.1051/0004-6361/200913474.
-
A. A. Abdo, et al., Detection of the Small Magellanic Cloud in
gamma-rays with Fermi/LAT.
arXiv:1008.2127.
-
M. Hayashida, Stawarz, C. C. Cheung, K. Bechtol, G. M. Madejski, et al.,
Discovery of GeV Emission from the Circinus Galaxy with the Fermi Large Area
Telescope,
Astrophys.J. 779 (2013) 131.
arXiv:1310.1913,
doi:10.1088/0004-637X/779/2/131.
-
A. Abdo, Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and
NGC 253 with the Large Area Telescope on Fermi,
Astrophys.J. 709 (2010) L152–L157.
arXiv:0911.5327,
doi:10.1088/2041-8205/709/2/L152.
-
A. Abdo, The First Catalog of Active Galactic Nuclei Detected by the Fermi
Large Area Telescope,
Astrophys.J. 715 (2010) 429–457.
arXiv:1002.0150,
doi:10.1088/0004-637X/715/1/429.
-
Q.-W. Tang, X.-Y. Wang, P.-H. Thomas Tam, Discovery of GeV emission from the
direction of the luminous infrared galaxy NGC 2146,
Astrophys.J. 794 (1) (2014) 26.
arXiv:1407.3391,
doi:10.1088/0004-637X/794/1/26.
-
J. Kennicutt, Robert C., Star formation in galaxies along the Hubble
sequence,
Ann.Rev.Astron.Astrophys. 36 (1998) 189–231.
arXiv:astro-ph/9807187,
doi:10.1146/annurev.astro.36.1.189.
- V. L. Ginzburg, S. L. Syrovatskii,
The Origin of Cosmic Rays, Pergamon Press, 1964.
-
A. Strong, T. Porter, S. Digel, G. Johannesson, P. Martin, et al., Global
cosmic-ray related luminosity and energy budget of the Milky Way,
Astrophys.J. 722 (2010) L58–L63.
arXiv:1008.4330,
doi:10.1088/2041-8205/722/1/L58.
-
E. E. Salpeter, The Luminosity function and stellar evolution,
Astrophys.J. 121 (1955) 161–167.
doi:10.1086/145971.
-
N. Bastian, K. R. Covey, M. R. Meyer, A Universal Stellar Initial Mass
Function? A Critical Look at Variations,
Ann.Rev.Astron.Astrophys. 48 (2010) 339–389.
arXiv:1001.2965,
doi:10.1146/annurev-astro-082708-101642.
-
T. A. Thompson, E. Quataert, E. Waxman, The Starburst Contribution to the
Extra-Galactic Gamma-Ray Background,
Astrophys.J. 654 (2006) 219–225.
arXiv:astro-ph/0606665,
doi:10.1086/509068.
-
S. Cole, et al., The 2dF Galaxy Redshift Survey: Near infrared galaxy
luminosity functions,
Mon.Not.Roy.Astron.Soc. 326 (2001) 255.
arXiv:astro-ph/0012429,
doi:10.1046/j.1365-8711.2001.04591.x.
-
A. M. Hopkins, J. F. Beacom, On the normalisation of the cosmic star
formation history,
Astrophys.J. 651 (2006) 142–154.
arXiv:astro-ph/0601463,
doi:10.1086/506610.
-
S. Horiuchi, J. F. Beacom, E. Dwek, The Diffuse Supernova Neutrino
Background is detectable in Super-Kamiokande,
Phys.Rev. D79 (2009) 083013.
arXiv:0812.3157,
doi:10.1103/PhysRevD.79.083013.
-
M. Pohl, On the predictive power of the minimum energy condition. 2:
Fractional calorimeter behaviour in the diffuse high energy gamma ray
emission of spiral galaxies,
Astron.Astrophys. 287 (1994) 453–462.
-
M. Persic, Y. Rephaeli, Cosmic rays in galaxies: a probe of star formation,
Mon.Not.Roy.Astron.Soc. 403 (2010) 1569–1576.
arXiv:0912.4156,
doi:10.1111/j.1365-2966.2009.16218.x.
-
V. Pavlidou, B. D. Fields, The Guaranteed gamma-ray background,
Astrophys.J. 575 (2002) L5–L8.
arXiv:astro-ph/0207253,
doi:10.1086/342670.
-
S. Ando, V. Pavlidou, Imprint of Galaxy Clustering in the Cosmic Gamma-Ray
Background,
Mon.Not.Roy.Astron.Soc. 400 (2009) 2122.
arXiv:0908.3890,
doi:10.1111/j.1365-2966.2009.15605.x.
-
B. C. Lacki, T. A. Thompson, E. Quataert, A. Loeb, E. Waxman, On The GeV and
TeV Detections of the Starburst Galaxies M82 and NGC 253,
Astrophys.J. 734 (2011) 107.
arXiv:1003.3257,
doi:10.1088/0004-637X/734/2/107.
- M. Schmidt, The Rate of Star Formation,
Astrophys.J. 129 (1959) 243.
doi:10.1086/146614.
-
J. Kennicutt, Robert C., P. B. Stetson, A. Saha, D. Kelson, D. M. Rawson,
et al., The HST Key Project on the Extragalactic Distance Scale. 13. The
Metallicity dependence of the Cepheid distance scale,
Astrophys.J. 498 (1998) 181.
arXiv:astro-ph/9712055,
doi:10.1086/305538.
-
A. M. Hopkins, On the evolution of star forming galaxies,
Astrophys.J. 615 (2004) 209.
arXiv:astro-ph/0407170,
doi:10.1086/424032.
-
O. Nakamura, M. Fukugita, J. Brinkmann, D. P. Schneider, The H-alpha
luminosity function of morphologically classified galaxies in the Sloan
Digital Sky Survey,
Astron.J. 127 (2004) 2511–2521.
arXiv:astro-ph/0312519.
-
C. Papovich, S. L. Finkelstein, H. C. Ferguson, J. M. Lotz,
M. Giavalisco, The Rising Star-Formation Histories of Distant Galaxies
and Implications for Gas Accretion with Time,
Mon.Not.Roy.Astron.Soc. 412 (2011) 1123–1136.
arXiv:1007.4554.
-
F. Elsner, G. Feulner, U. Hopp, The impact of Spitzer infrared data on
stellar mass estimates - and a revised galaxy stellar mass function at
0 < z < 5,
Astron.Astrophys. 477 (2008) 503–5121.
arXiv:0711.0384.
-
A. K. Leroy, F. Walter, E. Brinks, F. Bigiel, W. de Blok, et al., The Star
Formation Efficiency in Nearby Galaxies: Measuring Where Gas Forms Stars
Effectively,
Astron.J. 136 (2008) 2782–2845.
arXiv:0810.2556,
doi:10.1088/0004-6256/136/6/2782.
-
K. Nagamine, J. P. Ostriker, M. Fukugita, R. Cen, The history of
cosmological star formation: three independent approaches and a critical
test using the extragalactic background light,
Astrophys.J. 653 (2006) 881–893.
arXiv:astro-ph/0603257,
doi:10.1086/508765.
-
M. S. Yun, N. A. Reddy, J. J. Condon, Radio properties of infrared selected
galaxies in the IRAS 2 Jy sample,
Astrophys.J. 554 (2001) 803.
arXiv:astro-ph/0102154,
doi:10.1086/323145.
-
H. Dole, G. Lagache, J.-L. Puget, K. I. Caputi, N. Fernandez-Conde, et al.,
The cosmic infrared background resolved by spitzer. contributions of
mid-infrared galaxies to the far-infrared background,
Astron.Astrophys. 451 (2006) 417–429.
arXiv:astro-ph/0603208,
doi:10.1051/0004-6361:20054446.
-
F. W. Stecker, Are Diffuse High Energy Neutrinos from Starburst Galaxies
Observable?,
Astropart.Phys. 26 (2007) 398–401.
arXiv:astro-ph/0607197,
doi:10.1016/j.astropartphys.2006.08.002.
-
P. F. Hopkins, J. D. Younger, C. C. Hayward, D. Narayanan, L. Hernquist,
Mergers, AGN, and ’Normal’ Galaxies: Contributions to the
Distribution of Star Formation Rates and Infrared Luminosity Functions,
Mon.Not.Roy.Astron.Soc. 402 (2010) 1693–1713.
arXiv:0911.1131.
-
M. Nagashima, Y. Yoshii, Hierarchical formation of galaxies with dynamical
response to supernova - induced gas removal,
Astrophys.J. 610 (2004) 23–44.
arXiv:astro-ph/0404485,
doi:10.1086/421484.
-
M. Nagashima, H. Yahagi, M. Enoki, Y. Yoshii, N. Gouda, Numerical galaxy
catalog. 1. A Semi-analytic model of galaxy formation with N-body
simulations,
Astrophys.J. 634 (2005) 26–50.
arXiv:astro-ph/0508085,
doi:10.1086/496872.
-
I. Tamborra, S. Ando, K. Murase, Star-forming galaxies as the origin of
diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and
implications for starburst history,
JCAP 1409 (09) (2014) 043.
arXiv:1404.1189,
doi:10.1088/1475-7516/2014/09/043.
-
G. Rodighiero, et al., Mid- and far-infrared luminosity functions and galaxy
evolution from multiwavelength Spitzer observations up to z-2.5,
Astron.Astrophys. 515.
arXiv:0910.5649.
-
V. Acciari, E. Aliu, T. Arlen, T. Aune, M. Bautista, et al., A connection
between star formation activity and cosmic rays in the starburst galaxy M
82,
Nature 462 (2009) 770–772.
arXiv:0911.0873,
doi:10.1038/nature08557.
-
C. Gruppioni, P. F., R. G., et al., The Herschel PEP/HerMES luminosity
function - I. Probing the evolution of PACS selected Galactic to z=4,
Mon.Not.Roy.Astron.Soc. 432 (2013) 23–52.
arXiv:1302.5209.
-
M. J. Devlin, P. A. Ade, I. Aretxaga, J. J. Bock, E. L. Chapin, et al., Over
half of the far-infrared background light comes from galaxies at z > 1.2,
Nature 458 (2009) 737–739.
arXiv:0904.1201,
doi:10.1038/nature07918.
-
M. Bethermin, E. L. Floc’h, O. Ilbert, A. Conley, G. Lagache, et
al., HerMES: deep number counts at 250, 350, and 500 microns in the
COSMOS and GOODS-N fields and the build-up of the cosmic infrared
background,
Astron.Astrophys. 542.
arXiv:1203.1925.
-
A. Barger, W.-H. Wang, L. Cowie, F. Owen, C.-C. Chen, et al., Precise
Identifications of Submillimeter Galaxies: Measuring the History of Massive
Star-Forming Galaxies to z > 5,
Astrophys.J. 761 (2012) 89.
arXiv:1209.1626,
doi:10.1088/0004-637X/761/2/89.
-
C.-Y. Ng, J. Takata, G. Leung, K. Cheng, P. Philippopoulos, High-Energy
Emission of the First Millisecond Pulsar,
Astrophys.J. 787 (2014) 167.
arXiv:1405.2148,
doi:10.1088/0004-637X/787/2/167.
-
T. Gregoire, J. Knodlseder, Constraining the Galactic millisecond pulsar
population using Fermi Large Area Telescope,
Astron.Astrophys. 554 (2013) A62.
arXiv:1305.1584,
doi:10.1051/0004-6361/201219676.
-
A. Abdo, et al., The Second Fermi Large Area Telescope Catalog of Gamma-ray
Pulsars,
Astrophys.J.Suppl. 208 (2013) 17.
arXiv:1305.4385,
doi:10.1088/0067-0049/208/2/17.
-
G. Benford, R. Buschauer, Coeherent pulsar radio radiation by antenna
mechanisms - General theroy,
Mon.Not.Roy.Astron.Soc. 179 (1977) 189–207.
-
R. T. Gangadhara, Circular polarization in pulsars due to curvature
radiation,
Astrophys.J. 710 (2010) 29–44.
-
P. Wang, C. Wang, J. Han, Curvature Radiation in Rotating Pulsar
Magnetosphere,
Mon.Not.Roy.Astron.Soc. 423 (2012) 2464.
arXiv:1203.5995,
doi:10.1111/j.1365-2966.2012.21053.x.
-
M. Kerr, the Fermi-LAT Collaboration, Pulsars in gamma rays: what Fermi is
teaching us,
IAU Symp. 291 (2012) 307–312.
arXiv:1211.3726.
-
M. A. Alpar, A. F. Cheng, J. Ruderman, M. A. Shaman, A new class of radio
pulsars,
Nature 300 (1982) 728–730.
-
E. Phinney, S. Kulkarni, Binary and millisecond pulsars,
Ann.Rev.Astron.Astrophys. 32 (1994) 591–639.
doi:10.1146/annurev.aa.32.090194.003111.
-
D. Lorimer, Binary and millisecond pulsars at the new millennium,
Living Rev.Rel. 4 (2001) 5.
arXiv:astro-ph/0104388.
-
D. Lorimer, Binary and Millisecond Pulsars,
Living Rev.Rel. 11 (2008) 8.
arXiv:0811.0762.
-
B. Kiziltan, S. E. Thorsett, Millisecond Pulsar Ages: Implications of Binary
Evolution and a Maximum Spin Limit,
Astrophys.J. 715 (2010) 335–341.
arXiv:0909.1562,
doi:10.1088/0004-637X/715/1/335.
-
A. G. Lyne, R. N. Manchester, D. R. Lorimer, M. Bailes, et al., The Parkes
Southern Pulsar Survey - II. Final results and population analysis,
Mon.Not.Roy.Astron.Soc. 295 (1998) 743–755.
-
J. Arons, Pulsars as gamma-ray sources,
Astron.Astrophys.Suppl. 120 (1996) 49–60.
-
M. Ruderman, P. Sutherland, Theory of pulsars: Polar caps, sparks, and
coherent microwave radiation,
Astrophys.J. 196 (1975) 51.
doi:10.1086/153393.
-
A. K. Harding, Pulsar gamma-rays - Spectra, luminosities and efficiencies,
Astrophys.J. 245 (1981) 267–273.
-
C.-A. Faucher-Giguere, V. M. Kaspi, Birth and evolution of isolated radio
pulsars,
Astrophys.J. 643 (2006) 332–355.
arXiv:astro-ph/0512585,
doi:10.1086/501516.
-
D. R. Lorimer, The Galactic Millisecond Pulsar Population,
IAU Symp. 291 (2013) 237.
arXiv:1210.2746,
doi:10.1017/S1743921312023769.
-
M. McLaughlin, J. Cordes, The gamma-ray pulsar population,
Astrophys.J. 538 (2000) 818.
arXiv:astro-ph/9912409,
doi:10.1086/309174.
-
J. Cordes, D. F. Chernoff, Neutron star population dynamics. I: Millisecond
pulsars,
Astrophys.J. 482 (1997) 971–992.
arXiv:astro-ph/9706162,
doi:10.1086/304179.
-
S. A. Story, P. L. Gonthier, A. K. Harding, Population synthesis of
radio and gamma-ray millisecond pulsars from the Galactic disk,
Astrophys.J. 671 (2007) 713–726.
arXiv:0706.3041,
doi:10.1086/521016.
-
R. N. Manchester, G. B. Hobbs, A. Teoh, M. Hobbs, The Australia Telescope
National Facility pulsar catalogue,
Astron.J. 129 (2005) 1993.
arXiv:astro-ph/0412641,
doi:10.1086/428488.
-
R. N. Manchester, L. A. G., N. D’Amico, M. Bailes, J. S., et al.,
The Parkes Southern Pulsar Survey - I. Observing and data analysis
systems and initial results,
Mon.Not.Roy.Astron.Soc. 279 (1996)
1235–1250.
-
G. M. Voit, S. T. Kay, G. L. Bryan, The baseline intracluster entropy
profile from gravitational structure formation,
Mon.Not.Roy.Astron.Soc. 364 (2005) 909–916.
arXiv:astro-ph/0511252,
doi:10.1111/j.1365-2966.2005.09621.x.
-
R. J. van Weerer, M. Bruggen, H. J. A. Rottgering, M. Hoeft, S. E. Nuza,
H. T. Intema, Radio emission observations of new radio halos and relics
from the NVSS and WENNS surveys. Relic orientations, cluster X-ray
luminosities and redshift distribution,
Astron.Astrophys. 533.
arXiv:1107.5597.
-
A., S. P. Oh, C. Pfrommer, Giant radio relics in galaxy clusters:
reacceleration of fossil relativistic electrons?,
Mon.Not.Roy.Astron.Soc. 435 (2013) 1061–10825.
arXiv:1301.5644.
-
B. M. Deis, W. Reich, H. Lesch, R. Wielebinski, The large-scale structure of
the diffuse radio halo of the Coma cluster at 1.4 GHz,
Astron.Astrophys. 321 (1997) 55–63.
arXiv:astro-ph/9609189.
-
S. Brown, L. Rudnick, Diffuse radio emission in/around the Coma cluster:
beyond simple accretion,
Mon.Not.Roy.Astron.Soc. 412 (2011) 2–12.
arXiv:1009.4258.
-
G. Brunetti, R. Cassano, K. Dolag, G. Setti, On the evolution of giant radio
halos and their connection with cluster mergers,
Astron.Astrophys. 507 (2009) 661.
arXiv:0909.2343,
doi:10.1051/0004-6361/200912751.
-
R. Cassano, S. Ettori, G. Brunetti, S. Giacintucci, G. Pratt, et al.,
Revisiting scaling relations for giant radio halos in galaxy clusters,
Astrophys.J. 777 (2013) 141.
arXiv:1306.4379,
doi:10.1088/0004-637X/777/2/141.
-
A. Loeb, E. Waxman, Gamma-ray background from structure formation in the
intergalactic medium,
Nature 405 (2000) 156.
arXiv:astro-ph/0003447,
doi:10.1038/35012018.
-
T. Totani, T. Kitayama, Forming clusters of galaxies as the origin of
unidentified GeV gamma-ray sources,
Astrophys.J. 545 (2000) 572–577.
arXiv:astro-ph/0006176,
doi:10.1086/317872.
-
W. H. Press, P. Schechter, Formation of galaxies and clusters of galaxies by
selfsimilar gravitational condensation,
Astrophys.J. 187 (1974) 425–438.
doi:10.1086/152650.
-
A. Cooray, R. K. Sheth, Halo models of large scale structure,
Phys.Rept. 372 (2002) 1–129.
arXiv:astro-ph/0206508,
doi:10.1016/S0370-1573(02)00276-4.
-
U. Keshet, E. Waxman, A. Loeb, V. Springel, L. Hernquist, Gamma-rays from
intergalactic shocks,
Astrophys.J. 585 (2003) 128–150.
arXiv:astro-ph/0202318,
doi:10.1086/345946.
-
C. Pfrommer, T. Ensslin, V. Springel, Simulating cosmic rays in clusters of
galaxies - II. A unified scheme for radio halos and relics with predictions
of the gamma-ray emission,
Mon.Not.Roy.Astron.Soc. 385 (2008) 1211–1241.
arXiv:0707.1707.
-
S. Gabici, P. Blasi, The Gamma-ray background from large scale structure
formation,
Astropart.Phys. 19 (2003) 679–689.
arXiv:astro-ph/0211573,
doi:10.1016/S0927-6505(03)00106-3.
-
F. Miniati, Inter-Galactic shock acceleration and the cosmic gamma-ray
background,
Mon.Not.Roy.Astron.Soc. 337 (2002) 199.
arXiv:astro-ph/0203014,
doi:10.1046/j.1365-8711.2002.05903.x.
-
S. Gabici, P. Blasi, On the Detectability of gamma-rays from clusters of
galaxies: Mergers versus secondary infall,
Astropart.Phys. 20 (2004) 579–590.
arXiv:astro-ph/0306369,
doi:10.1016/j.astropartphys.2003.09.002.
-
K. Kashiyama, P. Meszaros, Galaxy Mergers as a Source of Cosmic Rays,
Neutrinos, and Gamma Rays,
Astrophys.J. 790 (2014) L14.
arXiv:1405.3262,
doi:10.1088/2041-8205/790/1/L14.
-
F. Zandanel, S. Ando, Constraints on diffuse gamma-ray emission from
structure formation processes in the Coma cluster,
Mon.Not.Roy.Astron.Soc. 440 (2014) 663–671.
arXiv:1312.1493,
doi:10.1093/mnras/stu324.
-
S. Colafrancesco, P. Blasi, Clusters of galaxies and the diffuse gamma-ray
background,
Astropart.Phys. 9 (1998) 227–246.
arXiv:astro-ph/9804262,
doi:10.1016/S0927-6505(98)00018-8.
-
S. Ando, D. Nagai, Gamma-ray probe of cosmic-ray pressure in galaxy clusters
and cosmological implications,
Mon.Not.Roy.Astron.Soc. 385 (2008) 2243–2253.
arXiv:0705.2588,
doi:10.1111/j.1365-2966.2008.12996.x.
-
F. Zandanel, F. Prada, A Phenomenological Model for the Intracluster Medium
that matches X-ray and Sunyaev-Zel’dovich observations,
Mon.Not.Roy.Astron.Soc. 438 (2014) 116–123.
arXiv:1311.4793,
doi:10.1093/mnras/stt2196.
-
G. Giovannini, M. Tordi, L. Feretti, Radio halo and relic candidates
from the nrao vla sky survey,
New Astron. 4 (1999) 141.
arXiv:astro-ph/9904210,
doi:10.1016/S1384-1076(99)00018-4.
-
J. Aleksic, et al., Constraining Cosmic Rays and Magnetic Fields in the
Perseus Galaxy Cluster with TeV observations by the MAGIC telescopes,
Astron.Astrophys. 541 (2012) A99.
arXiv:1111.5544,
doi:10.1051/0004-6361/201118502.
-
K. Greisen, End to the cosmic ray spectrum?,
Phys.Rev.Lett. 16 (1966) 748–750.
doi:10.1103/PhysRevLett.16.748.
-
G. Zatsepin, V. Kuzmin, Upper limit of the spectrum of cosmic rays,
JETP Lett. 4 (1966) 78–80.
-
P. S. Coppi, F. A. Aharonian, Constraints on the VHE emissivity of the
universe from the diffuse GeV gamma-ray background,
Astrophys.J. 487 (1997) L9–L12.
arXiv:astro-ph/9610176,
doi:10.1086/310883.
-
I. Cholis, D. Hooper, S. D. McDermott, Dissecting the Gamma-Ray
Background in Search of Dark Matter,
JCAP 1402 (2014) 014.
arXiv:1312.0608,
doi:10.1088/1475-7516/2014/02/014.
-
J. Whelan, I. J. Iben, Binaries and Supernovae of Type I,
Astrophys.J. 186 (1973) 1007–1014.
-
J. Iben, I., A. Tutukov, Supernovae of type I as end products of the
evolution of binaries with components of moderate initial mass (M not
greater than about 9 solar masses),
Astrophys.J.Suppl. 54 (1984) 335–372.
doi:10.1086/190932.
-
K. Ahn, E. Komatsu, P. Hoflich, Cosmic gamma-ray background from Type Ia
supernovae revisited: Evidence for missing gamma-rays at MeV,
Phys.Rev. D71 (2005) 121301.
arXiv:astro-ph/0506126,
doi:10.1103/PhysRevD.71.121301.
-
L. E. Strigari, J. F. Beacom, T. P. Walker, P. Zhang, The Concordance Cosmic
Star Formation Rate: Implications from and for the supernova neutrino and
gamma ray backgrounds,
JCAP 0504 (2005) 017.
arXiv:astro-ph/0502150,
doi:10.1088/1475-7516/2005/04/017.
-
Y. Rasera, R. Teyssier, P. Sizun, B. Cordier, J. Paul, et al., Soft
gamma-ray background and light dark matter annihilation,
Phys.Rev. D73 (2006) 103518.
arXiv:astro-ph/0507707,
doi:10.1103/PhysRevD.73.103518.
-
M. G. Baring, A. K. Harding, Magnetic photon splitting: Computations of
proper time rates and spectra,
Astrophys.J. 482 (1997) 372.
arXiv:astro-ph/9704210,
doi:10.1086/304152.
-
Y. Lithwick, R. Sari, Lower limits on Lorentz factors in gamma-ray bursts,
Astrophys.J. 555 (2001) 540–545.
arXiv:astro-ph/0011508,
doi:10.1086/321455.
-
B. Zhang, Y. Z. Fan, J. Dyks, S. Kobayashi, P. Meszaros, et al., Physical
processes shaping GRB x-ray afterglow lightcurves: Theoretical implications
from the SWIFT XRT observations,
Astrophys.J. 642 (2006) 354–370.
arXiv:astro-ph/0508321,
doi:10.1086/500723.
-
P. Meszaros, The Fireball shock model of gamma-ray bursts,
AIP Conf.Proc. 526 (2000) 514–518.
arXiv:astro-ph/9912474,
doi:10.1063/1.1361591.
-
S. Casanova, B. Dingus, B. Zhang, Contribution of GRB emission to the GeV
extragalactic diffuse gamma-ray flux,
AIP Conf.Proc. 1000 (2008) 40–43.
doi:10.1063/1.2943497.
-
T. Le, C. D. Dermer, Gamma-ray burst predictions for the Fermi Gamma Ray
Space Telescope,
Astrophys.J. 700 (2009) 1026–1033.
arXiv:0807.0355.
-
M. Schmidt, Luminosities and space densities of gamma-ray bursts,
Astrophys.J. 523 (1999) L117–L120.
arXiv:astro-ph/9908206,
doi:10.1086/312281.
-
S. Ando, E. Nakar, R. Sari, GeV Emission from Prompt and Afterglow Phases of
Gamma-Ray Bursts,
Astrophys.J. 689 (2008) 1150.
arXiv:0807.0012,
doi:10.1086/592486.
-
I. V. Moskalenko, T. A. Porter, Isotropic Gamma-Ray Background: Cosmic-Ray
Induced Albedo from Debris in the Solar System?,
Astrophys.J. 692 (2009) 54–57.
arXiv:0901.0304,
doi:10.1088/0004-637X/692/1/L54.
-
R. Mahadevan, R. Narayan, J. Krolik, Gamma-ray emission from
advection-dominated accretion flows around black holes: application to the
Galactic Center,
Astrophys.J. 486 (1997) 268–285.
arXiv:astro-ph/9704018.
-
K. Oka, T. Manmoto, Gamma-ray emission from an accretion flow around a Kerr
black hole,
Mon.Not.Roy.Astron.Soc. 340 (2003) 543–550.
-
S. H. Teng, R. F. Mushotzky, R. M. Sambruna, D. S. Davis, C. S. Reynolds,
Fermi/LAT Observations of Swift/BAT Seyferts: on the Contribution of
Radio-quiet AGN to the Extragalactic Gamma-ray Background,
Astrophys.J. 742 (2011) 66.
arXiv:1109.2734,
doi:10.1088/0004-637X/742/2/66.
-
Y. Inoue, T. Totani, Y. Ueda, The Cosmic MeV Gamma-ray Background and Hard
X-ray Spectra of Active Galactic Nuclei: Implications for the Origin of Hot
AGN Coronae,
Astrophys.J. 672 (2008) L5.
arXiv:0709.3877,
doi:10.1086/525848.
-
A. Galeev, R. Rosner, G. Vaiana, Structured coronae of accretion disks,
Astrophys.J. 229 (1979) 318–326.
doi:10.1086/156957.
-
B. F. Liu, S. Mineshige, K. Shibata, A simple model for a magnetic
reconnection-heated corona,
Astrophys.J. 572 (2002) L173–L176.
arXiv:astro-ph/0205257.
-
U. Keshet, E. Waxman, A. Loeb, The Case for a low extragalactic gamma-ray
background,
JCAP 0404 (2004) 006.
arXiv:astro-ph/0306442,
doi:10.1088/1475-7516/2004/04/006.
-
R. Feldmann, D. Hooper, N. Y. Gnedin, Circum-Galactic Gas and the Isotropic
Gamma Ray Background,
Astrophys.J. 763 (2013) 21.
arXiv:1205.0249,
doi:10.1088/0004-637X/763/1/21.
-
M. E. Anderson, J. N. Bregman, Detection of a Hot Gaseous Halo Around the
Giant Spiral Galaxy NGC 1961,
Astrophys.J. 737 (2011) 22.
arXiv:1105.4614,
doi:10.1088/0004-637X/737/1/22.
-
N. Y. Gnedin, A. V. Kravtsov, Environmental Dependence of the
Kennicutt-Schmidt Relation in Galaxies,
Astrophys.J. 728 (2011) 88.
arXiv:1004.0003,
doi:10.1088/0004-637X/728/2/88.
-
R. Feldmann, N. Gnedin, A. Kravtsov, How Universal is the SFR - H2
Relation?,
Astrophys.J. 732 (2011) 115.
arXiv:1010.1539,
doi:10.1088/0004-637X/732/2/115.
-
N. I. Gnedin, J. P. Ostriker, Light elements nucleosynthesis - a false
clue?,
Astrophys.J. 400 (1992) 1–20.
-
D. N. Page, S. Hawking, Gamma rays from primordial black holes,
Astrophys.J. 206 (1976) 1–7.
doi:10.1086/154350.
-
J. H. MacGibbon, B. J. Carr, Cosmic rays from primordial black holes,
Astrophys.J. 371 (1991) 447–469.
doi:10.1086/169909.
-
F. Stecker, D. Morgan, J. Bredekamp, Possible evidence for the existence of
antimatter on a cosmological scale in the universe,
Phys.Rev.Lett. 27 (1971) 1469–1472.
doi:10.1103/PhysRevLett.27.1469.
-
P. Bhattacharjee, Q. Shafi, F. Stecker, TeV and superheavy mass scale
particles from supersymmetric topological defects, the extragalactic
gamma-ray background, and the highest energy cosmic rays,
Phys.Rev.Lett. 80 (1998) 3698–3701.
arXiv:hep-ph/9710533,
doi:10.1103/PhysRevLett.80.3698.
-
T. Bringmann, F. Calore, M. Di Mauro, F. Donato, Constraining dark matter
annihilation with the isotropic γ-ray background: updated limits and
future potential,
Phys.Rev. D89 (2014) 023012.
arXiv:1303.3284,
doi:10.1103/PhysRevD.89.023012.
-
M. Taoso, G. Bertone, A. Masiero, Dark Matter Candidates: A Ten-Point Test,
JCAP 0803 (2008) 022.
arXiv:0711.4996,
doi:10.1088/1475-7516/2008/03/022.
-
G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter,
Phys.Rept. 267 (1996) 195–373.
arXiv:hep-ph/9506380,
doi:10.1016/0370-1573(95)00058-5.
-
S. P. Martin, A Supersymmetry primer,
Adv.Ser.Direct.High Energy Phys. 21 (2010) 1–153.
arXiv:hep-ph/9709356,
doi:10.1142/9789814307505_0001.
-
D. Hooper, S. Profumo, Dark matter and collider phenomenology of universal
extra dimensions,
Phys.Rept. 453 (2007) 29–115.
arXiv:hep-ph/0701197,
doi:10.1016/j.physrep.2007.09.003.
-
G. Bertone, The moment of truth for WIMP Dark Matter,
Nature 468 (2010) 389–393.
arXiv:1011.3532,
doi:10.1038/nature09509.
-
P. Ade, et al., Planck 2013 results. XVI. Cosmological parameters,
Astron.Astrophys.
arXiv:1303.5076,
doi:10.1051/0004-6361/201321591.
-
S. Palomares-Ruiz, J. M. Siegal-Gaskins, Annihilation vs. Decay:
Constraining dark matter properties from a gamma-ray detection,
JCAP 1007 (2010) 023.
arXiv:1003.1142,
doi:10.1088/1475-7516/2010/07/023.
-
S. Campbell, B. Dutta, E. Komatsu, Effects of Velocity-Dependent Dark Matter
Annihilation on the Energy Spectrum of the Extragalactic Gamma-ray
Background,
Phys.Rev. D82 (2010) 095007.
arXiv:1009.3530,
doi:10.1103/PhysRevD.82.095007.
-
S. Campbell, B. Dutta, Effects of P-wave Annihilation on the Angular Power
Spectrum of Extragalactic Gamma-rays from Dark Matter Annihilation,
Phys.Rev. D84 (2011) 075004.
arXiv:1106.4621,
doi:10.1103/PhysRevD.84.075004.
-
S. Hofmann, D. J. Schwarz, H. Stoecker, Damping scales of neutralino
cold dark matter,
Phys.Rev. D64 (2001) 083507.
arXiv:astro-ph/0104173,
doi:10.1103/PhysRevD.64.083507.
-
A. Loeb, M. Zaldarriaga, The Small-scale power spectrum of cold dark matter,
Phys.Rev. D71 (2005) 103520.
arXiv:astro-ph/0504112,
doi:10.1103/PhysRevD.71.103520.
-
A. M. Green, S. Hofmann, D. J. Schwarz, The First wimpy halos,
JCAP 0508 (2005) 003.
arXiv:astro-ph/0503387,
doi:10.1088/1475-7516/2005/08/003.
-
T. Bringmann, Particle Models and the Small-Scale Structure of Dark Matter,
New J.Phys. 11 (2009) 105027.
arXiv:0903.0189,
doi:10.1088/1367-2630/11/10/105027.
-
S. Profumo, K. Sigurdson, P. Ullio, M. Kamionkowski, A Running spectral
index in supersymmetric dark-matter models with quasi-stable charged
particles,
Phys.Rev. D71 (2005) 023518.
arXiv:astro-ph/0410714,
doi:10.1103/PhysRevD.71.023518.
-
J. M. Cornell, S. Profumo, W. Shepherd, Kinetic Decoupling and Small-Scale
Structure in Effective Theories of Dark Matter,
Phys.Rev. D88 (1) (2013) 015027.
arXiv:1305.4676,
doi:10.1103/PhysRevD.88.015027.
-
E. Sefusatti, G. Zaharijas, P. D. Serpico, D. Theurel, M. Gustafsson,
Extragalactic gamma-ray signal from dark matter annihilation: an appraisal,
Mon.Not.Roy.Astron.Soc. 441 (2014) 1861–1878.
arXiv:1401.2117,
doi:10.1093/mnras/stu686.
-
J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V. Kravtsov,
et al., Profiles of dark haloes. Evolution, scatter, and environment,
Mon.Not.Roy.Astron.Soc. 321 (2001) 559–575.
arXiv:astro-ph/9908159,
doi:10.1046/j.1365-8711.2001.04068.x.
-
A. V. Maccio’, A. A. Dutton, F. C. d. Bosch, Concentration, Spin
and Shape of Dark Matter Haloes as a Function of the Cosmological Model:
WMAP1, WMAP3 and WMAP5 results,
Mon.Not.Roy.Astron.Soc. 391 (2008) 1940–1954.
arXiv:0805.1926,
doi:10.1111/j.1365-2966.2008.14029.x.
-
F. Prada, A. A. Klypin, A. J. Cuesta, J. E. Betancort-Rijo, J. Primack, Halo
concentrations in the standard LCDM cosmology,
Mon.Not.Roy.Astron.Soc. 423 (2012) 3018–3030.
arXiv:1104.5130,
doi:10.1111/j.1365-2966.2012.21007.x.
-
R. H. Wechsler, J. S. Bullock, J. R. Primack, A. V. Kravtsov, A. Dekel,
Concentrations of dark halos from their assembly histories,
Astrophys.J. 568 (2002) 52–70.
arXiv:astro-ph/0108151,
doi:10.1086/338765.
-
K. Dolag, M. Bartelmann, F. Perrotta, C. Baccigalupi, L. Moscardini, et al.,
Numerical study of halo concentrations in dark - energy cosmologies,
Astron.Astrophys. 416 (2004) 853–864.
arXiv:astro-ph/0309771,
doi:10.1051/0004-6361:20031757.
-
M. Kuhlen, M. Vogelsberger, R. Angulo, Numerical Simulations of the Dark
Universe: State of the Art and the Next Decade,
Phys.Dark Univ. 1 (2012) 50–93.
arXiv:1209.5745,
doi:10.1016/j.dark.2012.10.002.
-
V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, et al., The
Aquarius Project: the subhalos of galactic halos,
Mon.Not.Roy.Astron.Soc. 391 (2008) 1685–1711.
arXiv:0809.0898,
doi:10.1111/j.1365-2966.2008.14066.x.
-
A. F. Neto, L. Gao, P. Bett, S. Cole, J. F. Navarro, et al., The
statistics of lambda CDM Halo Concentrations,
Mon.Not.Roy.Astron.Soc. 381 (2007) 1450–1462.
arXiv:0706.2919,
doi:10.1111/j.1365-2966.2007.12381.x.
-
A. R. Duffy, J. Schaye, S. T. Kay, C. Dalla Vecchia, Dark matter halo
concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology,
Mon.Not.Roy.Astron.Soc. 390 (2008) L64.
arXiv:0804.2486.
-
L. Pieri, G. Bertone, E. Branchini, Dark Matter Annihilation in
Substructures Revised,
Mon.Not.Roy.Astron.Soc. 384 (2008) 1627.
arXiv:0706.2101,
doi:10.1111/j.1365-2966.2007.12828.x.
-
A. Pinzke, C. Pfrommer, L. Bergstrom, Prospects of detecting gamma-ray
emission from galaxy clusters: cosmic rays and dark matter annihilations,
Phys.Rev. D84 (2011) 123509.
arXiv:1105.3240,
doi:10.1103/PhysRevD.84.123509.
-
L. Gao, C. Frenk, A. Jenkins, V. Springel, S. White, Where will
supersymmetric dark matter first be seen?,
Mon.Not.Roy.Astron.Soc. 419 (2012) 1721.
arXiv:1107.1916,
doi:10.1111/j.1365-2966.2011.19836.x.
-
T. Ishiyama, Hierarchical Formation of Dark Matter Halos and the Free
Streaming Scale,
Astrophys.J. 788 (2014) 27.
arXiv:1404.1650,
doi:10.1088/0004-637X/788/1/27.
-
J. Diemand, B. Moore, J. Stadel, Earth-mass dark-matter haloes as the first
structures in the early Universe,
Nature 433 (2005) 389–391.
arXiv:astro-ph/0501589,
doi:10.1038/nature03270.
-
D. Anderhalden, J. Diemand, Density Profiles of CDM Microhalos and their
Implications for Annihilation Boost Factors,
JCAP 1304 (2013) 009.
arXiv:1302.0003,
doi:10.1088/1475-7516/2013/04/009,
10.1088/1475-7516/2013/08/E02.
-
M. A. Sánchez-Conde, F. Prada, The flattening of the concentration-mass
relation towards low halo masses and its implications for the annihilation
signal boost,
Mon.Not.Roy.Astron.Soc. 442 (2014) 2271–2277.
arXiv:1312.1729.
-
A. D. Ludlow, J. F. Navarro, R. E. Angulo, M. Boylan-Kolchin, V. Springel,
et al., The Mass-Concentration-Redshift Relation of Cold Dark Matter Halos,
Mon.Not.Roy.Astron.Soc. 441 (2013) 378–388.
arXiv:1312.0945.
-
K. J. Mack, Known Unknowns of Dark Matter Annihilation over Cosmic Time,
Mon.Not.Roy.Astron.Soc. 439 (2014) 2728.
arXiv:1309.7783,
doi:10.1093/mnras/stu129.
-
A. Jenkins, C. Frenk, S. D. White, J. Colberg, S. Cole, et al., The Mass
function of dark matter halos,
Mon.Not.Roy.Astron.Soc. 321 (2001) 372.
arXiv:astro-ph/0005260,
doi:10.1046/j.1365-8711.2001.04029.x.
-
V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, et al.,
Simulating the joint evolution of quasars, galaxies and their large-scale
distribution,
Nature 435 (2005) 629–636.
arXiv:astro-ph/0504097,
doi:10.1038/nature03597.
-
J. Bond, S. Cole, G. Efstathiou, N. Kaiser, Excursion set mass functions for
hierarchical Gaussian fluctuations,
Astrophys.J. 379 (1991) 440.
doi:10.1086/170520.
-
C. G. Lacey, S. Cole, Merger rates in hierarchical models of galaxy
formation,
Mon.Not.Roy.Astron.Soc. 262 (1993) 627–649.
-
R. K. Sheth, H. Mo, G. Tormen, Ellipsoidal collapse and an improved
model for the number and spatial distribution of dark matter haloes,
Mon.Not.Roy.Astron.Soc. 323 (2001) 1.
arXiv:astro-ph/9907024,
doi:10.1046/j.1365-8711.2001.04006.x.
-
R. K. Sheth, G. Tormen, An Excursion set model of hierarchical clustering :
Ellipsoidal collapse and the moving barrier,
Mon.Not.Roy.Astron.Soc. 329 (2002) 61.
arXiv:astro-ph/0105113,
doi:10.1046/j.1365-8711.2002.04950.x.
-
J. L. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian, M. S. Warren, et al.,
Toward a halo mass function for precision cosmology: The Limits of
universality,
Astrophys.J. 688 (2008) 709–728.
arXiv:0803.2706,
doi:10.1086/591439.
-
A. Knebe, S. R. Knollmann, S. I. Muldrew, F. R. Pearce, M. A. Aragon-Calvo,
et al., Haloes gone MAD: The Halo-Finder Comparison Project,
Mon.Not.Roy.Astron.Soc. 415 (2011) 2293–2318.
arXiv:1104.0949,
doi:10.1111/j.1365-2966.2011.18858.x.
-
J. F. Navarro, C. S. Frenk, S. D. White, The Structure of cold dark matter
halos,
Astrophys.J. 462 (1996) 563–575.
arXiv:astro-ph/9508025,
doi:10.1086/177173.
-
J. Einasto, On the construction of a composite model for the Galaxy and
on the determination of the system of Galactic parameters, Trudy
Inst. Astroz. Alma-Ata 51.
-
A. W. Graham, D. Merritt, B. Moore, J. Diemand, B. Terzic, Empirical models
for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and
Comparison with Parametric Models,
Astron.J. 132 (2006) 2685–2700.
arXiv:astro-ph/0509417,
doi:10.1086/508988.
-
J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, et al., The
Diversity and Similarity of Cold Dark Matter Halos,
Mon.Not.Roy.Astron.Soc. 402 (2010) 21.
arXiv:0810.1522,
doi:10.1111/j.1365-2966.2009.15878.x.
-
L. Hernquist, An Analytical Model for Spherical Galaxies and Bulges,
Astrophys.J. 356 (1990) 359.
doi:10.1086/168845.
-
B. Moore, T. R. Quinn, F. Governato, J. Stadel, G. Lake, Cold collapse
and the core catastrophe,
Mon.Not.Roy.Astron.Soc. 310 (1999) 1147–1152.
arXiv:astro-ph/9903164,
doi:10.1046/j.1365-8711.1999.03039.x.
-
W. Dehnen, D. McLaughlin, Dynamical insight into dark-matter haloes,
Mon.Not.Roy.Astron.Soc. 363 (2005) 1057–1068.
arXiv:astro-ph/0506528,
doi:10.1111/j.1365-2966.2005.09510.x.
-
J. F. Navarro, E. Hayashi, C. Power, A. Jenkins, C. S. Frenk, et al., The
Inner structure of Lambda-CDM halos 3: Universality and asymptotic slopes,
Mon.Not.Roy.Astron.Soc. 349 (2004) 1039.
arXiv:astro-ph/0311231,
doi:10.1111/j.1365-2966.2004.07586.x.
-
D. Merritt, J. F. Navarro, A. Ludlow, A. Jenkins, A Universal density
profile for dark and luminous matter?,
Astrophys.J. 624 (2005) L85–L88.
arXiv:astro-ph/0502515,
doi:10.1086/430636.
-
J. Stadel, D. Potter, B. Moore, J. Diemand, P. Madau, et al.,
Quantifying the heart of darkness with GHALO - a multi-billion particle
simulation of our galactic halo,
Mon.Not.Roy.Astron.Soc. 398 (2009) L21–L25.
arXiv:0808.2981,
doi:10.1111/j.1745-3933.2009.00699.x.
-
R. A. Flores, J. R. Primack, Observational and theoretical constraints on
singular dark matter halos,
Astrophys.J. 427 (1994) L1–4.
arXiv:astro-ph/9402004,
doi:10.1086/187350.
-
A. Burkert, The Structure of dark matter halos in dwarf galaxies,
IAU Symp. 171 (1996) 175.
arXiv:astro-ph/9504041,
doi:10.1086/309560.
-
W. de Blok, S. McGaugh, J. van der Hulst, Hi observations of low surface
brightness galaxies: probing low density galaxies,
Mon.Not.Roy.Astron.Soc. 283 (1996) 18–54.
arXiv:astro-ph/9605069,
doi:10.1093/mnras/283.1.18.
-
S. S. McGaugh, V. C. Rubin, W. de Blok, High - resolution rotation curves of
low surface brightness galaxies: Data,
Astron.J. 122 (2001) 2381–2395.
arXiv:astro-ph/0107326,
doi:10.1086/323448.
-
W. de Blok, A. Bosma, High-resolution rotation curves of low surface
brightness galaxies,
Astron.Astrophys. 385 (2002) 816.
arXiv:astro-ph/0201276,
doi:10.1051/0004-6361:20020080.
-
G. Gentile, P. Salucci, U. Klein, D. Vergani, P. Kalberla, The Cored
distribution of dark matter in spiral galaxies,
Mon.Not.Roy.Astron.Soc. 351 (2004) 903.
arXiv:astro-ph/0403154,
doi:10.1111/j.1365-2966.2004.07836.x.
-
J. D. Simon, A. D. Bolatto, A. Leroy, L. Blitz, E. L. Gates, High-resolution
measurements of the halos of four dark matter-dominated galaxies: Deviations
from a universal density profile,
Astrophys.J. 621 (2005) 757–776.
arXiv:astro-ph/0412035,
doi:10.1086/427684.
-
P. Salucci, A. Lapi, C. Tonini, G. Gentile, I. Yegorova, et al., The
Universal Rotation Curve of Spiral Galaxies. 2. The Dark Matter
Distribution out to the Virial Radius,
Mon.Not.Roy.Astron.Soc. 378 (2007) 41–47.
arXiv:astro-ph/0703115,
doi:10.1111/j.1365-2966.2007.11696.x.
-
N. Li, D.-M. Chen, Cusp-core problem and strong gravitational lensing,
Res.Astron.Astrophys. 9 (2009) 1173–1184.
arXiv:0905.3041,
doi:10.1088/1674-4527/9/11/001.
-
J. Guedes, S. Callegari, P. Madau, L. Mayer, Forming Realistic Late-Type
Spirals in a LCDM Universe: The Eris Simulation,
Astrophys.J. 742 (2011) 76.
arXiv:1103.6030,
doi:10.1088/0004-637X/742/2/76.
-
M. Kuhlen, A. Pillepich, J. Guedes, P. Madau, The Distribution of Dark
Matter in the Milky Way’s Disk,
Astrophys.J. 784 (2014) 161.
arXiv:1308.1703,
doi:10.1088/0004-637X/784/2/161.
-
M. Gustafsson, M. Fairbairn, J. Sommer-Larsen, Baryonic Pinching of Galactic
Dark Matter Haloes,
Phys.Rev. D74 (2006) 123522.
arXiv:astro-ph/0608634,
doi:10.1103/PhysRevD.74.123522.
-
P. Colin, O. Valenzuela, A. Klypin, Bars and cold dark matter halos,
Astrophys.J. 644 (2006) 687–700.
arXiv:astro-ph/0506627,
doi:10.1086/503791.
-
P. B. Tissera, S. D. White, S. Pedrosa, C. Scannapieco, Dark matter response
to galaxy formation,
Mon. Not. Roy. Astron. Soc. 406 (2010) 922.
arXiv:0911.2316,
doi:10.1111/j.1365-2966.2010.16777.x.
-
O. Y. Gnedin, D. Ceverino, N. Y. Gnedin, A. A. Klypin, A. V. Kravtsov,
et al., Halo Contraction Effect in Hydrodynamic Simulations of Galaxy
FormationarXiv:1108.5736.
-
J. Sommer-Larsen, M. Limousin, Moderate Steepening of Galaxy Cluster Dark
Matter Profiles by Baryonic Pinching,
Mon. Not. Roy. Astron. Soc. 408 (2010) 1998.
arXiv:0906.0573,
doi:10.1111/j.1365-2966.2010.17260.x.
-
S. Mashchenko, J. Wadsley, H. Couchman, Stellar Feedback in Dwarf Galaxy
Formation,
Science 319 (2008) 174.
arXiv:0711.4803,
doi:10.1126/science.1148666.
-
A. Pontzen, F. Governato, How supernova feedback turns dark matter cusps
into cores,
Mon.Not.Roy.Astron.Soc. 421 (2012) 3464.
arXiv:1106.0499,
doi:10.1111/j.1365-2966.2012.20571.x.
-
F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, et al., At the
heart of the matter: the origin of bulgeless dwarf galaxies and Dark
Matter cores,
Nature 463 (2010) 203–206.
arXiv:0911.2237,
doi:10.1038/nature08640.
-
A. V. Maccio’, G. Stinson, C. B. Brook, J. Wadsley, H. Couchman,
et al., Halo expansion in cosmological hydro simulations: towards a
baryonic solution of the cusp/core problem in massive spirals,
Astrophys.J. 744 (2012) L9.
arXiv:1111.5620,
doi:10.1088/2041-8205/744/1/L9.
-
S. Profumo, T. E. Jeltema, Extragalactic Inverse Compton Light from Dark
Matter Annihilation and the Pamela Positron Excess,
JCAP 0907 (2009) 020.
arXiv:0906.0001,
doi:10.1088/1475-7516/2009/07/020.
-
L. E. Strigari, S. M. Koushiappas, J. S. Bullock, M. Kaplinghat, Precise
constraints on the dark matter content of Milky Way dwarf galaxies for
gamma-ray experiments,
Phys.Rev. D75 (2007) 083526.
arXiv:astro-ph/0611925,
doi:10.1103/PhysRevD.75.083526.
-
M. Kuhlen, J. Diemand, P. Madau, The Dark Matter Annihilation Signal from
Galactic Substructure: Predictions for GLAST,
Astrophys.J. 686 (2008) 262.
arXiv:0805.4416.
-
J. Lavalle, Q. Yuan, D. Maurin, X. Bi, Full Calculation of Clumpiness Boost
factors for Antimatter Cosmic Rays in the light of Lambda-CDM N-body
simulation results. Abandoning hope in clumpiness enhancement?,
Astron.Astrophys. 479 (2008) 427–452.
arXiv:0709.3634,
doi:10.1051/0004-6361:20078723.
-
V. Springel, S. D. White, C. S. Frenk, J. F. Navarro, A. Jenkins, et al., A
blueprint for detecting supersymmetric dark matter in the Galactic halo,
Nature (2008) 73–76.
arXiv:0809.0894.
-
G. D. Martinez, J. S. Bullock, M. Kaplinghat, L. E. Strigari, R. Trotta,
Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations
from Astrophysics and Supersymmetry,
JCAP 0906 (2009) 014.
arXiv:0902.4715,
doi:10.1088/1475-7516/2009/06/014.
-
M. Kamionkowski, S. M. Koushiappas, M. Kuhlen, Galactic Substructure and
Dark Matter Annihilation in the Milky Way Halo,
Phys.Rev. D81 (2010) 043532.
arXiv:1001.3144,
doi:10.1103/PhysRevD.81.043532.
-
A. Charbonnier, C. Combet, M. Daniel, S. Funk, J. Hinton, et al., Dark
matter profiles and annihilation in dwarf spheroidal galaxies:
prospectives for present and future gamma-ray observatories - I. The
classical dSphs,
Mon.Not.Roy.Astron.Soc. 418 (2011) 1526–1556.
arXiv:1104.0412,
doi:10.1111/j.1365-2966.2011.19387.x.
-
M. A. Sánchez-Conde, M. Cannoni, F. Zandanel, M. E. Gomez,
F. Prada, Dark matter searches with Cherenkov telescopes: nearby dwarf
galaxies or local galaxy clusters?,
JCAP 1112 (2011) 011.
arXiv:1104.3530,
doi:10.1088/1475-7516/2011/12/011.
-
E. Nezri, R. White, C. Combet, D. Maurin, E. Pointecouteau, et al.,
gamma-rays from annihilating dark matter in galaxy clusters: stacking vs
single source analysis,
Mon.Not.Roy.Astron.Soc. 425 (2012) 477.
arXiv:1203.1165,
doi:10.1111/j.1365-2966.2012.21484.x.
-
J. Zavala, N. Afshordi, Clustering in the Phase Space of Dark Matter Haloes.
II. Stable Clustering and Dark Matter Annihilation,
MNRAS 441 (2014) 1329–1339.
arXiv:1311.3296,
doi:10.1093/mnras/stu506.
-
J. Diemand, M. Kuhlen, P. Madau, Dark matter substructure and gamma-ray
annihilation in the Milky Way halo,
Astrophys.J. 657 (2007) 262–270.
arXiv:astro-ph/0611370,
doi:10.1086/510736.
-
F. C. van den Bosch, G. Tormen, C. Giocoli, The Mass function and
average mass loss rate of dark matter subhaloes,
Mon.Not.Roy.Astron.Soc. 359 (2005) 1029–1040.
arXiv:astro-ph/0409201,
doi:10.1111/j.1365-2966.2005.08964.x/abs/.
-
C. Giocoli, G. Tormen, F. C. d. Bosch, The Population of Dark Matter
Subhaloes: Mass Functions and Average Mass Loss Rates,
Mon.Not.Roy.Astron.Soc. 386 (2008) 2135–2144.
arXiv:0712.1563,
doi:10.1111/j.1365-2966.2008.13182.x.
-
S. Blanchet, J. Lavalle, Diffuse gamma-ray constraints on dark matter
revisited. I: the impact of subhalos,
JCAP 1211 (2012) 021.
arXiv:1207.2476,
doi:10.1088/1475-7516/2012/11/021.
-
J. Diemand, M. Kuhlen, P. Madau, Formation and evolution of galaxy dark
matter halos and their substructure,
Astrophys.J. 667 (2007) 859–877.
arXiv:astro-ph/0703337,
doi:10.1086/520573.
-
J. Diemand, M. Kuhlen, P. Madau, M. Zemp, B. Moore, et al., Clumps and
streams in the local dark matter distribution,
Nature 454 (2008) 735–738.
arXiv:0805.1244,
doi:10.1038/nature07153.
-
A. Klypin, S. Trujillo-Gomez, J. Primack, Halos and galaxies in the standard
cosmological model: results from the Bolshoi simulation,
Astrophys.J. 740 (2011) 102.
arXiv:1002.3660,
doi:10.1088/0004-637X/740/2/102.
-
S. Ando, E. Komatsu, Constraints on the annihilation cross section of dark
matter particles from anisotropies in the diffuse gamma-ray background
measured with Fermi-LAT,
Phys.Rev. D87 (12) (2013) 123539.
arXiv:1301.5901,
doi:10.1103/PhysRevD.87.123539.
-
P. D. Serpico, E. Sefusatti, M. Gustafsson, G. Zaharijas, Extragalactic
gamma-ray signal from Dark Matter annihilation: a power spectrum based
computation,
Mon.Not.Roy.Astron.Soc. 421 (2012) L87–L91.
arXiv:1109.0095,
doi:10.1111/j.1745-3933.2011.01212.x.
-
M. P. van Daalen, J. Schaye, The contributions of matter inside and
outside of haloes to the matter power spectrum,
Mon.Not.Roy.Astron.Soc. 452 (2015) 2247–2257.
arXiv:1501.05950.
-
J. Zavala, N. Afshordi, Clustering in the Phase Space of Dark Matter Haloes.
I. Results from the Aquarius simulations,
MNRAS 441 (2013) 1317–1328.
arXiv:1308.1098,
doi:10.1093/mnras/stu678.
-
M. Boylan-Kolchin, V. Springel, S. D. White, A. Jenkins, G. Lemson,
Resolving Cosmic Structure Formation with the Millennium-II Simulation,
Mon.Not.Roy.Astron.Soc. 398 (2009) 1150.
arXiv:0903.3041,
doi:10.1111/j.1365-2966.2009.15191.x.
-
K. C. Y. Ng, R. Laha, S. Campbell, S. Horiuchi, B. Dasgupta, et al.,
Resolving small-scale dark matter structures using multisource indirect
detection,
Phys.Rev. D89 (8) (2014) 083001.
arXiv:1310.1915,
doi:10.1103/PhysRevD.89.083001.
-
F. Stecker, The Cosmic Gamma-Ray Background from the Annihilation of
Primordial Stable Neutral Heavy Leptons,
Astrophys.J. 223 (1978) 1032–1036.
doi:10.1086/156336.
-
Y.-T. Gao, F. W. Stecker, D. B. Cline, The Lightest supersymmetric particle
and the extragalactic gamma-ray background,
Astron.Astrophys. 249 (1991) 1–4.
-
L. Bergstrom, J. Edsjo, P. Ullio, Spectral gamma-ray signatures of
cosmological dark matter annihilation,
Phys.Rev.Lett. 87 (2001) 251301.
arXiv:astro-ph/0105048,
doi:10.1103/PhysRevLett.87.251301.
-
D. Elsaesser, K. Mannheim, Supersymmetric dark matter and the extragalactic
gamma-ray background,
Phys.Rev.Lett. 94 (2005) 171302.
arXiv:astro-ph/0405235,
doi:10.1103/PhysRevLett.94.171302.
-
D. Elsaesser, K. Mannheim, Cosmological gamma ray and neutrino
backgrounds due to neutralino dark matter annihilation,
Astropart.Phys. 22 (2004) 65–72.
arXiv:astro-ph/0405347,
doi:10.1016/j.astropartphys.2004.05.003.
-
K. Ahn, E. Komatsu, Cosmological lower bound on dark matter masses from the
soft gamma-ray background,
Phys.Rev. D71 (2005) 021303.
arXiv:astro-ph/0412630,
doi:10.1103/PhysRevD.71.021303.
-
T. Oda, T. Totani, M. Nagashima, Gamma-ray background from neutralino
annihilation in the first cosmological objects,
Astrophys.J. 633 (2005) L65–L68.
arXiv:astro-ph/0504096,
doi:10.1086/497691.
-
S. Horiuchi, S. Ando, Dark matter annihilation from intermediate-mass black
holes: Contribution to the extragalactic gamma-ray background,
Phys.Rev. D74 (2006) 103504.
arXiv:astro-ph/0607042,
doi:10.1103/PhysRevD.74.103504.
-
W. de Boer, C. Sander, V. Zhukov, A. Gladyshev, D. Kazakov, Egret excess of
diffuse galactic gamma rays interpreted as a signal of dark matter
annihilation,
Phys.Rev.Lett. 95 (2005) 209001.
arXiv:astro-ph/0602325,
doi:10.1103/PhysRevLett.95.209001.
-
E.-J. Ahn, G. Bertone, D. Merritt, Impact of astrophysical processes on the
gamma-ray background from dark matter annihilations,
Phys.Rev. D76 (2007) 023517.
arXiv:astro-ph/0703236,
doi:10.1103/PhysRevD.76.023517.
-
M. Fornasa, G. Bertone, Black Holes as Dark Matter Annihilation Boosters,
Int.J.Mod.Phys. D17 (2008) 1125–1157.
arXiv:0711.3148,
doi:10.1142/S0218271808012747.
-
A. Cuoco, J. Brandbyge, S. Hannestad, T. Haugboelle, G. Miele, Angular
Signatures of Annihilating Dark Matter in the Cosmic Gamma-Ray Background,
Phys.Rev. D77 (2008) 123518.
arXiv:0710.4136,
doi:10.1103/PhysRevD.77.123518.
-
W. de Boer, A. Nordt, C. Sander, V. Zhukov, A New Determination of the
Extragalactic Background of Diffuse Gamma Rays taking into account Dark
Matter Annihilation,
Astron.Astrophys. 470 (2007) 61–66.
arXiv:0705.0094,
doi:10.1051/0004-6361:20054613.
-
E. Baltz, B. Berenji, G. Bertone, L. Bergstrom, E. Bloom, et al., Pre-launch
estimates for GLAST sensitivity to Dark Matter annihilation signals,
JCAP 0807 (2008) 013.
arXiv:0806.2911,
doi:10.1088/1475-7516/2008/07/013.
-
J. M. Siegal-Gaskins, V. Pavlidou, Robust identification of isotropic
diffuse gamma rays from Galactic dark matter,
Phys.Rev.Lett. 102 (2009) 241301.
arXiv:0901.3776,
doi:10.1103/PhysRevLett.102.241301.
-
A. V. Belikov, D. Hooper, The Contribution Of Inverse Compton Scattering To
The Diffuse Extragalactic Gamma-Ray Background From Annihilating Dark
Matter, Phys.Rev. D81 (2010) 043505.
arXiv:0906.2251,
doi:10.1103/PhysRevD.81.043505.
-
M. Kawasaki, K. Kohri, K. Nakayama, Diffuse gamma-ray background and
cosmic-ray positrons from annihilating dark matter,
Phys.Rev. D80 (2009) 023517.
arXiv:0904.3626,
doi:10.1103/PhysRevD.80.023517.
-
F.-Y. Cyr-Racine, S. Profumo, K. Sigurdson, Protohalo Constraints to the
Resonant Annihilation of Dark Matter,
Phys.Rev. D80 (2009) 081302.
arXiv:0904.3933,
doi:10.1103/PhysRevD.80.081302.
-
G. Huetsi, A. Hektor, M. Raidal, Constraints on leptonically
annihilating Dark Matter from reionization and extragalactic gamma
background,
Astron.Astrophys. 505 (2009) 999–1005.
arXiv:0906.4550,
doi:10.1051/0004-6361/200912760.
-
S. Dodelson, A. V. Belikov, D. Hooper, P. Serpico, Identifying Dark Matter
Annihilation Products In The Diffuse Gamma Ray Background,
Phys.Rev. D80 (2009) 083504.
arXiv:0903.2829,
doi:10.1103/PhysRevD.80.083504.
-
K. N. Abazajian, P. Agrawal, Z. Chacko, C. Kilic, Conservative
Constraints on Dark Matter from the Fermi-LAT Isotropic Diffuse
Gamma-Ray Background Spectrum,
JCAP 1011 (2010) 041.
arXiv:1002.3820,
doi:10.1088/1475-7516/2010/11/041.
-
A. Cuoco, A. Sellerholm, J. Conrad, S. Hannestad, Anisotropies in the
Diffuse Gamma-Ray Background from Dark Matter with Fermi LAT: a closer look,
Mon.Not.Roy.Astron.Soc. 414 (2011) 2040–2054.
arXiv:1005.0843,
doi:10.1111/j.1365-2966.2011.18525.x.
-
K. N. Abazajian, S. Blanchet, J. P. Harding, Current and Future
Constraints on Dark Matter from Prompt and Inverse-Compton Photon
Emission in the Isotropic Diffuse Gamma-ray Background,
Phys.Rev. D85 (2012) 043509.
arXiv:1011.5090,
doi:10.1103/PhysRevD.85.043509.
-
J. Aleksic, S. Ansoldi, L. Antonelli, P. Antoranz, A. Babic, et al.,
Optimized dark matter searches in deep observations of Segue 1 with MAGIC,
JCAP 1402 (2014) 008.
arXiv:1312.1535,
doi:10.1088/1475-7516/2014/02/008.
-
A. Abramowski, et al., Search for a Dark Matter annihilation signal from the
Galactic Center halo with H.E.S.S,
Phys.Rev.Lett. 106 (2011) 161301.
arXiv:1103.3266,
doi:10.1103/PhysRevLett.106.161301.
-
M. Ackermann, et al., Searching for Dark Matter Annihilation from Milky Way
Dwarf Spheroidal Galaxies with Six Years of Fermi-LAT Data.
arXiv:1503.02641.
-
M. Ackermann, et al., Search for Dark Matter Satellites using the FERMI-LAT,
Astrophys.J. 747 (2012) 121.
arXiv:1201.2691,
doi:10.1088/0004-637X/747/2/121.
-
H.-S. Zechlin, D. Horns, Unidentified sources in the Fermi-LAT second source
catalog: the case for DM subhalos,
JCAP 1211 (2012) 050.
arXiv:1210.3852,
doi:10.1088/1475-7516/2012/11/050.
-
M. Bolz, A. Brandenburg, W. Buchmuller, Thermal production of gravitinos,
Nucl.Phys. B606 (2001) 518–544.
arXiv:hep-ph/0012052,
doi:10.1016/S0550-3213(01)00132-8,
10.1016/j.nuclphysb.2007.09.020.
-
K.-Y. Choi, D. E. Lopez-Fogliani, C. Munoz, R. R. de Austri, Gamma-ray
detection from gravitino dark matter decay in the mu nu SSM,
JCAP 1003 (2010) 028.
arXiv:0906.3681,
doi:10.1088/1475-7516/2010/03/028.
-
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, P. W. Graham, R. Harnik, et al.,
Decaying Dark Matter as a Probe of Unification and TeV Spectroscopy,
Phys.Rev. D80 (2009) 055011.
arXiv:0904.2789,
doi:10.1103/PhysRevD.80.055011.
-
M. Cirelli, M. Kadastik, M. Raidal, A. Strumia, Model-independent
implications of the e+-, anti-proton cosmic ray spectra on properties of
Dark Matter,
Nucl.Phys. B813 (2009) 1–21.
arXiv:0809.2409,
doi:10.1016/j.nuclphysb.2013.05.002,
10.1016/j.nuclphysb.2008.11.031.
-
G. Bertone, W. Buchmuller, L. Covi, A. Ibarra, Gamma-Rays from Decaying Dark
Matter,
JCAP 0711 (2007) 003.
arXiv:0709.2299,
doi:10.1088/1475-7516/2007/11/003.
-
A. Ibarra, D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay,
Phys.Rev.Lett. 100 (2008) 061301.
arXiv:0709.4593,
doi:10.1103/PhysRevLett.100.061301.
-
W. Buchmuller, L. Covi, K. Hamaguchi, A. Ibarra, T. Yanagida, Gravitino Dark
Matter in R-Parity Breaking Vacua,
JHEP 0703 (2007) 037.
arXiv:hep-ph/0702184,
doi:10.1088/1126-6708/2007/03/037.
-
X. Huang, G. Vertongen, C. Weniger, Probing Dark Matter Decay and
Annihilation with Fermi LAT Observations of Nearby Galaxy Clusters,
JCAP 1201 (2012) 042.
arXiv:1110.1529,
doi:10.1088/1475-7516/2012/01/042.
-
A. Ibarra, S. Lopez Gehler, M. Pato, Dark matter constraints from box-shaped
gamma-ray features,
JCAP 1207 (2012) 043.
arXiv:1205.0007,
doi:10.1088/1475-7516/2012/07/043.
-
L. Zhang, C. Weniger, L. Maccione, J. Redondo, G. Sigl, Constraining
Decaying Dark Matter with Fermi LAT Gamma-rays,
JCAP 1006 (2010) 027.
arXiv:0912.4504,
doi:10.1088/1475-7516/2010/06/027.
-
C.-R. Chen, S. K. Mandal, F. Takahashi, Gamma-ray Constraints on
Hadronic and Leptonic Activities of Decaying Dark Matter,
JCAP 1001 (2010) 023.
arXiv:0910.2639,
doi:10.1088/1475-7516/2010/01/023.
-
M. Papucci, A. Strumia, Robust implications on Dark Matter from the first
FERMI sky gamma map,
JCAP 1003 (2010) 014.
arXiv:0912.0742,
doi:10.1088/1475-7516/2010/03/014.
-
M. Cirelli, P. Panci, P. D. Serpico, Diffuse gamma ray constraints on
annihilating or decaying Dark Matter after Fermi,
Nucl.Phys. B840 (2010) 284–303.
arXiv:0912.0663,
doi:10.1016/j.nuclphysb.2010.07.010.
-
M. Cirelli, E. Moulin, P. Panci, P. D. Serpico, A. Viana, Gamma ray
constraints on Decaying Dark Matter,
Phys.Rev. D86 (2012) 083506.
arXiv:1205.5283,
doi:10.1103/PhysRevD.86.083506,
10.1103/PhysRevD.86.109901.
-
S. Ando, K. Ishiwata, Constraints on decaying dark matter from the
extragalactic gamma-ray background,
JCAP 1505 (05) (2015) 024.
arXiv:1502.02007,
doi:10.1088/1475-7516/2015/05/024.
-
L. Dugger, T. E. Jeltema, S. Profumo, Constraints on Decaying Dark
Matter from Fermi Observations of Nearby Galaxies and Clusters,
JCAP 1012 (2010) 015.
arXiv:1009.5988,
doi:10.1088/1475-7516/2010/12/015.
-
M. Ackermann, et al., Constraints on the Galactic Halo Dark Matter from
Fermi-LAT Diffuse Measurements,
Astrophys.J. 761 (2012) 91.
arXiv:1205.6474,
doi:10.1088/0004-637X/761/2/91.
-
T. Asaka, J. Hashiba, M. Kawasaki, T. Yanagida, Spectrum of background
x-rays from moduli dark matter,
Phys.Rev. D58 (1998) 023507.
arXiv:hep-ph/9802271,
doi:10.1103/PhysRevD.58.023507.
-
F. Takayama, M. Yamaguchi, Gravitino dark matter without R-parity,
Phys.Lett. B485 (2000) 388–392.
arXiv:hep-ph/0005214,
doi:10.1016/S0370-2693(00)00726-7.
-
J. M. Overduin, P. Wesson, Dark matter and background light,
Phys.Rept. 402 (2004) 267–406.
arXiv:astro-ph/0407207,
doi:10.1016/j.physrep.2004.07.006.
-
S. Matsumoto, K. Ishiwata, T. Moroi, Cosmic Gamma-ray from Inverse Compton
Process in Unstable Dark Matter Scenario,
Phys.Lett. B679 (2009) 1–5.
arXiv:0905.4593,
doi:10.1016/j.physletb.2009.07.004.
-
A. Ibarra, D. Tran, C. Weniger, Decaying Dark Matter in Light of the PAMELA
and Fermi LAT Data,
JCAP 1001 (2010) 009.
arXiv:0906.1571,
doi:10.1088/1475-7516/2010/01/009.
-
C. Arina, T. Hambye, A. Ibarra, C. Weniger, Intense Gamma-Ray Lines from
Hidden Vector Dark Matter Decay,
JCAP 1003 (2010) 024.
arXiv:0912.4496,
doi:10.1088/1475-7516/2010/03/024.
-
K. Ishiwata, S. Matsumoto, T. Moroi, Decaying Dark Matter in Supersymmetric
Model and Cosmic-Ray Observations,
JHEP 1012 (2010) 006.
arXiv:1008.3636,
doi:10.1007/JHEP12(2010)006.
-
A. Ibarra, D. Tran, C. Weniger, Indirect Searches for Decaying Dark Matter,
Int.J.Mod.Phys. A28 (2013) 1330040.
arXiv:1307.6434,
doi:10.1142/S0217751X13300408.
-
M. Ave, L. Cazon, J. Cronin, J. M. Neto, A. Olinto, et al., The 2pt+: an
enhanced 2 point correlation function,
JCAP 0907 (2009) 023.
arXiv:0905.2192,
doi:10.1088/1475-7516/2009/07/023.
-
J.-Q. Xia, A. Cuoco, E. Branchini, M. Fornasa, M. Viel, A cross-correlation
study of the Fermi-LAT γ-ray diffuse extragalactic signal,
Mon.Not.Roy.Astron.Soc. 416 (2011) 2247–2264.
arXiv:1103.4861.
-
A. M. Soltan, The nearest neighbor statistics for X-ray source counts I.The
method.
arXiv:1101.0256.
-
T. R. Slatyer, D. P. Finkbeiner, A statistical test of emission from
unresolved point sources,
Mon.Not.Roy.Astron.Soc. 405 (2009) 1777–1786.
arXiv:0910.0482.
-
K. Gorski, E. Hivon, A. Banday, B. Wandelt, F. Hansen, et al., HEALPix - A
Framework for high resolution discretization, and fast analysis of data
distributed on the sphere,
Astrophys.J. 622 (2005) 759–771.
arXiv:astro-ph/0409513,
doi:10.1086/427976.
-
E. Komatsu, B. D. Wandelt, D. N. Spergel, A. J. Banday, K. M. Gorski,
Measurement of the cosmic microwave background bispectrum on the COBE DMR
sky maps,
Astrophys.J. 566 (2002) 19–29.
arXiv:astro-ph/0107605,
doi:10.1086/337963.
-
L. Knox, Determination of inflationary observables by cosmic microwave
background anisotropy experiments,
Phys.Rev. D52 (1995) 4307–4318.
arXiv:astro-ph/9504054,
doi:10.1103/PhysRevD.52.4307.
-
S. S. Campbell, Angular Power Spectra with Finite Counts,
Mon.Not.Roy.Astron.Soc. 448 (3) (2015) 2854–2878.
arXiv:1411.4031,
doi:10.1093/mnras/stv135.
-
N. Fornengo, M. Regis, Particle dark matter searches in the anisotropic sky,
Front. Physics 2 (2014) 6.
arXiv:1312.4835,
doi:10.3389/fphy.2014.00006.
-
B. S. Hensley, J. M. Siegal-Gaskins, V. Pavlidou, The detectability of dark
matter annihilation with Fermi using the anisotropy energy spectrum of the
gamma-ray background,
Astrophys.J. 723 (2010) 277–284.
arXiv:0912.1854,
doi:10.1088/0004-637X/723/1/277.
-
B. S. Hensley, V. Pavlidou, J. M. Siegal-Gaskins, Novel Techniques for
Decomposing Diffuse Backgrounds,
Mon.Not.Roy.Astron.Soc. 433 (2013) 591.
arXiv:1210.7239,
doi:10.1093/mnras/stt746.
-
A. E. Broderick, C. Pfrommer, E. Puchwein, K. M. Smith, P. Chang, Lower
Limits upon the Anisotropy of the Extragalactic Gamma-Ray Background
implied by the 2FGL and 1FHL Catalogs,
Astrophys.J. 796 (1) (2014) 12.
arXiv:1308.0015,
doi:10.1088/0004-637X/796/1/12.
-
D. N. Limber, The Analysis of Counts of the Extragalactic Nebulae in
Terms of a Fluctuating Density Field. II,
Astrophys.J. 119 (1954) 655.
doi:10.1086/145870.
-
N. Kaiser, Clustering in real space and in redshift space,
Mon.Not.Roy.Astron.Soc. 227 (1987) 1–27.
-
N. Afshordi, Y.-S. Loh, M. A. Strauss, Cross - correlation of the Cosmic
Microwave Background with the 2MASS galaxy survey: Signatures of dark
energy,hot gas, and point sources,
Phys.Rev. D69 (2004) 083524.
arXiv:astro-ph/0308260,
doi:10.1103/PhysRevD.69.083524.
-
P.-J. Zhang, J. F. Beacom, Angular correlations of the MeV cosmic gamma ray
background,
Astrophys.J. 614 (2004) 37–42.
arXiv:astro-ph/0401351,
doi:10.1086/423329.
-
V. Berezinsky, P. Blasi, V. Ptuskin, Clusters of galaxies as a storage room
for cosmic rays,
Astrophys J. 487 (1997) 529–535.
arXiv:astro-ph/9609048,
doi:10.1086/304622.
-
E. Waxman, A. Loeb, Fluctuations in the radio background from intergalactic
synchrotron emission,
Astrophys.J. 545 (2000) L11–L14.
arXiv:astro-ph/0007049,
doi:10.1086/317326.
-
U. Keshet, E. Waxman, A. Loeb, Imprint of intergalactic shocks on the low -
frequency radio sky,
Astrophys.J. 617 (2004) 281–302.
arXiv:astro-ph/0402320,
doi:10.1086/424837.
-
S. S. Campbell, J. F. Beacom, Combined Flux and Anisotropy Searches Improve
Sensitivity to Gamma Rays from Dark Matter.
arXiv:1312.3945.
-
M. Taoso, S. Ando, G. Bertone, S. Profumo, Angular correlations in the
cosmic gamma-ray background from dark matter annihilation around
intermediate-mass black holes,
Phys.Rev. D79 (2009) 043521.
arXiv:0811.4493,
doi:10.1103/PhysRevD.79.043521.
-
F. Calore, V. De Romeri, M. Di Mauro, F. Donato, J. Herpich, et al.,
Gamma-ray anisotropies from dark matter in the Milky Way: the role of
the radial distribution,
Mon.Not.Roy.Astron.Soc. 442 (2014) 1151–1156.
arXiv:1402.0512,
doi:10.1093/mnras/stu912.
-
G. Gomez-Vargas, et al., Dark matter implications of Fermi-LAT
measurement of anisotropies in the diffuse gamma-ray background,
Nucl.Instrum.Meth. A742 (2014) 149–153.
doi:10.1016/j.nima.2013.11.009.
-
P. G. Hoel, S. Port, C. Stone, Introduction to probability theory, Houghton
Mifflin, 1972.
-
S. K. Lee, S. Ando, M. Kamionkowski, The Gamma-Ray-Flux Probability
Distribution Function from Galactic Halo Substructure,
JCAP 0907 (2009) 007.
arXiv:0810.1284,
doi:10.1088/1475-7516/2009/07/007.
-
E. J. Baxter, S. Dodelson, S. M. Koushiappas, L. E. Strigari, Constraining
Dark Matter in Galactic Substructure,
Phys.Rev. D82 (2010) 123511.
arXiv:1006.2399,
doi:10.1103/PhysRevD.82.123511.
-
M. R. Feyereisen, S. Ando, S. K. Lee, Modelling the flux distribution
function
of the extragalactic gamma-ray background from dark matter annihilation.
arXiv:1506.05118.
-
G. T. Richards, A. D. Myers, A. G. Gray, R. N. Riegel, R. C. Nichol, et al.,
Efficient Photometric Selection of Quasars from the Sloan Digital Sky
Survey: II. 1,000,000 Quasars from Data Release Six,
Astrophys.J.Suppl. 180 (2009) 67–83.
arXiv:0809.3952,
doi:10.1088/0067-0049/180/1/67.
-
T. Jarrett, T. Chester, R. Cutri, S. Schneider, J. L. Rosenberg, et al.,
2mass extended sources in the zone of avoidance,
Astron.J. 120 (2000) 298–313.
arXiv:astro-ph/0005017,
doi:10.1086/301426.
-
J. J. Condon, W. Cotton, E. Greisen, Q. Yin, R. Perley, et al., The NRAO VLA
Sky survey,
Astron.J. 115 (1998) 1693–1716.
doi:10.1086/300337.
-
F. B. Abdalla, M. Banerji, O. Lahav, V. Rashkov, A Comparison of Six
Photometric Redshift Methods Applied to 1.5 Million Luminous Red Galaxies,
Mon.Not.Roy.Astron.Soc. 417 (2011) 1891.
arXiv:0812.3831.
-
H. Aihara, et al., The Eighth Data Release of the Sloan Digital Sky Survey:
First Data from SDSS-III,
Astrophys.J.Suppl. 193 (2011) 29.
arXiv:1101.1559,
doi:10.1088/0067-0049/193/2/29.
-
A. Cuoco, J.-Q. Xia, M. Regis, E. Branchini, N. Fornengo, et al., Dark
matter searches in the gamma-ray extragalactic background via
cross-correlations with galaxy catalogues.
arXiv:1506.01030.
-
A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: A
Monte Carlo approach,
Phys.Rev. D66 (2002) 103511.
arXiv:astro-ph/0205436,
doi:10.1103/PhysRevD.66.103511.
-
R. Smith, et al., Stable clustering, the halo model and nonlinear
cosmological power spectra,
Mon.Not.Roy.Astron.Soc. 341 (2003) 1311.
arXiv:astro-ph/0207664,
doi:10.1046/j.1365-8711.2003.06503.x.
-
J. P. Huchra, L. M. Macri, K. L. Masters, T. H. Jarrett, P. Berlind, et al.,
The 2MASS Redshift Survey - Description and Data Release,
Astrophys.J.Suppl. 199 (2012) 26.
arXiv:1108.0669,
doi:10.1088/0067-0049/199/2/26.
-
U. Seljak, Analytic model for galaxy and dark matter clustering,
Mon.Not.Roy.Astron.Soc. 318 (2000) 203.
arXiv:astro-ph/0001493,
doi:10.1046/j.1365-8711.2000.03715.x.
-
Z. Zheng, A. A. Berlind, D. H. Weinberg, A. J. Benson, C. M. Baugh, et al.,
Theoretical models of the halo occupation distribution: Separating central
and satellite galaxies,
Astrophys.J. 633 (2005) 791–809.
arXiv:astro-ph/0408564,
doi:10.1086/466510.
-
M. Regis, J.-Q. Xia, A. Cuoco, E. Branchini, N. Fornengo, et al., Particle
dark matter searches outside the Local Group,
Phys.Rev.Lett. 114 (24) (2015) 241301.
arXiv:1503.05922,
doi:10.1103/PhysRevLett.114.241301.
-
M. Bartelmann, P. Schneider, Weak gravitational lensing,
Phys.Rept. 340 (2001) 291–472.
arXiv:astro-ph/9912508,
doi:10.1016/S0370-1573(00)00082-X.
-
N. Kaiser, Weak lensing and cosmology,
Astrophys.J. 498 (1998) 26.
arXiv:astro-ph/9610120,
doi:10.1086/305515.
-
T. Abbott, et al., The dark energy survey.
arXiv:astro-ph/0510346.
-
R. Laureijs, et al., Euclid Definition Study Report.
arXiv:1110.3193.
-
L. Amendola, et al., Cosmology and fundamental physics with the Euclid
satellite,
Living Rev.Rel. 16 (2013) 6.
arXiv:1206.1225.
-
C. Heymans, L. Van Waerbeke, L. Miller, T. Erben, H. Hildebrandt, et al.,
CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey,
Mon.Not.Roy.Astron.Soc. 427 (2012) 146.
arXiv:1210.0032,
doi:10.1111/j.1365-2966.2012.21952.x.
-
L. Miller, C. Heymans, T. Kitching, L. Van Waerbeke, T. Erben, et al.,
Bayesian Galaxy Shape Measurement for Weak Lensing Surveys - III.
Application to the Canada-France-Hawaii Telescope Lensing Survey,
Mon.Not.Roy.Astron.Soc. 429 (2013) 2858–2880.
arXiv:1210.8201,
doi:10.1093/mnras/sts454.
-
E. Komatsu, et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Interpretation,
Astrophys.J.Suppl. 192 (2011) 18.
arXiv:1001.4538,
doi:10.1088/0067-0049/192/2/18.
-
R. Sachs, A. Wolfe, Perturbations of a cosmological model and angular
variations of the microwave background,
Astrophys.J. 147 (1967) 73–90.
doi:10.1007/s10714-007-0448-9.
-
N. Fornengo, L. Perotto, M. Regis, S. Camera, Evidence of Cross-correlation
between the CMB Lensing and the Γ-ray sky,
Astrophys.J. 802 (1) (2015) L1.
arXiv:1410.4997,
doi:10.1088/2041-8205/802/1/L1.
-
P. Ade, et al., Planck 2013 results. XII. Component separation,
Astron.Astrophys. 571 (2014) A12.
arXiv:1303.5072,
doi:10.1051/0004-6361/201321580.
-
A. Blanchard, J. Schneider, Gravitational lensing effect on the fluctuations
of the cosmic microwave background,
Astron.Astrophys. 184.
-
A. Lewis, A. Challinor, Weak gravitational lensing of the cmb,
Phys.Rept. 429 (2006) 1–65.
arXiv:astro-ph/0601594,
doi:10.1016/j.physrep.2006.03.002.
-
T. Okamoto, W. Hu, CMB lensing reconstruction on the full sky,
Phys.Rev. D67 (2003) 083002.
arXiv:astro-ph/0301031,
doi:10.1103/PhysRevD.67.083002.
-
P. Ade, et al., Planck 2013 results. XVII. Gravitational lensing by
large-scale structure,
Astron.Astrophys. 571 (2014) A17.
arXiv:1303.5077.
-
V. Springel, The Cosmological simulation code GADGET-2,
Mon.Not.Roy.Astron.Soc. 364 (2005) 1105–1134.
arXiv:astro-ph/0505010,
doi:10.1111/j.1365-2966.2005.09655.x.
-
R. Angulo, V. Springel, S. White, A. Jenkins, C. Baugh, et al., Scaling
relations for galaxy clusters in the Millennium-XXL simulation,
Mon.Not.Roy.Astron.Soc. 426 (2012) 2046–2062.
arXiv:1203.3216,
doi:10.1111/j.1365-2966.2009.15191.x.
-
J.-M. Alimi, V. Bouillot, Y. Rasera, V. Reverdy, P.-S. Corasaniti, et al.,
DEUS Full Observable ΛCDM Universe Simulation: the numerical
challenge.
arXiv:1206.2838.
-
G. Dubus, J. Contreras, S. Funk, Y. Gallant, T. Hassan, et al., Surveys with
the Cherenkov Telescope Array,
Astropart.Phys. 43 (2013) 317–330.
arXiv:1208.5686,
doi:10.1016/j.astropartphys.2012.05.020.
-
J. Ripken, A. Cuoco, H.-S. Zechlin, J. Conrad, D. Horns, The sensitivity of
Cherenkov telescopes to dark matter and astrophysical anisotropies in the
diffuse gamma-ray background,
JCAP 1401 (01) (2014) 049.
arXiv:1211.6922,
doi:10.1088/1475-7516/2014/01/049.
-
D. Schlegel, et al., The BigBOSS Experiment.
arXiv:1106.1706.
-
F. A. Harrison, W. W. Craig, F. E. Christensen, C. J. Hailey, W. W. Zhang,
et al., The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray
Mission,
Astrophys.J. 770 (2013) 103.
arXiv:1301.7307,
doi:10.1088/0004-637X/770/2/103.
-
T. Takahashi, K. Mitsuda, R. Kelley, H. Aharonian, F. Aarts, et al., The
ASTRO-H X-ray Observatory,
Proc.SPIE Int.Soc.Opt.Eng. 8443 (2012) 1Z.
arXiv:1210.4378,
doi:10.1117/12.926190.
-
T. Kitayama, M. Bautz, M. Markevitch, K. Matsushita, S. Allen, et al.,
ASTRO-H White Paper - Clusters of Galaxies and Related Science.
arXiv:1412.1176.
-
M. Aartsen, et al., First observation of PeV-energy neutrinos with IceCube,
Phys.Rev.Lett. 111 (2013) 021103.
arXiv:1304.5356,
doi:10.1103/PhysRevLett.111.021103.
-
M. Aartsen, et al., Evidence for High-Energy Extraterrestrial Neutrinos
at the IceCube Detector,
Science 342 (2013) 1242856.
arXiv:1311.5238,
doi:10.1126/science.1242856.
-
M. Aartsen, et al., Observation of High-Energy Astrophysical Neutrinos in
Three Years of IceCube Data,
Phys.Rev.Lett. 113 (2014) 101101.
arXiv:1405.5303,
doi:10.1103/PhysRevLett.113.101101.
-
IceCube’s Neutrinos: The beginning of extra-Galactic neutrino
astrophysics?
arXiv:1312.0558.
-
L. A. Anchordoqui, V. Barger, I. Cholis, H. Goldberg, D. Hooper, et al.,
Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics,
and Particle Physics,
JHEAp 1-2 (2014) 1–30.
arXiv:1312.6587,
doi:10.1016/j.jheap.2014.01.001.
-
A. Loeb, E. Waxman, The Cumulative background of high energy neutrinos from
starburst galaxies,
JCAP 0605 (2006) 003.
arXiv:astro-ph/0601695,
doi:10.1088/1475-7516/2006/05/003.
-
F. W. Stecker, PeV neutrinos observed by IceCube from cores of active
galactic nuclei,
Phys.Rev. D88 (4) (2013) 047301.
arXiv:1305.7404,
doi:10.1103/PhysRevD.88.047301.
-
K. Murase, Y. Inoue, C. D. Dermer, Diffuse Neutrino Intensity from the Inner
Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the
Blazar Sequence,
Phys.Rev. D90 (2014) 023007.
arXiv:1403.4089,
doi:10.1103/PhysRevD.90.023007.
-
P. Padovani, E. Resconi, Are both BL Lacs and pulsar wind nebulae the
astrophysical counterparts of IceCube neutrino events?,
Mon.Not.Roy.Astron.Soc. 443 (2014) 474–484.
arXiv:1406.0376,
doi:10.1093/mnras/stu1166.
-
K. Murase, M. Ahlers, B. C. Lacki, Testing the Hadronuclear Origin of PeV
Neutrinos Observed with IceCube,
Phys.Rev. D88 (12) (2013) 121301.
arXiv:1306.3417,
doi:10.1103/PhysRevD.88.121301.
-
M. Ahlers, K. Murase, Probing the Galactic Origin of the IceCube Excess with
Gamma-Rays,
Phys.Rev. D90 (2) (2014) 023010.
arXiv:1309.4077,
doi:10.1103/PhysRevD.90.023010.
-
R.-Y. Liu, X.-Y. Wang, S. Inoue, R. Crocker, F. Aharonian, Diffuse PeV
neutrinos from EeV cosmic ray sources: semi-relativistic hypernova remnants
in star-forming galaxies,
Phys.Rev. D89 (2014) 083004.
arXiv:1310.1263,
doi:10.1103/PhysRevD.89.083004.
-
L. A. Anchordoqui, T. C. Paul, L. H. M. da Silva, D. F. Torres, B. J. Vlcek,
What IceCube data tell us about neutrino emission from star-forming galaxies
(so far),
Phys.Rev. D89 (2014) 127304.
arXiv:1405.7648,
doi:10.1103/PhysRevD.89.127304.