4.1. Type Ia supernova Hubble diagram
The luminosity distance receives a cosmology dependent correction as
z increases; in a way
pulls down dL and
pushes it up. (In the first order of z the correction enters
in the combination of q0
=
/2 -
, so this is often
referred to as a q0 test.) The discovery of two groups
that distant supernovae are fainter than are expected from the
local sample, even fainter than are expected for q0 = 0,
points to the presence of
> 0
(Riess et al. 1998;
Schmidt et al. 1998;
Perlmutter et
al. 1999).
The general difficulty with such a Hubble diagram analysis is that one has to
differentiate among a few interesting
cosmologies with small differences of brightness.
For instance, at z = 0.4 where many supernovae are observed,
the difference is m =
0.12 mag between
(
,
) = (0.3,0.7) and (0, 0), and
m = 0.22 from (0, 0) to
(1.0,0). Therefore, an accuracy
of (
5%) must be attained
including systematics to conclude the
presence of
.
On the other hand, there are a number of potential sources of errors:
(i) K corrections evaluated by integrating spectrophotometric data that are dominated by many strong features;
(ii) relative fluxes at the zero point (zero mag) across the colour bands;
(iii) dust obscuration in a host galaxy;
(iv) subtraction of light from host galaxies;
(v) identification of the maximum brightness epoch, and estimates of the
maximum brightness including a
m15 correction;
(vi) selection effects (for high z SNe);
(vii) evolution effects.
SN | 1997 value | 1999 value | difference |
SN1992bi | (23.26 ± 0.24) | 23.11 ± 0.46 | (0.15) |
SN1994H | 22.08 ± 0.11 | 21.72 ± 0.22 | 0.36 |
SN1994al | 22.79 ± 0.27 | 22.55 ± 0.25 | 0.24 |
SN1994F | (21.80 ± 0.69) | 22.26 ± 0.33 | (-0.58) |
SN1994am | 22.02 ± 0.14 | 22.26 ± 0.20 | -0.24 |
SN1994G | 22.36 ± 0.35 | 22.13 ± 0.49 | 0.23 |
SN1994an | 22.01 ± 0.33 | 22.58 ± 0.37 | -0.57 |
Except for (vii), for which we cannot guess
much (5),
the most important seems to be
combined effects of (i), (ii) and (iii). It is not easy a task to reproduce
a broad band flux by integrating over spectrophotometric data convoluted
with filter response functions, especially when spectrum contains strong
features. (Even for the spectrophotometric standard stars, the synthetic
magnitude contains an error of 0.02-0.05 mag,
especially when the colour band involves the Balmer or Paschen
regions.) Whereas Perlmutter et al. assigns 0.02 mag to
the error of (i) [and (ii)], a comparison of the two values of
estimated maximum brightness
in their 1997 paper
(Perlmutter et
al. 1997,
where they claimed evidence for a high
universe)
and the 1999 paper (TABLE 8)
shows a general difficulty in the evaluation of
the K correction (the difference dominantly comes from different
K corrections). Schmidt et al. claim that their K correction errors
are 0.03% mag. Dust obscuration (iii) is also an important source of
errors, since the error of (i)+(ii) propagates to E(B - V) and
is then amplified with the R factor. So a 0.02 mag error in
colour results in a 0.06 mag error in AV.
We note that each SN datum contains ± 0.2 mag (20%)
error. The issue is whether this error is almost purely of random nature
and systemtics are controlled to a level of
0.05.
5
Riess et al. (1999)
showed that the rise time is different between low z and high z
samples, indicating some evolution of the SNIa population. The effect
on the cosmological parameter is not clear.
Back.