Next Contents Previous

4.2. Redshift Distortions

This is a statistical measure of large-scale peculiar velocities from extended redshift surveys alone, under the assumption of global isotropy in real space and linear biasing. The comparison of radial and angular fluctuations yields a measure of beta ident Omegam0.6/b. There are several ways to implement this idea, using correlation functions, power spectra, or expansion in spherical harmonics and Bessel functions (reviews: [35], [42]).

New developments: Redshift surveys larger than before have become available, for example PSCZ from IRAS to a flux limit of 0.6 Jy, and the Las Campanas Redshift Survey of optical galaxies in the south. Even larger surveys are planned for the next few years, such as the Two-Degree Field (2DF) and the Sloan Digital Sky Survey (SDSS) (see [43]). These catalogs will drastically reduce the cosmic scatter.

Pro: Measurements of redshifts are inexpensive; there is no need for independent distances. One can therefore use surveys of large volumes in order to beat the measurement errors and the cosmic scatter.

Con: In the mildly-nonlinear regime where the interpretation of distortions is straightforward, the noise in the observations [e.g., the xi(sigma, pi) diagram] is bad and difficult to quantify. bullet With current data, the estimate suffers from large cosmic scatter. bullet The method is subject to galaxy density biasing. At best it measures the bias-contaminated parameter beta, not Omegam. The beta estimated by this method may be systematically different from the beta estimated by other methods [44].

Current Results: The best estimates for IRAS galaxies span a large range: 0.5 leq betaI leq 1.2 [43]. The current samples do not yet probe a sufficiently fair volume of the universe, and there are indications for systematic effects near the flux limit.

Next Contents Previous