Next Contents Previous

4.3.2. Model outflow cone

The velocity field of the outflow cone in NGC 1365, shown in Fig. 21, was derived by Hjelm and Lindblad (1996) from a number of slit spectra containing the [O III] lambdalambda4959, 5007 and [Ne III] lambda3869 lines. The authors fitted a model of an outflow double cone to the observations with the requirement that it should reproduce the velocities along the slits, giving the cone field of Fig. 21, as well as the distribution of the intensity of line emission as found along the slits and in the narrow band image from Fig. 16b. The geometry of the cone in the best fitting model is shown in Fig. 22. We see the cone extending from the nucleus out of the galactic plane with its symmetry axis closely aligned with the rotation axis of the galaxy. The counter cone is seen below the plane through absorbing dust. In this model the emission in the [O III] lines originates from three components:

  1. The near half of the double cone, which is seen in front of the plane of the galaxy.

  2. The symmetric counter cone seen absorbed through the plane. The absorption is given by a map of the extinction as derived from broad band observations at different wavelengths.

  3. A component in the plane belonging to the disk and assumed to have the same relative distribution and the same velocities as the hydrogen lines.

Figure 21

Figure 21. The cone velocity field. The spectral slit positions are shown as straight lines, and the double lines indicate where double line profiles have been measured. Where double lines have not been seen the field is blended with the disk field. The zero point velocity is +1630 km s-1 and the contour interval is 20 km s-1. The units on the axes are arcseconds offset from the centre. From Hjelm & Lindblad (1996).

Figure 12

Figure 22. Model ionization double cone reaching out from the nucleus of NGC 1365. The straight line marks the line of nodes. The NW (upper right) side of the galaxy is the near one. The cone axis is closely aligned with the rotation axis of the galaxy and the counter-cone is seen absorbed through the galactic plane. From P.O. Lindblad et al. (1996b).

The model has 13 independent free parameters which were varied to obtain the best fit. The most important properties of the cone, given by those parameters are:

Astrophysically meaningful line ratios, where the undisturbed cone contribution could be separated out from other components, could only be obtained from one region in the counter cone where also the Halpha, [N II] lambda6583 and [S II] lambdalambda6716, 6731 lines were seen split. The ratios [N II] lambda6583 / Halpha and [S II] (lambda6716 + lambda6731) / Halpha from the cone, although very uncertain, fall in the realm of narrow line regions in AGNs in the diagnostic diagram of Veilleux and Osterbrock (1987). The line ratios from the disk component on the other hand indicate a large contribution of light from star forming regions.

The nuclear region of NGC 1365 was observed in the [O III] lambda5007 line and the neighbouring continuum with the HST/FOC by Kristen et al. (1997). As seen in Fig. 23 the HST image resolves the inner part of the outflow cone into numerous small clouds and a number of larger aggregates. Kristen et al. estimate the total [O III] luminosity of the half cone turned to us within the HST/FOC frame to be L[OIII] approx 3.7 x 1040 erg s-1.

Figure 23

Figure 23. Deconvolved and continuum subtracted HST image of the nucleus (N) and the outflow cone in the light of [O III] lambda5007. The units on the axes are arcseconds form the centre. North is up and East to the left. From P.O. Lindblad et al. (1996b).

Similar cloud structures have previously been observed by the HST for the [O III] cones in the prototype Seyfert galaxies NGC 1068 (Macchetto et al. 1994) and NGC 4151 (Evans et al. 1993; Boksenberg et al. 1995).

Next Contents Previous