![]() | Annu. Rev. Astron. Astrophys. 1988. 26:
509-560 Copyright © 1988 by Annual Reviews. All rights reserved |
1.1. The General vs. Specific Functions
The optical luminosity function (LF) of galaxies is a probability
distribution
T(M)
over absolute magnitude M for galaxies of any
specified Hubble type T. Summed over all types, it is usually called
the general LF
(M) (sometimes
also labeled the universal function). A
distinction is often further made between the general function for
field galaxies and for cluster galaxies because of the differing
morphological mixes of these two environments
(Hubble & Humason 1931,
Morgan 1961,
Abell 1965,
Oemler 1974).
We emphasize throughout this
review that the concept of the general LF can no longer be maintained
with sufficient precision for many cosmological calculations because
the relative frequencies of the Hubble types depend so strongly on the
environmental density.
Dressler's (1980)
density-morphology relation
for clusters has been shown to apply to sparse groups
(Bhavsar 1981,
de Souza et al. 1982)
and to the general field
(Postman & Geller 1984),
embracing density ratios of cluster to field as high as
106. Since the specific functions
T(M)
differ in shape for different
T, their sum over T - the general function - cannot have a
universal shape for all environmental densities. At best, such a general
function can refer only to an average morphological mix at some
average density that applies to galaxies in a particular sample. This
theme of increasing detail, going from an average general function to
particular sums of specific functions
T(M)
in different environments is the principal one of this review.
The fact that the concept of a general function is now inadequate is not trivial in its consequences. Accurate knowledge of the LF is required for many calculations in cosmology. Integrations over space and time must be made to predict various observable distributions. These functions, often at the core of observational cosmology, either test world models or are important in the search for secular evolution in the look-back time. It is here that the LF forms a basic ingredient in practical cosmology, in addition, of course, to its deeper significance concerning the physical characteristics of galaxies. In this latter role, the LF holds clues to the formation and evolution of galaxies and of clusters, especially evident from the consequences of the type-density relation [see Dressler (1984) for a review].