2.1.3. "Empirical" (Strong-Line) Calibrations
In many cases Te can not be measured, either because
the nebula is too faint or it is so cool that the temeprature-sensitive
diagnostic lines (for example [O III]
4363) are too
weak. Thus, there is interest in having an abundance indicator that uses
the strong forbidden lines.
Pagel et al. (1979) identified the line intensity ratio
![]() |
(2.4) |
as an indicator of O/H in H II regions. They noted, based on a sample of extragalactic H II regions, that the measured Te, O/H, and R23 were all correlated. This works because of the relationship between O/H and nebular cooling: the cooling in the ionized gas is dominated by emission in IR fine-structure lines (primarily the [O III] 52µm and 88µm lines), so as O/H increases, the nebula becomes cooler. In response, the optical forbidden lines, especially the [O III] lines, become weaker as O/H increases (excitation goes down as T decreases).
The R23 vs. O/H relation is fairly well calibrated empirically (based on abundances using the direct method) for log O/H between -3.5 and -4.0 (Edmunds & Pagel 1984). For higher O/H, the strong-line method breaks down because few measurements of Te exist; only two measurements have been made for H II regions with roughly solar O/H (Kinkel & Rosa 1994; Castellanos et al. 2001). In this regime, the relation has been calibrated using photoionization models (which I'll discuss later) that may have systematic errors. One other complication is that for log O/H < -3.8, the relation between R23 and O/H reverses, such that R23 decreases with decreasing abundance. The relation thus becomes double-valued, and at the turn-around region the uncertainties in O/H are much larger. This occurs because at very low metallicities the IR fine-structure lines no longer dominate the cooling because there are too few heavy elements. As a result the forbidden lines more directly reflect the abundances in the gas.
This double-valued nature of R23 has led some to seek other strong-line diagnostics. The ratio [O III]/[N II] (Alloin et al. 1979; Edmunds & Pagel 1984) has been promoted to break the degeneracy in R23. This ratio does appear to vary monotonically with O/H, although the observational scatter generally is larger than for R23. More recently, the emission line ratio
![]() |
(2.5) |
has been calibrated as an indicator of O/H by
Díaz &
Pérez-Montero (2000).
S23 has the advantage of varying monotically over the
range -4.3 < log O/H < -3.7 in which R23 becomes
ambiguous. S23
does become double-valued for O/H > -3.4. Where this relation breaks
down is uncertain at present because there are too few measurements. In
addition, the ratio
[N II]6583 /
H
has been promoted as
another possible measure of O/H
(van Zee et al. 1998;
Denicoló, Terlevich
& Terlevich 2002).
[N II] / H
varies
monotonically with O/H over the
entire range over which it is calibrated, but the scatter is quite large,
especially at low values of O/H in dwarf irregular galaxies. Note that
S23 and [N II] /
H
are employed here as
measures of the oxygen
abundance, not sulfur or nitrogen and are calibrated by direct measurements
of O/H. Thus, non-solar abundance ratios are not a concern.
At the same time, there are several limitations.