Deep extragalactic surveys have been successful tools in unraveling the formation and evolution of cosmic building blocks, including galaxies, groups and clusters of galaxies, large-scale structures, and supermassive black holes (SMBH). Deep surveys act as particularly effective "time machines" since fainter objects of a given type generally lie at greater distances and therefore earlier epochs. Furthermore, deep surveys are often able to probe intrinsically less luminous and more typical objects than wide-field, shallower surveys. Finally, the fluxes of all detected objects, both faint and bright, can be summed and compared with the extragalactic background light, which provides an integral census of the emission in the corresponding wavelength range. The multitude of multiwavelength deep surveys centered around the Hubble Deep Fields (e.g., Ferguson, Dickinson & Williams 2000), for example, have demonstrated these characteristics impressively.
This review concentrates on deep extragalactic X-ray surveys
in the 0.1-10 keV band accessible to imaging telescopes.
Two powerful, currently active X-ray missions, NASA's
Chandra X-ray Observatory (hereafter Chandra;
Weisskopf et al. 2000)
and ESA's X-ray Multi-Mirror Mission-Newton
(hereafter XMM-Newton;
Jansen et al. 2001),
have executed a number of deep
extragalactic X-ray observing programs, which comprise by far the most
sensitive X-ray surveys ever performed. Building on previous pioneering
work with the Einstein, ROSAT, ASCA, and
BeppoSAX missions, these surveys
resolve the majority of the 0.1-10 keV background.
A substantial amount of multiwavelength follow-up work on the
detected X-ray sources has also been completed.
It is therefore timely to review the status and
scientific results of deep extragalactic X-ray surveys.
In this review, we focus on surveys reaching flux limits of at
least 5 × 10-16 erg cm-2 s-1
(0.5-2 keV) or 1.5 × 10-15 erg cm-2
s-1 (2-10 keV), corresponding
to Chandra or XMM-Newton exposures of
75 ks
(see Figure 1 and
Table 1). The equally important
wider-field, shallower X-ray
surveys are not covered extensively here,
although they are mentioned when they especially complement deep
surveys; for example, when we are discussing the evolution of
active galactic nuclei (AGN) and the growth of the SMBH that
primarily power them. Some other in-depth
reviews of deep extragalactic X-ray surveys and the cosmic
X-ray background (CXRB) are
Fabian & Barcons
(1992),
Hasinger & Zamorani
(2000),
Brandt et al. (2004b),
and
Gilli (2004).
Rosati, Borgani &
Norman (2002a)
have recently reviewed X-ray galaxy
cluster surveys including some of the key results from deep Chandra
and XMM-Newton surveys; we shall not repeat this material in
detail here.
In the remainder of this section, we briefly review the history of X-ray deep-field research and describe the deepest Chandra and XMM-Newton surveys. We also discuss the observed X-ray number counts and the fraction of the 0.1-10 keV background resolved. In Section 2 we focus on the basic source types found, the observed AGN redshift and luminosity distributions, and the completeness of AGN X-ray selection. Section 3 reviews some key recent results from extragalactic X-ray surveys in targeted areas of scientific interest, and Section 4 briefly examines some outstanding problems and future prospects.
Throughout this review we shall adopt the WMAP consensus
cosmology with
H0 = 70 km s-1 Mpc-1,
M = 0.3, and
= 0.7
(Spergel et al. 2003),
unless otherwise noted.