Here I describe the various probes of star formation in galaxies and their correlation with the molecular gas contents. I devote considerable effort to developing an interpretive framework for the FIR emission from optically thick dust clouds.
8.2.1. Probes of star formation
There are a number of observational tracers which have been developed to
measure the star formation rates (SFRs) in galaxies (see Calzetti, this
volume). The Hi
recombination lines in the visible and near-IR (e.g.,
H and
P
) have the fluxes
proportional to the Hii
region emission measures, hence the OB star formation rate over the last
107 yr. The restframe (far-)UV continuum ([F]UV), at
< 2000 Å,
arising from hot, early-type stars has been
used to infer the SFRs for large samples of galaxies. Both the emission
lines and the UV continuum can be severely attenuated by dust extinction
in star-forming regions. Even for the galaxies with detected UV
continuum, the extinction corrections are often factors of 5-10! For the
dust-obscured star formation, the FIR luminosity
(
rest =
8-1000 µm) provides a much
more reliable measure of the SFR. These FIR SFRs can now be obtained for
large samples of galaxies using observations from the Spitzer and
Herschel space telescopes, albeit with relatively low angular
resolution and sensitivity to SFR (compared to the UV). A summary of all
these techniques, including relevant SFR equations, appears in the
recent paper by
Murphy et al.
(2011)
so I will not detail all of them here - instead I will focus on
developing a physical understanding of the IR emission.
The FIR emission from both star-forming and active galactic nucleus (AGN) sources arises from dust surrounding these sources which has been radiatively heated by absorption of the outflowing photons. Here I develop the logical steps for interpreting the IR emission since I have not seen this done systematically elsewhere.
The dust temperatures are determined by radiative equilibrium at distance R from a central source of luminosity L, with
![]() |
(9) |
where ad and Td are the dust grain
radius and temperature, and
< > and
<
>
are the dust emission and absorption efficiencies (shown in
Fig. 8.7, left panel),
weighted, respectively, by the Planck spectrum at the local dust
temperature and
that of the luminosity source heating the dust. If the emission efficiency
varies as 1/
, i.e.,
Td,
then
![]() |
(10) |
(Goldreich & Kwan 1974). More generally,
![]() |
(11) |
where <(T)> and
<
(T)>
are shown in the right panel of Fig. 8.7.
Due to the flatness of the broadband absorption coefficient from 2 to 50
µm, the grain absorption and emission efficiencies
integrated over black-body spectra are decreasing only modestly from
TBB = 1000-100 K (Fig. 8.7,
right).
![]() |
Figure 8.7. Left panel: the dust absorption
opacity as a function of wavelength
(Isella et al.
2010)
for standard interstellar grain composition (12%
silicates, 27% organics, and 61% water ice;
Pollack et al.
1994),
and size distribution n(a)
|
For an optically thin dust distribution surrounding a luminous source,
the dust heating is mainly due to the central short-wavelength source,
but for an optically thick dust envelope, the interior dust does not see
the central source and is instead heated by secondary radiation. This
secondary radiation, having longer wavelength than the central stellar
or AGN source, is less efficiently absorbed and the dust in the
optically thick case will therefore be colder (than it would be if
exposed to the shorter-wavelength primary photons of the central
source). In very optically-thick cases, the
<(TL)> in Equation 8.8 can be
evaluated approximately with
TL(R) ~ Td(R),
appropriately weighted over nearby radii.
Figure 8.8 shows the computed dust temperatures
for the optically thin and optically thick cases, evaluated from
Equation 8.11. In the optically-thick regime, the fall-off in dust
temperature is
r-1/2 - an extremely
simple form due to the fact that the photons heating the grains and those
emitted by the grains have similar wavelength distributions. One will
therefore
have <
> ~
<
> in the very
optically-thick dust clouds.
![]() |
Figure 8.8. The temperature of dust heated
by a central luminosity source is shown as a function of radius for
optically thin dust (with all the heating provided
by a ~ 104 K blackbody) and for very optically thick dust
(where after the innermost radius, the heating is due to dust at the
same radius and temperature). This resembles closely the very
optically-thick case since the temperature gradients are generally
quite shallow. It is important to appreciate that the radial physical
scalelengths will simply stretch homologously with changing source
luminosity. Thus the same curves can be used for sources with very much
higher or lower luminosity. For optically-thick FIR dust emission the
dust temperature varies as Td
|
The radial scale in Fig. 8.8 is for a central
source luminosity of 1012
L,
appropriate to ULIRGs and submm galaxies (SMGs), but the
radial distances can be scaled as L1/2 for other
luminosities (see Equation 8.11). Thus, these temperature profiles can
be equally well applied
to a dust cloud surrounding a luminous protostellar cluster of luminosity
103-106
L
.
The temperature profiles in Fig. 8.8 start at
~1000 K which is a little below the dust sublimation temperatures
(
1500 K). Inside this
radius, the dust will not survive. For a less
luminous source, this inner radius will scale inwards; but the physical
scales will all change by the same L1/2 and the
modelling remains homologous.
8.2.3. Dust optical depth:
< 1 or
> 1 ?
It is quite trivial to observationally distinguish the optically thick and thin sources since the latter will have a power-law flux distribution on the short-wavelength side of the peak whereas the former will appear more exponential (see Scoville & Kwan 1976). (If the dust distribution is clumpy, photons can emerge from the inner regions with hot dust - thus, in optically-thick dust clouds, a non-exponential spectral energy distribution [SED] at short wavelengths might also occur; see Fig. 8.17.)
Virtually all IR sources associated with active star-forming regions
(Galactic GMCs and starburst nuclei) are optically thick into the MIR
(based on their sharp short wavelength fall-off). Since the dust opacity
is fairly flat across the wavelength range (2-50 µm),
one then expects that the source will become optically thin only at
> 50
µm, as long as it is optically thick at
3-10 µm. Thus, it is most appropriate to employ the
optically thick dust temperature distribution shown as a solid line in
Fig. 8.8 and fit numerically by
![]() |
(12) |
One can invert Equation 8.12 to find the characteristic size of the emitting region:
![]() |
(13) |
if the total IR luminosity and dust temperature are known. The latter
might be derived by fitting the MIR SED, or more crudely, from the
wavelength of the peak. If the dust is opaque, then the standard Planck
expression yields Td = 100 × (51 µm
/ peak) K
but if the dust is optically
thin, then the peak wavelength is reduced by a factor ~ (3 /
(3 +
)) where
is the power-law index
for the opacity,
, near the IR peak.
In practice, the opacity can never be much greater than unity at the
peak. This
is due to the simple fact that the luminosity cannot escape from the inner
regions which have high opacity to the cloud surface. And once the outward
luminosity flux has shifted to wavelengths where the opacity becomes
less than unity, it escapes. This can be seen analytically using the
fact that the emergent emission for a given grain is proportional to
B
e(-
). At
> 70 µm,
~1.6. If
= (
/
0)1.6
(i.e., unity at
=
0), then
the emission of the grain will peak at
m
(3 +
1.6)
0
/ (1.6 + h
0
/ kTd), where
=
(
m
/
0)1.6.
Thus, for example, with Td = 100 K, the
blackbody peak at 51 µm is shifted to 78 and 395
µm for
0 = 102 and
787 µm, respectively. At the peaks the optical
depths are
peak =
1.5 and 3.0 in the two cases. This
illustration was for an isothermal dust distribution with
simplistically representing the foreground optical depth. This also
provides a strong note of caution - if one is deriving the dust
temperature from the wavelength of peak emission, the peak will usually
be shifted to a longer wavelength where the dust starts to become
transparent.
8.2.4. Dust temperature of the emergent luminosity
So how can the characteristic dust
temperatures be derived? Probably the best approach, if the dust is
believed to be optically thick on the short wavelength side of the peak
(based on an `exponential' rise), is to simply assume that
~ 1 at
the peak and estimate the temperature of the dust emitting the bulk of
the emergent luminosity from Td
100 ×
(80 µm /
peak) K. To
improve on this ad hoc correction requires an assumption of the
dust density distribution with radius and modelling the emergent SED (as
is done below in Section 8.2.9).
For an optically-thick source, the emergent radiation at each wavelength
will be from a depth where
1. Since the dust
opacity falls off at longer wavelengths and the temperature is falling
at larger radii, this implies,
somewhat counter-intuitively, that at wavelengths short of the
peak wavelength, one will sample dust at increasingly larger radii,
i.e., lower and lower temperatures!
8.2.5. Star formation rate from LIR
Derivation of SFRs from the IR luminosities is fairly straightforward and robust. This was first done by Scoville & Young (1983) using the fact that the bulk of the luminosity from a stellar population at early times is generated largely by the OBA stars. For those stars an approximately fixed percentage (13%) of their initial mass gets processed through the CNO cycle and one knows the energy produced per CNO process. This derivation is analogous to the `fuel consumption theorem' of Renzini & Buzzoni (1986).
A more precise, modern approach is to run starburst models (e.g.,
Starburst99;
Leitherer et al.
1999)
and integrate up the luminosity as a function
of time. One must assume a stellar initial mass function (IMF), and its mass
range, and decide which photons will be absorbed by dust and for how
long the dust absorption persists. In Fig. 8.9
I show results obtained using
Starburst99 with a Kroupa IMF (0.1 to 100
M,
Kroupa 2001)
as a function of the duration of the dust absorption. The latter
quantity is probably ~ 107 yr for Galactic star-forming
regions but could be closer to 108 yr for merging starburst
galaxies where the dust is more widely distributed. For this
calculation, I assume all stellar and nebular photons
longward of the Lyman limit (912 Å) are absorbed by the surrounding
dust. From Fig. 8.9, one could reasonably
compute a SFR given by
![]() |
(14) |
with the lower value being appropriate to the ULIRGs which have longer
duration for the dust shrouding. The standard relation given by
Murphy et al. (2011)
corresponds to 1.5 × 10-10
M
yr-1 (LIR /
L
).
The simpler derivation outlined above (based on the CNO cycle energy
production) is quite similar to Equation 8.14 after one corrects for the
mass going into non-OBA stars for a Kroupa IMF.
![]() |
Figure 8.9. The conversion of observed IR luminosities into estimates of the SFR depends on the duration time of the dust absorption. Here I have used Starburst99 models with a Kroupa IMF and assumed that all stellar and nebular photons longward of the Lyman limit are absorbed for the dust duration time (in Myr) and then none are absorbed after that. For normal star-forming regions this timescale is ~ 10 Myr and for ULIRGs 50-100 Myr. If the dust envelope lasts less than 10 Myr and or is only partially covering, then the conversion factor is significantly higher - both are certainly true for an exposed Hii region like the Orion nebula. |
8.2.6. Dust and ISM mass estimates
On the long-wavelength Rayleigh-Jeans (R-J) tail of the FIR emission, the dust will be optically thin and the observed continuum fluxes provide an excellent means of determining the overall mass of dust. If the dust-to-gas abundance is normal, this dust mass can then be scaled to estimate the overall mass of ISM within a star-forming region or a distant galaxy.
On the optically-thin R-J tail of the IR emission, the observed flux density is given by
![]() |
(15) |
or in terms of the dust opacity per unit gas mass,
(ISM)
=
× Mdust / MISM,
![]() |
(16) |
where dl is the source luminosity distance. In normal
star-forming galaxies, the majority of the dust is at ~ 20-25 K, and
even in the most vigorous starbursts like Arp 220 the FIR/submm emission
is dominated by dust at temperatures
45 K. Thus the expected
variations in Tdust have
less than a factor two effect on the observed flux.
The dust opacity per unit mass of total ISM gas,
(ISM) in
Equation 8.16, can be calibrated from the extensive submm observations
of nearby galaxies. Seventeen of the nearby SINGS survey (Spitzer
Infrared Nearby Galaxies Survey;
Kennicutt et al.
2003)
galaxies have good total submm flux measurements obtained with the SCUBA
instrument, mounted at the James Clerk Maxwell Telescope, at 850
µm (see
Draine et al.
2007),
as well as good measurements of the total molecular (H2) and
atomic (Hi) gas masses.
In Fig. 8.10, the derived dust-to-gas (H2 + Hi) mass ratios from Draine et al. (2007) are shown for the galaxies having SCUBA 850 µm measurements, for a range of spiral type (Sa to Sd) and as a function of mean metallicity. (Equivalent data for low-redshift elliptical galaxies are not available from Draine et al. 2007 due to lack of gas mass measurements in the early type galaxies.)
![]() |
Figure 8.10. Left panel shows the dust-to-gas mass ratios derived by Draine et al. (2007) for galaxies from the SINGS nearby galaxy survey, selecting only those galaxies with both SCUBA 850 µm fluxes and complete maps of the H2 and Hi gas; right panel shows the mass-metallicity relation for low-z galaxies (grey points) and binned values for z ~ 2 galaxies (red dots) from Erb et al. (2006). Over a range of 0.5 dex in metallicity below that of the Milky Way there is little variation in the dust-to-gas ratios. Since the galaxies selected here are massive, their metallicities even at z = 2 are expected to be within this range based on emission line ratios. Lower-metallicity irregular galaxies probably do show a decrease in the dust abundance (see Draine et al. 2007). |
Figure 8.10 shows that over a range of ~ 0.5 dex in metallicity, there is little empirical evidence of variation in the dust-to-gas mass ratios and hence the submm flux. If one includes even lower-metallicity galaxies that do not have SCUBA 850 µm fluxes (hence the submm fluxes must be extrapolated from an overall SED fit using shorter-wavelength observations), there is evidence for a metallicity dependence in the dust-to-gas ratio. Lastly, it should be emphasised that although some variations in the ratio of submm flux to ISM mass may be expected, ISM mass estimates at ~ 30% accuracy (see Fig. 8.10) are still likely to be at least as accurate as those from CO line measures and much quicker, enabling large samples to be analysed.
In view of the large uncertainty in the submm absorption coefficient
and its scaling with frequency, we adopt an empirical approach based on
submm observations of local galaxies where
Hi and H2 masses
have been estimated. For the local galaxies on which to base this
empirical approach, it is vital that both the submm fluxes and ISM
masses are global values. In addition as a check on the reliability of
the submm measurements we require two long wavelength flux measurements
so one can check if there is reasonable consistency with expected values
of the spectral index
.
For the spectral index
of the
R-J tail (S
varying as
), the
observed flux ratios of submm galaxies can vary between 3
and 4. For most dust models the spectral index of the opacity is
typically 1.5 to 2, implying
= 3.5 to
4. Empirical fits to the observed long wavelength SEDs give
= 3.5 to 4
(Dunne & Eales 2001;
Clements et al.
2010)
for local galaxies. For high-z submm galaxies, the
spectral index can be between 3.2 and 3.8, but in most cases the
shorter-wavelength point is getting close the IR peak in the restframe and
therefore not strictly on the R-J tail. In the following, we adopt
= 3.8.
Table 8.1 lists local spiral or star-forming galaxies for which both 450 and 850 µm measurements exist with good signal-to-noise and for which global fluxes were estimated.
Galaxy | Distance | S![]() |
S![]() |
logMHI | logMH2 |
(Mpc) | (Jy) | (Jy) | (M![]() |
(M![]() |
|
NGC 4631 | 9.0 | 30.7 | 5.73 | 9.2 | 9.5 |
NGC 7331 | 15.7 | 18.5 | 2.98 | 9.4 | 9.7 |
NGC 7552 | 22.3 | 20.6 | 2.11 | 9.7 | 10.0 |
NGC 598 | 76.0 | 2.3 | 0.26 | 9.8 | 10.1 |
NGC 1614 | 62.0 | 1.0 | 0.14 | 9.7 | 10.0 |
NGC 1667 | 59.0 | 1.2 | 0.16 | 9.3 | 9.6 |
Arp 148 | 143.0 | 0.6 | 0.09 | 9.9 | 10.2 |
1 ZW 107 | 170.0 | 0.4 | 0.06 | 10.0 | 10.3 |
Arp 220 | 79.0 | 6.3 | 0.83 | 10.0 | 10.3 |
12112+0305 | 293.0 | 0.5 | 0.05 | 10.3 | 10.6 |
Mrk 231 | 174.0 | 0.5 | 0.10 | 9.8 | 10.1 |
Mrk 273 | 153.0 | 0.7 | 0.08 | 9.9 | 10.2 |
The 850 µm fluxes were then converted to specific luminosity
L(850),
using
![]() |
(17) |
![]() |
Figure 8.11. The ratio of
L |
Figure 8.11 shows the ratio
L850
/ MISM as a function of
L
850
where MISM = MHI +
MH2. Based on this plot, we then adopt as a
working value
![]() |
(18) |
Define this mean value as
![]() |
(19) |
For high-redshift observations,
![]() |
(20) |
with
![]() |
(21) |
Therefore,
![]() |
(22) |
with
![]() |
(23) |
Then,
![]() |
(24) |
where the 350 GHz is the frequency corresponding to 850 µm.
Normalising to MISM = 2 × 1010
M with
= 3.8,
![]() |
(25) |
![]() |
(26) |
at z = 0.3, 1, 2 and 3, dL(Gpc) = 1.5, 6.6, 15.5 and 25.4 Gpc.
Figure 8.12 shows the new predicted fluxes as a function of redshift for both Band 6 (240 GHz) and Band 7 (347 GHz).
![]() |
Figure 8.12. The expected ALMA Band 6 (240
GHz) and Band 7 (345 GHz) flux densities are shown for
MISM = 2 × 1010
M |
For reference, looking at the ALMA exposure time calculator, with
7.5 GHz bandwidth in each polarisation and 10.2 min of integration at
Cycle 1 yields 1 =
0.075 mJy at 345 GHz,
1
= 0.042 mJy at 240
GHz and 0.029 mJy at 100 GHz. The expected
fluxes on Fig. 8.12 for z = 2 are ~ 1.7
and 0.3 mJy respectively for 2 × 1010
M
. Thus
Band 7 is optimal since the expected flux ratio is ~ 5:1. Band 3 (100
GHz) is not plotted in the figure since its expected flux density is 28
times below that of Band 6.
To compare with the ability to detect CO, we might use the source
BX 691 from
Tacconi et al.
(2010)
which has a M* = 7.6 × 1010
M and
MH2 = 3.5 × 1010
M
at
z = 2.19 and
CO(3-2) = 0.15 Jy km s-1. For a width of 300 km
s-1, this has an average line flux of 0.5 mJy. If the mass is
scaled to 2 × 1010
M
, then
the average line flux is 0.28 mJy. To get
5
or 0.056 mJy
sensitivity in a single 300 km s-1, requires 5 hours!
In summary, measurement of the R-J tail of the emission (and using Equation 8.26) thus provides an excellent and fast means of determining dust and ISM masses in high-redshift galaxies using ALMA. (The coefficient in Equation 8.26 was derived empirically from submm observations and therefore may be slightly different than that obtained from the dust opacity shown in Fig. 8.7.)
For optically thick IR sources, one can estimate the effective size of the emitting region from
![]() |
(27) |
and scaling to ULIRG luminosities, we obtain
![]() |
(28) |
This effective radius is the overall size of the optically-thick region emitting the FIR luminosity. In the event that the emission is optically thin, then the estimates from Equation 8.28 are of course lower limits. (In Section 8.2.9 optically-thick, radiative transfer modelling of the dust emission for a r-1 dust density distribution is presented. Figure 8.15 shows the effective radius and dust temperature for the emitting region producing the majority of the emergent flux - for comparison with Equation 8.28.)
For local ULIRGs the typical FIR colour temperatures are ~ 50 K so the IR
emission radius is ~ 500 pc for 1012
L. This
estimate is similar
to the overall size of the central concentration in Arp 220 (see below),
indicating that the optically thick assumption is not unreasonable. The most
luminous SMGs observed at high redshift can have LIR
> 1013
L
; for
these sources, the emission must come from
galactic-scale regions, not just a compact nucleus.
For the Milky Way the FIR luminosity is ~ 1010
L and
the mean dust temperature ~ 30-35 K; the effective emitting radius from
Equation 8.28 is ~ 100 pc. However, this emission clearly
originates from a large number of separate clouds, and the mean size of each
must be ncloud1/2 times smaller. For
example, if the Galactic emission is assumed to be contributed by ~ 400
IR-luminous GMCs, then the
effective size of the IR-dominant region in each would be ~ 5 pc.
8.2.8. Luminosity and SFR estimates from submm continuum
Estimating the FIR luminosity (and hence the SFR) from measurements on
the submm R-J tail is an extremely questionable procedure - this hasn't
stopped observers from routinely doing it! As noted above the R-J flux
provides a measure of the dust mass weighed linearly by
Td, but inferring a total bolometric luminosity
requires knowing where the FIR peaks, and the fluxes near the peak.
Observations near the SED peak can now be done using Herschel
PACS (Photodetector Array Camera and Spectrometer) and SPIRE (Spectral
and Photometric Imaging REceiver) but many of the SMGs are subject to
source confusion at the SPIRE resolution. In the absence of direct
observations at the SED peak, one must assume a dust temperature (30-50
K) and optical depth, perhaps based on the submm flux. For many of the
SMGs, FIR luminosities in the range 1013-14
L
have been estimated, implying SFRs of several × 103
M
per yr (typically assuming
Td ~ 30-50 K) but such estimates must be
extremely uncertain since the derived luminosity will vary approximately
as T4-5. Typical ISM masses of the SMGs derived from
CO measurements or the submm continuum are ~ 1-3 × 1010
M
,
implying that the ISM will be used up in star formation in an
implausibly short time of ~ 107 yr.
Blain et al. (2003) attempted to derive empirically a scaling between the 850 µm flux and LIR based on the apparent Td from fitting the SEDs of local galaxies. Unfortunately, there is large scatter in the correlation. In fact, as we saw earlier, the notion of a single Td is extremely shaky - both because there clearly is a range of temperatures and more importantly, the apparent Td (derived from fitting near the FIR peak) is somewhat degenerate with the dust opacity (which also can cause an exponential fall-off to short wavelengths).
To summarise - it should be clear that one cannot constrain Td without observations near the SED peak; and if one has such observations, it would be best to simply use them directly to estimate the luminosity. (Of course, if the observed source is at redshift z > 5, then the submm flux measurements are in fact probing near the restframe SED peak; they can then provide a decent luminosity estimate.) In the next section, we model the optically-thick dust sources in order to appreciate some of the systematics and the range of uncertainty.
8.2.9. Modelling optically-thick dust clouds
For internally-heated FIR sources, it is vital to appreciate that the sources have essentially two totally independent parameters: the luminosity L of the central heating source and the total mass of dust in the surrounding envelope - not much else matters! The character of the spectrum of the source (be it young stars or an AGN) makes little difference since the primary photons at short wavelength are absorbed in the innermost boundary layer of the dust envelope. The radius of this inner boundary is set by the radius at which the dust is heated to sublimation (see Section 8.2.2). The overall mass of dust of course determines the opacity and therefore the radius at which the IR radiation can escape, and thus the `effective dust temperature' which is observed. We will see below that the model SEDs of the FIR sources can be characterised by a single parameter - the luminosity-to-mass ratio, L/M, and thus the problem has, in essence, really just one independent variable as long as the source structure is simple (e.g., a single source with radial fall-off in density and no clumping). The compactness of the dust cloud is parametrised by a radial power law density distribution which can be varied but for the discussion below I adopt R-1.
Using the temperature profiles derived above, I have computed emergent
spectra for a source of central luminosity 1012
L with
overlying dust masses ranging from 107-9
M
(i.e.,
total ISM masses ~ 100 times greater or 109-11
M
).
These parameters are directed towards ULIRGs and SMGs
but the results can easily be scaled to lower- or higher-luminosity
objects. As mentioned above, the critical model characteristic is the
luminosity-to-mass ratio. For this modelling, the dust distribution is
taken to vary as R-1 but similar results are found
with other reasonable power laws. The inner radius is taken at
Td = 1000 K, but this is, of course, not critical
since the hot dust is covered by the overlying colder dust unless the
cloud is optically thin at short wavelengths. The outer radius was taken
at 2 kpc - this also is not critical since the dust is cold and
optically thin to the secondary radiation at the largest radii.
Figure 8.13 shows the emergent specific
luminosities (
L
) for
the models with different enveloping dust masses but constant overall
luminosity. Here one clearly sees the effect of varying dust mass and
opacity. The clouds of lower dust mass have non-exponential
short-wavelength SEDs due to the lack of high dust extinction on the
short-wavelength side of the SED peak, and hence the hotter dust in the
interior is exposed to our view. This contrasts with the higher-mass
clouds which show a peak shifted to relatively longer wavelength - due
to the fact that dust extinction short of the peak precludes photons
escaping from the hotter interior radii.
Figure 8.13 also
clearly demonstrates the anticipated correlation (see
Section 8.2.6)
between the flux on the long-wavelength R-J tail and the dust mass.
To quantify some of the spectral characteristics,
Fig. 8.14 shows the
shift in the wavelength of peak emission
(peak, left
panel) and the optical depth at
peak to the
cloud surface (right panel) for the radial shell contributing most to the
emergent luminosity. The right panel illustrates what was said earlier
based on analytics - typically the opacity at the peak will be ~1 for a
large range of overlying dust masses. Also, since the opacity must be ~1
at the peak, the wavelength of peak emission will be determined by
both opacity and dust temperature in realistic models.
Figure 8.15 shows the radius and dust temperature at which the largest fraction of the overall luminosity escapes as a function of the luminosity-to-mass ratio. The total luminosity is of course spread over a broad range of radii except in the most optically thick models (low L / MISM values).
Figure 8.16 shows the ratio of total IR
luminosity (at
= 8-1000
µm) to the specific luminosity at
= 850 µm
(i.e., a point on the power-law R-J
tail). It should be obvious from this figure that there is really no
good single value for the conversion factor from submm flux density
(
rest
150 µm)
to total IR luminosity - these models all had the same total luminosity but
varying dust masses. Thus it is impossible to reliably estimate the
total FIR luminosity from R-J flux measurements unless there are
additional constraints, for example on the luminosity-to-mass ratio or
the ISM mass (e.g., from CO, or dynamical mass estimates). One simply
must have measurements close to the IR SED peak.
There are also some limitations or lessons from this modelling. Most noteworthy is the polycyclic aromatic hydrocarbon (PAH) emission which arises from transiently heated small dust grains. This small grain component was included by calculating the UV-visual radiation energy density at each radius and inserting the PAH emission following Draine & Li (2001). These short-wavelength features require the emergence of flux from regions where the grains are hot. In sources showing such features, the dust obscuration must be clumpy, or multiple optically-thin and -thick sources must be contributing. To illustrate this possibility, Fig. 8.17 shows the effect of reducing the dust column in 5% of the surface area to a value 10% of the normal column density - the NIR/MIR becomes much stronger and the silicate feature appears in absorption.
![]() |
Figure 8.17. Models with complete covering (dashed line) and with 5% of the area having extinction reduced to 10% and 1% of the complete covering model (solid line) are shown to illustrate that a slightly clumpy dust distribution is required to model the observed short-wavelength hot dust emission. Transient small grain heating is included by calculating the UV-visual radiation energy density at each radius and inserting the PAH emission following Draine & Li (2001). |
The presence or absence of detectable PAH or silicates features depends on the covering fraction of the overlying optically-thick dust - their detection should not be taken as a reliable indicator of one mode of star formation (as done by Elbaz et al. 2011) or alteration of the grain abundances since their presence can depend simply on geometry and source non-uniformity.
We have developed a very simple model for the FIR emission which can be implemented for fast radiative transfer computations relevant to dust-embedded luminosity sources. There are several important conclusions: