Shortly after the discovery of quasars at great cosmological distances
(Schmidt 1963),
it was realized that the energy required to power these
luminous and compact sources must be of gravitational origin rather than
from nuclear reaction (e.g.,
Hoyle &
Fowler 1963,
Salpeter 1964,
Zel'dovich & Novikov 1964,
Lynden-Bell
1969).
The standard picture now is that mass is accreted onto a supermassive black
hole (SMBH) at the center of the galaxy, and the gravitational energy is
released during this accretion process to power quasar activity. If the SMBH
grows mostly via this accretion process, its mass growth rate is simply:
BH
=
LEdd(1 - є)
/ (є c2), where
LEdd = lMBH = 1.26 ×
1038(MBH /
M
)
erg s-1 is the Eddington luminosity of the BH,
= Lbol /
LEdd is the Eddington ratio, and є is the radiative
efficiency, i.e., the fraction of accreted rest mass energy converted into
radiation. If both
and є are non-evolving, the BH mass
increases by one e-fold on a characteristic timescale
te ≡ є
c2 / [(1 - є)
l]
4.5 × 108 є
/
(1 - є) yr, also known as the
Salpeter time or e-folding time. If quasars do not radiate beyond
the Eddington limit
= 1, the observed luminosity provides a
lower-limit on their BH mass (e.g.,
Zel'dovich
& Novikov 1964).
The discovery of luminous quasars (with Lbol
1047 erg s-1) at z > 6 (e.g.,
Fan et al. 2001,
Mortlock et
al. 2011)
then suggests that SMBHs with MBH > 109
M
are
already formed in the first billion year after the Big Bang.
In the past two decades or so, there has been tremendous progress in the
demographic studies of SMBHs in the nuclei of nearby galaxies (for
recent reviews, see, e.g.,
Kormendy
& Richstone 1995,
Ferrarese
& Ford 2005,
Kormendy &
Ho 2013).
It has come to the consensus that
SMBHs with masses of ~ 105-1010
M are
almost ubiquitous at
the center of massive galaxies with a significant spheroidal (bulge)
component, and also exist in at least some low-mass galaxies. More
remarkably, the mass of the nuclear BH is tightly correlated with the
properties of the bulge in the local samples (e.g.,
Gebhardt et
al. 2000,
Ferrarese & Merritt 2000,
Graham et
al. 2001,
Tremaine et
al. 2002,
Marconi &
Hunt 2003,
Aller
& Richstone 2007,
Gültekin
et al. 2009),
allowing an estimate of the local SMBH mass function by convolutions
with galaxy bulge distribution functions. These BH-bulge scaling
relations promoted the notion of BH-galaxy co-evolution, during which
the energy release from the accreting SMBH self-regulates its growth,
and impacts the formation and evolution of the bulge via feedback
processes (e.g.,
Silk & Rees
1998,
King 2003,
Di Matteo
et al. 2005).
Such feedback
from active SMBHs (i.e., AGN feedback) has also been invoked in most
present-day theoretical modeling of galaxy formation, to bring better
agreement with the observed statistics of massive galaxies. However, the
significance of AGN feedback and BH-host co-evolution is still under some
debate and is an active area of research.
An elegant argument tying the local relic SMBH population to the past active
population is the Sotan argument
(Soltan 1982):
if SMBHs grow
mainly through a luminous (or obscured) quasar phase, then the accreted
luminosity density of quasars to z = 0,
•,acc, should
equal the local relic BH mass density
•:
![]() |
(1) |
where (L,z)
is the bolometric luminosity function (LF) per L
interval. Given the observed quasar luminosity function, a reasonably good
match between
•,acc and
• can be
achieved if the average radiative efficiency
є ~ 0.1 (e.g.,
Yu &
Tremaine 3112002,
Shankar et
al. 2004,
Marconi et
al. 2004,
also see
Salucci et
al. 1999;
Fabian 1999;
Elvis et
al. 2002),
consistent with
the mean є value constrained from individual quasars with spectral
fitting (e.g.,
Davis &
Laor 2011).
The Sotan argument and its
variants have been used extensively in recent years to model the growth of
SMBHs with constraints from the demographies of local BH relics and the past
AGN population (for a recent review, see
Shankar 2009).
These exercises are mainly facilitated by the advent of modern large-scale,
multiwavelength sky surveys, which have provided large and homogeneous data
sets many folds more than what was available twenty years ago, as well as
measurements of the abundance and clustering properties of quasars with
unprecedented precision.
The growth of SMBHs is among the key science topics in modern galaxy formation studies (for a relatively complete summary of recent progress on this topic, see, e.g., Alexander & Hickox 2012 and references therein). As one of the few fundamental quantities describing a BH, the mass of quasars is of paramount importance to essentially all quasar-related science: the evolution and phenomenology of quasars, accretion physics, the relations and interplays between SMBHs and their host galaxies.
In this review I discuss the current status of quasar BH mass estimations and how these developments can further our understandings of the physics and evolution of SMBHs. I presume the reader has a basic understanding of AGNs and I will skip elaborations on the usual AGN terminologies, which can be found in AGN textbooks (e.g., Peterson 1997, Krolik 1999). This review is mostly pragmatic without going into the detailed and sometimes poorly understood physics behind observations; some further readings can be found in the quoted references.
There are several recent reviews on measuring active and inactive BH masses
(e.g.,
Peterson 2010,
Czerny &
Nikolajuk 2010,
Vestergaard
et al. 2011,
Marziani
& Sulentic 2012),
which summarized some general
concepts and practical procedures in measuring SMBH masses. While some
of the common materials are also covered in the current review for
completeness, the scope and focus of this review are different: after an
introduction on BH mass measurements in
Section 2, I describe in detail the caveats and
statistical biases of the most frequently used BH mass estimators in
Section 3, in light of recent work invoking
statistical quasar samples;
several applications of these BH mass estimates to quasar studies are
discussed in Section 4, and I conclude this
review in Section 5
with a discussion on future perspectives of improving BH weighing methods. A
flat CDM cosmology
is adopted throughout this review, with
= 0.7,
0 = 0.3 and
H0 = 70 km s-1 Mpc-1.