Science is rarely tidy. We ultimately seek a unified explanatory framework characterized by elegance and simplicity; along the way, however, our aesthetic impulses must occasionally be sacrificed to the desire to encompass the largest possible range of phenomena (i.e., to fit the data). It is often the case that an otherwise compelling theory, in order to be brought into agreement with observation, requires some apparently unnatural modification. Some such modifications may eventually be discarded as unnecessary once the phenomena are better understood; at other times, advances in our theoretical understanding will reveal that a certain theoretical compromise is only superficially distasteful, when in fact it arises as the consequence of a beautiful underlying structure.

General relativity is a paradigmatic example of a scientific theory of impressive power and simplicity. The cosmological constant, meanwhile, is a paradigmatic example of a modification, originally introduced [1] to help fit the data, which appears at least on the surface to be superfluous and unattractive. Its original role, to allow static homogeneous solutions to Einstein's equations in the presence of matter, turned out to be unnecessary when the expansion of the universe was discovered [2], and there have been a number of subsequent episodes in which a nonzero cosmological constant was put forward as an explanation for a set of observations and later withdrawn when the observational case evaporated. Meanwhile, particle theorists have realized that the cosmological constant can be interpreted as a measure of the energy density of the vacuum. This energy density is the sum of a number of apparently unrelated contributions, each of magnitude much larger than the upper limits on the cosmological constant today; the question of why the observed vacuum energy is so small in comparison to the scales of particle physics has become a celebrated puzzle, although it is usually thought to be easier to imagine an unknown mechanism which would set it precisely to zero than one which would suppress it by just the right amount to yield an observationally accessible cosmological constant.

This checkered history has led to a certain reluctance to consider further invocations of a nonzero cosmological constant; however, recent years have provided the best evidence yet that this elusive quantity does play an important dynamical role in the universe. This possibility, although still far from a certainty, makes it worthwhile to review the physics and astrophysics of the cosmological constant (and its modern equivalent, the energy of the vacuum).

There are a number of other reviews of various aspects of the cosmological constant; in the present article I will outline the most relevant issues, but not try to be completely comprehensive, focusing instead on providing a pedagogical introduction and explaining recent advances. For astrophysical aspects, I did not try to duplicate much of the material in Carroll, Press and Turner [3], which should be consulted for numerous useful formulae and a discussion of several kinds of observational tests not covered here. Some earlier discussions include [4, 5, 6], and subsequent reviews include [7, 8, 9]. The classic discussion of the physics of the cosmological constant is by Weinberg [10], with more recent work discussed by [7, 8]. For introductions to cosmology, see [11, 12, 13].