Next Contents Previous

1.1. The many faces of the cosmological constant

Einstein's equations, which determine the dynamics of the spacetime, can be derived from the action (see, eg. [7]):

Equation 1 (1)

where Lmatter is the Lagrangian for matter depending on some dynamical variables generically denoted as phi. (We are using units with c = 1.) The variation of this action with respect to phi will lead to the equation of motion for matter (deltaLmatter / delta phi) = 0, in a given background geometry, while the variation of the action with respect to the metric tensor gik leads to the Einstein's equation

Equation 2 (2)

where the last equation defines the energy momentum tensor of matter to be Tik ident 2(deltaLmatter / deltagik).

Let us now consider a new matter action L'matter = Lmatter - (Lambda / 8piG) where Lambda is a real constant. Equation of motion for the matter (deltaLmatter / delta phi) = 0, does not change under this transformation since Lambda is a constant; but the action now picks up an extra term proportional to Lambda

Equation 3 (3)

and equation (2) gets modified. This innocuous looking addition of a constant to the matter Lagrangian leads to one of the most fundamental and fascinating problems of theoretical physics. The nature of this problem and its theoretical backdrop acquires different shades of meaning depending which of the two forms of equations in (3) is used.

The first interpretation, based on the first line of equation (3), treats Lambda as the shift in the matter Lagrangian which, in turn, will lead to a shift in the matter Hamiltonian. This could be thought of as a shift in the zero point energy of the matter system. Such a constant shift in the energy does not affect the dynamics of matter while gravity - which couples to the total energy of the system - picks up an extra contribution in the form of a new term Qik in the energy-momentum tensor, leading to:

Equation 4 (4)

The second line in equation (3) can be interpreted as gravitational field, described by the Lagrangian of the form Lgrav propto (1/G)(R - 2Lambda), interacting with matter described by the Lagrangian Lmatter. In this interpretation, gravity is described by two constants, the Newton's constant G and the cosmological constant Lambda. It is then natural to modify the left hand side of Einstein's equations and write (4) as:

Equation 5 (5)

In this interpretation, the spacetime is treated as curved even in the absence of matter (Tik = 0) since the equation Rik - (1/2)gikR - Lambda gik = 0 does not admit flat spacetime as a solution. (This situation is rather unusual and is related to the fact that symmetries of the theory with and without a cosmological constant are drastically different; the original symmetry of general covariance cannot be naturally broken in such a way as to preserve the sub group of spacetime translations.)

In fact, it is possible to consider a situation in which both effects can occur. If the gravitational interaction is actually described by the Lagrangian of the form (R - 2Lambda), then there is an intrinsic cosmological constant in nature just as there is a Newtonian gravitational constant in nature. If the matter Lagrangian contains energy densities which change due to dynamics, then Lmatter can pick up constant shifts during dynamical evolution. For example, consider a scalar field with the Lagrangian Lmatter = (1/2)partiali phi partiali phi - V(phi) which has the energy momentum tensor

Equation 6 (6)

For field configurations which are constant [occurring, for example, at the minima of the potential V(phi)], this contributes an energy momentum tensor Tba = deltaab V(phimin) which has exactly the same form as a cosmological constant. As far as gravity is concerned, it is the combination of these two effects - of very different nature - which is relevant and the source will be Tabeff = [V(phimin) + (Lambda / 8pi G)] gab, corresponding to an effective gravitational constant

Equation 7 (7)

If phimin and hence V(phimin) changes during dynamical evolution, the value of Lambdaeff can also change in course of time. More generally, any field configuration which is varying slowly in time will lead to a slowly varying Lambdaeff.

The extra term Qik in Einstein's equation behaves in a manner which is very peculiar compared to the energy momentum tensor of normal matter. The term Qik = rhoLambda deltaik is in the form of the energy momentum tensor of an ideal fluid with energy density rhoLambda and pressure PLambda = - rhoLambda; obviously, either the pressure or the energy density of this "fluid" must be negative, which is unlike conventional laboratory systems. (See, however, reference [8].)

Such an equation of state, rho = - P also has another important implication in general relativity. The spatial part g of the geodesic acceleration (which measures the relative acceleration of two geodesics in the spacetime) satisfies the following exact equation in general relativity (see e.g., page 332 of [9]):

Equation 8 (8)

showing that the source of geodesic acceleration is (rho + 3P) and not rho. As long as (rho + 3P) > 0, gravity remains attractive while (rho + 3P) < 0 can lead to repulsive gravitational effects. Since the cosmological constant has (rhoLambda + 3PLambda) = - 2rhoLambda, a positive cosmological constant (with Lambda > 0) can lead to repulsive gravity. For example, if the energy density of normal, non-relativistic matter with zero pressure is rhoNR, then equation (8) shows that the geodesics will accelerate away from each other due to the repulsion of cosmological constant when rhoNR < 2rhoLambda. A related feature, which makes the above conclusion practically relevant is the fact that, in an expanding universe, rhoLambda remains constant while rhoNR decreases. (More formally, the equation of motion, d (rhoLambda V) = - PLambda dV for the cosmological constant, treated as an ideal fluid, is identically satisfied with constant rhoLambda, PLambda.) Therefore, rhoLambda will eventually dominate over rhoNR if the universe expands sufficiently. Since |Lambda|1/2 has the dimensions of inverse length, it will set the scale for the universe when cosmological constant dominates.

It follows that the most stringent bounds on Lambda will arise from cosmology when the expansion of the universe has diluted the matter energy density sufficiently. The rate of expansion of the universe today is usually expressed in terms of the Hubble constant: H0 = 100h km s-1 Mpc-1 where 1 Mpc approx 3 × 1024 cm and h is a dimensionless parameter in the range 0.62 ltapprox h ltapprox 0.82 (see section 3.2). From H0 we can form the time scale tuniv ident H0-1 approx 1010h-1 yr and the length scale cH0-1 approx 3000h-1 Mpc; tuniv characterizes the evolutionary time scale of the universe and H0-1 is of the order of the largest length scales currently accessible in cosmological observations. From the observation that the universe is at least of the size H0-1, we can set a bound on Lambda to be |Lambda| < 10-56 cm-2. This stringent bound leads to several issues which have been debated for decades without satisfactory solutions.

At present we have no clue as to what the above questions mean and how they need to be addressed. This review summarizes different attempts to understand the above questions from various perspectives.

Next Contents Previous