1.2.1. Counting Relativistic Degrees of Freedom
It is convenient to write the total (radiation) energy density in terms of that in the CMB photons
![]() |
(1.14) |
where geff counts the "effective" relativistic degrees of freedom. Once geff is known or specified, the time - temperature relation is determined. If the temperature is measured in energy units (kT), then
![]() |
(1.15) |
If more relativistic particles are present, geff increases and the universe would expand faster so that, at fixed T, the universe would be younger. Since the synthesis of the elements in the expanding universe involves a competition between reaction rates and the universal expansion rate, geff will play a key role in determining the BBN-predicted primordial abundances.
Photons are vector bosons. Since they are massless, they have
only two degress of freedom: geff = 2. At temperature
T their number density is
n = 411(T / 2.726K)3
cm-3
= 1031.5TMeV3 cm-3,
while their contribution to the total radiation energy density is
= 0.261
(T / 2.726K)4 eV cm-3. Taking the
ratio of the energy
density to the number density leads to the average energy per
photon < E
> =
/
n
= 2.70 kT. All other relativistic
bosons may be simply related to photons by
![]() |
(1.16) |
The gB are the boson degrees of freedom (1 for a scalar,
2 for a vector, etc.). In general, some bosons may have decoupled
from the radiation background and, therefore, they will not
necessarily have the same temperature as do the photons
(TB
T
).
Accounting for the difference between the Fermi-Dirac and Bose-Einstein distributions, relativistic fermions may also be related to photons
![]() |
(1.17) |
gF counts the fermion degrees of freedom. For example, for electrons (spin up, spin down, electron, positron) gF = 4, while for neutrinos (lefthanded neutrino, righthanded antineutrino) gF = 2.
Accounting for all of the particles present at a given epoch in the early (RD) evolution of the universe,
![]() |
(1.18) |
For example, for the standard model particles at temperatures
T
few MeV there are photons, electron-positron
pairs, and three "flavors" of lefthanded neutrinos (along with
their righthanded antiparticles). At this stage all these particles
are in equilibrium so that T
=
Te =
T
where
e,
µ,
. As a result
![]() |
(1.19) |
leading to a time - temperature relation: t = 0.74 T-2Mev sec.
As the universe expands and cools below the electron rest mass energy,
the e± pairs annihilate, heating the CMB photons,
but not the
neutrinos which have already decoupled. The decoupled neutrinos
continue to cool by the expansion of the universe
(T
a-1), as do the photons which now have a higher
temperature
T
= (11/4)1/3T
(n
/ n
= 11/3). During these epochs
![]() |
(1.20) |
leading to a modified time - temperature relation: t = 1.3 TMev-2 sec.